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Abstract

As computational agents are developed for increasingly complicated e-commerce applications, 

the complexity of the decisions they face demands advances in artificial intelligence techniques. 

For example, an agent representing a seller in an auction should try to maximize the seller’s profit 

by reasoning about a variety of possibly uncertain pieces of information, such as the maximum 

prices various buyers might be willing to pay, the possible prices being offered by competing 

sellers, the rules by which the auction operates, the dynamic arrival and matching of offers to buy 

and sell, and so on. A naïve application of multiagent reasoning techniques would require the 

seller’s agent to explicitly model all of the other agents through an extended time horizon, 

rendering the problem intractable for many realistically-sized problems. We have instead devised 

a new strategy that an agent can use to determine its bid price based on a more tractable Markov 

chain model of the auction process.  We have experimentally identified the conditions under 

which our new strategy works well, as well as how well it works in comparison to the optimal 

performance the agent could have achieved had it known the future. Our results show that our new 

strategy in general performs well, outperforming other tractable heuristic strategies in a majority 

of experiments, and is particularly effective in a “seller’s market,” where many buy offers are 

available.

1. Introduction 

Electronic commerce at present is mostly driven by human interactions (humans decide what to 

buy, where to buy from, and how much they are willing to pay), but automated trading agents are 

increasingly being developed and deployed (Eriksson & Janson, 2002; Greenwald, 2003; 

Arunachalam et al., 2003).  To a large extent, automated agents have been restricted to simpler 

types of e-commerce problems, where decisions about buying and selling, and about prices at 

which to buy and sell, are relatively formulaic (see for example, http://www.ebay.com).  The 

construction of particular types of auctions and other mechanisms designed for e-commerce 

systems can also simplify agent decision problems by making it irrational, for example, for an 
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agent to offer a bid price that is different from its true valuation for the object being exchanged 

(Vickrey, 1961). 

However, there are many types of trading problems in e-commerce where decisions that an 

agent must make are much less formulaic. An example of such problems, which has recently been 

the focus of considerable research in the research community (Wellman, 2003; Greenwald, 2003; 

He at al. 2002; Tesauro & Das, 2001), is the problem of bidding in a continuous double auction 

(CDA).  The CDA is an auction variant (Friedman, 1993, page 8) in which buyers and sellers post 

their buy and sell offers asynchronously, and the auction will match a buy and a sell offer at any 

moment as long as the buy bid is higher than or equal to the sell offer.   The CDA supports timely 

transactions and achieves high market efficiency, which is why most real-world markets for 

trading equities and commodities use the CDA.  The dynamics of the CDA (such as entry and exit 

of agents’ offers and continuous matching in auctions), however, adds additional complexity to 

the design of optimally profitable bidding agents.  Although there has been research on 

developing bidding agents for CDAs (He et al., 2002; Tesauro & Das, 2001; He & Jennings, 

2003; Vetsikas & Selman, 2003), there is no known dominant or equilibrium strategy in the 

CDA.

The goal of our work described in this paper has been to develop artificial intelligence 

techniques that enable the creation of high-performance bidding agents for CDAs.  We have 

specifically investigated the following research questions: 

What is an agent’s decision problem in the CDA? 

How should an agent’s bidding strategy for the CDA be designed?  That is, what kind of 

information should be used (and how should it be used) in an agent strategy for the CDA? 

How well does the developed agent bidding strategy perform in maximizing the agent’s 

profit?  In particular, when does it work and why does it work (and when and why does it 

not)?

In an auction, an agent needs to think about the participants it interacts with.  A bidder in an 

eBay auction may not seem to explicitly consider each other participant as a separate entity, but 

he may want to estimate how popular the item is, what the final prices of similar items were in 

previous auctions, and how many other sellers of similar items might enter the market, all of 

which are associated with competition among bidders. By doing so, the bidder engages in 

thinking about the participants it interacts with at least in aggregate, if not as individuals. 

A seller who tries to maximize profit by selling as many items at the highest prices possible, 

for example, needs to think not only about the auction protocol but also about potential buyers 

and other competing sellers.  One reasonable strategy for a seller then would be to model what 

each individual agent thinks and will do, and use these models to figure out its best offer.  In 

game theory, agents build a model of each other’s possible moves and payoffs to find out their 

best moves (e.g., equilibrium strategies) (Kreps, 1990).  Other researchers have designed an agent 

with a recursive model of what it thinks about what the opponent thinks, about what it thinks the 

opponent thinks about what it thinks, and so on (Gmytrasiewicz & Durfee, 2000; Vidal & Durfee, 

2003).

Modeling each of the other agents, however, is often impossible or impractical in decision 

problems involving a large number of evolving participants.  The CDA is an example of such 

complex problems (Friedman & Rust 1993; Durfee et al., 1997), as agents can join or leave the 

CDA at any time such that it is impossible for an agent to build an elaborate model of each of the 

other agents. Instead, therefore, we have sought an alternative representation and tractable 

algorithms for this type of multiagent decision problem, and based on our research we have 

hypothesized that an agent using a stochastic model of the auction process can perform well in 

the CDA.  With the stochastic model, a seller can use some (subjective) probabilistic assessment 
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about competitors’ selling prices, rather than figuring them out by modeling other competing 

sellers’ reasoning processes.  As the CDA is dynamic, an agent that captures the overall dynamics 

should be able to perform well.  Ignoring the other agents’ (internal) strategic reasoning may 

sound like a risky approximation, but as the dynamics of the CDA are partly caused by strategic 

agents, the stochastic model reflects, although indirectly, the strategic behavior of participating 

agents.

To test our hypothesis, we have developed a Markov Chain stochastic modeling technique as 

part of an agent’s bidding strategy, which we call the p-strategy (for the payment strategy).  An 

agent with the p-strategy can take into account the dynamics and resulting uncertainties of the 

auction process using stochastic modeling of the auction process.  Furthermore, we have 

empirically evaluated the performance of the p-strategy.  Under various environmental 

parameters, we have compared the performance of the p-strategy agent to agents with plausible 

alternative heuristics.  Furthermore, since it is impossible to exhaustively compare the p-strategy 

against all other conceivable strategies to assess how close it comes to the “best” strategy, we 

have compared the p-strategy against the ex-post optimal strategy to make this determination.  

The ex-post optimum is the maximum profit an agent may have achieved had it known exactly 

how the future would unfold.  The ex-post optimum cannot be achieved in the real world since it 

is computed based on the ex post analysis of what happened in the auction, but serves as an 

upper-bound benchmark on performance.  

The rest of this paper is organized as follows. The related work is reviewed in Section 2. In 

Section 3, we define the agent’s decision problem in the CDA and describe the basic concepts 

behind the p-strategy.  Section 4 then explains the details of the p-strategy. In section 5, we 

examine the performance of the p-strategy through systematic experimentation. Section 6 

summarizes the lessons learned and identifies opportunities for further research. 

2. Related Work 

As observed by Milgrom and Weber (1982, page 1117), “... One obstacle to achieving a 

satisfactory theory of bidding is the tremendous complexity of some of the environments in 

which auctions are conducted...”  Most of the classical auctions examined in auction theory are 

one-sided auctions with many simplifying assumptions, while continuous double auctions 

(CDAs) are less studied due to their complexity.  McAfee and McMillan noted that “... Few 

results on the double auction exist, because of the difficulties of modeling strategic behavior on 

both sides of the market.  ...  The oral double auction, with the bids and offers openly called, is 

still more difficult to model because the process takes place over time and agents do not know 

what prices will be available if they wait instead of trading now...” (McAfee & McMillan, 1987, 

page 726).   

In short, non-cooperative game theory has not been very successful in finding game-theoretic 

solutions in double auctions.  When no equilibrium strategies are known (for example, in the 

CDA), then there are few guidelines agents can follow, and the question naturally arises of how 

an agent should behave in such an auction.  Many researchers have focused on developing 

heuristic agent strategies in various auction settings (Lee, 2001; Park, Durfee, & Birmingham, 

2000; Friedman & Rust, 1993; Andreoni & Miller, 1995; He et al., 2002; Tesauro & Das, 2001; 

He & Jennings, 2003; Vetsikas & Selman, 2003).   

To address the question of what an agent should do, some researchers have developed a 

recursive model of other agents (i.e., what they think about what I think and so on) 

(Gmytrasiewicz & Durfee, 2000).  While game-theoretic agents are ultra-smart and super-rational 
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such that they can reason about the whole recursive hierarchy ad infinitum (Brandenburger & 

Dekel, 1993), the recursive modeling method (RMM) assumes that agents can build only a finite 

nesting of models.  Using the RMM, we can characterize agents as 0, 1, 2, … level modelers: a 0-

level agent who has no model of other agents; a 1-level agent who does model the other agents 

(as 0-level agents), a 2-level agent who models other agents as 1-level agents, and so on.  

Basically, RMM is a decision-theoretic approach to game theory and has been advocated as a 

practical solution concept for developing an agent strategy.  Our p-strategy can be viewed as 1-

level RMM, since it models the aggregate behavior of other agents, but not the other agents’ 

internal reasoning. 

Examples of heuristic agent design can also be found in learning agents.  The recursive 

reasoning method combined with reinforcement learning has been adopted in designing agents for 

double auctions (Hu & Wellman, 1996; Wellman & Hu, 1998).  Hu and Wellman have studied 

the self-fulfilling bias of learning agents in synchronized double auctions.  They have observed 

that oversimplified learning is risky—it often leads to worse results than a (simpler) competitive 

strategy, and that the agents’ initial beliefs (i.e., biases) play an important role in the final results 

of the auction.  Their results and others (Hu & Wellman, 1996; Gmytrasiewicz & Durfee, 2000) 

show that thinking deeper is not always beneficial.  These observations have motivated us to 

develop an agent strategy that does not explicitly model the other agents’ internal reasoning 

processes.

Evolutionary algorithms (EA) have also been used to design agent strategies in continuous 

double auctions (Cliff, 1998; Oliver, 1998).  Cliff has developed a ZIP (zero-intelligence plus)

agent, an extension of the zero-intelligence (ZI) agent (who bids its cost plus random markup) 

(Gode & Sunder, 1993).  Although the amount of markup is still randomly decided from some 

given independent and identically distributed (IID) distribution, the ZIP agent is equipped with a 

heuristic method for deciding when to raise its markup (e.g., whenever the last bid was accepted). 

The results show that trading among ZIP agents converges rapidly to equilibrium prices. By using 

ZIP agents, Preist (1999) has developed an agent-based double auction mechanism that achieves 

efficient allocations by eliminating trades outside of equilibrium price. We use the simple ZI 

agents as one of the alternative heuristic strategies when evaluating the performance of our p-

strategy. 

Rust, Miller, and Palmer (Rust et al., 1993) have carried out a double auction tournament.  A 

very simple “waiting in the background” trading strategy has emerged as the winner of the 

tournament. As the reader may have guessed, this type of agent, although successful in the 

tournament, is not adaptive to market activities and is vulnerable to copies of itself.  Given this 

experience, we made sure to evaluate our agent strategy against itself as well. 

Badea (2000) applied inductive logic programming to induce trading rules for a CDA.  His 

agent identifies buy (or sell) opportunities from historical market data, which in turn becomes an 

input to a learning algorithm.  Fuzzy logic has also been used to develop an agent strategy for the 

CDA (He et al., 2002).  The agent employs heuristic fuzzy rules and fuzzy reasoning mechanisms 

in order to determine the best bid given the current market state.  It can dynamically adjust its 

bidding behavior to respond to the changes in supply and demand.  As shown in their 

experiments, adaptivity plays an important role in a good agent strategy for CDAs.   

The IBM research group has developed two bidding strategies for CDAs, based on extensions 

of two published strategies (Tesauro & Das, 2001; Das et al., 2001). The first strategy is based on 

the zero-intelligence plus strategy (Cliff, 1998).  The second strategy is based on the Gjerstad-

Dickhaut algorithm (Gjerstad & Dickhaut, 1998), which uses recent market activity to compute 

the probability that a given bid or ask price will be accepted.  Their experiments indicate that no 
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single strategy outperforms the other, but their two strategies perform well against both human 

and agent opponents in CDAs.   

Although which heuristic strategy will be most effective depends on the specific 

environment, the results reported in the literature repeatedly indicate that simple heuristics work 

as effectively as (and sometimes more effectively than) more sophisticated ones.  When 

developing the p-strategy, we have abandoned more sophisticated recursive reasoning in favor of 

modeling only the auction process, hypothesizing that the dynamics of the CDA are more 

important than modeling other agents’ internal reasoning processes. This design decision has also 

been influenced by the fact that acquiring information about individual agents in the CDA with 

entry-and-exit is difficult and that incomplete modeling may result in worse performance. 

Methodologically, we employ Markov process theory (Bhat, 1972) to model the auction 

process. That is, the CDA with entry-and-exit is modeled as a Markov chain. Note that the 

information required in game theory and our stochastic-modeling method is different. In the 

former, all the information about available strategies and payoffs of all the agents involved should 

be known. The latter approach requires less information by ignoring the strategic reasoning 

processes of other agents. We hypothesize that this latter kind of strategy can be useful for 

systems where modeling dynamics is important (like the CDA), and we test our hypothesis by 

measuring the performance of our new Markov-model-based p-strategy across a battery of 

experiments.   

3. The P-Strategy 

We first define the agent’s decision problem in a CDA.  Then, we describe the p-strategy 

algorithm using a simple Markov chain as an example. 

3.1. An Agent’s Decision Problem in a CDA 

The CDA allows buy bids and sell asks to be submitted and traded at any time in a trading period.  

A match is made when a buy bid is higher than a sell ask (a buyer is willing to pay at least as 

much as a seller is asking), and the transaction is completed at the clearing price.  The clearing 

price can be either the average of the spread between the buy bid and the sell ask, or it could be 

simply one or the other of the bid price or the ask price. Among many variants of CDAs, we 

focus on the CDA with two standing queues (one for buyers’s bids and the other for sellers’ asks). 

An incoming buy or sell offer that does not get matched with standing offers will be stored in the 

appropriate queue and wait for a future match.   

Formally, the agent’s decision problem is to find an offer price  that maximizes its expected 

utility (i.e., maximizes )(u ).  The agent’s utility function is defined as  

u( )  = PS( )  U(PayoffS( )) + PF( )  U(PayoffF( )), (3.1) 

where PS( ) and PF( ) denote the probabilities of success (S) and failure (F), respectively, and 

PayoffS( ) and PayoffF( ) denote the payoffs of S and F, respectively, given offer price .

Success is when the agent gets a match for its offer.  PS( ) and PF( ) add up to 1.  Failure 

happens when the agent’s offer does not ever get a match.  For example, an agent may define an 

expiration time for its offer and consider it a failure when its offer expires without any match.  In 

this paper, we assume that, rather than an explicit expiration time (deadline) for offers, a failure 

occurs when an agent’s offer gets bumped out of a full queue of standing offers to make room for 

a more promising offer (as will be defined later in Section 4).   The utility function, U( ) , is 

monotonically increasing, since an agent prefers a higher payoff.   
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We use capital S and F as subscripts for Success and Failure, respectively (e.g., PayoffS for 

the payoff of success), and seller and buyer as superscripts for the seller and the buyer, 

respectively (e.g., seller for the seller’s offer price).  The subscripts and superscripts are often 

omitted when the context is clear.  (The Appendix collects together our notational conventions in 

one place for easy reference.)  

The seller’s payoff for a successful transaction (PayoffS
seller) is defined as the clearing price 

(CP) of the auction minus the cost (C) minus the delay overhead.  We assume that the only 

significant overhead is in delay between the time of its offer and the time of the successful match 

(defined as S( )).  We assume the time discount of a delay has cost of c, where c is a constant 

( 0),())(( cwherecTD SS ).  That is, 

PayoffS
seller( ) = CP – C – TD( S),  (3.2) 

The clearing price is a function of the offer prices of the buyer and the seller being matched.  

The function returns a clearing price that is no higher than the buyer’s offer price, and no lower 

than the seller’s offer price.  Our treatment in this paper does not require a particular function, 

which could give the buyer the entire surplus, the seller the entire surplus, or split it evenly 

between the two.

If the offer fails to clear at the auction, the seller may be worse off because of the delay.  The 

payoff of failure (PayoffF
seller) is minus the cost of the delay between when it made its offer and 

when failure occurred (defined as TD( F( ))), assuming the value of failure is 0.  That is, 

PayoffF
seller( ) = – TD( F( )). (3.3) 

Symmetrically, the buyer’s payoffs of S and F can be defined.  The buyer’s payoff of a 

successful bid (PayoffS
buyer) is defined as its valuation (V) minus the clearing price (CP) minus the 

time discount (TD( S( ))).  The payoff of failure (PayoffF
buyer) is minus the time discount 

assuming the value of failure is 0.  That is, 

PayoffS
buyer( ) = V – CP – TD( S( )),  (3.4) 

PayoffF
buyer( ) = – TD( F( )). (3.5) 

Note that we assume that buyers and sellers all have a delay cost of some constant c, but that 

each individual can have a different constant c.

The agent’s decision problem formalized as in the above does not address the issue of the 

timing of a bid.  That is, an agent is only concerned with how much to bid but not when to bid, so 

it submits a new bid right away.  Ignoring when to bid is acceptable as long as we assume no cost 

for submitting a bid and that bids are not removed from the queue in a FIFO manner.  With these 

assumptions, an agent should be able to solve its decision problem at every time step, and bid the 

best offer price (and override its previous bid) at every time step.  Of course, if there is cost 

involved with bidding (whether it be the actual cost of submitting a bid or the cost of overriding 

the previous bid), the agent should consider when to bid as well as how much to bid.  If the 

auction does not allow an agent make an inferior bid compared to its previous bid (that is, if there 

is a bid improvement constraint), for example, an agent needs to think about the tradeoffs of 

bidding right now against bidding later on. Timing then becomes an important decision factor.  

We do not consider the timing issue in this paper. 

3.2. The P-strategy Algorithm 

Figure 1 describes the p-strategy.  The p-strategy( ) function solves the optimization problem of 

maximizing the expected utility.  For each offer price, an agent using the p-strategy builds a 

Markov Chain (MC) model, by computing (1) a set of initial auction states, (2) how the auction 

might proceed from the initial states, and (3) the transition probabilities among the MC states 

(step 1).  The MC model is built using available information about the auction (such as standing 
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offers and bids, history of the auction, etc.).  Depending on the amount of information available, 

different MC models can be possible.  Having the MC model ready, the agent computes the 

probabilities and the payoffs of S and F of its offer and therefore the utility value (step 2). 

The p-strategy is a heuristic strategy.  It models the dynamics of the CDA stochastically using 

a Markov Chain (MC), assuming that the auction behaves as a random process.  This might sound 

like a risky engineering decision for a situation where agents may behave strategically.  Later in 

Section 5, we test our agent strategy to confirm that, although the p-strategy might not always be 

“the” best strategy in all the possible environments, it works reasonably well in most cases.   

The MC model captures the variables that influence the agent’s utility value and the 

uncertainties associated with them.  For instance, a seller is likely to raise its offer when there are 

many buyers or when it expects more buyers to come.  The MC model takes those variables into 

account in the MC states and the transition probabilities.  The MC model is described in detail in 

Section 4. 

Finding the best offer price is essentially an optimization problem, where the implicit 

objective function is the agent’s utility function. The objective function has no closed-form 

expression as the MC model is used to compute payoffs and probabilities.  If we assume 

unimodality1 of the objective function, we can use a univariate optimization technique, such as 

interval-reduction or interpolation methods, to find a local maximum, which by theorem is the 

global optimum (Gill et al., 1981).  Proving the unimodality of a function, however, is hard.  

Although the plot of the (implicit) utility function appears unimodal for the auctions we have 

tried, we are not able to prove it.  We may assume unimodality in the future, given that the curves 

have always been unimodal in hundreds of tests we have done by enumerating prices.  At present, 

however, we employ total enumeration; we compute the utility values for each possible offer 

price and choose the one with the highest expected utility.  In practical implementations, most 

optimization algorithms are terminated with a reasonable degree of approximation, and in our 

auction domain, the degree of optimality we can achieve is inherently limited by the 

denomination of the prices and payoffs (penny, for example).  Therefore, even with the 

discretization of prices and payoffs, we can still achieve a reasonable degree of optimality.  

                                                
1 Unimodality is often used as a condition that ensures the existence of a proper (i.e., single, relative) maximum in a 

given interval when only function values are available.  f(x) is unimodal in [a, b] if there exists a unique value x* [a, 

b] such that, given any x1, x2 [a, b] for which x1 < x2: if x2 < x*  then f(x1) < f(x2); if x1 > x*  then f(x1) > f(x2) . 

Function p-strategy() returns an offer price 

: a range of possible offer prices

best_offer: best offer price 

max_util: maximum utility value 

best_offer = 0; max_util = 0;                                          /* initializes the variables */ 

for each 

build a Markov chain and compute the transition probabilities;                (step 1) 

util = compute the utility value;                                                                 (step 2) 

/* if the new util is higher than max_util, update the best offer */ 

if (util > max_util)

best_offer = ; max_util = util;

end

end

return best_offer

Figure 1: The p-strategy algorithm. 
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The complexity of the p-strategy algorithm is O( n
3
) , where  is the number of possible 

prices and n is the number of MC states.  Step (1) of building a MC model and computing 

transition probabilities (among n MC states) takes O(n2) time.  Step (2) of computing the utility 

value takes O(n3) time due to matrix multiplication and inversion.  The time complexity of the 

fastest matrix multiplication algorithm is O(n2.831), but our implementation uses the standard 

matrix multiplication method, whose time complexity is O(n3) (Press et al., 1988). Note that even 

if we apply a polynomial interpolation method (instead of total enumeration) while assuming 

unimodality, the worst-case time complexity would still be O( n
3
) , although the average-case 

would be constant-rate faster.   

4. The Markov Chain Model for the CDA 

The MC model is valuable to bidding agents.  Intuitively, agents with a complete model of other 

agents will perform better, but without repeated encounters a complete model is unattainable.  In 

a CDA with entry-and-exit, an agent in its lifetime meets many agents, and as a result its model of 

other agents tends to be incomplete.  In such a case, modeling the auction process using readily 

available information (such as bid history) is more suitable than modeling the interior reasoning 

of each agent participating in the auction.  Even when information about each individual agent is 

available, such a model is usually too complex to be practical.  For instance, the complexity of 

solving the RMM recursive model that has been developed down to level l is an {(ml+1 – 1)/(m – 

1)}, where a = number of alternative offer prices for an agent, n = number of interacting agents, m

=  number of alternative models of other agents considered, l = level to which recursive model is 

developed (Gmytrasiewicz & Durfee, 2000).  In addition, we need to consider the complexity of 

building the model in the first place, which is larger than the complexity of solving it 

(Gmytrasiewicz & Durfee, 2000).   

This section describes how to build the MC model and compute its transition probabilities for 

the CDA (step 1 in Figure 1), and how to compute the expected utility value from the MC model 

(step 2 in Figure 1).  In the CDA where the clearing price is determined at the seller’s offer price, 

sellers have somewhat stronger incentives to bid above cost, as they always set the market price 

and this affects their tradeoffs between the probability of trading and the profit earned (Kagel & 

Vogt, 1993, page 288).  Therefore, we take the perspective of the p-strategy seller when 

explaining the MC model.  Of course, buyers have incentives, although somewhat weaker, to 

behave strategically as well (i.e., to bid below valuation), and the p-strategy buyer’s MC model 

can be constructed in a similar fashion. 

In Section 4.1, we describe the variables captured in the MC model.  Using this information, 

a p-strategy agent can build the MC model for each offer price.  It determines the set of initial 

states (described in Section 4.2), models how the auction will proceed from the set of initial states 

(described in Section 4.3), and computes the transition probabilities between the MC states 

(described in Section 4.4).  Once the MC model is built, the p-strategy finds the expected utility 

(described in Section 4.5).  Note that although we describe the transitions from a start state to a 

set of initial states (in Section 4.3) and from intermediate MC states to other intermediate MC 

states (in Section 4.4) separately, both transitions can be computed in the same way as shown in 

Section 4.4.
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4.1. Variables Captured in the MC Model 

When determining the best offer price, a p-strategy seller needs to capture in its MC model the 

variables that influence the expected utility value.  We divide those variables into three groups, as 

shown in Table 1.  Depending on the available information, one could use a different set of 

information for the agent strategy.  The variables in Table 1 are the information readily available 

in most CDAs, and we chose to capture all of them in the MC model. 

The variables in the first group capture information about the current status of the auction.  

Those variables are used to determine the set of possible initial states.  The amount of information 

available to the p-strategy seller can vary, but we identify three pieces of information: the number 

of standing offers in the auction, the probabilistic distribution2 of standing offer prices, and the 

clearing-price quote.  In Section 4.2, we show an example of how MC models would differ if 

different amounts of information were used.  

The variables in the second group capture the history of the auction, which is used to model 

the future auction process.  We extrapolate from the historic information to make predictions 

about the near future of the auction.  Such expectations can be justified on two grounds.  First, 

although each individual agent’s behavior may be different and the demography of agent 

population may evolve in the long run, the aggregate behavior of agents, such as arrival rates and 

probability distributions of offer prices, can capture the behavior of the whole agent population, 

and this aggregate behavior will not change drastically in the short run modeled in the MC model.  

Secondly, when the aggregate behavior eventually changes, the p-strategy agent can update the 

historic information and revise its MC model accordingly.   

Therefore, note that our expectations are based on a couple of assumptions.  First, we assume 

that the agents act independently.  For example, the buyers do not all get together and decide to 

hold back their offers until the sellers lower prices, at which point the buyers flood the market.  

Buyers acting independently give some stability.  Second, the duration of a particular “short-run” 

episode for which the MC model is being generated is short compared to the rate of agent 

turnover.  This enables the p-strategy to keep up with the gradual changes in the agent population.  

The p-strategy may not work as well when the previous assumptions are not met and therefore the 

auction becomes more volatile. 

Finally, in addition to the information about the auction, the p-strategy seller needs 

information about itself—its offer price and its cost.  

                                                
2 How to compute the probabilistic distribution of standing offer prices is explained in detail in Section 4.4.  

Variables used by the p-strategy seller 

Number of standing buy offers 

Number of standing sell offers 

Probability distribution of standing offer prices 

Current

auction

status
Next clearing-price quote 

Arrival rates of buy offers 

Arrival rates of sell offers 

Probability distribution of buy offer prices 

Information 

about the 

auction
Auction

history 

Probability distribution of sell offer prices 

Its offer price 
Information about self 

Its cost 

Table 1: The variables used by the p-strategy seller to build the MC model and 

to compute its transition probabilities.
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4.2. Determining the Set of Initial States 

Using the information about the current status of the auction, the p-seller can determine the set of 

possible initial states when it offers .  Depending on the amount of information available to the 

p-seller, the set of possible initial states may differ.  In the following, we examine three cases 

with different amounts of information.  

Let us first examine how to compute the set of initial states when the p-seller knows the 

number of standing offers and their offer-price distribution.  To represent standing offers in the 

CDA, we use (bb…bsss…s) notation.  For example, the (bbs) state represents two standing buy-

bids and one standing sell-offer.  When the p-seller submits its offer (represented as sp) at the 

(bbs) state, there are four possible next auction states as follows: 

(spbbs) (when the p-seller’s offer is less than the lowest of the standing  buy offers),  

(bspbs) (when its offer is in between the two standing buy offers),  

(bbsps) (when its offer is higher than the buy offers but less than the sell offer),  

(bbssp) (when its offer is higher than all the standing offers).

In the first two cases, (spbbs) and (bspbs), the initial state will be the Success state as sp and

the first b to its right get matched (see Figure 2-(a)). 

If the next clearing-price quote is known in addition to the number of standing offers and the 

distributions, the computation of initial states becomes simpler.  The clearing-price quote 

indicates the highest standing buy-bid (denoted as b’).  If the offer price of the p-seller is lower 

than the quoted clearing price (i.e., $(sp) $(b’), where =$(sp))3, the initial state will be the 

Success state.  Otherwise, the initial state will be either (bb’sps) or (bb’ssp) (see Figure 2-(b)).

When the p-seller knows the exact prices of standing offers (instead of their distributions), the 

initial state will be a single state depending on its offer price.  For example, when two buy offers 

and one sell offer are standing at the auction, and their offer prices are known, the p-seller can 

determine its initial state with the offer price  with a probability of 1 (see Figure 2-(c)).  The p-

seller may offer a price that guarantees a successful match or decide to bid higher in the hope that 

it may achieve a higher profit by waiting for a higher buy offer to arrive, at the risk of a higher 

probability of failure because a higher bid is more likely to be bumped to make room for more 

reasonable bids.

                                                
3 We use $(.) notation to represent the value of the offer explicitly.   

bbs

S

bbsp

bbssp

(a) Case 1

bb’ S

bb’

bb’sp

bb’ssp

(b) Case 2 (c) Case 3

(or)

b1b2s S

(or)

b1b2s
psb1b2s

(or)

b1b2sspb1b2s

Figure 2: The set of initial states from the (bbs) state depending on different 

information available. 
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Note that when more information about the auction is used, the p-seller can predict the initial 

states more accurately, but the number of MC states becomes larger because it needs to keep 

track of more distinctive states.  If it captures both the clearing-price quote (b’) and a new 

incoming buy offer (b) in the MC model, for example, the p-seller needs to distinguish between 

(b’b) and (bb’) states.  Which information to capture in the MC model is a design choice.  

Including the clearing-price when determining the initial set of states is an obvious choice, as the 

clearing price makes it possible to determine the probability and the payoff of success of the 

agent’s offer right away.  The value of including individual standing offer prices, however, is not 

that obvious.  Given that the MC model of the rest of the auction process is built based on the 

probabilistic predictions on incoming offers (i.e., it uses distributions anyway), the exact values 

of standing offers become less useful.  Moreover, modeling the individual standing offers would 

make the size of the MC model bigger.  Thus, to manage the size of MC models, we have decided 

to use the clearing-price quote and the distributions of standing offers (and not individual 

standing offers).  This corresponds to Case 2 in Figure 2-(b). 

4.3. Modeling the Auction Process 

From the set of initial states, the p-seller models how the auction will proceed.  It is reasonable to 

assume that at most a single offer arrives to the auction at a time, because the CDA queues up 

offers that arrive simultaneously and tries to match each new offer (that is, clear offers) one at a 

time.  We use the term clearing interval to denote the interval between successive attempts by the 

auction to match buy and sell offers.  Assuming that offers arrive at most one at a time, the 

auction can go to any of the following states from the (bbssp) state.

(bbssp): No offer arrives during the clearing interval. 

(bbsp): A buy-bid arrives and is matched with the lowest sell-offer. 

(bbbssp): A new buy-bid becomes a standing offer because of no match. 

(bssp): A sell-offer arrives, and it is matched with the highest buy-bid. 

(bbssps): Because of no match, a new sell-offer becomes the highest standing offer. 

(bbsssp): A new sell-offer becomes a standing offer, but the p-strategy agent’s offer is still the 

highest.

All the remaining state transitions can be built in a similar way, and the resulting MC model is 

shown in Figure 3 From the current state of the auction ((bbs) in this example), the process 

transitions to a set of possible initial states (marked in gray), and then to other states, and so on, 

until it goes to either the S or F state. The CDA modeled in Figure 3 limits the number of 

standing buy and sell offers not to exceed five each.  As a result, a p-strategy seller will get 

bumped out (to the Failure state) when its offer is standing in a full standing-offer queue and a 

lower sell-offer arrives (see the (sssssp) state, for example).  When building the MC model for the 

CDA, we have made the design choice of using the clearing-price quote when determining the 

initial states, but not using that extra information when modeling the auction process afterwards.  

As the MC model of the rest of the auction process is based on the probabilistic predictions on 

incoming offers (i.e., it uses distributions), the exact value of the clearing price in the past would 

not be very useful.  This compromise can be justified in terms of balancing the tradeoffs between 

more accurate initial-state computation and the explosion of the size of the MC model.  
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Figure 3: The MC model of the CDA with starting state (bbs).
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4.4. Computation of the Transition Probabilities 

To complete the MC model, the p-seller needs to compute the transition probabilities between the 

MC states.  Note that although we describe building the MC model and computing its transition 

probabilities separately, they are in fact a one-step process: the p-strategy agent computes the 

transition probabilities while building the MC model.  As we assume the current clearing price, 

the highest standing buy-bid, is available, we treat it as constant when computing the transition 

probabilities.   

We use the transition from the starting (bbs) state to (bbssp) state and the transition from the 

(bbssp) state to (bbsp) state as our two examples to illustrate the process.  Although we present the 

transition probability computation in two cases—the transition from a starting state (when it 

receives information about the auction) to a set of initial states (when it makes an offer) and the 

transition between the MC states, both are in essence the same.  The difference is the kind of 

information being used.  When computing the transition probabilities from the starting state to the 

set of initial states, the p-seller uses information about the current status of the auction, such as 

the distributions of buy and sell offers and the number of standing offers.  The transition 

probabilities between the MC states, on the other hand, are computed using the historic 

information about the auction dynamics (such as the arrival rates of buyers and sellers and the 

probabilistic distributions of their offer prices), which the p-strategy agent keeps track of.  

Let transition probability Pij represent the conditional probability that the process in state i

makes a transition into state j.  Let Xn = i represent that the process is in state i at time n.  The 

transition probability from the starting (bbs) state to the (bbssp) state, for example, then is: 

P{Xn+1 = (bbssp) | Xn = (bbs)},   for all n  0. (4.1) 

Let $(sp) denote the p-seller’s offer price ($(sp) = ).  The transition in (4.1) happens when 

the p-seller’s offer (sp) is higher than the standing sell-offer ($(sp) > $(s)).  That is,

P{Xn+1 = $(b) $(b) $(s) $(sp) | Xn = $(b) $(b) $(s)}. (4.2) 

Using Bayes’ rule, (4.2) is re-written as: 

P(Xn+1 = $(b) $(b) $(s) $(sp) & Xn = $(b) $(b) $(s)) / Xn = P($(b) $(b) $(s)). (4.3) 

The second term in the numerator can be omitted, since it is always true when the first term is 

satisfied.  Therefore, the transition probability is

P(Xn+1 = $(b) $(b) $(s) $(sp)) / P(Xn = $(b) $(b) $(s)). (4.4) 
That is, the transition probability from the current state of the auction (the (bbs) state in this 

example) to an initial state (the (bbssp) state) for the p-strategy agent can be computed by finding 

two probabilities. 

Let ƒb(b) [ƒs(s)] be the probability density function (PDF) of a buy-bid [sell-ask]. If we 

assume the variables—buy-bids and sell-offers—are independent, the joint density function is the 

product of individual density functions.  That is,  

ƒ(b,s) = ƒb(b) ƒs(s),   for all b and s. (4.5) 

Equation (4.4) is then 
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where b1 is the lower bound of buy offers and s1 and s2 are the lower and the upper bounds of sell 

offers, respectively, and  is the p-seller’s offer price.  Although this looks complex, the 

transition probability computation is a simple, repeated integration.  
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The transition probability from the (bbssp) state to the (bbsp) state happens when a new buy-

bid arrives at the auction and matches the lowest sell-offer.  That is,  

)(

)}'(&))'({(
)|(

p

pp

ssbbP

bsbbarrivesbofferbuynewP
bbssbbsP  (4.7) 

Let  be the p-seller’s offer price, f(b) [f(s)] be the probability density function (PDF) of the 

buyer-bid [sell-offer] distributions, and p_b (p_s) be the arrival rate of buy-bids [sell-offers].  

The first term in the numerator, P(newbuyoffer(b’)arrives), is p_b. The second term in the 

numerator and the denominator can be computed through repeated integration as before.  That is, 
ps s b

SBB
p dddfssbbP 321321,, ),,()( 121 . (4.8)

4.5. Computing the Expected Utility Value  

This section explains in detail how to compute the utility value for a given Markov chain using a 

simple Markov chain as an example.  Representing an absorbing Markov chain using a canonical 

representation, computing the fundamental matrix, and dividing an absorbing MC into multiple 

Markov chains are standard techniques.  In this section, we show how to apply these known 

techniques to develop a new way of computing the probabilities of success and failure and the 

payoffs of success and failure (therefore computing the expected utility of an offer price). 

The example Markov chain in Figure 4 has two absorbing states (states 1 and 2) and two 

transitional states (states 3 and 4).  State 1 is the Failure state, state 2 is the Success state, and 

state 3 is the initial state.  For the MC model with multiple initial states, we can add a dummy 

initial state that transitions to the original multiple initial states and use the same following 

computation. 

In Figure 4, the Markov model says that, if it offers a bid x, the agent can get a match (it goes 

to the Success state) with a probability of 0.8.  Or, it does not get a match and waits for another 

incoming offer (it goes to State 4) with a probability of 0.2.  From State 4, it gets a match with a 

probability of 0.1 (it goes to the S state), gets no match and waits for incoming offers with a 

probability of 0.5 (it stays at state 4), or it goes to the Failure state with a probability of 0.4.   

Following standard definitions (Bhat 1972), a transition probability matrix, P, denotes a 

matrix of transition probabilities from state i to j (Pij).  Figure 5-(a) shows a canonical 

representation of an (r+s)-state MC consisting of s transient states and r absorbing states: I is an 

(r r) identity matrix (each absorbing state transitions to itself); O consists entirely of 0’s (by 

definition, an absorbing state never transitions to a transient state); Q is an (s s) submatrix that 

1 (F)

2 (S)
3 (I)

4

0.8

0.2

0.5

0.1

0.4

Figure 4: A simple Markov chain (used as an example).
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captures the transitions only among the transient states; and R is an (s r) matrix that represents 

the transitions from transient to absorbing states.  

Figure 5–(b) shows the representation of the transition probability matrix of the Markov chain 

in Figure 4. 

P = 
r

s

       r          s

1

2

3

4

1  0  0  0 

0  1  0  0 

0  0.8  0  0.2 

0.4  0.1  0  0.5

1  2  3  4

I O

R Q

(a) Canonical representation   (b) An example  

Figure 5: The transition probability matrix. 

In the real MC model, the transition probabilities are functions of the offer price.  That is, the 

MC model is a controlled Markov chain 4  where the control input is the offer price.  For 

simplicity, however, we use numeric values for transition probabilities in our example. 

To find the utility value of its offer price (u( )), an agent needs to compute the probabilities 

and the payoffs of S and F.  To compute the probabilities of S and F, we use the fundamental 

matrix (defined shortly) of the original transition-probability matrix.  To compute the payoffs of S

and F, on the other hand, we need to build two separate Markov chains from the original one, 

each of which has a single absorbing state (either Success or Failure), and re-compute the 

transition probabilities for each new MC from the original matrix.  Then, from the new MC with 

the S [F] state, the p-strategy agent computes the payoff of S [F]. 

According to standard Markov chain theory (Bhat 1972), the fundamental matrix is defined 

as follows.  Let Nij be the total number of times that the process visits transient state j from state i.

Let Nij
k be 1 if the process is in state j after k steps from state i, and 0 otherwise.  Then, the 

average number of visits to state j from state i before entering any absorbing state is E[Nij].

E[Nij] = E[ N
ij

k

k 0

]

= E[N
ij

k
]

k 0

= {(1 P
ij

k
) 0 P

ij

k
1}

k 0

 (where Pij
k is the k-step transition probability)  

= P
ij

k

k 0

= Q
k

k 0

 (since i, j are transient states) (4.9) 

From the transition probability matrix of any absorbing MC, the inverse of (I – Q) always

exists (Bhat 1972), and 

                                                
4 The transition probability from state i to state j of a controlled Markov chain with control input , Pij( ), is the 

probability that state at (t+1) is j given that the state at t is i and the control input is .  That is,  

Pij(x) = P{X(t+1) = j | X(t) = i, }.
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0

21)(
k

kQQQIQI .  (4.10)

The new matrix, (I – Q)-1, is called the fundamental matrix, M (Bhat 1972).  From Equations 

(4.9) and (4.10), it is known that the (i,j)-th element of the fundamental matrix, ij, means the 

average number of visits to transient state j starting from state i before the process enters any

absorbing state.  We use the fundamental matrix to compute the probabilities and payoffs of S and 

F as follows.

Let fij be the probability that the process starting in transient state i ends up in absorbing state

j.  If we let the initial state be state 3, the Success state be state 2, and the Failure state be state 1, 

as in Figure 4, the probabilities of reaching S and F are f3,2 and f3,1, respectively.  

Starting from state i, the process enters absorbing state j in one or more steps.  If the 

transition happens in a single step, the probability fij is Pij. Otherwise, the process may move 

either to another absorbing state (in which case it is impossible to reach j), or to a transient state k.

In the latter case, we have fkj. Hence, 

fij = Pij + k T Pik  fkj ,    

which can be written in matrix form as 

F = R + Q F,  
and thus  

F = (I – Q)-1 R = M R.   (4.11) 
Therefore, the probabilities of S and F (f3,2 and f3,1) can be computed using the fundamental 

matrix (M) and the sub-matrix (R) of the original transition probability matrix. 

Figure 6 depicts the fundamental matrix and the F matrix of the example MC in Figure 4.  

From the fundamental matrix, we know that when starting from state 3, the process visits state 3 

once and state 4 about 0.4 times on average before it ends up in any absorbing state (i.e., 3,3 = 1 

and 3,4 = 0.4). From the F matrix, we conclude that the probability of failure when starting from 

state 3 is 0.16 (f3,1 = 0.16), and the probability of success is 0.84 (f3,2 = 0.84).

Figure 6: The fundamental matrix (M) and the F matrix for the example MC. 

To compute the payoffs of S and F, on the other hand, we need to compute the time discount, 

TD( S/F). Let ij represent a reward associated with each transition i j.  Then, the reward for 

each transition represents the constant cost of delay, c.  That is, ij = c, for all i, j except 0,0 and 

1,1. For both absorbing cases, the reward is 0. 

We need to compute 3i
(S) and Pij

(S), where 3i
(S) is the number of visits to state i starting from 

initial state 3 before the process enters S; and Pij
(S) is the conditional transition probability when 

the process ends up in S.  Similarly, we need 3i
(F) and Pij

(F), where 3i
(F) is the number of visits to 

state i starting from initial state 3 before the process enters F; and Pij
(F) is the conditional 

transition probability when the process ends up in F.

Those values can be computed by creating two new Markov chains (P(S) and P(F)) from the 

original matrix P, each of which has one absorbing state, S and F, respectively. From P(S), we can 

obtain Pij
(S) and compute the new fundamental matrix M(s) (and therefore 3i

(S)).

              1      0.4                                        0.16    0.84 

M = F = MR =

              0       2                                          0.8      0.2 
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The new transition probabilities, Pij
(S)

, are the conditional probabilities that the process goes 

to state j from state i when the process ends up in S. Let be the statement “the original MC ends 

up in state S”. Then,

Pij

( S)
P(i j | )

P((i j) )

P( )

P( | i j) P(i j )

P( )

f
jS

P
ij

f
iS

 (4.12) 

The new MC with the single absorbing state S, P
(S), is defined as follows.  

(S)(S)

(S)

QR

O
P

1
,

where R
(S) is a column vector with R

(S) PiS

fiS
, and Q(S) is the matrix with

Q
(S)

Pij

(S ) f jS Pij

fiS
.

From P(S), we can compute the new fundamental matrix M(S), and therefore, 3i
(S).  Of course, 

Pij
(F) and 3i

(F) are computed in a similar way. 

Figure 7 depicts the two new Markov chains generated from the example MC. The new 

transition probabilities are computed using the conditional probability computation of Equation 

(4.12). To end up in failure, for example, the process always goes to state 4 from initial state 3 (if 

not, the process will end up in success). Therefore, the transition probability from state 3 to state 

4 is 1 (P3,4
(F) = 1) for the MC with the F state.

2 (S)
3 (I)

4
1 (F)

3 (I)

4

0.5

0.5

0.0476

0.9524

1

0.5
0.5

Figure 7: Two new Markov chains with one absorbing state each, S and F, respectively. 

j Pij
(S)

ij  is the average reward of the one-step state transition from state i when the process 

ends up in S. Multiplying it by 3i
(S) (the number of visits to state i starting from state 3 until it 

goes to S), we compute the one-step reward accrued from state i when the process ends up in S

( 3i
(S)

j Pij
(S)

ij). Adding this value for every state i, we compute the total reward of S. That is, 

the total reward of S (TD( S)) can be computed as follows, where T denotes the set of transient 

states and TC denotes the set of absorbing states (S and F).

TD( S ) 3i

( S)

Pij

( S)

ij

j {T ,T
C

}i T

.  (4.13) 

The reward of F (TD( F)) can be computed in a similar way. 

TD( F ) 3i

( F )

Pij

(F )

ij

j {T ,T
C

}i T

. (4.14) 
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Suppose the cost of delay is 0.1 (i.e., ij = -0.1). Then, TD( S) is 0.10952, and TD( F) is 0.3. 

If U(Payoff( )) equals Payoff( ) (i.e., risk neutral), the expected utility of the offer price of 5 

(with its cost of 3) is 1.54 as computed in the following (using Equation (3.1)). 

u(5) = 0.84  (5 – 3 – 0.10952) + 0.16  –0.3 = 1.54. 

5. Evaluation

So far, we have argued for adding techniques based on Markov chain models into the AI 

repertoire to support intelligent decision-making (bidding) in a continuous double auction, and 

have described the techniques we have developed along with the rationale for particular modeling 

decisions we have made along the way. We now turn to the question of whether our new 

techniques, embodied in the p-strategy, indeed lead to improved decisions, and if so under what 

conditions. In essence, we are trying to answer the question of “which bidding strategy should 

you, as a seller agent, use to maximize your profit?,” by comparing the p-strategy to some 

heuristic strategies across a range of situations.  We also analyze how close (or far) the p-strategy 

is from performing as well as the ex-post optimum.   

5.1. Experimental Testbed 

As our approach to demonstrating the advantage of the p-strategy is through experiments, we 

need a systematic way of exploring a well-defined portion of the situations the p-strategy agent 

may potentially encounter, and a structured way of comparing its performance against other 

strategies.  We have identified several experimental parameters that cover the possible auction 

situations (which we call the experimental space), and have developed a testbed that supports the 

identified parameters.  Thus, by varying the value combinations of the experimental parameters 

of the testbed, we can systematically evaluate the performance of the p-strategy in different 

auction situations.  (The testbed is available upon request from the first author.) 

First, the testbed supports differing valuations [costs] of buyers [sellers], which reflect 

differences in their tastes [technologies].  The testbed supports uniform probability distributions.  

The valuation [cost] of buyer [seller] i is drawn randomly from a uniform probability distribution 

Fi.  In our experiments, we adjust the interval of the uniform distribution to be wide, medium, and 

narrow (W, M, N, respectively).  Wide is 0 to 100, medium is 0 to 50, and narrow is 0 to 20.   

Second, the testbed supports different degrees of dynamics.  The dynamics of an auction are 

determined by two parameters: the arrival rate of buy-bids and the arrival rate of sell-asks.  The 

number of buy-bids [sell-offers] and the interval between successive bids [offers] determines the 

arrival rate of buy-bids [sell-offers].  An agent’s next bid [offer] arrives at an auction randomly 

between 0 and offer-interval since its last bid.  So, the actual interval between bids of agent i is 

(offer-intervali/2) on average.  The overall arrival rate of buyers and sellers can be computed by 

adding the arrival rates of individual agents as follows. 

i
i

buyer
intervaloffer

ratearrival
2_

1  , where i  buyers,

i
i

seller
intervaloffer

ratearrival
2_

1  , where i  sellers. 

For the dynamics of the auction, we vary the arrival rates of buy offers and sell offers to be 

either Low (L) or High (H). Low is 0.1, and high is 0.4.  We use 10 buyers and 10 sellers, and 

adjust their offer-intervals accordingly.  The offer-interval is 200 for L, and 50 for H arrival rates.  

By using different offer rates and different numbers of agents, we can simulate how active the 
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auction is.  As the MC model does not model individual agents, the number of agents in the 

system will not increase the complexity of the p-strategy reasoning.   

Third, the testbed supports various agent populations.  The demography of the agent 

population is determined by setting the bidding strategy of each individual agent i.  The testbed 

provides several types of heuristic bidding strategies (in addition to the p-strategy).   

As the auction places no restriction on the agent bidding strategy, many different types of 

agent strategies are possible.  We characterize the space of agent strategies based on the amount 

of knowledge they use (see Table 2).  The simplest is the strategy that requires no knowledge 

about the outside world.  Examples include Zero-Intelligence (ZI) agents (Gode & Sunder, 1993) 

and Fixed-Markup (FM) and Random-Markup (RM) agents, both of which are described in the 

following.  On the other hand, an agent may use a limited set of knowledge; it may use 

information about the status of the auction, how other agents behave, and the limited depth of 

other agents’ interior reasoning processes.  Of course, the more knowledge it uses, the more 

complex the strategy becomes.  The Clearing-Price (CP) agent, described in the following, uses 

only information about the status of the auction (the clearing price).  Most CDAs publish the 

clearing price (the highest standing buy-bid in our setting).  Our p-strategy agent uses information 

about both auction status and participants’ behavior.   

The Recursive Modeling Method (RMM) agent uses models of the participants’ internal 

reasoning in addition to information about the auction status (Gmytrasiewicz & Durfee, 2000).  

At the extreme, an agent may use all the information relevant to its decision making (e.g., a 

game-theoretic (GT) agent highlighted by Brandenburger & Dekel, 1993).  We do not consider 

agent strategies that use information about the interior reasoning of other agents, as no GT 

strategy is known for the CDA setting and the RMM agent for the CDA is prohibitively 

expensive to build and run. Instead, we have developed three simple heuristic strategies, FM, 

RM, and CP, corresponding to the first two rows in Table 2.  

We should note that several new agents have been developed specifically for CDAs (He et 

al., 2002; Tesauro & Das, 2001) since we ran the experiments reported here.  Detailed 

comparisons with these new agents could be valuable, and this is an opportunity for future 

research, but would involve substantial efforts, in part because the experimental setup of the 

CDAs are somewhat different despite the fact that many common aspects exist.  In this paper, we 

show based on the post facto analysis that there is room for improvement beyond our p-strategy, 

but it remains to be seen if other CDA strategies can do better. 

 Participants 
Auction

Behavior Interior reasoning 
Example strategies 

No information    ZI, FM, RM 

Limited information   CP 

Limited information  P 

Limited information RMM

All information GT

Table 2: The space of agent strategies. 
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Fixed-Markup Strategy (FM-seller) 

The FM-seller bids its cost plus some predefined markup. The FM-strategy does not try to 

maximize the number of matches nor the profit per match. Rather, it is a satisficing strategy that 

hopes to gain a fixed profit whenever a deal is made. This is one of the simplest strategies 

because the seller does not have to monitor the auction nor build a model of other agents. 

Random-Markup Strategy (RM-seller) 

The RM-seller bids its cost plus some random markup. The RM-seller is a “budget-

constrained zero-intelligence trader” who generates random bids subject to a no-loss constraint 

(Gode & Sunder, 1993).  

Clearing-Price Strategy (CP-seller) 

The CP-seller receives information about the next clearing price (clearing-price quote) from 

the auction agent and submits the quoted clearing-price as its offer as long as it is higher than its 

cost. When its cost is higher than the quoted clearing price, it behaves like the FM-strategy (i.e., 

bids its cost plus some fixed markup).  

The CP strategy is an optimal strategy at the current snapshot of the auction provided no 

other agent arrives at the auction before its bid, because the quoted clearing price is the highest 

profit achievable by the next incoming seller. The actual clearing price, however, will change if 

new offer(s) arrive during the time between the clearing-price quote and the CP-seller’s offer.  

Intuitively, the clearing-price strategy seems a good heuristic when the auction is less 

dynamic. By ignoring the dynamics of the auction (i.e., incoming buyers and sellers), however, 

the CP-seller cannot capitalize on future, more lucrative deals, and may miss out on the current 

deal due to other incoming seller(s) with lower sell price(s). In comparison, the p-strategy does 

anticipate the future by modeling the auction process stochastically, and therefore can weigh the 

tradeoffs between the current known deal and the more lucrative (but uncertain) deals in the 

future.

Post-facto Optimal Strategy (OPT-seller) 

In addition, we have developed an optimal bidding strategy (called OPT-strategy). No matter 

how many strategies the p-strategy is compared against and how well it performs, it will not 

prove that the p-strategy is the best; we will always wonder whether there exists a better strategy. 

Instead of exhaustively comparing the p-strategy against every possible strategy (which is 

impossible), we measure the maximum profit an agent may have achieved had it known exactly 

how the future would unfold. The post-facto optimal profit is not achievable in the real world 

since it is based on a post-facto analysis of what had happened in the auction, but it serves as a 

benchmark of what the highest profit might have been. 

The main idea in the post-facto optimal strategy is to find the best offer at time x as if the 

agent knows about the future auction process with a probability of 1. The OPT-strategy analyzes 

the auction process after the auction has run and discovers the best offer price. That is, it can look 

ahead to the time before it makes another offer, and finds out the best price for the current offer. 

As the main purpose of our experiments is to evaluate the performance of the seller’s

strategy, we do not test different buyer’s strategies; we let all buyers be competitive (i.e., they bid 

their true valuations).  Sellers, on the other hand, can use different strategies (FM, RM, CP, OPT, 

and p-strategy).  The resulting demography of agent populations can be from all sellers’ using the 

FM-strategy to all sellers’ using the p-strategy.  That is, the number of agents using the fixed-

markup, the random-markup, the clearing-price-bid, and the p-strategy can vary from (0,0,0,0) to 

(10,0,0,0) to (0,10,0,0) to (0,0,10,0) to (0,0,0,10) for each experiment.  Let n be the number of 

agents and s be the number of strategies, then the number of possible agent populations can be 
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O(ns).  It is indeed a huge experimental space, and we test some notable cases in the following 

section.

Note that since the p-strategy agent does not model individual agents, the number of agents in 

the auction is less significant in the experimental results.  By changing the offer rates and by 

changing the population of 10 sellers, the experimental testbed can simulate various environments 

the p-strategy agent may face, such as a large population of active participants to a small 

population of less active participants.  Note that one could have simulated the dynamics of the 

auction without having 10 competing agents.  A single agent with varying offer rates would 

simulate the dynamics.  The reason for having multiple agents in the system is for simulating 

different population demographies. 

A typical experiment presented in this paper consists of 20,000 cycles, unless noted 

otherwise.  The rest of the section presents a subset of notable cases from an extensive suite of 

experiments (Park 1999).  The choices of parameters reported in this paper are based on 

information gleaned from those experiments.  For example, we selected 0.1 and 0.4 to represent 

low or high arrival rates (and thus represent the degree of activity in auctions.)  The markups of 5 

and 25 presented in this paper represent small and large markups giving qualitatively different 

results in the extensive experiments.  That is, from the experiments that find the optimal markup 

in different auction environments, we have found different “optimal” markup values (near 5 for 

narrow zone and near 25 for medium or wide zone).  Thus we use these to make the other agents 

as competitive as possible.  The experiments with markups near 5 or 25 show trends similar to 

what is reported here. 

5.2. Comparison of Agent Strategies 

We compare the performance the p-strategy to that of the other strategies (FM, RM, CP, and 

OPT).  The main questions are: 

Whether the p-strategy outperforms what we conceive as reasonable, realistic agent 

strategies (except the OPT-strategy), and  

How closely the p-strategy performs compared to the (ideal) OPT-strategy. 

We vary the negotiation zones and offer arrival rates of buyers and sellers.  To compare the 

agent strategies, we replace the target seller being compared with the FM, RM, CP, P, and OPT 

strategy sellers in each set of experiments, while letting all the other sellers participating in the 

auction simply bid their true costs. The markup of the FM and CP-strategy is set to five. Figure 85

depicts the profits of the FM, RM, CP, P, and OPT sellers (represented as F, R, C, P, O, 

respectively).  The experiment in Figure 8-(a)-(ii) depicts the performance of the compared 

strategies in the setting where both buyers and sellers have narrow negotiation zones and the 

arrival rates of buy and sell offers are 0.1 and 0.4, respectively, for example.  

The FM-seller achieves stable profit regardless of negotiation zones, because of its satisficing

behavior of trying to gain the same fixed markup, while the profits of the other types of sellers 

change significantly (compare the FM-seller’s profits, for example, in Figure 8-(a)).  The FM-

seller performs relatively well as compared to the other types of sellers when there are more sell 

offers (1_4 cases).6  More competition among sellers means a lesser amount of potential gain, and 

thus the simple FM-strategy works well.  In addition, the markup value of the FM-seller is five in 

                                                
5 Note that all the subsequent graphs in this paper have different vertical scales.   
6 We use the notation “x_y case” to denote the test set where the buyer’s arrival rate is 0.x and the seller’s arrival rate is 

0.y.  So, the 1_4 case, for example, denotes the experiment where the buyer’s arrival rate is 0.1 and the seller’s arrival 

rate is 0.4. 
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our experiments, which happens to be close to the optimal markup value for the experiment in 

Figure 8-(b)-(ii) (which is 7), as based on our more complete experiments (Park 1999).  As a 

result, with a lucky guess the FM-seller makes profit comparable to that of the p-seller.  In 

general, however, the FM-seller works poorly compared to the other strategies because of its 

“static” fixed markup.  In the case of wider negotiation zones or higher demand from buyers, in 

particular, the FM-seller fails to capture higher profit by insisting on the same (small) fixed 

markup (see the experiment in Figure 8-(c)-(iii), for example). 

The performance of the RM-strategy fluctuates widely across the experiments.  In general, 

the RM-strategy performs worse than the other strategies.  By randomly raising its bid, the RM-

seller makes higher profit than the FM-seller when the negotiation zone is wider.  This 

observation, however, does not hold when we select other markup values for the FM-seller.  The 

FM-seller’s markup of 5 is too small a profit to pursue in the wide negotiation zone, and the RM-

seller performs always worse than the FM-seller with an optimal markup value as described in the 

following section.  As the profit gain of the RM-seller is rather unpredictable and low, we 

conclude that randomizing the profit markup is a poor heuristic to use. 

The CP-seller performs especially well when there are more buy offers than sell offers.  Thus, 

the CP-strategy is almost as good as the p-strategy in experiments with the arrival rates of (0.4 & 

0.1), as shown in Figure 8).  We attribute this result to two reasons.  First, more demands from 

buyers mean more opportunities for higher profit gains for sellers.  Secondly, and more 

importantly, due to fewer sellers, the clearing price is less likely to change (adversely to the CP-

seller).

The CP-seller achieves slightly higher profit than the p-seller in the experiment in Figure 8-

(b)-(ii).  Note that the advantage of the p-seller over the CP-seller comes from p-seller’s bidding 

higher than the current clearing price to take advantage of more lucrative (future) incoming 

trades.  With high competition, however, higher bidding results in fewer matches, and reduces the 

p-seller’s profit.  Therefore, the p-strategy is not very effective in the 1_4 case  in general.  In 

addition, the markup of 5 is close to the optimal value for the experiment in Figure 8-(b)-(ii) and 

the p-seller does not perform well in the 1_4 case. (Recall that the CP-seller submits the current 

clearing-price quote when it is higher than its cost, or its cost plus some fixed markup when its 

cost is higher than the clearing-price quote (i.e., behaves like the FM-seller).)  Note that the 

markup of 5 is intentionally chosen to make the CP-seller the most competitive in the 1_4 case. 

The CP strategy, however, does not perform well with a wide negotiation zone, because it 

may have achieved a higher profit had it waited for incoming buy offers with higher price rather 

than settling at the current clearing price.  That is, the same reason that makes the CP-seller 

successful in the 1_4 case acts against it in the wide negotiation zone case. 

Table 3 shows the results of a t-test, where each agent strategy (FM, RM, and CP) is 

compared to the p-strategy under different negotiation zones and different arrival rates.  The t-test 

is useful for comparing two samples with a certain confidence level.  In our case, it is used to 

analyze where one strategy is better than the other. It not only gives a yes-no answer but also 

gives a confidence level on the answer.  Knowing the confidence level is often more helpful to 

agent designers than the simple yes-no answer from the hypothesis tests.   
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Figure 8: The profit of the agent strategies (continued on the next page). 
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Figure 8: The profits of agent strategies (continued from the previous page). 

Each cell in Table 3, representing a t-test of 20,000 data points, lists the better strategy of the 

two compared in each environment, given the confidence level of 90%.  For each t-test, we 

compute the two sample means (of the p-strategy and the other strategy compared), the sample 

standard deviations, the mean difference, the standard deviation of the mean difference, the 

effective number of degrees of freedom, and the confidence interval for mean difference.  If the 

confidence level includes zero, the difference is not significant at the 90% confidence level.  If 

the confidence interval does not include zero, the sign of the mean difference indicates which 

strategy is better.  For more detailed information about the t-tests performed, one may refer to 

(Park, 1999). 

Arrival rates 0.1 & 0.1 0.1 & 0.4 0.4 & 0.1 0.4 & 0.4 

FM P P P P 

RM P P P P 

CP P P ? P 

(a) When the negotiation zone is narrow 

Arrival rates 0.1 & 0.1 0.1 & 0.4 0.4 & 0.1 0.4 & 0.4 

FM P ? P P 

RM P P P P 

CP P ? ? P 

(b) When the negotiation zone is medium 

Arrival rates 0.1 & 0.1 0.1 & 0.4 0.4 & 0.1 0.4 & 0.4 

FM P P P P 

RM P P P P 

CP P P ? P 

(c) When the negotiation zone is wide 

Table 3: The results of t-test. 
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The p-seller always outperforms the RM-seller.  As we noted earlier, randomly raising its bid 

price is not a good heuristic.  Compared to the FM and CP sellers, the p-seller performs better 

when buy and sell offers arrive at a similar rate (i.e., either 1_1 or 4_4 cases).  We cannot 

conclude, however, which strategy is better when the negotiation zone is medium and the arrival 

rates are (0.4 & 0.1), given the confidence level of 90%.  We also find out the CP-strategy 

performs as well as the p-strategy in the 4_1 cases regardless of the size of negotiation zone.  As 

discussed in the previous section, the CP-strategy is indeed a good heuristic to use in the 4_1 

cases.  

No agent can have a complete, deterministic view of the current and future status of the 

auction except the OPT-seller, but the agent that takes those uncertainties into account should 

have an advantage over those who do not.  That is why the p-strategy that models the auction 

process is a better strategy in general.  

5.3. Optimal Markups of the FM and CP Strategies 

The markup value of 5 is close to the optimal markup value for both the FM and CP sellers in the 

experiment in Figure 8-(b)-(ii), which contributes to their high performance (i.e., not significantly 

different from the p-seller) in that experiment.  This raises the question of whether the FM-seller 

with an optimal markup will be better than (or similar to) the p-seller in other cases as well.  

Thus, we have investigated the relation between the markups and the performance of the FM-

seller and the CP-seller.

To answer this question, we first find the optimal markup of the FM and CP strategies in each 

experimental setting.  After determining the optimal markup, we then run the same experiments 

in the previous section again, this time using the FM and CP sellers with an optimal markup.   

From the experiments (not shown), we determine the best markup value for each case.  As 

expected, the optimal markup value of the FM strategy increases (1) when the negotiation zone is 

wide, and (2) when there are more buy offers.  The optimal value decreases, on the other hand, 

when the competition among sellers increases.  Similar to the case of the FM-seller, the optimal 

markup of the CP strategy is higher with a wider negotiation zone, and with more buy offers.  

However, compared to the wide difference of the FM-seller’s profit depending on different 

markup values, the profit of the CP-seller is less sensitive to the markup value, because the CP-

seller uses the markup value only when its cost is higher than the current clearing-price quote.  

When comparing the p-seller to the FM and CP sellers with an optimal markup value (called 

opt-FM and opt-CP, respectively), we find that the profits of the opt-FM and opt-CP sellers are 

higher than the profits of the FM and CP sellers with a markup of 5 (compare with Figure 8).  In 

particular, the opt-FM and opt-CP sellers perform well in the 1_4 cases regardless of the 

negotiation zone size  

The t-test results in Table 4 indicate that the opt-FM and opt-CP are actually better than the p-

strategy when the buy and sell arrival rates are 0.1 and 0.4, respectively, and the negotiation zone 

is medium, and as good as the p-strategy in other 1_4 cases.  Similar to previous results, the opt-

CP continues to perform well with high demand from buyers (i.e., the 4_1 case).  In other cases, 

the p-strategy is still a better strategy.  

Using a pre-determined markup value, however, assumes that an agent knows what an 

optimal markup for the current situation is.  This assumption is not generally reasonable for the 

following two reasons.  First, the possible auction situations are too large to exhaustively search 

for the optimal markup value.  Secondly, in the dynamic CDA, the optimal markup may vary 

with time.  In fact, finding an optimal markup for the current situation is what the p-strategy is 



PARK, DURFEE, & BIRMINGHAM

200

trying to do by modeling the auction process stochastically and adjusting its offer price 

accordingly.  

Arrival rates 0.1 & 0.1 0.1 & 0.4 0.4 & 0.1 0.4 & 0.4 

Opt-FM P ? P P 

Opt-CP P ? ? P 

(a) When the negotiation zone is narrow 

Arrival rates 0.1 & 0.1 0.1 & 0.4 0.4 & 0.1 0.4 & 0.4 

Opt-FM P Opt-FM P P 

Opt-CP P Opt-CP ? P 

(b) When the negotiation zone is medium 

Arrival rates 0.1 & 0.1 0.1 & 0.4 0.4 & 0.1 0.4 & 0.4 

Opt-FM P ? P P 

Opt-CP P ? ? P 

(c) When the negotiation zone is wide 

Table 4: The t-test results (comparing the p-strategy to the opt-FM and opt-CP 

strategies).

5.4. Comparison to the OPT-strategy 

Instead of comparing the p-strategy to all the feasible agent strategies (which is impossible), we 

compare the p-strategy to the OPT-strategy (i.e., the ideal upper bound).  In particular, we are 

interested in how closely the p-strategy performs to the OPT-strategy.  Figure 9 shows the profit 

per offer of the agent strategies normalized to that of the OPT-strategy.  

Note that the p-seller adjusts its offer price depending on the auction situation.  When the 

negotiation zone is narrow, for example, it tries to increase the number of matches.  When the 

negotiation zone is wide, it tries to increase the profit per match.  When the arrival rate of buy 

offers is high, it tries to increase the profit per match, while it tries to increase the number of 

matches when the arrival rate of sell offers is high.  Similar behavior is also observed from the 

OPT-seller, while the FM, RM, and CP-sellers show totally different behaviors.  Given the 

resemblance to the behavior of the OPT-strategy, it is not surprising that the p-strategy performs 

the best overall. When there is high competition among sellers, however, the p-strategy performs 

similarly to the CP-strategy. 

Two observations are derived by comparing the agent strategies to the OPT-strategy.  First, 

the p-strategy performs most closely to the OPT-strategy in most cases, and in Figure 9-(a) and 

(d), the p-strategy is clearly the winning strategy among those compared.  When buy and sell 

offers arrive at a similar rate, and when other sellers behave naïvely (i.e., the other nine sellers bid 

their true costs), the p-strategy always outperforms the other agent strategies.  When there is 

higher demand from buyers, both the CP-seller and the p-seller perform similarly well (see Figure 

9-(c)).
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Figure 9: Comparison of the profit per offer normalized to OPT. 

Secondly, the p-seller’s performance degrades with high competition, and the FM or CP 

strategies can get similar profits to that of the p-strategy in such cases (most notably, the Medium 

negotiation zone case in Figure 9-(b)).  The difference between the OPT-seller and the p-seller is 

most significant with high competition among sellers.  With high competition, the sellers have 

little room for profit gain to begin with.  In addition, the background sellers who bid their true 

costs gain lots of matches, which leaves even less room for strategic bidding.  The p-strategy of 

trying to achieve high profit per match (by looking into the future of the auction process) is not 

very effective in this situation, and the difference between a simpler strategy and a more 

sophisticated strategy (like the p-strategy) is smaller. 

Using the OPT-strategy’s behavior to improve the p-strategy seems like a good extension to 

the p-strategy.  Since the OPT-strategy uses information unattainable in the real setting (such as 

the future clearing price), however, we are still investigating what could be usable.  More 

generally, the OPT-strategy provides a sense of how well our p-strategy does compared to what is 

theoretically possible, which overall is quite well, but suggests that there is room for 

improvement. 

5.5. Comparison of Agent Strategies under Different Agent Populations 

In the experiments presented so far, we have varied only the negotiation zones and offer arrival 

rates, and the agent population has been fixed such that all the other (background) sellers in the 

auction bid their true costs (i.e., FM-sellers with markup = 0).  The types of background sellers, 
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however, are another factor (in addition to the negotiation zones and offer arrival rates) that 

influences the performance of an agent strategy.  

In this section, we try various types of background sellers, and examine the performance of 

the p-strategy under different agent populations.  Specifically, we want to find out whether the p-

strategy continues to outperform the other agent strategies even under different agent populations. 

Figure 10 depicts the possible configuration of background sellers.  The x, y, and z axis 

corresponds to the number of FM, CP, and P background sellers (i.e., sellers except the target 

agent being compared), respectively.  In the experiments with nine background sellers, any 

integer point on the plane connecting (9, 0, 0), (0, 9, 0), and (0, 0, 9) is a possible configuration of 

seller population.  The previous experiments with 9 sellers who bid their true costs, for example, 

correspond to the point (9, 0, 0) on the x-axis.  

Figure 10: The space of different agent population. 

To examine the performance of the p-strategy under different agent populations, we now use 

different background sellers.  We still keep the fact that there is only one p-seller in the auction 

for now.  That is, we examine some notable cases on the line connecting (9, 0, 0) and (0, 9, 0).

(The cases where there are more than one p-strategy seller are examined in the next section.)  

They are: 

All the background sellers bid their costs plus 257 (i.e., FM sellers with markup 25), 

All the background sellers use the CP-strategy with markup 0, 

Some sellers use the CP-strategy with markup 0 and others use the FM-strategy with 

markup 0. 

Figure 11 shows the experimental results of the cases when all the background sellers are 

FM-sellers with markup 25.  As we are only interested in general trends (and not the specific 

profit values), and as the trends are similar across different negotiation zones, we only show the 

medium negotiation zone. 

The most notable difference as compared to the experiments with true-cost bidding 

background sellers is that all the compared agents now receive more profits.  As the background 

FM-sellers with higher markup receive fewer matches than the background FM-sellers with 

markup 0, there are more opportunities for matches, and as a result, the profits of all the 

compared sellers increase.  The change in the background sellers favors in particular the p-seller 

and the CP-seller, as they can achieve more matches and more profit per match.  The change is 

most notable in the CP-strategy in the 4_1 case.  Similar to the case where the background sellers 

bid their true costs, the p-strategy is still the best strategy when buy and sell offers arrive at a 

similar rate (the 1_1 and 4_4 cases). 

                                                
7 The FM-seller’s optimal markup for medium or large negotiation zones is near 25.  We intentionally set the markup to 

be 25 to make the FM-seller most competitive (Park 1999). 
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Figure 11: Profit of the agent strategies (when the other sellers use the FM-strategy with 

a markup of 25). 

Figure 12 shows the cases when all the other sellers use the CP-strategy with a markup of 0. 

As the background CP-sellers receive more profits than the background FM-sellers, all the 

compared sellers receive less profit than in the previous experiments. Notice that the profit of the 

CP-strategy decreases the most. Now the CP-strategy cannot achieve higher profit than the p-

strategy in any case, due to the contention among multiple CP-sellers. That is, the CP-strategy 

performs poorly when there are multiple CP-sellers, which is an important property of the CP-

strategy. 

0

500

1000

1500

2000

2500

3000

3500

F R C P O

pr
of

it

strategy

cccsm_11

0

200

400

600

800

1000

1200

1400

1600

F R C P O

pr
of

it

strategy

cccsm_14

(a) Arrival rates of 0.1 & 0.1 (b) Arrival rates of 0.1 & 0.4 

0

500

1000

1500

2000

2500

3000

3500

4000

F R C P O

pr
of

it

strategy

cccsm_41

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

F R C P O

pr
of

it

strategy

cccsm_44

(c) Arrival rates of 0.4 & 0.1 (d) Arrival rates of 0.4 & 0.4

Figure 12: Profit of the agent strategies (when the other sellers use the CP-strategy with 

a markup of 0). 
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Figure 13: Profit of the agent strategies (when 4 sellers use the FM-strategy with a 

markup of 0 and 5 sellers use the CP-strategy with a markup of 0). 

When the background sellers are comprised of both the FM and CP sellers, we see the p-

strategy is the best strategy except in the 1_4 case, as usual.  Figure 13 represents the cases where 

four sellers use the FM-strategy with a markup of 0 and five sellers use the CP-strategy with a 

markup of 0.  Similar trends are reported in the cases where four sellers use the FM-strategy with 

a markup of 25 and five sellers use the CP-strategy with a markup of 25.  

As the performance of an agent strategy depends on many factors happening in the auction, it 

is hard to draw a single sweeping conclusion.  However, the experimental results show that (1) 

the p-strategy still performs the best in most cases, and that (2) the CP-seller’s performance is 

most sensitive to the demography of agent population. 

5.6. Performance of the P-strategy in the Presence of Competing P-strategy Sellers 

Given that the p-strategy is effective in the CDA in general (from the previous sections), nothing 

prohibits any self-interested seller from adopting the p-strategy, and thus we are interested in the 

collective behavior of the p-sellers when multiple p-sellers coexist in the system. We have 

investigated how the absolute and relative performance of a p-seller changes because of the 

presence multiple p-sellers.  

In our experiments, we increase the number of background p-sellers while decreasing the 

number of the other background sellers in the auction. The types of other background agents used 

in the experiments are: 

(1) FM-sellers with a markup of 5, 

(2) FM-sellers with a markup of 25, and 

(3) CP-sellers with a markup of 0. 

The markup value of 5 instead of 0 is used to compare the profits of the p-seller and the FM-

seller. A FM-seller with a markup of 0 does not accrue any profit, which makes it impossible to 

compare the relative performance of the FM- and p- sellers. 

By changing the number of p-sellers in the auction, we answer two questions. First, does the 

p-seller’s performance degrade with multiple p-sellers due to competition among p-sellers? 

Second, if the p-seller’s profit decreases as we expect, does any other strategy perform better than 

the p-strategy in the presence of multiple p-sellers?  
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Figure 14: The change of profit of the p-seller as the number of p-strategy sellers increases 

(when the FM-seller’s markup is 5). 

Figure 14 shows the changes in the p-seller’s profit as the number of p-sellers increases (and 

the number of FM-sellers decreases). The profit of the p-seller decreases with more p-sellers in 

(a) and (d) due to the competition among p-sellers.  
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Figure 15: Total profit generated in the auction (when the FM-seller’s markup is 5). 

The profit of the p-seller, on the other hand, does not change significantly in the 1_4 and the 

4_1 cases. These results can be explained by looking at the total profit generated in the entire 

auction system. Figure 15 depicts the total profits gained by all the buyers and all the sellers. As 

the number of FM-sellers with a low markup value of 5, who receive most of the matches, 

decreases, more buyers are available to the other sellers, and the p-sellers are able to take 

advantage of that. So, the p-sellers receive more matches in the 1_4 case, and they receive more 
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profit per match by increasing their offer prices in the 4_1 case. That is, in both cases, instead of 

squeezing the profit out of competing p-sellers, the p-strategy sellers are able to gain similar 

profit at the expense of buyers. 

Figure 16 shows the profit of the p-strategy seller when the FM-seller’s markup is 25. In most 

cases (except the 4_1 case), the profit of the individual p-seller decreases as the number of p-

sellers increases. With more p-sellers, the competition among the p-sellers increases, and they eat 

into each other’s profits. In the 4_1 case, however, the profit of the p-seller does not decrease 

with the increase in p-sellers. With the availability of many buy offers, a p-seller extracts profits 

from the buyers rather than from the other p-sellers. Therefore, the number of matches does not 

decrease after a certain point.  See Figure 17 for the changes of the buyers’ and sellers’ profits. 

Now, another question is how does a simpler strategy seller perform in the presence of 

multiple p-strategy sellers?  In particular, does it outperform the p-seller in the presence of 

multiple p-sellers?  The FM-seller with a markup of 5 does not perform well against the p-sellers, 

and receives almost the same profits regardless of the number of p-sellers.  The markup of 5 is 

too small for the medium negotiation zone, so the FM-seller is not able to gain profit close to that 

of the p-seller.  The profit of the FM-seller with a markup of 25 is generally smaller than that of 

the p-seller, but the difference decreases with the increase of p-sellers.  In particular, the FM-

seller performs better than the p-seller when the number of p-sellers increases in the 4_4 case.  

The result indicates that a seller may want to switch between p-strategy and a simpler strategy 

depending on what the other sellers are doing.  By dynamically switching to a simpler strategy, an 

agent can achieve a similar profit (to that of using the p-strategy) while exerting less effort (time 

and computation) on calculating bids.  
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Figure 16: The change of the profit of the p-seller as the number of p-strategy sellers 

increases (when the FM-seller’s markup is 25). 
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Figure 17: Total profit generated in the auction (when the FM-seller’s markup is 25). 

In the final set of experiments, we examine the performance of the p-seller when multiple p-

sellers and CP-sellers coexist (in Figure 18). Interestingly, the p-seller’s profit does not decrease 

with the increase of p-sellers. More surprisingly, the buyers’ profit and the overall system’s profit 

increase with an increase in p-sellers (as in Figure 19).  

The reason for such different behavior (as compared to the cases with FM-sellers as 

background sellers) can be explained by two reasons. First, the CP-seller’s performance is 

significantly degraded in the presence of the other CP-sellers. As shown in Figure 20, the profit of 

the CP-seller is lower when there are many CP-sellers due to contention among themselves. As 

the number of other CP-sellers decreases, the profit of a CP-seller increases, which results in the 

increase of total sellers’ profit. Secondly, the p-seller’s performance is not affected by multiple 

CP-sellers. Notice that the profit of the p-seller with multiple CP-sellers is less to begin with, as 

compared to the case with multiple FM-sellers.  
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Figure 18: The change of the profit of the p-seller as the number of p-sellers increases in 

the presence of multiple P and CP sellers. 
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Figure 19: Total system profit generated in the auction with multiple P and CP sellers. 
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Figure 20: Profits of the CP-seller in the presence of multiple P and CP sellers. 

Competition among p-sellers degrades the performance of each p-strategy seller, but the 

degree of performance degradation depends on the demography of the agent population. It is most 

significant when the background sellers use the FM-strategy with a high markup, and least 

significant when the background sellers use the CP-strategy.  

From the view of total system profit (i.e., the sum of all the buyers’ profit and all the sellers’ 

profit), an increase in the number of p-sellers reduces the buyer-side profits and does not reduce 

the total system profit much. It is important to note that the p-strategy does not impair the 

efficiency of the auction much. In contrast, the CP-strategy significantly degrades the total system 

profit when there are multiple CP-strategy sellers by reducing the number of matches. 
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6. Conclusion

The p-strategy is based on stochastic modeling of the auction process.  Ignoring that other agents 

behave strategically may sound like a risky approximation, but as the behavior of strategic agents 

is reflected in the dynamics of the CDA, the stochastic model accounts for, although indirectly, 

the strategic behavior of participating agents.  By stochastically modeling the auction, the p-

strategy agent derives the probability of success and the payoff of success, and trades off the 

probability against the payoff.  These tradeoffs are manifested in its decision of raising (or 

dropping) and narrowing (or spreading) the offer prices.  As knowing about each individual agent 

is a difficult task in the changing environment of the CDA, modeling the aggregate behavior of 

the agents (but not the behavior or internal reasoning of any individual agent) is a feasible 

solution for developing an agent bidding strategy. Using MCs to devise a strategy based on the 

aggregate population of buyers and sellers is novel, and demonstrates the value of the MC model 

to agent design.  The MC model is reusable and thus the techniques of building the MC model for 

the auction can benefit other agent designers. 

The p-strategy is a practical agent bidding strategy to be used on behalf of human bidders for 

the CDA.  The complexity of the p-strategy is proportional to the number of MC states, which is 

bounded by the maximum number of standing offers.  As a result, compared to modeling the 

internal reasoning of each individual agent (which requires exponential computational power as 

the number of agents increases), the complexity of the p-strategy does not increase with the 

number of agents in the auction.  

We have empirically evaluated the performance of the p-strategy.  First, we have compared 

the p-strategy seller to agents using other bidding strategies under various environments.  The 

results indicate that the p-strategy outperforms other agent strategies in the CDA in a majority of 

experiments.  In particular, the p-strategy seller performs well when many buy offers are 

available, as it can extract more profit per match at the expense of buyers.  However, the 

performance of the p-strategy seller degrades with high competition among sellers for much 

smaller buy offers, or with multiple competing p-sellers.  Second, we have analyzed the behavior 

of the p-strategy.  When the negotiation zone is wider, the p-strategy seller raises its offer price to 

take advantage of the wide spread between the buy and sell offer prices.  It also raises its offer 

price when there are many buy offers.  

The experimental results and analyses contribute not only to our understanding of the 

performance of the p-strategy and the other strategies being compared but also to understanding 

of the behavior of an ideal agent bidding strategy.  The good performance of the p-strategy seller 

is the result of its dynamic bidding behavior of raising or dropping the offer prices, which is 

possible by modeling the auction at runtime.  The agent strategies based on simple rules of thumb 

(e.g., FM and CP strategies) are effective when there is not much room to gain profit to begin 

with.  When the negotiation zone is wider or there are many buy offers, for example, they 

perform poorly, by failing to take advantage of potential profit gain.  This emphasizes the benefit 

of having a model of the runtime states of the auction, which is particularly important for the 

CDA where the runtime auction status is continuously changing.  The offer-price distributions 

confirm our claim of the importance of auction modeling by an agent strategy.  The offer-price 

distribution of the p-seller is similar to that of the OPT-seller, and that is why the p-seller 

performs most closely to the OPT-seller.  The evaluation is done primarily on the seller, but we 

conjecture that the findings can be applicable to the buyer as well, as the CDA domain exhibits 

symmetry between the buyer and the seller.   

Our experience in designing and evaluating the p-strategy will be useful to other researchers 

who study agent strategies.  Researchers can design an agent strategy based on the findings 
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reported in this paper, and also use the p-strategy as one of the benchmark strategies to compare 

against the performance of their agent strategy.  Our analysis shows that there is about a 20% gap 

between the performance of the p-strategy and that of the OPT-strategy.  Although the ideal 

performance of the OPT-strategy may be hard to achieve, agent designers can either improve 

upon the current design of the p-strategy or develop new strategies to shrink the gap.  More 

generally, the research reported in this paper contributes to the computational decision-making 

literature, and particularly the multi-agent reasoning literature, by giving a concrete example of 

where modeling the trajectory of the aggregate effects of agents’ decisions (in this case, modeling 

the CDA) avoids the need to model the individual decision-making behaviors of the agents, and 

thus holds promise to simplify scaling up to larger agent populations. 

From the experiments, we have learned that the p-strategy performs well in a majority of 

environments, particularly when other agents use naïve strategies, but its superiority diminishes 

as competition among sellers increases.  Such observations prompt us to incorporate adaptation 

capability into the p-strategy.  The idea is to let the agent figure out when using stochastic 

modeling is beneficial and when using other simpler strategies is beneficial at run time.  Such a 

hybrid strategy, which we call the adaptive p-strategy, is our current ongoing work.  The adaptive 

p-strategy agent will be able to capitalize on the strength of stochastic modeling (of the dynamics 

and uncertainties of the auction process) and avoid the shortcomings of stochastic modeling at the 

same time, by adaptively deciding when to use the p-strategy and when not to. 
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Appendix A: Notations 

Offer price

(sometimes s and b for the seller’s and the buyer’s offer prices, respectively) 

u( ) Expected utility of offer 

PS( ) Probability of Success, given 

PF( ) Probability of Failure, given 

PayoffS( ) Payoff of Success, given 

PayoffF( ) Payoff of Failure, given 

C Cost

V Valuation

CP Clearing price 

S( ) Delay between the offer and the successful match 

F( ) Delay between the offer and failure 

TD( ( )) Time discount for delay of ( ) (–c.  ( ), when c < 0) 

Table A.1: Notations used in defining the agent’s decision problem in Section 3. 



AGENT BIDDING STRATEGY FOR CONTINUOUS DOUBLE AUCTIONS

211

b The buyer’s offer 

s The seller’s offer 

Sp The p-strategy agent’s offer 

(bb..bs..s) Standing offers in the auction ordered from the lowest offer to the highest 

ƒb(b) Probabililty distribution of buyer’s offer price 

ƒs(s) Probability distribution of seller’s offer price 

cp Clearing-price quote (compared to the actual clearing price (CP)) 

$(i) Agent i’s offer price (Note that $(sp) = )

Table A.2: Notations used in building the MC model for CDA in Section 4. 

P Transition probability matrix ( Pij )

Pij Transition probability from state i to state j

Pij
(S) Conditional transition probability when the process ends up in S

Pij
(F) Conditional transition probability when the process ends up in F

M Fundamental matrix ( ij )

ij Average number of visits the process makes to transient state j starting from state i

before it enters one of the absorbing states  

ij
(S) Average number of visits the process makes to transient state j starting from state i

before it enters S

ij
(F) Average number of visits the process makes to transient state j starting from state i

before it enters F

fij Probability the process enters absorbing state j starting from state i

ij Reward associated with the state transition from i to j (= the cost of delay) 

T Set of transient states 

TC Set of absorbing states 

Table A.3: Notations used in computing the utility value in Section 4. 
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