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Abstract

Incorporating the concept of the syllable into speech recognition may improve
recognition accuracy through the integration of information over syllable-length time
spans. Evidence from psychoacoustics and phonology suggests that humans use the
syllable as a basic perceptual unit. Nonetheless, the explicit use of such long-time-
span units is comparatively unusual in automatic speech recognition systems for
English. The work described in this thesis explored the utility of information col-
lected over syllable-related time-scales. The first approach involved integrating syl-
lable segmentation information into the speech recognition process. The addition of
acoustically-based syllable onset estimates [184] resulted in a 10% relative reduction in
word-error rate. The second approach began with developing four speech recognition
systems based on long-time-span features and units, including modulation spectro-
gram features [80]. Error analysis suggested the strategy of combining, which led to
the implementation of methods that merged the outputs of syllable-based recognition
systems with the phone-oriented baseline system at the frame level, the syllable level
and the whole-utterance level. These combined systems exhibited relative improve-
ments of 20-40% compared to the baseline system for clean and reverberant speech
test cases.

*This report is a revised version of the author’s thesis, which was submitted to the Department of
Electrical Engineering and Computer Science on May 20, 1998 in partial fulfillment of the requirements for
the degree of Doctor of Philosophy at the University of California, Berkeley. This work was supervised by
Professor Nelson Morgan. The thesis committee also included Professors Steven Greenberg, John Wawrzynek
and Charles Stone.
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Chapter 1

Introduction

Shakespeare:

Thou shalt be free

As mountain winds: but then exactly do
All points of my command

To the syllable.

Come, follow.

Automatic Speech Recognition:!

Bell shall be free

as mountain winds: but then exactly two
all points of my command

to this global.

COM, follow.

This thesis is about putting the syllable back into automatic speech recognition.

For human beings, speech recognition is natural, robust, and efficient; speech is an in-
tegral part of communication between people. Every day the human speech recognition
system performs feats of computation, filtering out ambient environmental noise from the
speech signal, compensating and executing online adaptation for distortions due to speaker
eccentricities, and rendering the result into words and sentences using complex contextual
searches. Precisely how human beings perform speech recognition is not yet known. Al-
though the physiological basis of hearing is slowly yielding to investigators, there is still
much that is a mystery.

L An experienced dictation software user, Adam Janin (at ICSI), read this passage from Shakespeare’s
The Tempest to a commercial automatic speech recognition (ASR) package. The task is not entirely fair to
the ASR system. It had never been used to transcribe anything like Shakespeare before. The system is well
trained to this particular user, however, who employs it routinely in the course of his work.
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—> | Feature Extraction | =—>| Probability Estimation |=>| Decoding |=—> ten hundred

front end back end

Figure 1.1: Diagram of the major parts of a typical automatic speech recognition process.
Although language modeling is also a major part in ASR systems, it is not shown for
simplicity.

Despite not completely understanding the neurophysiology of speech recognition, re-
searchers have made substantial progress towards creating artificial methods of understand-
ing speech, particularly over the last 30 years. Automatic speech recognition (ASR), how-
ever, is only just beginning to function well enough to be useful to the mass-market con-
sumer. Designing and building artificial means of recognizing speech has proven to be
difficult due to issues of complexity and robustness. Factors such as variability in speech,
differences in speakers, environmental noise, confusibility of words, effects of prosodics,
coarticulation, and perplexity trouble human speech recognition far less than the best au-
tomatic systems. Generally, a laboratory recognition system that performs well on artificial
test data will have considerable, unforeseen difficulties with real voice input after deploy-
ment in the field— although both situations are equally intelligible to humans. Successful
commercial applications often require additional tuning, data collection and analyses after
field deployment to adjust systems for the differences between laboratory test sets and ac-
tual usage [188]. Ideally, this additional work should not be necessary.? Although speech
recognition science has evolved greatly, there is still much improvement necessary before
recognition by machines approaches the capabilities of human listeners.

1.1 Incorporating the Syllable into Speech Recognition
Figure 1.1 is a diagram of a typical automatic speech recognition engine.® A signal process-
ing method first analyzes the spoken speech input. The process divides speech into regular
time-frames and for each frame generates an array of numerical features. A probability
estimator then uses the resulting acoustic features to generate posterior probabilities for
each of the output categories, usually phones. The decoder, using dynamic programming,
integrates the output of the probability estimation stage with additional information about
the task to yield words and sentences.

Current speech recognition systems tend to employ signal processing and probability
estimation techniques that focus on comparatively short sections of time. The use of small
segments has the advantage of being able to encapsulate and distinguish minute changes
in the speech signal. Long-time-span trends in the speech signal may be more difficult

?Robustness to unexpected characteristics of the speech signal is further discussed in Section 3.1.
?Current speech recognition technology is discussed in Chapter 3.
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to identify explicitly and could be inappropriately weighted compared with other sources
of speech information. Longer-time phenomena also afford fewer example patterns in a
certain amount of training data for stochastic learning techniques. Since there is evidence
that human speech has structure visible only at longer time intervals, approaches that
consider longer time-spans present promising research avenues. To examine how to improve
automatic speech recognition, the research described in this thesis looks to human speech
perception for inspiration. In particular, the exploration focuses on the long-time-span unit
known as the syllable, and the incorporation of certain types of syllable-based information
into more standard speech recognition technology.

It is not known what sort of basic unit, or group of units, is used in human speech
perception, but the syllable is one of a handful of strong contenders in a hotly-debated
controversy.* Evidence from psycholinguistics and phonology suggests that syllable-level,
long-time-span information (on the order of about 250 ms) may be crucial for speech un-
derstanding by human beings, particularly under adverse conditions [75].

For speech recognition by machines, information integrated over syllabic intervals may
exhibit more robustness to unexpected characteristics of speech signals, that is, properties
that are not represented well in the training information for the recognition system. While
this integration can lose short-term detail, the combination of a syllable-based system with a
phoneme-based system may have advantages over the individual systems alone due to their

complementary strengths and weaknesses.®

From an engineering point of view, a more
natural organization of word pronunciation models, based on the syllable, may help reduce
redundant computation and storage of words. The syllable may also provide a means for
readily expressing long-time-span characteristics in the speech signal such as coarticulation,
stress and other effects of prosody. In spite of the evident advantages, popular automatic
speech recognition systems for English do not usually include the syllable as an explicit
representational unit, though the concept of the syllable has played significant roles in ASR

for other languages.®

This thesis describes two threads of research into incorporating information based on
syllable-length time-spans into a recognition system for English. Illustrated in Figure 1.2,
one thread explored using estimates of where syllables began (syllable onsets) as segmen-
tation points; the other looked into improving the identification of words using information
calculated over entire syllable-length intervals. By using a longer time segment, the machine
learning algorithms in the recognition mechanism can potentially learn characteristics and
relationships integrated over larger time spans of speech. Each experimental series culmi-
nated in combining the syllable-related information with a phoneme-based system to give
an overall improvement, particularly with reverberant speech.

The concept of combining multiple sources of recognition information may very loosely
approximate human perceptual processes. The experiments in this thesis that involved
combining syllable-oriented and phoneme-based recognition are consistent with the idea
that human speech understanding involves combining multiple representations of speech

*The role of the syllable in human speech perception is discussed more fully in Section 2.1.

®Combining systems is discussed in detail in Chapter 6.

6Chapter 2 discusses why typical ASR systems for English do not include an explicit representation of
the syllable.
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Figure 1.2: Diagram of the major parts of the automatic speech recognition process with
proposed syllable elements indicated.

information, for example in the developing theories described in [74, 75, 78].

1.2 Results Overview

The goal of this thesis is to investigate the utility of syllable-level information in combi-
nation with standard phoneme-based techniques for improving recognition accuracy and
robustness to unexpected properties. The course of this study involved the development of
complete speech recognition systems for the Numbers corpus [30] incorporating long-time-
span, syllable-oriented information.

The Numbers corpus comprises utterances from speakers saying numbers from their
addresses, telephone numbers and zip codes over telephone lines in a conversational, uncon-
strained manner. Its relatively small size and its variety of acoustic qualities and speakers
make it ideal for this work.” The Numbers task represents the problem of recognizing a
small vocabulary task in a speaker-independent fashion under adverse conditions. Such a
situation might arise in an information kiosk near a street, or for a speech recognition appli-
cation accessed via a cellular telephone. Accuracy and particularly robustness to unexpected
variations in the speech signal are important factors in the usability of such applications by
the general public.

The first series of experiments focused on using the beginnings of syllables (syllable
onsets) as cues for segmenting speech at the syllable level. The experimental methodology
necessitated the design and implementation of a syllable-based decoder to incorporate syl-
lable onset information. Pilot experiments (with correct onsets) showed that knowledge of
the beginning points of syllables had the potential to improve performance by as much as
38%. Using estimated syllabic onsets (from actual speech [184]) in a phoneme-based system

"The Numbers corpus is discussed in more detail in Section 3.2.
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realized a 10% relative improvement in accuracy over the baseline system.®

The second series of experiments focused on developing recognition systems using syllable-
based recognition units and acoustic features computed over syllable-length intervals [80,
105, 107].% The analysis of the experimental results showed that while these systems did
not achieve a significantly lower error rate than the phoneme-based system on the test data
(several of the systems performed significantly worse), in many instances they could suc-
cessfully recognize an utterance that the baseline, phoneme-oriented system could not. The
syllable-based systems had strengths and weaknesses that were somewhat complementary
to those of the phoneme-based system.

The final series of experiments involved integrating the syllable-based systems with the
phoneme-based system using combination strategies that merged two recognition systems
at one of three different stages of the recognition process. Fach of these strategies resulted
in somewhat different recognition performance, but in the best case (syllable-level combi-
nation) these experiments achieved an approximately 20% relative improvement in word
error rate for clean speech and a roughly 40% relative improvement in word error rate for
reverberant speech.'”

The experiments illustrated that, for the Numbers corpus, using syllable-based informa-
tion in combination with traditional phone-based information enhanced the overall accuracy
and robustness to reverberation of the ASR system. Thus, syllable-based information and
combination strategies emerge as viable areas for future ASR research, both individually
and when used together.

1.3 Thesis History and Outline

This project originated as an effort to vectorize the speech decoding algorithm for a multiple-
unit version of the SPERT vector microprocessor system [201], as suggested by Professor
John Wawrzynek. Vectorization is most efficient when an algorithm accesses contiguous
memory locations in succession; the introduction of pointers and conditionals impairs the
achievement of maximum performance. Professor Steven Greenberg suggested that sylla-
bles may have many advantageous organizational, computational and storage properties,
in addition to being a fundamental unit of human speech recognition. Thus, to make the
decoding process easier to vectorize, I began investigating using syllables instead of words
or phones as a basic organization unit for recognition. Professor Nelson Morgan suggested
the focus on syllable-time-span units and features in speech recognition as a refinement of
the basic broad approach, and he also suggested the combination strategy. The results of
the subsequent investigation are described in the chapters that follow. While I myself have
not returned to the question of vectorizing speech recognition algorithms, some of the work
described in this thesis has natural extensions to parallel and concurrent processing. In
particular, combining multiple systems is inherently concurrent and Fric Fosler-Lussier’s

8These experiments with syllabic onsets are discussed in Chapter 4.
°The development of these syllable-oriented systems is discussed in Chapter 5.
19These results with combining systems are discussed in Chapter 6.

17



two-level decoder implementation!! for combining multiple streams is highly parallel at the
word level [54].

The rest of this document begins in Chapter 2 with a discussion of syllables as they
pertain to speech recognition both for humans and for machines, along with a summary of
past and contemporary work along similar lines by other researchers. Chapter 3 contains a
short overview of the history and state of the art in speech recognition and includes techni-
cal details about the ICSI system which serves as the platform for the experiments of this
thesis. Chapter 4 describes efforts to use syllable onset information to reduce word errors in
a phoneme-based recognition engine. This work was previously published in [210]. The next
chapter, Chapter 5, details the ideas, design and implementation of several speech recog-
nition systems which incorporate syllable-related elements, and reports the performance of
each. Chapter 6 relates the analysis of the differences and similarities in the experimen-
tal systems and how a syllable-oriented speech recognition system was combined with a
phoneme-based, comparatively short-time span system. The chapter details encouraging
experimental results with both clean and reverberant speech. Part of this work was pre-
viously published in [209]. Chapter 7 contains a summary of this project, discusses the
advantages and disadvantages of the syllable-based system and draws some possible con-
clusions from this work. In particular, it contains some reflections on issues pertaining to
the extension of these ideas to large vocabulary tasks.

" Based on Sakoe’s algorithm [171] as described in [159].
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Chapter 2

The Role of Syllable-based

Information

Syllables have been described as thrusts of the chest muscles of respiration, peaks
of sonority, pulses of sound energy, necessary units in the mental organization
and production of speech, a group of speech movements, and a basic unit of
speech perception. [147]

This chapter discusses the syllable as a possible basic unit of speech recognition, for which
there is some empirical psychoacoustic support in the case of humans and some engineering
justification in the case of machines striving to imitate human abilities. For the purposes of
the research described in this thesis, a “basic unit” of speech recognition is the intermediate
form of speech information around which much of the recognition processing is organized
for human beings or for machines. The general opinion of phoneticians and psycholinguists
is that there is indeed such a unit with relatively few distinct types.! For this research a
basic unit is ideally an output of acoustic-phonetic processing and an input to the lexical
processing stages. A significant portion of the processing operates on this unit. A basic unit
must be small enough to express variety in the manifestation of speech without an explosion
in the number of representations, yet be large enough to be computationally efficient and
possess properties that allow it to function as an organizational unit for lexical access.

Over the last 40 to 50 years, researchers have proposed many different types of inter-
mediate units. Some of the possibilities include sub-phoneme units, phones, phones with
right or left context, biphones, diphones [178] and variations [36], dyads or transemes [44],
avents [134, 136, 208], triphones [7, 175], demisyllables [60], syllables [59], whole words, and
phrases.

Current research in psychoacoustics and psycholinguistics suggests that the syllable
might be a basic unit of human speech perception. Researchers have hypothesized that
the syllable, or a related long-time-span unit, may be the key to how humans process and
integrate information from the speech signal. From an engineering standpoint, the syllable

!Frauenfelder reviews some of the current thinking about the interface between the acoustic-phonetic
level and the lexical level in [55].
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may be an efficient, useful intermediate speech unit that can potentially reduce redundant
computation and storage in automatic speech recognition. Higher-level knowledge of spoken
language can be expressed fairly naturally and compactly in terms of syllables; yet syllables
are relatively short and have constrained characteristics. In spite of the potential benefits,
the syllable is not often an explicitly represented concept in modern automatic speech
recognition (ASR) systems for English.

There are many questions still unanswered about the role of syllables in human language,
and many practical difficulties in using syllables as units of automatic speech recognition.
This chapter discusses the role of the syllable in speech recognition, for both humans and
machines. Section 2.1 first reviews research literature about the syllable’s role in human
speech perception. Section 2.2 details the properties of syllables in conversational American
English. The third section of this chapter discusses the history of the idea of using the
syllable as an intermediate speech unit in recognition by machines and its advantages and
disadvantages. This chapter concludes with a discussion of the relationship of this material
to the experiments described later in this thesis.

2.1 Syllables in Human Speech Recognition

Much research into automatic speech recognition by machines takes guidance from the
human speech communication mechanism. Even though researchers do not necessarily aim
to completely mimic the human process, understanding some measure of speech recognition
by humans is relevant for any study. How are syllables used by the human speech recognition
system? The answers to this question are quite controversial and strongly debated in the
linguistic and psychoacoustic communities.

Continuing Kahn’s analogy [101], studies aimed at deciphering the role of the syllable in
human perception can be thought of as akin to measuring the movement of an airplane in
turbulence and attempting to infer Newton’s laws of motion and gravitation. Kahn blames
much of the controversy among linguists on the nature of the syllable on disagreement about
which facts are most fundamental and require explanation first.

The literature on the nature of the syllable in human speech is overwhelming in size.
The exposition in this section is limited to a concise summary of current thinking about
the perception of syllables in human speech recognition as pertains to the area of automatic
speech recognition and the research described in this thesis. The focus is on perceptual
studies, rather than the study of speech generation or production, since the eventual aim is
automatic speech recognition by machines. The more abstract arguments in the linguistic
research community are not covered.

2.1.1 Syllable as Basic Unit

Over the past few decades it has become accepted wisdom that the process of mapping
between acoustic signals and sequences of perceived sounds in humans is complex; listeners
do not process speech in a linear fashion, one acoustic segment at a time like “beads on a
string.” Instead, acoustic information at one instant of time is relevant to several phonetic
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segments, and a single phonetic segment affects a broad region of acoustic information.
Speech perception is therefore highly context-dependent. The research community also has
come to realize that recognizing a word is more involved than a simple mapping between
acoustic-phonetic properties and an entry in the mental lexicon. It is more likely to be a
rather complex, non-linear process with many heterogeneous subprocesses [81]. That the
perceptual sequence is not strictly bottom-to-top is supported by the observation that lis-
teners use high-level context to resolve confusions. For example, Savin and Bever presented
words such as “cat” and “hat,” mixed with background noise sufficient to cause listeners,
hearing these words without context, to mistake one for the other. When given the context
“it is time to feed the,” listeners reported hearing “cat,” even if this word is incorrect [173].
In a developing theory of speech perception, Greenberg proposes that the speech recognition
mechanism is a many-layered process with dozens of coarse representations that combine
in a non-linear manner in order to effect the robust and efficient speech recognition ability
of human beings [74].

The community at large feels that no single perceptual unit (based on phonemes, syl-
lables, or words) has proven to be the ideal basic unit for all auditory situations [144].
Nevertheless, researchers generally hypothesize that a few representations dominate the or-
ganizational units in the human speech perception system. The two major contenders for
principal sublexical perceptual unit are the syllable and the phoneme. Although there is
probably no single unit that is the sole representation of sound in speech processes, there
is considerable evidence that the syllable is a major representative form, arguably more
so than the phoneme. It has been suggested that many prosodic properties such as pitch,
accent and stress are most naturally expressed in terms of syllables. Some researchers hy-
pothesize the syllable to be the primary unit of segmentation in speech and the basic unit
of lexical access in the human brain.

One point of evidence in favor of the syllable comes from the observation that syllables
are identified more easily than phonemes by untrained, naive listeners. Rozin, Poritsky
and Sotsky found that children with reading disabilities could be taught to read using
Chinese characters [168]. They attributed their success to the mapping of the characters to
a higher level than the phoneme, and suggested that the syllable be used to facilitate reading
instruction. Anecdotal evidence suggests that normal children are able to identify syllabic
segments at a younger age than phone segments. Mehler, Dommergues and Frauenfelder
speculate that phones are identifiable only after subjects learn to read and write with
graphemes (i.e., letters of the alphabet) which can then be related to phonemes [127]. A
variety of speech pathologies can be characterized more easily in terms of syllables than
with phoneme-based expressions. Syllable-based explanations have been used in explaining
the misarticulations of children, hearing deficiencies, and other anomalies [147].

Many studies have tried to distinguish the roles of units such as syllables and phonemes in
human speech recognition. Studies aimed at determining the basic unit of speech perception
have often produced inconclusive results; it is very difficult to formulate experimental setups
that isolate different human perceptual factors. Because of the complexity and inseparability
of the elements in the speech recognition process in humans, experimental data can be
subject to differing interpretations. Also, conclusions are further impeded by the difficulty
of extrapolating from laboratory conditions to ordinary everyday speech. The experimental
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results and conclusions obtained by researchers are often flatly contradictory. Rather than
taking any single experiment as definitive, this thesis sides with the view that the body
of research regarding the syllable must be considered as a whole. The literature supports
the syllable as a prominent component of the human speech perception system, given this
holistic view. Below are summaries of some of the more popular paradigms and results
relevant to the issue of automatic speech recognition and the work described in this thesis.

2.1.2 Syllable Identification

One of the more popular methods for studying the basic identification units of speech in
humans is the “reaction time” experimental paradigm. This sort of experiment assumes
a correlation between how quickly a human subject can recognize and respond to speech
stimuli and how fundamental the recognized unit is to the perception process. These ex-
periments may take many forms, but they tend to follow the framework of asking subjects
to react as quickly as they can to the perception of syllabic or phonetic targets in an ar-
tificially crafted carrier utterance. Experimenters hope that the correlation between the
chosen experimental variable and reaction time is elemental and simple to characterize.

This methodology is difficult to formulate in an unassailable manner that is general-
izable to greater context. Critics assert that a variety of effects are not addressed in the
instantiations of this experimental paradigm. Some experiments use a very small set of
specific syllables and phones. Others use sets of target syllables or phones that may not be
equivalently perceived by humans owing to effects such as linguistic level or acoustic char-
acteristics, which are independent of their relationship to the basic perceptual unit. For
example, syllables of differing durations, or which have onsets with differing speeds of tran-
sition, may obscure the experimental data if categorized similarly. There are also extensive
criticisms of the criticisms. The variance in experimental observations and the contradic-
tions in conclusions brings to mind the old fable of blind men, each feeling a different part
of an elephant and attributing radically different characteristics to the animal.

Nonetheless, there is a considerable body of literature based on this paradigm in the
search for the perceptual units of the human speech system. The experimental results can be
roughly divided between those that find faster reaction times for syllables than phones and
those that find faster reaction times for phones than syllables. Massaro summarizes several
studies that found subjects recognized syllables faster than phones [124]. Among these are
the works of Savin and Bever [173], who found subjects responded faster to targets that
were complete syllables than to phones from a syllable, and of Warren [197], who reported
that identification times for monosyllabic words and nonsense syllables were shorter than
for phone clusters which were in turn shorter than for individual phones. Warren also
observed that the majority of his subjects failed to recognize the /n/ phone in the word
“and” when asked to identify /n/s in the context of a sentence. This suggested that the
monosyllabic word “and” had a perceptual identity separate from its constituent phones.
Several reaction-time studies in multiple languages are summarized in [180, 181, 182] which
indicate faster reaction times for syllables in French, Spanish and Portuguese, though Segui
suggests that the syllabic boundaries of English may be too ill-defined to extend the general
conclusion to English.
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Frauenfelder summarizes a considerable body of literature pertaining to the “interface
between acoustic-phonetic and lexical processing,” concentrating on reaction time experi-
ments [55]. In Frauenfelder’s summary, the opposing viewpoint of the phoneme triggering
faster reaction times than the syllable is supported through experimental evidence by sev-
eral studies. In their experiments, Norris and Cutler attempted to enforce full analysis of
targets by supplying stimuli that differed from the target only by one phone, for example
“bat” and “bam.” They claimed that the faster reaction times for syllables were merely
artifacts of the experimental design of others [143].

What do these contradictory findings mean and what accounts for them? Kahn warns
not to regard all facts as equally important and deserving of interpretation [101]. To gen-
eralize about the nature of the syllable through a relatively small number of results from a
single experimental paradigm is a fundamentally unsafe methodology. The results of these
experiments depend critically on the experimental procedure. The difference in reaction
times for “faster” versus “slower” is often less than 150 ms, and removing the influence
of higher order thinking is acknowledged to be very difficult. Therefore, any conclusions
and interpretations from the results of these reaction time experiments must be taken in
context, as a small part of a broader body of empirical results from diverse experimental
paradigms.

Reaction time experiments and the theories developed around them tend to regard
the question of sublexical perceptual units as a choice between phoneme-based units and
syllable-based units. The view that there are multiple sublexical, basic units appears to be
less popular among researchers investigating this issue. This multi-unit view, however, is the
most likely to account for all the disparate experimental findings and it is the perspective
underlying this thesis.

While reaction time experiments have been very popular and have generated conflicting
conclusions, other experimental paradigms have been used in studies that contribute to the
overall assessment of the syllable as a candidate basic identification unit. These experiments
depart from reaction time experiments and instead follow more of a “masking” model.
Researchers manipulate the stimulus with some sort of interference, either through direct
obfuscation or through indirect means, and then assess the intelligibility of the resulting
signal by asking subjects to identify the targets they perceive.

Psychoacoustic experiments where researchers replace phones or other short sections
in stimulus utterances by noise or silence address the importance of the individual phone
and other segments of speech. In “silent-center” experiments, the nucleus of a syllable
is replaced with silence with minimal effect on recognition accuracy. This is known as a
type of auditory illusion called “phonemic restoration.” Subjects often do not notice a
phone is missing if the interval has been replaced with some sort of filler, such as white
noise or a cough, thus lending support to the idea that humans infer phonemes as parts of
syllables after the syllable has been categorized.? In [96], the authors designed a variation
of the silent-center experiment where the two halves of a syllable, separated by silence,
are provided by different speakers, for example male and female. The results indicate that
syllable onsets and offsets, taken as pair, are sufficient to derive the vowel in a syllable and

?For a summary, see [198].
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that continuity of speech formants® is not necessary. With a related experimental paradigm,
Furui’s experiments with the identification of Japanese syllables also indicated that vowel
nuclei are not needed for accurate vowel-of-syllable perception [64]. He found that the
same initial part of the syllable contained crucial information for both vowel and consonant
identification.

Massaro’s summary [124] also discusses the experiments of Cherry and Wiley, in which
by passing to subjects only the strongly voiced, high energy speech sounds, they were able
to degrade speech perception to very low intelligibility [25]. The speech was rendered more
intelligible, almost up to the level of the original, by adding a low level of white noise into the
silent gaps between the voiced speech sounds. Even though phonetic information was not
added, the insertion of noise made the speech more like normal speech in nature. Greenberg
interprets their report as evidence that the addition of the noise restored a portion of the
modulation spectrum of the original acoustic information, and that this patterning bears a
similarity to the syllabic temporal patterning of speech [77].

Such studies indicate that human perceptual processes make considerable use of in-
formation spanning larger time-units than the single phone, and that a particular phone
constituent is relatively unimportant. Ganapathiraju et al. discuss an analysis of data from
hand-transcriptions of Switchboard data [76, 186] that showed that the deletion rate for
syllables was below 1% while the deletion rate for phones was 12% [67]. The authors took
this as supporting evidence for the relative stability of the two types of recognition unit.

Warren asserts that acoustic elements form “temporal compounds” and that the human
perceptual system can identify these compounds more readily than constituent sounds [199,
200, 198]. Warren et al. found these temporal compounds to be longer than the typical
phone length through experiments with loud, clear, repeating vowel acoustic elements con-
catenated together. They presented sequences of concatenated vowels to listeners and asked
the listeners to identify the order of the phones. The studies showed that if the individual
vowel durations were about 200 ms, listeners accomplished the ordering task easily; however
if the vowel durations were below about 125 ms then the ordering task was impossible. Since
the average duration of a phone in speech is about 70 ms [79], this points to a larger tempo-
ral effect than phoneme identification. Further studies showed that while subjects could not
reliably give the ordering of phones at below 125-ms levels, they could nevertheless easily
distinguish between differing sequences even when the durations of individual items were as
short as 10 ms. Additionally, the experimenters found that subjects perceived these streams
of concatenated vowel sounds in terms of syllables and words with consonants not actually
present in the acoustic signal. These findings indicated that the initial stage of speech
perception is not phoneme recognition, and that resolution into sequences of constituent
phones is not necessary for accurate speech recognition.

Massaro [124] also notes that the speech synthesis community has found that using
concatenated phones is ineffectual for producing intelligible speech. In contrast, speech
synthesis achieved early success using units that were at least one-half syllable in length.
For example, AcuVoice Inc., San Jose California, uses stored recordings of syllables in one

®“Formant” refers to resonances of the vocal tract as evidenced by speech sounds. The term also refers
to formant frequency.
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of the more natural sounding text-to-speech systems [32]. Although some researchers used
this observation as evidence of merging phonemic influences, Massaro interprets this as
additional support of the syllable as a basic perceptual unit.

Although there is considerable unresolved controversy, experimental evidence weighs in
favor of the syllable playing a substantial role in the identification process in human speech
perception.

2.1.3 Syllable Segmentation

Separate from the issue of how well humans can recognize speech fragments is the question
of the fundamental time scale on which the recognition process operates. At one extreme,
one could suppose that the auditory system processes acoustic information in real-time and
that sound information streams into the brain which performs immediate and continuous
analyses of the world without any segmentation. Or, one can imagine the brain with an
enormous buffer that takes in the information from the auditory system and stores it until
the acoustic input is “finished” and then transfers the whole pattern to the brain. For
human recognition to distinguish individual speech items, some kind of buffer in the brain
is assumed to hold the initial part of a pattern long enough for the token to “complete” and
for analysis and recognition to occur. There are several indications that this pattern buffer
is syllable-length in duration.

O’Shaughnessy summarizes a number of perceptual experiments that implicate a syllabic-
duration perceptual unit, in work that is closely related to reaction-time experiments [148].
Among these are “shadowing” experiments (where subjects try to repeat what they hear
as quickly as they can), in which delays by subjects are typically the length of a syllable or
word. These results put the upper bound on the size of the processing buffer at about the
length of a single syllable or word.

In the 1970s, Massaro used recognition-masking experiments to determine the percep-
tual unit of analysis in the human speech recognition system [123, 124, 125]. The general
paradigm in these experiments involved the presentation of pairs of artificially crafted stim-
uli (tones or speech sounds) separated by a variable silent interval. The extent to which
the second “masking” stimulus alters listeners’ perception of the earlier target is known
as the “backward-masking effect.” Massaro took the correlation between the human sub-
jects’ ability to recognize the initial stimulus and the amount of silence between the first
stimulus and the masking stimulus as an indication of the length of the perceptual unit. If
the masking stimulus is presented too close to the initial stimulus (i.e., within the percep-
tual processing interval) and it can not be integrated, the masking stimulus interferes with
the storage and analysis of the initial stimulus image in preperceptual form. Analogous
temporal phenomenon are known to exist for human visual processes. One version of this
experimental paradigm uses pure tones produced by an oscillator, which has the advantage
that the speech and language centers of the human brain are less involved. This can reduce
the amount of indirect supposition about perceptual processes.

In Massaro’s studies, he found that subjects’ recognition performance of the initial
stimulus improved as the silent interval between the target and the masking stimulus was
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increased to 200-250 ms, after which performance reached a plateau. He concluded that
preperceptual auditory storage and processing does not exceed 250 ms. From this Massaro
conjectured that the perceptual unit must be the syllable, which has an average duration of
roughly 200-250 ms in conversational speech, though he notes that longer syllables probably
become multiple perceptual units. It is important to note that Massaro defined the syllable
in terms of duration. This differs from the definition that used by linguists in most of their
experiments, which does not respect the temporal extent of a syllable. These findings are
consistent with the conclusions of both Todd and Warren. Todd mentions that humans
are sensitive to time intervals of about 300 ms, intervals that match the upper limit of the
duration of syllables fairly well [189].

Massaro speculates that the effect of phonemic restoration, where noise can be imper-
ceptibly substituted for a phone in a syllable, can be explained in terms of preperceptual
auditory image storage. Since the human subjects believed they actually heard phones not
present, this processing must occur well in advance of the conscious level. Massaro suggests
that the inserted noise was probably grouped into the perceptual unit of the syllable during
preperceptual storage. Since it did not disrupt the storage and analysis of the syllable, it
was incorporated into the classification of the unit. On the basis of the remaining rele-
vant acoustic features, subjects could infer the correct syllable, then inversely identify the
phonemic constituents.

Interrupted (or “gated”) and alternating (or “ear switching”) speech experiments have
also shown that the critical duration for intelligibility appears to be about the length of
a syllable. In the interrupted speech experiments, partly summarized in [124], half of
the speech signal was eliminated by replacing intervals of speech with silence, where the
researchers varied the length of the intervals. These experiments showed somewhat varying
lengths for the duration of the perceptual unit, but all corresponded approximately to the
duration of syllables rather than phones. In alternating speech experiments, the speech
shifted from ear to ear of the subject through headphones. When the alternation was near
the syllabic rate, the recognition abilities of the subjects were disrupted. Much faster or
much slower alternation rates had less effect on speech perception by human subjects.

Segui reports that subjects identify target sequences more easily if they are contained
within the same syllable, rather than spread across syllables, supporting the idea that
the perceptual mechanism segments the speech signal into syllable-like units [181]. In the
work of Mehler et al. [127] and Cutler, Mehler, Norris and Segui [38], subjects were asked
to identify a consonant-vowel (CV) or consonant-vowel-consonant (CVC) target in carrier
words with either CV or CVC structures as the first syllable (for example, in French,
detecting /pa/ or /pal/ in “pa-lace” or “pal-mier”). French subjects identified targets that
formed a complete syllable faster than targets spread across different syllables, suggesting
that the syllable was indeed a unit of speech segmentation. English and French subjects
receiving both English and French stimuli revealed that French subjects showed a syllable
effect in both languages and English subjects showed a syllable effect in neither. Cutler
et al. speculated that this could be because English contains a considerable amount of
ambisyllabicity.*

* Ambisyllabicity, the sharing of a single phone segment between two separate syllables, is discussed
further in Section 2.3.3.

26



Miller and Fimas [130] showed more evidence of the effect of duration on recognition;
they demonstrated experimentally that the identification of phonetic targets is dependent
on the length of the carrier syllable, not just on the phone itself. The work described in
[153] also showed that contextual effects such as duration affected the perception of stimuli
and the identification of the initial sound, indicating that long-time span information on
the order of syllable-length intervals influences perception, even for non-speech stimuli (with
speech-like qualities).

These experiments, taken as a whole, suggest that the syllable-length interval, aside from
the actual speech content contained within, plays a crucial role in human speech perception.

2.1.4 Syllables in Lexical Access

At higher levels of human speech processing, the formulation of sound experiments that test
the role of processing elements becomes increasingly complex. It is very difficult to draw
conclusions from such indirect evidence and to separate the many contributing functions.
This section discusses lexical access, i.e., how smaller units are mapped to words and sen-
tences for ASR. Since the work in this thesis does not directly address this problem, only a
few representative experiments are presented.

Reaction time experiments have been used as support for the hypothesis that the syllable
is the primary unit of lexical access. Segui summarizes studies investigating this idea and
uses his experiments in French [180, 181], partly discussed above, as support. In these
studies the subjects appeared to identify the first syllable of an isolated polysyllabic word
before the lexical access occurred.

In the studies of Warren et al., described earlier, subjects presented with streams of
concatenated vowels recognized these in terms of syllables and words, perceiving illusory
consonants as required to organize the sounds [199, 200, 198]. The syllables recognized were
always legal syllables in English, the subjects’ native tongue, though the syllables taken
together were not necessarily legal words. Warren infers that humans have an internal
“syllabary” (a set of acceptable speech syllables) and use this for lexical access.

Anecdotal evidence suggests that humans recall words as a sequence of syllable-level
patterns rather than by individual phones. Ladefoged [113] mentions that in the history
of writing, many languages have emerged in which there is one symbol per syllable, as in
Japanese. From an intuitive standpoint, ‘tip of the tongue’ phenomena, where humans
partially recall words by their syllable structure even though the phonemic constituents
themselves are not retained, and word substitution slips, in which the number of syllables
in the word is preserved, also imply a syllabic basis for lexical access. Ladefoged talks about
the specific patterns that occur in slips of the tongue; a syllable initial consonant exchanges
with a syllable initial consonant, or a syllable final consonant exchanges with a syllable final
consonant. Such syllable-oriented observations lend further weight to the conjecture that
the syllable is a basic unit of lexical access in human speech perception.
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2.1.5 Summary

This section discusses evidence for the syllable as a basic unit of human speech percep-
tion. There is considerable disagreement among researchers as to whether the syllable or
the phoneme is more elemental to the speech recognition process. This disagreement has
been fueled by conflicting results in reaction time experiments, which have supported both
positions. Other experimental results from different methodologies provide additional sup-
port for the syllable as a basic unit for the identification, segmentation and lexical access
of speech, without entirely superseding the phoneme. The viewpoint of this thesis is that
both units, the syllable and the phoneme, play basic, coordinated roles in the phenomenon
of human speech recognition.

2.2 Syllables in American English
Syllable A unit of speech for which there is no satisfactory definition. [113]

There is no common boundary at which the syllables join, but each is separate
and distinct from the rest. [2]

2.2.1 Definition of Syllable

Despite a lengthy discussion of the role of syllables in human speech recognition, a rig-
orous definition of the syllable has yet to be presented owing to the lack of an adequate
specification. Engineers, however, need a functioning description in order to implement
speech recognition systems. Syllables are notoriously difficult to define precisely, especially
in American English, although human beings appear to have an intuitive understanding of
them. It is agreed that, in loose terms, a syllable is constructed about a nucleus that is
usually the most intense component, and generally the sole obligatory constituent. Most
syllables begin with an onset which typically consists of a single consonant, but may contain
two or three consonants. Many syllables end with a coda of a single consonant, but codas
can also comprise two or three consonants.

Definitions striving for more technical accuracy are problematic. Every definition seems
to have exceptions and caveats or is unsatisfying for practical implementation. For example,
consider the following two popular definitions: 1) A syllable is a vowel between optional
consonant clusters. This, the most popularly understood rule, has many exceptions, since
a syllable does not necessarily contain a vowel. A syllable can instead have a “syllabic
consonant” that functions as the nucleus of the syllable, for example, the /1/ in “noodle”
or the /s/ in the onomatopoeia “psst.” 2) Syllables correspond to peaks of sonority. Sonor-
ity is roughly analogous to the energy contour. Peaks of sonority are therefore analogous
to regions of greater sound energy and are thought to correspond to the nuclei of sylla-
bles. This definition allows consonants to take the place of syllable nuclei [147], but the
sonority-based specification is vague in some cases and can lead to confusions. For exam-
ple, the unmistakably monosyllabic word “spa” is considered by some to have two peaks of
sonority [113].
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Mechanically segmenting speech into syllables is also difficult. The “maximum onset
principle,” defines the onsets of syllables (the initial consonant clusters) to be as long
as possible within the context of the word. For example, the word “estate” would be
pronounced as “e-state,” according to this rule. The /s/, however, often sounds as if it is
shared between syllables. Speakers can pronounce the word as “es-tate,” if the first syllable
is stressed, an exception to the maximum onset principle. Treiman and Zukowski note that
for the word “estate” the maximum onset principle conflicts with the sonority definition,
that the word “state” does not exhibit a rise in sonority from the onset to the nucleus [192].
For the experiments in this thesis, segmentation of phonemic transcriptions follows the
complex hierarchical set of rules in [101], which may not be perfect in every instance, but
can be consistently applied.

The list of exceptions to postulated rules continues indefinitely. There is a large num-
ber of almost-complete technical definitions of “syllable,” and phonetic segmentation algo-
rithms. This is largely due to the continuing debate about the exact nature of the syllable
and its role in human speech recognition. Ladefoged [113] and Ohde and Sharf [147] further
discuss the vagaries of human syllabification and the shortcomings of various attempts at
defining syllables.

People intuitively understand the concept of the syllable and can usually identify the
gross syllabic characteristics in a word, such as how many syllables there are and the
approximate locations of their boundaries. But listeners cannot precisely describe how
they accomplish this feat. Even for words such as “meal” where the number of syllables
is uncertain, non-experts can discuss, without technical detail, the ambiguous nature of
the number of syllables of this word, merely by sounding the word out and using primitive
quantitative arguments. In contrast to the phoneme, the human concept of the syllable
seems to be universally understood, even by untrained and naive listeners.

As a technical term, the word “syllable” is highly over-used (“overloaded,” in program-
mers parlance). Linguists, phoneticians, engineers and other researchers use the word “syl-
lable” and can intend very different meanings. From an abstract point of view, a syllable
necessarily contains a group of phones and has some acoustic manifestation. A syllable can
be discussed in terms of the properties of its constituent sounds, or in terms of its production
by a speaker. From a perceptual point of view, a person can believe he hears a syllable that
was actually omitted, for example in the case of a rapid speaker deleting the end of words
or whole function words such as “a,” “of,” “to” and “the.” The listener, unless allowed to
listen very carefully and/or view spectrograms, perceives syllables in mirage form, where
the canonical acoustic cues normally associated with the syllables are not present in the
speech. Listeners can use these illusory syllables for lexical and semantic access.® These
observations suggest that the syllable exists as a perceptual concept apart from a purely
linguistic definition. As alluded to during the discussion of the importance of syllabic tem-

®The perception of these illusory syllables does not happen as easily or frequently as with the perception
of unexpressed phonemes. In the word transcriptions of the 4-hour phonetically transcribed subset of the
Switchboard Transcription Project [76], the most frequently deleted words (which also were monosyllabic)
were “a,” “of,” “to” and “the.” Specifically, “a” was deleted in 2.1% of its total occurrences, “of” was deleted
1.3% of the time, “to” was deleted 1% of the time and “the” was deleted in 0.5% of its total instances. These
percentages are considerably smaller than those reported for phone deletion in [78]. Further discussion of
illusory syllables can be found in [52, 53].
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poral structure, some syllables that are linguistically defined as single units fall outside the
norm for syllabic duration. These should, perhaps, be thought of as two or more syllables
from the durational point of view, for example, the monosyllabic word “scrounged.” For
practical purposes, engineers define syllables differently again with their own criteria and
rules, often denoting a unit that has only some vague resemblance to syllables as human
beings intuitively understand them.

In this background and overview, the word “syllable” is used in many different ways.
Deviations from the canonical, linguistic view are noted in the text. For the purposes of
the experiments in this thesis, the syllable was defined precisely from a purely functional,
engineering point of view, though inspired by the syllable from the more abstract acoustical
and perceptual standpoint. In these experiments, syllable unit targets in the recognition
task, Numbers,® were defined using the half-syllable units listed in Appendix A.2. The
definition used is not perfect, but it is at least consistent. The creation of the Numbers
syllabary is described in detail in Chapter 5. These experiments also used the syllable-length
interval, which is defined for the experiments in this thesis as a roughly 200-ms span of
speech, irrespective of actual speech content. Chapter 5 contains more detailed descriptions
of the application of this interval in connection with the modulation spectrogram feature
analysis method and the neural network context window.

2.2.2 Number of Syllables

The lack of a definition for the syllable renders problematic any attempt to define a set of
unique syllables in the English language. Related to the issue of defining the essence of a
syllable is defining the boundary for syllabification. The definition of a syllable boundary
is as obscure as the definition of the syllable itself [192]. Any derived list of syllables
would then be subject to the same caveats, which could account for the disparity in the
statistics cited below for the number of unique syllables in English. Researchers mostly take
a linguistically-oriented approach. Nevertheless, the estimates are roughly within the same
order of magnitude.

Aside from the various estimates and definitions, it is clear that there are many unique
syllables used in human language. One estimate implies that spoken American English re-
quires 10,000 syllables for complete coverage [167]. From data intended for speech synthesis,
O‘Shaughnessy [148] derives 4,400 as the number of syllables sufficient to describe virtually
all American English words and mentions that the most frequent 1,370 syllables are used
93% of the time. He also notes that complete coverage of American English would require
perhaps 20,000 syllables.

The number of syllables is much smaller than the number of words, but much larger
than the number of phonemes. The Oxford English Dictionary has 616,500 words, including
variants, combinations and obsolete words. O’Shaughnessy mentions that modern American
English has over 300,000 words, though only 50,000 can be considered to be commonly used.
Clearly, syllables numerically represent a large compression over whole word units. On the
other hand the number of unique syllables is considerably more than the 40-80 phonemes

6The Numbers corpus is defined in Section 3.2.

30



typically assigned to American English speech. Representationally, using phonemes requires
many fewer unique symbols. Thus, in the experiments in Chapters 5 and 6, the number of
syllable units is much greater than the number of context-independent phones used.

Although this is not an issue for restricted, small vocabulary tasks (such as the Numbers
task used for the experiments described later in this thesis), there are concerns about the
scalability of syllables to large vocabulary, conversational speech tasks. Historically, the
number of unique syllables, and the possible complexity of syllable structures have been cited
as arguments against using the syllable as a basic unit of automatic speech recognition. This
particular argument, however, has somewhat less weight today in view of the widespread use
of polyphone units in speech synthesis and speech recognition. Large vocabulary automatic
speech recognition systems primarily use triphones (a phone with a unique pair of left and
right adjoining phones), which are approximately as numerous as syllables. Some speech
recognition systems are using quadphones and quinphones as well, with a commensurate
increase in the number of units. Triphone-based systems typically have several thousand
models, for example Cambridge University’s HTK system for Wall Street Journal [205] and
Dragon’s system for Switchboard [151]. Young says a large vocabulary cross-word triphone
system will typically require about 60,000 triphones [211]. Thus, the number of unique
triphones is of the same order of magnitude as the number of different syllables. The
exact number in a system depends on the implementation. Researchers can use techniques
similar to those for reducing the number of triphones used in speech recognition systems
for streamlining syllabaries, the collection of syllables used in a recognition task.

The number of different recognition units is a concern for researchers, whether the units
are triphones or syllables, because of the need for an adequate quantity of training data
for each unit. The next section examines the number and kind of syllables needed for
recognizing large vocabulary conversational speech.

2.2.3 Syllables in Conversational Speech

Statistics gathered on words used in conversations can help characterize the usage of sylla-
bles in human speech [75] and more clearly outline the scalability issues. The study reported
in this section used the Switchboard corpus [186, 70] word transcriptions, taken as repre-
sentative samples of naturally spoken speech. A good deal of valuable information about
conversational speech can be obtained through the careful examination of a large corpus
such as this, as in the findings of the Switchboard Transcription Project [76].

The Switchboard corpus is a large database of spontaneous telephone conversations
between two people, unfamiliar to each other, on a variety of topics (such as summer
vacations, professional dress codes, the international political situation, credit cards, etc.).
Collected at Texas Instruments specifically for the purpose of furthering speech recognition
research, the corpus includes about 2,430 conversations comprising 140 hours of speech.
Court reporters word-transcribed these conversations, which comprise about 2 million words
of text, spoken by over 500 speakers of both sexes and from every major dialect of American
English. The word transcriptions include a small number of word errors and also contain a
variety of transcription notations. Since only a small portion of the Switchboard corpus has
been phonetically hand-transcribed, the word transcriptions formed the basis of the syllable
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Figure 2.1: Graph illustrating the minimum number of syllables required for up to 95%
coverage of the words in the Switchboard vocabulary.

statistics reported below.

The words in the Switchboard corpus transcriptions were syllabified by comparing words
found in the transcriptions orthographically to the Celex database of English words [6], a
dictionary of about 100,000 different English wordforms with pronunciations and a wealth of
other information. The canonical syllables and their definitions were taken from the Celex
collection, which is based on British English pronunciations. Since the analysis method
used dictionary pronunciations, it did not account for deviations from the single, canon-
ical English pronunciation for each word. The method was somewhat crude; it failed to
syllabify any word not in the Celex database such as proper names, unusual words and
words represented irregularly (e.g., misspellings in the transcriptions or unusually anno-
tated words). Of the word tokens that occurred in the corpus, 4% could not be classified
with these automatic methods. These represented 26% of the unique word orthographies.
Although the proper nouns are an important exception, statistics gathered from the data
that was successfully syllabified can still indicate general trends in human speech patterns.

This study distinguished the frequency of occurrence of syllables in the Switchboard
vocabulary from the frequency of syllables in the full corpus. The vocabulary was the list
of words that occur in the database, one instance per unique word item. This list was
augmented by the frequency of occurrence of each of the words for the purpose of gathering
counts over the full corpus. The conversational speech of the Switchboard corpus used
about 26,000 different words (or baseforms composing the Switchboard wvocabulary, also
referred to as the Switchboard lexicon) and comprised a grand total of about two million
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Figure 2.2: Graph illustrating the minimum number of syllables required for up to 95%
coverage of the word tokens occurring in the Switchboard corpus.

word tokens in the word transcriptions (the Switchboard corpus). Complete representation
of the vocabulary required about 6,000 different syllables. The study showed that 95%
coverage of the words in the vocabulary required a minimum of about 5,000 different syllables
as illustrated in Figure 2.1. For the corpus, however (i.e., weighting each word by its
frequency of occurrence), Figure 2.2 shows that 95% coverage of the total word tokens
required a minimum of about 2,000 different syllables. In addition, 75% of the corpus could
be expressed with only 250 different syllables. This implies that speakers in Switchboard
predominantly used a comparatively small set of syllables. In conversations, people speak
in a fairly simple manner, relative to the potential complexity of English.

These methods also allowed the canonical, dictionary-equivalent versions of the sylla-
bles used to be characterized. Table 2.1 shows the frequency of n-syllable words in the
Switchboard vocabulary and in the corpus word transcriptions. For every value of n, the
numbers given for the complete Switchboard corpus (the right-most column in the table) are
within one percent of the analogous numbers reported by French, Carter and Koenig [56]
for telephone conversations, data collected over 60 years earlier. This agreement between
the two is remarkable, especially across the shifts in language usage and the differences in
definitions and methods.

Table 2.1 shows that while single syllable words comprised only a quarter of the vo-
cabulary words in the conversations, these words occurred 81% of the time. French et al.
reported the same effect. These numbers also approximately match the figures reported
by Waibel [196] for a 20,000-word corpus. Words longer than two syllables made up only
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N H percentage of vocabulary | percentage of corpus ‘

1 22.39% 81.04%
2 39.76% 14.30%
3 24.26% 3.50%

4 9.91% 0.96%

5 3.21% 0.18%

6 0.40% 0.021%
7 0.057% 0.0013%
8 0.0052% 0.000037%

Table 2.1: Frequency of words with NV syllables in the Switchboard vocabulary and corpus.

‘ structure type H percentage of corpus ‘

CVV 21.19%
CvVC 19.75%
CVVC 9.99%
CvV 9.51%
VC 9.14%
\A% 6.98%
CVCC 3.99%
VCC 3.85%

Table 2.2: Frequency of the eight most frequent syllable (consonant-vowel) structures in the
Switchboard corpus.

about 4% of the total words used in these conversations. Nouns were more likely to be
polysyllabic than other grammar classes in both the Switchboard study and in the study by
French et al. It can be concluded from these data that conversational English is in actuality
more simply constructed than is commonly believed. Syllable boundaries were very often
also word boundaries, therefore if syllable boundaries can be accurately detected then this
gives an approach to word segmentation of the acoustic signal.

Another common belief is that English conversation requires the mastery of a great
variety of syllable structure types (i.e., the pattern of distinct consonant, “C,” and vowel,
“V,” constituents). “Scrounged,” for example, is described as a single CCCVVCCC syllable
in the Celex database, the longest single syllable. Of the 42 different syllable structures that
occur in Switchboard, the eight relatively simple structures in Table 2.2 account for 84%
of the syllables used in the corpus. Although the study by French et al. found somewhat
different percentages, they also found that a handful of rather simple syllable structure
types were used over 80% of the time.”

Tt is not surprising that the French et al. study arrived at different percentages for this case since they
used a different phone set and differing phonological conventions from those of the Celex data. For example,
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This thesis is concerned only with American English; however, others are studying the
use of syllables in conversational speech in other languages. Kirchhoff found similar obser-
vations for German with respect to the number of syllables in each word in conversations
and the types of syllable structures used [110]. For Japanese, Arai and Greenberg found
that syllables have more temporal characteristics in common with English than is popu-
larly believed; they also reported that distributions of syllable structures in Japanese bear
considerable similarity to those in English [1]. Greenberg, Hollenback and Ellis gathered
additional phonological details, statistics and studies of syllable durations in conversational
speech as represented by Switchboard [79].

2.2.4 Summary

Although American English has a large number of unique syllables and considerable poten-
tial for convoluted construction and complex syllabic structures, everyday speech is fairly
simple. Conversational speech exhibits regularities in structure that can possibly be ex-
ploited for speech recognition. Most conversational speech can be expressed in a relatively
small number of syllables, compared to the total number of syllables in American English,
and these syllables tend to have clear, easily defined structures. These observations sup-
port the proposition that syllables could be used to improve accuracy in automatic speech
recognition, even for large vocabulary tasks.

2.3 Syllables in Automatic Speech Recognition

Automatic speech recognition (ASR) systems typically employ phoneme- or sub-phoneme-
based hidden Markov models (HMMs) concatenated into words and sentences. Although
phoneme-based models are most popular, researchers in ASR have used a wide spectrum
of units with varying levels of success, ranging from multi-word phrases to articulatory
features and including such units as multi-syllabic groups (stressed-unstressed pairs) and
syllable parts (onsets, nuclei and codas). The use of syllables and syllable-based long-time-
span units in speech recognition offers many benefits, but there are also disadvantages and
difficulties in implementation. The summary below describes the history of research using
syllables and syllable-like units in ASR for English and includes discussion of similar work
for other languages as relevant to this thesis.

2.3.1 Speech Units in ASR

A “phoneme” is an abstract conceptualization that is defined to encompass those “dis-
tinctions or contrasts that are recognized by speakers of the language as ‘making different
words’ and acknowledged by linguists as systematically functional” [28]. For example, the
distinction in linguistic meaning between the word “cat” and the word “pat” comes from

the French et al. study defined syllables to have at most one vowel, while the Celex database contained
syllables with two vowels in the nucleus of a single syllable. The French et al. study probably represented
several different types of Celex syllable structures as having the same syllable structure.
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the difference between the /k/ and /p/ phonemes. Its function in distinguishing between
different words is one of the many reasons why phonemes have been a convenient basis for
the lowest level of speech decoding in recognition systems.

The manifestations of phonemes can vary considerably with context. Different sounds
(phones) that are actually alternative acoustic representations of a single phoneme are
grouped together and referred to as the “allophones,” or conditioned variants, of a par-
ticular phoneme. Allophones are said to result from phonological conditioning, that is,
language-specific rules of pronunciation. The general effect is called “allophonic variation.”
In continuous speech, the formation of a series of phones is achieved by the movement of
the speech articulators.® Mechanical and neural limits on articulator motion can cause a
spread of influence between neighboring phones. Known as “coarticulation,” this results in
variations from canonical phone expressions for the phonemic constituents of words. Al-
lophones and coarticulation present challenges to machines attempting to classify speech
sounds, which is addressed by the use of stochastic methods such as HMMs. Phone iden-
tification and segmentation, however, can be hard tasks even for experienced phoneticians.
For example, transcribers can disagree when classifying the stationary segments of vowels
in the manual phonetic labeling of speech data [77]. Although such experts can classify
consonants fairly consistently, they will often disagree about vowel identity. Inter-labeler
agreement for the Switchboard Transcription project was about 75-80% [78]. Through the
inclusion of additional, relevant context, units larger than the phone may efficiently account
for phonetic variations within a larger representational structure.

Early speech recognition systems took the approach of modeling whole word units and
there is some evidence that this approach still performs best; every word and the acoustic-
phonetic dynamics contained within can be carefully characterized. The interaction between
phonemes can be extensively modeled within the context of the word. In modern large
vocabulary tasks (with lexicons of 20,000 to 100,000 words), however, using whole-word
units becomes difficult to implement and impractical. There is often only a small amount
of training data for infrequent words, which also tend to be the longer words. Further,
it is difficult to re-target such a recognizer for a new vocabulary; it requires complete
retraining and re-tuning. Whole phrases (groups of words) have been modeled as well,
but this strategy quickly becomes even more impractical on a large scale than words. In
contrast, units smaller than words can be recombined to form new words, previously out-
of-vocabulary, without retraining. While sub-word units are not a complete answer to the
problem of insufficient training examples for some words, they have some advantages over
whole-word models.

The syllable may be a useful compromise between the phoneme and the word. Alterna-
tively, the syllable can be used in combination with words and phonemes to compensate for
some of their disadvantages. Greenberg suggests that coarticulation and other non-linear
effects of concatenating speech sounds are largely confined within a syllable [74]. Fujimura
points out that coarticulation effects across syllable boundaries can be more easily defined
those across phone boundaries within a syllable [59]. Moreover, as speakers omit phones
and otherwise vary the pronunciation of words, the temporal characteristics of the original
syllable structure are preserved in many cases, even though the phoneme sequence may

8 Articulators include the vocal folds, soft palate or velum, tongue, teeth, lips, uvula and jaw.
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have been substantially altered. Compared to whole words, sub-word units like syllables
may present computational and storage advantages, particularly for large vocabulary tasks.

Another intermediate speech unit that has enjoyed some popularity is the “demisylla-
ble,” a term introduced by Fujimura in 1976 [60, 61]. A demisyllable is defined as essentially
half of a syllable that has been divided after the CV transition. The exact point of division,
and additional specifications, depend on a specific definition and implementation. It is es-
timated that there are 2,000 to 3,000 unique demisyllables in American English [97, 167].
Demisyllables have a numerical advantage over syllables, since many syllables can share the
same demisyllables, but properties that belong to the syllable as a whole may not be ex-
pressed as coherently. The work described in Chapters 5 and 6 use “half-syllables,” related
in spirit to the demisyllable.

Researchers have encapsulated contextual information by using subcategorizations of
the phoneme such as the context-dependent phone, which is a phone with some left and/or
right phonetic context included. For example, instead of a context-independent phone /ae/,
a context-dependent phone might be /(b)-ae-(t)/. The use of triphones, quadphones or
quinphones is currently popular. It can be argued that context-dependent phone models can
provide the same representational power as syllable-based units, particularly demisyllables.
Syllable-level units, however, incorporate knowledge that can reduce the number of possible
consonant-vowel combinations needed; as noted previously a large vocabulary cross-word
triphone system might have as many as 60,000 triphones. A syllable-level unit may also
be more suitable for modeling coarticulation effects that extend beyond the typical phone.
Supposing human speech is organized around the syllable, the phonotactics® of context-
dependent phone models may not reflect the underlying structure as well as syllable-based
models. The “half-syllable” unit defined for experiments in this thesis encompasses a larger
contiguous section of speech than a context-dependent phone and therefore can potentially
incorporate properties from longer-time spans.

The next two sections address the question of the advantages and disadvantages of using

syllables in ASR.

2.3.2 Syllables — Key for ASR?

For the concatenative methodology of current automatic speech recognition, the ideal unit
is large enough to incorporate the majority of phonological effects, yet have relatively sta-
ble, well-defined boundaries. If the syllable is indeed a basic perceptual unit for humans,
then using this information in ASR can perhaps improve recognition accuracy. Fujimura
proposed the syllable (in the form of a specific definition) as a unit of automatic speech
recognition in 1975 [59]. In his paper, Fujimura described the advantages of syllables for
ASR, which appear to still be relevant for current ASR tasks. Fujimura has more recently
proposed theories of prosodic structure interpreted as a series of syllables and boundaries
with attached magnitude values (the C/D model) [62, 63] and has had success using a
syllable-based unit for speech synthesis. The usefulness of the syllable in speech synthesis
systems implies that syllabic units sound more like natural speech to the human ear and are

?Phonotactics refers to the way sounds combine with other sounds in a language. For example, the
combination “nglib” can not be a syllable, according to the phonotactic rules of English [46].
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easier to understand than other alternative units under the same concatenative paradigm.
This suggests that the syllable possesses qualities that are conducive to perception and
should be explored for automatic speech recognition. The strength of the syllable lies in
the potential for greater accuracy through more accurate modeling of speech and for more
engineering-oriented gains such as in execution speed and memory usage.

Recognition accuracy may be enhanced by the explicit representation of syllable effects.
As discussed earlier in this chapter, the stability of the syllabic unit as a whole appears to be
greater than that of the constituent phones [78]. Further, the coarticulation effects between
phones within the same syllable are believed to be governed by rules that are distinct from
those acting between phones of different syllables [59]. The syllable, then, may be a good
encapsulation device. Simple phonological rules using syllables may easily represent long
term structure.

Church makes an argument for the use of syllabic structure and stress as an interme-
diate level of representation between the phonetic description and the lexicon in machine
parsing of phone sequences [26]. While allophonic variation has usually been thought of as
problematic for recognition, in Church’s proposal it is seen as a source of cues to improve
recognition performance. Church points out that, theoretically, information regarding the
location of syllables and stress can be derived from the distribution of allophones. Church
gives the example of the aspiration of a voiceless stop in a stressed, word-initial position, an
example earlier noted by Fujimura [59], Kenstowicz and Kisseberth [103] and Kahn [101].
Aspiration is an allophonic variation on the pronunciation of a phoneme pertaining to the
amount of air released when the phone is produced. Because of its syllable-initial position,
the /p/ in “pie” is the aspirated version of that phoneme; a larger puff of air is released
than in the nonaspirated version that occurs in the word “spy” [46]. Another example is
that /t/ is aspirated if it is at the beginning of a syllable, as in “ten.” A preceding /s/,
however, as in “stem” displaces the voiceless stop from the beginning of the syllable, so the
/t/ is not aspirated. Identifying instances of those variations that occur only in syllable
initial and syllable final structures can help segment sequences of phones into syllables.

Recognition systems can use this information to constrain the search for the correct lex-
ical match. Church notes that most speech models rely on invariant features and therefore
have no facility for benefiting from the information contained in allophonic variation and
phonotactics. An intermediate level of representation, such as syllables, may present a way
of utilizing such parsing clues. Syllable boundaries can be useful in providing hints as to
where speech segments lie. Isolated word recognition has historically been more accurate
than continuous speech recognition, and part of this is due to the greater ease in determining
speech-silence segmentations than the more general coarticulated sound unit segmentations
for continuous speech. In later case, the acoustic signal shows no clear boundaries between
words. Syllable boundaries do have some acoustic manifestation, through allophonic vari-
ation, and may provide valuable, though approximate, pointers to the location of word
boundaries.

Syllabic level properties of speech, such as energy contours and peaks [74], and funda-
mental frequency [114] are not often used in speech recognition, but may contain valuable
information. Syllables can be used to incorporate prosody (the rhythmic and tonal quali-
ties of speech) and other suprasegmental features. Suprasegmental features, which generally
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span several phone segments, include stress, duration, tone and intonation [113]. Each of
these can provide clues that may improve decoding accuracy.

Speech recognition systems do not commonly focus on long-term speech structure (i.e.,
over about 200 ms) even though considerable evidence has accumulated that indicates such
a framework exists. Using the syllable and syllable-based units can facilitate the learning
of long-term structure by statistical mechanisms. Long-time span analysis of speech can
enhance speech recognition accuracy in addition to the role that the syllable plays as a basic
perceptual unit of human speech recognition.

Using syllables may also affect the implementation of speech recognition systems. Sylla-
bles may enable systems to reduce the amount of memory used or reduce the execution time
needed without sacrificing accuracy rates. The search space of syllables may have useful
properties for algorithms; in comparison to words, different syllables relate to each other in
a fairly well-understood and constrained manner. Thus, the syllable search space is more
easily defined and possibly has reduced complexity through the reduction of redundant
computation.

Many current decoding strategies use some sort of clustering, or tree-structuring of pro-
nunciation models to reduce redundant computation. For example, the beginning portions
of words often share common phone sequences. Lexicons are often represented by trees
so that processing on these initial portions is not repeated. Also, word lattice generation,
described in more detail in Section 3.4, has become more popular in recent years, spurring
the need to produce lattices of moderate size. The syllable is a compelling size and a natural
unit for the representation of lexicons that efficiently unites the common portions of words,
perhaps in combination with a lexical tree. For the same reason, the syllable can also be a
more efficient representation for lattices; many words can be represented with the same set
of syllables.

The use of the syllable, as opposed to the word, as an organizational unit may also allow
more efficient utilization of parallel and concurrent machines. These architectures offer mas-
sive computational and storage resources [3] that have been largely untapped by the speech
decoding problem. The search space and representation of syllables (trees and directed
graphs, for example) may be more easily structured for parallel or concurrent machines
than sequential word models. Similar arguments apply to vector processing methodologies.

2.3.3 Syllables — Morass of confusion?

Along with the many advantages to using syllables in speech recognition, there are also
factors that confound the incorporation of syllables into ASR. There is a tradeoff and a
balance to be found between benefits from the use of the syllable and added complications
and complexity. This consideration underlies the hypothesis of this thesis. Do the advan-
tages outweigh the disadvantages for a given speech recognition methodology? Although
the issues involved are complex and contentious to some degree, simplifying engineering
assumptions can allow the successful use of syllable information as will be illustrated by the
positive experimental results described in Chapters 4, 5 and 6.

The primary problem with using syllables in ASR lies in the lack of a definition for the
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syllable and its boundaries. In particular, syllables (and therefore demisyllables and other
syllable-based units) are not always clearly defined in American English.!® The most often
cited causes are syllable reduction, stress-timing, and ambisyllabicity. There is also ongoing
argument as to whether a syllable’s boundary is properly located within the intervocalic
segment (between the consonants of a syllable) or in the consonant clusters.

Syllable reduction occurs when polysyllabic words are simplified. For instance, VCV or
CVCV may be converted to CV words by the elimination of the initial syllable, or the vowel
in it. Examples given by Ohde and Sharf include words like “away” and “believe,” which
become “way” and “blieve” [147]. The vowel in the first syllable, which also is the syllable
with weaker stress, is eliminated. The reduction of unstressed syllables is a characteristic
of the normal rhythm of English [28].

Stressed syllables tend to be longer and more intense. Linguists often describe Amer-
ican English as a “stress-timed” language [28]. Traditionally, languages characterized as
“stressed-timed” have unstressed syllables that are greatly reduced in duration compared
to stressed syllables; in these languages stressed syllables tend to occur with an even tempo.
This contrasts with the term “syllable-timed,” which has traditionally referred to languages
in which every syllable has approximately equal duration. Japanese is usually given as the
classic example of a syllable-timed language. Arai and Greenberg, however, have observed
that for conversational Japanese, the durations of syllables varied almost as much as for

English [1, 78].

Linguists believe that stress timing causes the unstressed syllables between stressed
syllables to have varying, unequal durations [28]. Lately, Arai and Greenberg have found
that for conversational speech, stress-timing in English may manifest as a large range of
syllable durations rather than as a strictly alternating pattern [76]. Statistically, English
tends to have a slightly wider range of syllable durations than Japanese. The effects of
stress-timing could make syllabification in ordinary speech difficult, because the duration
of unstressed syllables in American English shrinks dynamically compared to the stressed
syllables. Fujimura, in [63], discusses the problem of finding “phonetically hidden” syllables
and suggests heuristics for divining their locations.

Syllable boundaries are difficult to determine in many cases due to ambiguous structure,
which is commonplace in American English words. Linguists disagree on how many syllables
compose words such as “meal,” “seal,” “real,” and so on [113]. One form of ambiguous
structure, ambisyllabicity, where one segment belongs to two syllables, also makes syllabic
segmentation difficult in American English. Words such as “nesting” have unclear syllable
boundaries. With the pronunciation /n-eh-s-t-iy-ng/ (in ICSI56 orthography), the word
can be produced as /n-eh-s-t/ /[iy-ng/, /n-eh-s/ /t-iy-ng/, /n-eh/ /s-t-iy-ng/, or with an
ambisyllabic /t/, as in /n-eh-s-t/ /t-iy-ng/. Moreover, the semantic meaning of a string
of phones can affect the perception of the syllabification. One example of such an effect is
the naturally spoken phrase /h-ih-d-n-ey-m-z/. If the listener thinks the words are “hidden
aims,” it translates to 3 syllables. If the listener instead thinks the phrase is “hid names,”
only 2 syllables are perceived [113].

19Gyllables are not alone in suffering from a lack of definition. For instance, phone identities and boundaries
can be equally or even more difficult to distinguish.
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As an added complexity, a phone sequence can be syllabified differently depending on
the speaker’s condition, for example, as when the speech is particularly fast or slow. One
problem that occurs in the experiments discussed in Chapter 4 is that connected speech
syllabifies very differently from the same words spoken in isolation. Syllable boundaries
can move across word boundaries. For example, the words “five eight” can be pronounced
by faster speakers as /f ay/ /v ey t/ where the /v/-release resyllabifies to the “eight.” In
this case the syllabic onset can be associated with either the /v/-release or the /ey/. These
ambiguities make it difficult to resolve the syllable boundary in an automatic fashion.

As examined previously, the definition of the syllable is amorphous and ill-defined. For
implementation purposes, however, the engineer must have a concrete and clear specification
of each model. The engineer must make arbitrary decisions about how to characterize a
syllable and these decisions may not always be defensible from every linguistic point of
view. The resulting “syllable” definitions deviate from what is acceptable to the average
phonetician.

Syllabification is an open research topic. Several methods and techniques, each empha-
sizing a different aspect of the problem, have been developed in several different contexts.
Automatic syllable parsers are available for making syllabic segmentations of specified pho-
netic sequences. Hammond uses Optimality Theory to explain syllable parsing in English
and French [82]. A parser from Fisher [51], used for the experiments in this thesis, is based
on an implementation of the hierarchical rules presented by Kahn [101]. Other efforts
include [39], in which the authors use a mainstay of neural network training, error-back-
propagation, to learn the syllabification of Dutch. All automatic syllabification methods
have some shortcomings, yet an ASR system based on syllables is highly dependent on their
results.

Despite these concerns, automatic speech recognition systems can use syllable-based
information to improve recognition accuracy. ASR systems have achieved considerable
success despite the difficultly of ideal phonetic identification and segmentation. This success
hints that perfect syllable identification and boundaries may not be necessary. Most words
are fairly straightforward to syllabify [113]. For other words, a clearly defined, consistently
applied process can produce usable syllabifications that correctly assign most of the salient
properties of each syllable. Although linguists might argue with the theoretical validity
of such syllables, the definition is effective for engineering applications, as will be seen
experimentally in Chapters 4, 5 and 6. The specification captured enough of the features
of syllables to permit positive effects. Addressing the problems described in this section
should further improve and expand recognition performance.

2.3.4 Other Work with Syllable-like Units in ASR

Despite these difficulties, the possible benefits of syllables have periodically motivated re-
searchers to experiment with them over the last three decades. Although most speech
recognition research has focused on the established phoneme-based paradigm, the syllable
and other long-time-span units have appeared from time to time in the literature, an early
example being the Hearsay system where the syllable was one of the levels of representation
[117, 48]. In this section, a sampling of the areas pursued in syllable-based ASR research is
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surveyed.

The conceptual ancestors of certain aspects of the approach described in Chapter 4
are the works by Hunt, Lennig and Mermelstein in the late 1970’s and the SYLK project
by Green, Kew and Miller in the early 1990’s. Hunt et al. performed a pilot experiment
in which they incorporated syllables into the recognition of a small vocabulary American
English task by first attempting to segment the input speech signal into syllabic intervals
using what the authors called the “loudness” contour of the waveform [92, 91]. This syllable-
based system attempted to estimate syllable boundaries, then formed recognized syllable
sequences into words and sentences. In this system, Mermelstein’s automatic segmentation
system assessed syllable boundaries from a loudness function computed over the entire
power spectrum [129].!! They concluded that this approach showed some promise and
was worthy of further research. Waibel [196] also investigated the reliable estimation of
syllable boundaries. Waibel’s algorithm, which defined a syllable’s onset to be the beginning
of the vowel nucleus, performed comparably to similar algorithms, including the one by
Mermelstein. His algorithm also ensured that boundaries identified by his process would
be commensurate with abstract linguistic considerations. Waibel mentions that all the
algorithms then known fall short of the ability of humans to syllabify speech, a conclusion
that is still true today. In the SYLK project [73, 72], researchers chose the syllable as the
“explanation unit” to address the issue of allophonic variation. Green, Kew and Miller
focused their work on locating syllable onsets (defined from a phonological point of view)
where their symbol methodology contained 20 distinct onsets.

Segmenting continuous speech by focusing on syllabic nuclei was discussed in the early
1980s by De Mori and Giordano [42]. For German, which bears a close relationship to En-
glish, Reichl and Ruske [162] approached the identification of syllable nuclei through neural
networks. Ruske, Plannerer and Shultz [169, 154] have experimented with demisyllable-
based speech recognition systems for German. In [154, 155], systems first segmented the
speech signal into syllables and then used parts of syllables for the recognition process.
Recently, Schiel (then at ICSI) modeled German syllables from the Verbmobil project
with multi-state hidden Markov models [174]. He found encouraging success when he used
phoneme-based HMMs in tandem with syllable-based HMMs for commonly occurring words
and allowed the decoder to pick which of the two to use for the final hypothesis.

In 1986, Gauvain reported experiments with syllable-based recognition of isolated words
in French [68]. While Gauvain found that the change increased the overall word error rate, he
also found that syllable representations of words reduced the storage required by his system
to one-sixth of that required for whole words. Gauvain’s further analysis revealed that the
syllable-based system and the whole-word based system made substantially different errors.

For American English, Rosenberg, Rabiner, Wilpon and Kahn [167] experimented with
demisyllables. Although the approach used in this work is similar in spirit to the work
reported in Chapter 5, it differs substantially in implementation: the Rosenberg system
focused on isolated words and used dynamic time warping to match the input acoustic
features to templates. The thesis work to be described later focused on continuous speech

H¥or the experiments with syllable onsets described in Chapter 4, the onsets were estimated from 9
critical-band-like regions, which supplied spectral features for a neural network.
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and used neural networks to classify the units and HMMs to form words and sentences.

Recently, Hu, Schalkwyk, Barnard and Cole used syllable-like units as the basic units of
their recognition system [89]. In their segment-based system, the larger units proved to be
less sensitive to segmentation accuracy. Hauenstein (then at ICSI) experimented with neural
networks trained for whole syllable classification [83, 84]. While his syllable-based system
underperformed a more conventional phone classifier based on word error rate, Hauenstein
found that the syllable classifier-based system performed better for cross-database isolated
word recognition tasks. This result suggests that the syllable-based system learned some
characteristics of syllables that were more transferable to a new corpus than those of phones.
In essence, the syllable system may have had better capabilities for robust generalization.
Jones, Downey and Mason [99] reported positive results in recognizing syllable targets
compared with monophone targets, though they did not report word recognition results.

In the spirit of dealing with allophonic and lexical variation, Kirchhoff addressed the
issue of acoustic variability by using phonetic features for recognition, and allowing the
features to overlap within the context of a syllable [108, 109]. De Mori and Galler imple-
mented a method of using syllable phonotactics (rules governing how syllables combine with
each other) to create new word pronunciations, thus generating lexical variations for a word
automatically [41]. They chose the syllable as the unit for this process because phones can
often be completely deleted in a lexical variant while some form of the relevant syllable is
often still detected if the word is intelligible. These authors noted that high accuracy with
large vocabulary ASR can be achieved only by using many different knowledge sources.
The syllable model has attributes that can assist with the combination and integration of
different sources of knowledge.

Researchers have used syllables in conjunction with prosody towards improving the ac-
curacy of ASR. Prosody, as mentioned previously, refers to the tonal and rhythmic qualities
of speech. Prosodic attributes, such as duration, amplitude and F0 contour (pitch), span
well past the boundaries of phones. Also known as suprasegmentals, these properties are not
commonly used in automatic speech recognition, though there is considerable evidence that
such information helps humans recognize speech. Stress is a primary function of prosody.

Lea, Medress and Skinner [114] used prosodic features to break up sentences into phrases,
locate stressed syllables, and classify the phonetic constituents all based on the principle
that phonetic segments were more easily identified when contained in stressed syllables.
Jones and Woodland [98] used the strength and stress of a syllable as additional constraints
in a large vocabulary continuous speech recognizer to obtain a significant word error rate
improvement.

Although not a focus of this thesis, keyword spotting can employ syllable-based repre-
sentations towards improving garbage-modeling and reducing the implementation time for
changing applications, particularly in large-vocabulary spotting tasks. “Garbage modeling”
refers to the generic modeling of non-keywords and other sounds. This can be done in a
variety of ways, including using averages of phone probability estimates [18] and explicit
modeling of extraneous sounds with fully connected models. In a syllable-based word-
spotter, the keywords are represented as concatenations of syllables and garbage models
can be represented as different concatenations. This means that training the syllable mod-
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els builds the keyword models and the garbage models at the same time. Altering the task
and changing the list of keywords does not require the syllable models to be retrained, only
the words are redefined. A syllable-based keyword spotting system is reported in [112].
Syllables or syllable-based features have also been used to improve garbage-modeling in
word-spotting tasks in Spanish [121].

Some speech recognition researchers who work with languages other than American
English have moved more quickly to embrace the use of syllables and parts of syllables,
particularly in languages that are more clearly syllable-based and less stress-timed. Spe-
cific examples of speech recognizers with syllables or syllable parts include those for Chi-
nese [119, 116], German [154, 162], Hungarian [195], Japanese [126], and Spanish [16]. These
projects reported encouraging levels of success with methods that may be applicable to the
recognition of English.

The 1997 Johns Hopkins ASR Summer Workshop [67] also explored the idea of using
syllables in automatic speech recognition. Syllable models of varying complexity for the
most frequent words were integrated with more conventional phone models for the remaining
words. The project achieved only modest gains in accuracy, but the workshop participants
concluded that the syllable approach showed promise.

2.3.5 A Few Words About Hyphenation

There is often the misconception that syllabification and hyphenation are very similar,
when in fact the two operate on substantially different criteria. Hyphenation, the splitting
of words for typographical efficiency, is governed by morpheme boundaries in a different way
than syllables; the hyphenation of a word can differ considerably from the syllabification
of the word. For example the word “booking” is hyphenated as “book-ing,” respecting
the morpheme boundary between the parts “book” and “-ing,” but the word is usually
syllabified as “boo-king” or “boo[k]ing,” reflecting an ambisyllabic /k/. The algorithm for
hyphenation initially developed by Liang [118] and used in TeX, usually produces good
results and is widely accepted as state-of-the-art. Nevertheless, automatic hyphenation
remains an active area of research. Although hyphenation is a separate avenue of research
from syllabification, the research communities can interchange useful ideas and inspiration.

2.3.6 Summary

Because the syllable may have a primary role in human speech recognition, researchers have
suggested the use of the syllable as a basic processing unit for automatic speech recogni-
tion for machines. The syllable may optimize trade-offs between the word-level modeling
of longer-time span coarticulation and finer detail at the level of the phoneme. It may also
correspond naturally to speech properties like stress, energy and pitch. The syllable unit
may confer other benefits for ASR as an organizational unit; syllables may help reduce re-
dundant computation and storage in speech decoding. Syllables have been used successfully
in speech recognizers for other languages, and although there are obstacles to overcome in
developing American English syllable-based speech recognition, some researchers have al-
ready reported positive and encouraging results using syllables in pilot experiments. By
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using carefully applied engineering-motivated definitions of syllables, systems can capitalize
on syllable-based information without becoming mired too deeply into unresolved problems.

2.4 Conclusions

Although some of the discussion has concentrated on advancing the syllable as a basic
unit of speech recognition at the expense of the phoneme, the intent is not to suggest that
phonemes are dispensable. The evidence of alphabetic writing systems, the existence of
rhyme and alliteration in poetry, phonemic spoonerisms, and historical changes in language
that can be described most easily using phonemic terms are testimony to the importance,
at some level, of the phoneme [173]. One possibility for integrating phones and syllables in
speech is to regard them both as expressed attributes or features of the syllable-length time
interval to which they belong [78].12

The importance of the syllable in human speech perception is still vigorously contested.
Some researchers believe that the phoneme is sufflicient to describe the human speech per-
ception process. No matter what resolution eventually prevails, the fact that a debate has
raged for so long indicates in itself that long-time-span units, such as syllables and syllable-
sized units, have some kind of influence in human speech recognition. The above studies
suggest that the syllable or a similar long-time-span component may be a basic unit of
speech perception and that the syllabic-length interval may be a temporal unit for speech
recognition. Consequently, researchers have investigated and continue to explore using the
concept of the syllable in speech recognition by machines.

American English has considerable potential for convoluted construction and complex
syllabic structures, but everyday, conversational speech is fairly simple. These patterns are
amenable to current stochastic techniques for automatic speech recognition. The exper-
iments in this thesis work were concerned with relatively simple syllable structure types
and a small number of distinct syllables in the syllabary. Chapter 7 discusses possible ex-
tensions and the issues involved in incorporating more complex syllable types and using a
larger syllabary.

This chapter discussed the motivation and background behind the focus on syllable-
based information in this thesis. While there are persuasive arguments for the explicit
incorporation of syllable-based elements into speech recognition, there are many potential
problems that could confound the effective use of such information. Whether the advantages
outweigh the disadvantages can be explored most directly through experiments. The work
described in Chapters 4, 5 and 6 provides some empirical support for the advantages of
using syllable-based information.

12This supposition is discussed further in the syllable-level combining experiment described in Section 6.4.
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Chapter 3

Automatic Speech Recognition

Speech recognition has arrived in the commercial, publicly accessible marketplace. In the
past decade researchers have made great advances; there are a number of popular ASR-based
products. The ultimate goal of robust, continuous, large-vocabulary speech recognition,
usable by the general public, however, is still a number of years away. There are many

unresolved problems and unanswered questions.!

In this thesis the syllable is used as a facilitator for understanding the problem of speech
recognition and an avenue to viable approaches for answering some of these questions.
A discussion of the strengths and weaknesses of the state of the art will establish the
context for the possible contributions of syllable-based methods to the advancement of
speech recognition. The field of speech recognition is very broad, however, so the overview
in the first section of this chapter will be comparatively brief and cover only details relevant
to the report of experiments in this thesis. As background for the work to be discussed
in Chapters 4, 5 and 6, Sections 3.2 and 3.3 in this chapter give a detailed summary
of the Numbers task and ICSI’s speech recognition system, which serves as the platform
for all the experiments discussed in this thesis. One set of experiments focuses on an
approach to constraining hypothesis creation in speech decoding, so Section 3.4 in this
chapter gives a summary of current thinking in speech decoding. Another set of experiments
concentrates on several methods of combining syllable-level information with a baseline,
phoneme-oriented speech recognition system. Section 3.5 gives a brief discussion about
various combination methods.

3.1 The State of the Art

At the time of writing, speech recognition systems in the marketplace are just beginning to
be usable by general users and to gain mass acceptance.? Naive users employ limited-task
systems with success. For example, the AT&T Universal Card customer service system

'It has been observed that true speech recognition has been estimated as “5-10 years away” since the
1950s.

2The list of commercial products in this chapter is by no means exhaustive. New products and services
are being introduced continuously. A recent survey can be found in [158].
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accepts spoken continuous digits (credit card numbers) over the telephone. Less severely
limited tasks require the user to have some training in the use of the system and a fairly clean
acoustic environment. Wildfire, a telecommunications assistant service, purports to allow
a user to speak naturally using a limited vocabulary and a constrained range of constructs
to instruct the system in dealing with phone calls and phone messages. In these command-
and-control systems the user must conform to the format of the system’s interface. Older
dictation applications (e.g., Dragon Dictate) usually required the user to pause between
each word and to train the system— as well as the speaker— for maximum performance.
Both Dragon and its competitor IBM recently released products for the recognition of
continuous speech. Speakers still need to wear close-talking microphones and to train with
the system individually. As the complexity of speech recognition applications increases,
more sophistication and training on the part of the user is required.

In spite of large gaps in the understanding of human speech perception and technolog-
ical obstacles, researchers in speech recognition technology have made particularly rapid
advances in the last decade.® As the state of the art in speech recognition advances, appli-
cations for speech recognition rapidly increase in scope.

The published Defense Advanced Research Project Agency (DARPA) benchmarks for
evaluating speech recognition performance have progressed considerably in size and difficulty?
since 1971, when the evaluation task consisted of a 1000-word vocabulary task spoken by
only a handful of different speakers [111]. Resource Management, a 1000-word vocabu-
lary task used extensively in the 1980s, included read speech from hundreds of different
speakers of many different U.S. dialects [156]. In 1993, the evaluation task was speech
read by speakers using a 20,000-word vocabulary (North American Business News) [141].
At the same time, a 26,000-word vocabulary, spontaneous, human-to-human conversational
speech corpus called Switchboard was developed [186, 70]. In 1997, Broadcast News, speech
taken from television and radio news programs [71] with the attendant variety of interfering
background conditions, became the latest DARPA Continuous Speech Recognition (CSR)
evaluation challenge. Researchers have also been tackling other corpora with much larger
vocabularies (64,000 — 100,000 words). They are also working towards improving the exe-
cution of these systems to near real-time performance.

Despite recent advances, unconstrained speech recognition usable by naive users in
less than ideal acoustic environments is still very challenging. Cole et al. list one of the
unattained goals of speech recognition as robustness at all levels, including robustness to
background or channel noise, unfamiliar words, accents, differences in users and unantici-

#Comerford et al. attribute recent advances more to improvements in hardware price/performance, rather
than to breakthroughs in speech research [32].
*One aspect of “difficulty” is quantified as perplexity, which is usually measured as

P = 2—% Z 1092(1’)’

where N is the total number of words in the test set, and p is the probability of the observed transition as
calculated from the training data [94], which roughly corresponds to the average number of branches at any
decision point in a process. Speech researchers generally approximate perplexity according to vocabulary
size; one rule of thumb is that the difficulty of a recognition task increases with the logarithm of the size of
the vocabulary. As noted in [32], however, if a large vocabulary task has few possible branches, accuracy
can be rather good, but a small vocabulary task with many possible branches can be difficult.
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SD Baseline 1.5%

SI Baseline 3.0%
Channel 12.0%
Transducer 10.0%
Speaking Rate 15.0%
Language Model 70.0%
Noise 30.0%

Dialect 20.0%
Non-Native Speaker 45.0%
Noise + Non-nativeness || 835.0%

| Combining All Effects || 98.0% |

Table 3.1: Word error rates showing abrupt degradation in recognition accuracy due to
introduction of various effects [65].

pated input [31]. They define robust speech recognition as “...minimal, graceful degradation
in performance due to changes in input conditions caused by different microphones, room
acoustics, background or channel noise, different speakers, or other small (insofar as human
listeners are concerned) systematic changes in the acoustic signal.” Laboratory systems
that perform well in constrained conditions show a tendency to experience sudden, rel-
atively large decreases in accuracy. For instance, a laboratory system described by [65]
achieved a 3% word-error rate for the Resource Management task in ideal conditions. After
adding in a variety of acoustic variations common in realistic field conditions, such as chan-
nel differences, changes in speaking rate, changes in dialect, noise, accents from non-native
speakers and a poor language model, the error rate increased to 98%, as shown in Table 3.1.
Yet, human beings cope well under the same conditions, with little or no degradation in
recognition. Many of the problems encountered in the field can be resolved using additional
data collection, training and analysis [188]. The labor involved, however, is substantial and
ideally such post-deployment effort should not be necessary.

The size of these applications and the increasingly intricate algorithms they require for
robust performance present a complexity-management problem for the engineering of speech
recognition software. Researchers would like to add additional sources of knowledge or do
extra processing to address the challenges of open problems in speech recognition. Never-
theless, a practical speech recognition application must fit in available, affordable machines
and be able to process utterances in near real-time for user comfort and acceptability.

Using the syllable as a tool of organization and understanding can help approach these
fundamental issues for speech recognition for machines. In Chapters 4, 5 and 6 this thesis
describes syllable-oriented attempts to address these issues through efforts to improve speech
recognition accuracy and robustness for numbers spoken naturally over the telephone.
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zero  oh ten uh
one eleven hundred um
two twelve twenty

three thirteen thirty

four  fourteen  forty

five fifteen fifty

six sixteen sixty

seven seventeen seventy

eight eighteen  eighty

nine  nineteen  ninety

Table 3.2: The list of vocabulary words in subset of Numbers used for experiments.

3.2 The Task: Numbers

For the speech recognition experiments discussed in this thesis, it was necessary to select a
corpus that was neither too large (which would have introduced impractical development
cycle times) nor too small (which might not be representative of actual, conversational
speech). The Numbers corpus is sufficiently varied that a number of the effects of naturally
spoken speech are in evidence. These include factors such as differences in speakers, varia-
tions in speaking rate, and reduced syllables. The samples also show effects from channel
and environmental interference, for instance babies crying in the background. The Numbers
task is fairly small yet non-trivial, so findings with this corpus are likely to be extensible to
less constrained tasks.

Researchers at Oregon Graduate Institute (Center for Spoken Language Understanding,
or “CSLU”) collected the Numbers corpus as part of a larger assemblage of data for the
purpose of providing challenging corpora for speech recognition research [30]. This corpus
contains continuous, natural speech from many different people in response to prompts
from an automated census system over telephone lines (digitized at 8 kHz). The Num-
bers utterances were cut from longer speech waveforms of people reciting their addresses,
telephone numbers, zip codes or other miscellaneous items. OGI labelers phonetically hand-
transcribed about half of the complete Numbers corpus.

A subset of the Numbers corpus was chosen for the experiments in this thesis.® The
“core subset” contains only utterances with accompanying phonetic hand-transcriptions.
The set is further limited to utterances in which the words at each end of the waveform are
still intelligible (rather than being largely clipped), and which also contain only words that
could strictly be called “numbers.” These criteria eliminated utterances such as “Sears one
day sale.” Utterances where words on the boundary of the waveform was only partially
recorded were also subtracted, for example when “seven” was represented by just “s-.” The
complete vocabulary of the core subset is 32 words, as listed in Table 3.2.

A sample utterance from the corpus is “eighteen thirty one.” Since the utterances were

®The core subset was defined with Michael Shire (at ICSI).
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excised from longer recordings, acoustic information from speech commenced immediately
and broke off sharply. In order to allow for the start-up time in the recognition process, each
wavefile was padded with 100 ms of artificially-created silence on both ends. The core subset
contains about two hours of training data (3500 utterances, about 700,000 frames) and 40
minutes each of development test set (1,206 utterances, total of 4,673 words, about 230,000
frames) and evaluation test set (1,227 utterances, total of 4,757 words, about 230,000 frames)
data. Any parameter tuning for the training and recognition systems in the experiments in
this thesis involved only the training data, of which 10% is used as the cross-validation set.

3.2.1 Reverberation

Some of the experiments used artificially reverberated versions of the development and eval-
uation test sets as representative samples of one specific form of distortion. Reverberation
manifests in sound propagating through a room due to the reflectivity of the walls and
other solid objects. It also gives human listeners an impression of a room’s size and general
attributes. Human listeners prefer some reverberation when listening to music in concert
halls. In statistical terms, reverberation is characterized as a transient, nonstationary, fairly
slow response of sound in rooms.®

Reverberation can degrade speech intelligibility by masking direct sounds with reflected
energy. When such environmental effects are not represented in the training data, they can
increase the word error rates of speech recognition systems by an order of magnitude or more.
Kingsbury et al. produced mildly reverberant speech for these experiments in connection
with other research [80, 106, 107, 105]. The original speech from the Numbers database
was digitally convolved with a real room impulse response using a reverberation time of 0.5
s and a direct-to-reverberant energy ratio of 0 db [107].7 Artificially reverberated speech
differs from actual reverberant speech in two significant ways: 1) Speakers compensate for
perceived interference by modifying vocal effort. Since the reverberation was added after
the speech was recorded, this effect is not reflected in the reverberant speech used here.
2) The impulse response used reflects a particular room model with a single source and
microphone location. Recordings from actual rooms almost certainly will vary.

3.2.2 Human Recognition Performance

An informal speech understanding experiment with two human subjects (conducted in con-
junction with Brian Kingsbury’s thesis [105]) on 200 sentences of the Numbers development
test set showed that humans can understand both the clean and the reverberant Numbers
utterances with near perfect accuracy. The subjects had an average word error rate of
0.3% on both the clean and reverberant portions, in sharp contrast to the capabilities of
automatic speech recognition systems.

®More details regarding the nature of room reverberation can be found in [132]. A statistical characteri-
zation of reverberation in rooms can be found in [191].

"The room impulse response used was part of a collection by Jim West and Gary Elko, from Bell Labs,
and Carlos Avendano, now at the University of California, Davis.
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Figure 3.1: ICSI’s speech recognition system. (Dan Jurafsky and Nikki Mirghafori)

3.3 The ICSI Speech Recognition System

A typical, current speech recognition system applies statistical pattern recognition tech-
niques, first applied to this problem by Baker [11] and Jelinek, Bahl and Mercer [95]. The
system first processes raw acoustic data into features by an analysis technique that charac-

terizes the short-term spectral envelope (e.g., mel-frequency cepstral analysis [40],% or PLP
analysis [85]7).

A probability estimation technique, such as multivariate Gaussian mixtures [160, 90]
or artificial neural networks [20], further processes these features. Standard 1990s ASR
technology, as described in [17], usually refers to systems with hidden Markov models and
multiple Gaussian mixtures. A classic example is the SPHINX system [115]. Young de-
scribes a fairly typical, current HMM-based system in [211]. The combination of HMMs
with neural networks is commonly referred to as the “hybrid” approach. All statistical
approaches typically involve extensive model training on large databases.

Figure 3.1 [100] is an illustration of the speech recognition system in primary use at the
International Computer Science Institute (ICSI)'® and is used as the baseline system for the
experiments in this thesis. Although similar in form to the speech recognition systems in
general use in the research community, the ICSI system has two less-common aspects:
(1) acoustic probabilities are estimated by a neural network instead of by mixtures of
Gaussians and (2) the system uses context-independent phones instead of triphones. These
differences can be loosely characterized by noting that the ICSI system uses a comparatively

8Mel-frequency cepstral coefficients (MFCCs) are calculated by warping the speech signal spectrum to
approximate the spatial-frequency scaling characteristic of human hearing. The process takes the logarithm
of the warped spectrum and uses an inverse Fourier transform to generate features.

°PLP analysis estimates the aunditory spectrum using several concepts from psychophysics and an auto-
regressive all-pole model. PLP is described in more detail later in this chapter.

1A much more complete description of the theory and mechanics underlying this type of recognition
engine can be found in the book Connectionist Speech Recognition— a Hybrid Approach [20] or in [133].
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large number of neural network parameters to estimate the density function for each of
relatively few sound categories. The more common approach in the research community
uses mixtures of Gaussians, estimators that use comparatively few parameters to estimate
density functions for each of a relatively large number of sound categories. Systems that use
mixtures of Gaussians usually have many times the number of sound categories as neural
network-based systems. As a result, Gaussian-based systems typically have many more
parameters in total.

3.3.1 Feature Extraction: RASTA-PLP

The TCSI system first analyzes sound waveforms with an acoustic processing technique,
represented in Figure 3.1 as the “Auditory Front End,” or the “ear” of the speech recognition
system. The process segments the acoustic waveform input into overlapping “frames,”
which are 25 ms long with a 10-ms overlap for the experiments in Chapters 4, 5 and 6.
The work reported in this thesis used RASTA-PLP features [86], roband features [184]
and modulation spectrogram features [80, 105, 107]. Roband features are not intended for
phonetic determination, unlike RASTA-PLP and modulation spectrogram features. Roband
features are described in more detail in Section 4.1.2 and modulation spectrogram features
are described in more detail in Section 5.1. All three features sets use principles from human
speech perception to improve the representation of the speech signal.

RASTA-PLP!! was derived from an older feature extraction method, Perceptual Linear
Predictive (PLP) analysis [85]. PLP estimates the auditory spectrum using engineering
approximations to the psychophysics of hearing. The process maps critical-band power
spectra into a perceptually-based loudness domain. Features are generated using an au-
toregressive all-pole model. The results are converted into cepstral coefficients. Hermansky
states that PLP is more consistent with some of the important properties of human hearing

than conventional linear predictive (LP) analysis. Additional properties of human hearing
are incorporated in RASTA-PLP.

The temporal characteristics of environmental noise or channel frequency response often
differ from those of speech. This observation prompted Hermansky and Morgan to develop
the RASTA-PLP speech processing method [135, 131, 86]. RASTA stands for relative
spectra, a class of representations based on filter methods designed to exploit the differences
between the temporal qualities of environmental noise or channel frequency response and
those of speech.

The RASTA technique suppresses the components of the input spectral trajectories that
change more slowly or more quickly than the statistically observed behavior of speech [86].
This has its foundation in human auditory perception, where researchers have observed
that humans are sensitive to changes in an input in relative rather than absolute values.
For instance, humans appear to be fairly insensitive to slowly changing background noise.
Procedurally, Hermansky and Morgan altered the PLP speech analysis method: instead of
the usual short-term critical-band spectrum in PLP speech analysis, RASTA-PLP has a
spectral estimate where the temporal trajectory of each frequency channel is band-passed

1 Also referred to as “log-RASTA-PLP” or simply “RASTA.”
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filtered with a sharp spectral zero at the zero frequency. This suppresses constant or slowly
varying components in the input speech signal. Of further note is that RASTA uses several
contiguous frames in its analysis, amounting to integrating information over about 150 ms.
Thus, RASTA processing has more reliance on previous context than “vanilla” PLP.

One result of this processing is that transitions between speech segments are emphasized.
That is, the RASTA analysis technique is less sensitive to slowly varying components. The
bandpass filtering has the effect of passing modulations between 1 and 12 Hz. Experiments
indicate that the RASTA-PLP processing method produces roughly the same word error
rate as PLP alone on “clean” speech and significantly improves accuracy with speech in the
presence of spectral interference (e.g., changed channel characteristics).

The RASTA-PLP feature analysis method transforms each window of the sampled wave-
form into a numerical representation, as a vectors of numbers. For the experiments described
in Chapters 4, 5, and 6, “delta” features, which represent an approximation to the instan-
taneous rate of change of each feature, complemented the vectors of features produced by
these feature extraction methods. Historical experience at ICSI has found that eighth-order
RASTA-PLP is suitable for kind of recognition task described in this thesis. With energy
and delta features, eighth-order RASTA-PLP, gives a total of 18 features per frame.

3.3.2 Probability Estimation: Neural Network

Equation 3.1 expresses the speech recognition process in mathematical terms. For a se-
quence of acoustic vectors Y = 4,93, +,yr, where T is the number of individual observa-
tions (frames), and the series of actual words in an utterance is W = wq, wy, -+, w,, the
speech recognition process produces the most probable word sequence W. Bayes’ rule is
used to decompose the desired probability into factors that are computable by the decoding
process.

W= argpnax P(W|Y) = argmax w

P(W) is the a priori probability of the word sequence W, regardless of the acoustic input,
and P(Y|W) is the probability of observing the vector of acoustic features, Y, given that
the word sequence W occurs.

(3.1)

To evaluate this equation and find the most likely sequence of words, the feature vectors
generated by the front end are transferred to a phone probability estimator as depicted in
Figure 3.1. The ICSI system and variants used in these experiments use a fully-connected,
feedforward, multilayer perception with one hidden layer. The neural network uses the
input features, plus additional context from 8 to 16 surrounding frames of features, to
estimate the probability that the input corresponds to each of the defined categories. The
network outputs represent estimates of posterior probabilities from which data likelihoods
are calculated via Bayes’ Rule (i.e., dividing by prior probabilities). Experience at ICSI
has shown that 8 surrounding frames (i.e., a total context of 9 frames) performs well for
typical recognition tasks, as in those described in this thesis. Using 16 surrounding frames
(a total of 17 frames) can be useful for speech where the acoustic data is smeared over
a longer time-span than 9 frames. The neural network was trained using simple, online
error-back-propagation and softmax normalization. For the experiments in this thesis, the
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neural networks typically had a hidden layer size of 400 units. To prevent overtraining,
a technique known as early stopping was used. This technique reserves about 10% of the
training data, referred to in this thesis as the cross validation set, for checking the progress
of the procedure. FEarly stopping periodically assesses and maintains the generalization
abilities of the neural network by testing on the cross validation set to decide when to
stop training. With this technique the neural networks typically trained for seven or eight
epochs (iterations through the training data) using a post-threshold, adaptive exponential
decay learning rate. That is, the learning rate is held constant until the performance on
the cross-validation set no longer improves. Then the learning rate is divided by two for
each succeeding epoch until the performance on the cross-validation set again no longer
improves. The cross validation subset also serves as a testbed for empirically determining
various system parameters in these experiments.

3.3.3 Recognition Unit: Phonemes

The neural network converts feature vectors into estimates for the posterior probability
of each phone, which are input into the decoding stage of the recognition system. The
phoneme-based recognition units used in these experiments are fairly conventional, consist-
ing of 56 context-independent phones based on the TIMIT phone set. This set is fairly
complete for English. The “ICSI56” set of phones, listed in Appendix A.1l, is composed
mostly of phonetically representative exemplars of phonemes, with the addition of phones
with acoustic distinctions such as stop closures, flaps and reduced vowels. The inclusion
of these distinctive phones was historically found to promote the discriminative abilities of
the artificial neural networks.

The baseline system was initially trained from the original phonetic labels taken from
the manually-produced transcriptions. The labelers [30] who phonetically transcribed the
Numbers task used a superset of the ICSI56 phone set. To derive phonetic targets for
training the speech recognition system the original phonetic labels were mapped into the
1CSI56 set. Since the ICSI56 set is a more limited group of phones, certain phonetic variation
details in the original labelings were discarded. Some of these, such as aspiration, might
have been useful for syllabification.

3.3.4 Lexicon

Dan Gildea (of ICSI) examined the hand-labeled, phonetic transcriptions of the training
set and generated multiple pronunciations for each of the Numbers words, which covered
approximately 90% of the pronunciation variations actually occurring in the training set.
Scripts written by Eric Fosler-Lussier (also of ICSI) converted these pronunciations into
a working lexicon. The mapped labels and the derived lexicon were used directly in the
experiments in Chapter 4, since these were believed to have a close relationship to the actual
acoustic manifestation of syllable features such as onsets.

For the experiments and analysis in Chapters 5 and 6, one iteration of forced alignment
further refined and matched these labels and the derived lexicon to the learning capabilities
of the neural net, using the baseline system with 400 hidden units. The forced-alignment
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process is discussed later in this chapter. A one-time automatic adjustment of the lexicon
revised word pronunciations and phone durations.'? This eliminated a number of the hand-
derived pronunciations as unused. The lexicon matched the corresponding neural network
and training labels and vice versa. The resulting system exhibited a significant performance
improvement over the original system.

3.3.5 Decoder

The probabilities from the neural network for each frame are input to a “Decoder,” depicted
in Figure 3.1. The decoder generates words and sentences by finding the maximum likeli-
hood path through the probabilities, constrained by the pronunciation models. The ICSI
system employs Viterbi decoding (a variant of dynamic programming) and, in some cases,
stack decoding (a variant of the A* algorithm) to find the best path through the sequence
of probabilities and thus the most likely words and sentences. The decoder uses a lexicon of
hidden Markov models to enumerate the different pronunciations of the words and attach
a priori probabilities to each version in the vocabulary. It also uses a language model that
describes the way the words potentially fit together in a utterance. Decoding algorithms
are discussed in more detail later in this chapter.

The ICSI system usually uses one of two decoders; a Viterbi decoder, YO (pronounced
“why not”) [88], and a start-synchronous stack decoder, called Noway [164, 163, 165]. The
two decoders in general give comparable results, though they can have slight variations in
the resulting sentence hypotheses. These dissimilarities are largely due to differences in the
pruning strategies and choice of parameters. A set of hidden Markov models represents
multiple pronunciations for each word. The state-to-state transition probabilities were
untrained for these experiments and remained at a uniform 1/7 where T is the number of
transitions out of a particular state.

An N-gram language model provides the probability that some word, w;, follows some
sequence of words w; through w;yny_1. The language model used for the experiments
described in this thesis was a simple bigram model (i.e., N = 2). Bigram probabilities (the
probability that a certain word follows another word) can be calculated from the training
set by counting the number of occurrences of each pair. “Backofl” methods estimate the
probabilities for bigrams that do not occur in the training set [27].

Decoders generally use an empirically-determined value called a “language model” or
“acoustic model” scaling factor to weight the influence of the language model over the
acoustic information. A multiplicative value is applied to the log probabilities of sound
classes or N-gram models. Typically, system builders use the language model scaling factor
to balance the proportion of word insertion errors to word deletion errors. The relationship
between the contribution made by of acoustic information and the language information is
not well understood, but recognition system performance can be somewhat sensitive to the
value of this parameter.

12The lexicon of this recognition system could have been adjusted with every iteration. Pilot studies,
however, suggested that additional changes to the lexicon would yield minimal further improvement and
serve only to obscure the experimental procedure.
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Some of the experiments in this thesis used forced alignment (also called forced Viterbi).
This procedure provides the correct word string to the Viterbi decoder, Y0, which uses the
string to render and constrain the mostly likely path to the supplied words, given some
acoustic input. It generates a new set of time-aligned labels for the utterance that can be
used as targets in a subsequent neural network training. Using multiple, iterative appli-
cations of this procedure with optimization updates to a lexicon is sometimes called “em-
bedded training.” Researchers generally use this technique to automatically label acoustic
input files when word transcriptions, but not phonetic transcriptions, are available. Even
when phonetic transcriptions are available, the forced alignment technique, particularly in
conjunction with lexicon updating, can help optimize the learning capabilities of the system
by realigning phonetic segment labels. The resulting relabeling can help the neural network
learn the distinction between the labeled patterns more effectively. Iteratively applied, this
method converges to a training set labeling that the recognition system identifies most accu-
rately. Since the labels are shifted automatically, however, the new labels may not entirely
agree with the acoustic evidence in a way that is obvious to a human researcher.

3.3.6 Evaluation

To evaluate the performance of a speech recognition system, the most commonly accepted
measure is word error rate. Specifically, word scoring for these experiments used a dynamic
programming algorithm that computed the minimum number of substitutions, insertions
and deletions between the reference (correct) string and the output of the speech recognition
system. While universally applicable, simple word scoring does not fully examine differences
between one system and another, so some of the experimental systems in this thesis were
evaluated by additional criteria besides word-error rate, in order to provide some insight
into how accuracy might be improved. These are described in more detail in Chapters 5
and 6.

3.4 Speech Decoding

Speech decoding is the process of finding the most probable sequence of words given a
sequence of probabilities based on acoustic representations and other knowledge sources,
also governed by Equation 3.1. For decoding, the sequence of observation vectors Y is
defined to be the vector of acoustically-based probabilities. For the systems used in this
thesis, artificial neural networks generated these probabilities from acoustic observation
vectors.

Practical concerns often constrain the quest for algorithms and heuristics that produce
the highest possible recognition accuracy. These factors conflict with one another, affect-
ing the allocation of both human and computer resources, and requiring tradeoffs. Many
different algorithms exist, each with varying implementation details, parameters, inputs,
outputs, target tasks and performance.

Template matching, or “dynamic time warping,” (DTW) is a decoding method that was
successfully employed for small vocabularies in the 1960s through the mid 1980s. Dynamic
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Figure 3.2: An example of a typical HMM, for the word “ten.” The phone /eh/ has a
minimum duration of two states.

programming matched acoustic data directly to templates of whole words [172, 43]. Since
the templates modeled the entire word in detail, the storage cost of these templates and
the computational cost of the search are impractical for large vocabularies. Researchers
attempted to use sub-word models, but found that coarticulatory variations became more
significant with smaller units and more difficult to model under DTW. Rosenberg, Rabiner,
Wilpon and Kahn concluded that whole word prototypes provide superior results to models
based on demisyllables, but acknowledged that storage and computation limitations made
the sub-word units attractive [167].

Stochastic methods were initially explored in the 1970s and achieved wide acceptance
in the 1980s as a way to represent coarticulation and other variations in speech. Principal
among these methods is the stochastic, finite-state automaton known as the hidden Markov
model (HMM). Today, researchers typically concentrate on HMM-based, stochastic model
methods. HMMs provide more facility for incorporating coarticulatory effects into sub-word
models than do comparable templates used in dynamic time warping. The HMM [157, 11,
95] and its variants for decoding with more general sub-word units have proven successful for
probabilistically representing speech for large vocabularies with sub-word units, while still
keeping the decoding process computationally tractable. In HMMs, words are represented
as a sequence of sub-word units (usually based on phonemes), thus representing a reduction
in the computational and storage costs over whole-word models.

Figure 3.2 shows a representative HMM for the word “ten.” Each circle represents a

state and is typically associated with a phone, or a part of a phone; this state is the “hidden”
part of the HMM. In the production view of the HMM, the model generates observables
(i.e., feature vectors) as it progresses from one hidden state to the next. Decoding speech
reverses the process. Decoders use the observables to hypothesize the hidden state of the
HMM. The model includes probabilities of transition, both back to the same state and on to
other states, that govern the likelihood of particular paths. If the sub-word unit is too small
and the categories are not carefully defined, this method may poorly model coarticulatory
effects within a word. While HMMs have limitations and associated problems with modeling
speech, it is not the purpose of this thesis to explore this issue or HMM alternatives.

Several HMM decoding algorithms are currently popular.'® The algorithms chiefly focus

3 Deller’s book, Discrete- Time Processing of Speech Signals [43] contains a review of HMMs and decoding.
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on selecting the most likely HMM sequence given a set of acoustic information vectors. The
algorithms may also be combined to capitalize on each method’s strengths.

These decoding algorithms include:

e Decoding with maximum likelihood probabilities [12] [43]: This algorithm involves the
calculation of the total probability that a particular model produces a given observa-
tion sequence (i.e., a set of acoustic-feature vectors). This requires the summation of
the effect of any and all paths through the particular model, usually via the forward
algorithm.

e Decoding with an approximation to the maximum likelihood: This less optimal, but
computationally more tractable approach, uses the likelihood value of the single best
state sequence through any HMM that produces the given observation sequence as an
approximation to the total probability of the model. This may not produce the same
path as decoding with true maximum likelihoods. The two standard algorithms for
computing the best state path are:

1. Dynamic programming [172, 10, 138]: Also called Viterbi decoding,!* the algo-
rithm is characterized by a “breadth-first” search strategy, where all relevant
paths are extended simultaneously for each time step.

2. Stack decoding [93, 102, 150, 170]: Often used in combination with a Viterbi
criterion, stack decoding!® is characterized by a “depth-first” search strategy. A
single hypothesis is extended until search directives dictate that it is no longer the
most likely solution. Then the decoder chooses a new hypothesis to be extended
and the process repeats.

The above search algorithms are provably optimal only for complete searches which are
usually extremely slow and memory intensive in practice. Implementation details are often
the key difference between a usable decoder and an impractical one. For example, one
important technique used to improve execution time is the use of a tree-structured lexicon
or network [145]. Combining the shared prefixes of the words in a lexicon reduces redundant
computation and memory usage without sacrificing accuracy.

Suboptimal variations are used to elicit the maximum performance for a reasonable
amount of computing resources. “Suboptimal” heuristics are so named because they can
not be guaranteed to lead to the best solution. Often it can be proven that these heuristics
will definitely miss the best available solution under certain pathological conditions. De-
spite this disadvantage, suboptimal methods usually use a small fraction of the computing
resources of optimal algorithms and deliver high accuracy for a large percentage of situa-
tions. Researchers find this property a compelling reason to develop and use suboptimal
methods.

Various techniques for recovering from the search errors resulting from suboptimal al-
gorithms have received considerable attention. Popular techniques include:

Comerford et al. give a short overview of HMMs in [32].

1 «Viterbi decoding” is a term from the digital communications field.

15 Also known as A* in the artificial intelligence field, and related to the Fano algorithm in digital com-
munications. It is interesting to see how similar algorithms emerge from different fields.

58



e Multiple passes, including backwards processing [4]: By varying the way the system
performs decoding during each pass, researchers hope to compensate in the sum of
all passes for deficiencies in individual passes. Progressive search techniques [137], in
particular, start with crude but cheap decoding techniques and use more refined and
computationally intensive decoding schemes for later passes.

e N-best lists of sentences [177, 176]: By generating N of the most likely word sequences
rather than just the single most likely one, the correct answer is more likely to appear
somewhere in the resulting output set. Systems can then use subsequent processing
to re-rank the various hypotheses.

e Word graphs and lattices [146, 139, 140]: A word graph is defined to be a directed
acyclic graph where each edge corresponds to a word with a score and each node is a
point in time. There is less agreement on the definition of a word lattice. Some authors
use the word lattice in a manner consistent with a word graph. Others suggest that
word lattices contain only word-order information and allow the possibility of temporal
overlaps, or even gaps, between words. In this thesis, the terms “word lattice” and
“word graph” are synonymous and both refer to the directed acyclic graph. Similar to
N-best lists, graphs and lattices contain more information than just the best sequence.
Systems use postprocessing, perhaps incorporating additional kinds of information, to
rescore the information in the graphs and lattices.

e Combinations and variants of the above: One example of this is the work of Soong
and Huang, who used a forward search with a Viterbi criterion, then a backward
search with a stack decoding scheme to produce an N-best list [185]. Researchers
have combined various techniques and methods in order to capitalize on as many
advantages as possible.

In addition to these basic algorithms, system engineers use many heuristics singly or
in combination to improve search performance, trading accuracy for speed or memory us-
age. New strategies, variations and combinations of existing techniques appear frequently.
Pruning heuristics can improve the computation times, but have the potential of introduc-
ing search errors, where the decoder discards the correct answer due to the direction taken
by the pruning strategy. Practical decoders make extensive use of pruning. The art in the
design and implementation of decoders is in quickly discarding as much of the search space
as possible without losing the correct answer.

Examples of current popular pruning heuristics include:

e Beam search [122] [43] (sometimes with multiple beams): “Beams” limit the extent
of the search space considered during Viterbi decoding so that the decoder expends
search effort in a narrow region where the most probable hypothesis is likely to reside.

e Fast match [9, 8]: Typically used with stack decoding, fast match helps select the
next candidates for adding to the current hypothesis by looking ahead in the acoustic
probability stream and performing quick, coarse phonetic matches.
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e State- or phone-level pruning, such as deactivation pruning [164]: The decoder com-
pletely deactivates phones (i.e., assigns a probability of zero) that appear to have
comparatively low probability. These phones and their corresponding words are not
considered during the decoding process, improving execution speed.

ASR systems apply higher-level knowledge at various levels and in a variety of forms.
The experiments described in Chapters 4, 5 and 6 used a bigram language model to describe
the probabilistic word structure of the Numbers utterances. N-gram models [10, 43] are a
popular method of adding language constraints into the decoding process. Bigram (N = 2)
or trigram (N = 3) models are common. Other researchers have been studying a variety of
long-span language models and different ways to incorporate more knowledge-based sources
of information.

Clearly, there has been great effort expended in speech decoder design and implemen-
tation. Many decoders for current tasks (e.g., for 64,000-word vocabularies) perform recog-
nition in close to real-time on consumer personal computers. Yet there is still much to
improve in machine speech recognition. As researchers discover more about the nature of
human speech recognition and incorporate new processing techniques and sources of speech
information, the demand on computing resources by decoders will continue to increase.

The work described in this thesis required a pool of several decoders, since each had
unique capabilities. The four different decoders used were:

e A simple, small-vocabulary, special-purpose decoder with an explicit syllabic level
(Chapter 4).

e The Y0 decoder [88], a general purpose, Viterbi decoder with forced alignment capa-
bilities (Chapters 5 and 6). Y0 uses beam search to limit the number of simultaneous
hypotheses.

e The NowAy decoder [164, 163, 165] (Chapters 5 and 6) . NOWAY is a start-synchronous
stack decoder using a Viterbi criterion. NOWAY incorporates phone deactivation prun-
ing and limits the creation of new hypotheses with beam-search-like techniques. The
NOWAY decoder has the added capability of producing word lattices.

e The lattice decoder LATTICE2NBEST [166] which uses a Noway-like stack decoding
algorithm. This decoder determines the best sequence of words from a word lattice

(Chapter 6).

3.5 Combination of Multiple Streams

The combination of information from multiple sources is an attractive approach to the prob-
lem of speech recognition. Merging information has the potential to exceed the summed
performance of the individual parts. The Hearsay system [48] of the 1970s and early 1980s
attempted to combine information from different knowledge sources to first make a hy-
pothesis and then correct it. More recent, anecdotal evidence suggests that combining
information at the feature extraction level from even slightly different analysis methods
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can lead to increased recognition performance. Chapters 4 and 6 describe the exploration
of combining two speech recognition systems, one oriented towards the phoneme, and the
other incorporating syllable-based information. While the phoneme-based system is well es-
tablished and highly optimized, the more recently developed syllable-based systems are less
optimized. By combining the two, the advantage of the maturity of the phoneme-based can
potentially be enhanced by the innovation of the syllable-based system for a more accurate
overall result.

The combination of multiple sources of information can occur in a free-form manner at
arbitrary levels in the recognition process. The experiments in Chapters 4 and 6 concentrate
on merging streams of information from two recognition systems at the frame, syllable and
whole-utterance level. The pattern recognition community has proposed quite a few algo-
rithms for combining classifiers, particularly for handwriting recognition. Since the focus of
this thesis is not on the science of combining classifiers, but rather on the combination of
specific speech recognition systems, the literature overview here will be brief and will only
discuss the combination algorithms relevant to the work described in this thesis.

A speech recognition system normally uses a single form of feature analysis and a single
decoding method to generate phonetic probability estimates. As noted by Ho, Hull and
Stihari, a perfect form of feature analysis or method of decoding is difficult to define for
problems with a large number of classes and noisy inputs. Classifiers using different feature
analyses and different decoding paradigms can result in different errors, even if each separate
classifier achieves about the same overall percentage error. The crux of the combination
problem, then, is to determine the ideal combination algorithm to take advantage of each
classifier’s strengths (“classifier correlation”) [87].

There are two fundamental approaches to combining the outputs of more than one
classifier: (1) merge the outputs of each single classifier acting in parallel over some input,
in a uniform way to produce a global output that represents a group consensus, or (2) chose
for each target one the classifiers in a group, acting in parallel, to represent the whole. These
are called, respectively, “classifier fusion” and “dynamic classifier selection” [206]. Woods,
Kegelmeyer and Bowyer approached the problem of combining multiple classifiers by using
a dynamic classifier selection algorithm with a local accuracy criterion. That is, when the
classifiers differed in their outputs, the algorithm assessed local accuracy estimates of each
of the classifiers from the “nearby” examples in the training data in order to determine
which classifier to use for the final output. In preliminary experiments with the Numbers
task, the computation of local accuracy appeared to be a poor estimate of the reliability of
the classifier, particularly when the test case was not represented in the training set (e.g.,
in the presence of noise).

Other classifying techniques include the simple majority vote. Preliminary experiments
with the Numbers data supported the intuition that when each classifier’s accuracy was
fairly high, voting eliminated a significant number of errors. When the individual classifiers
each had a large error rate, however (for example, with the addition of reverberation), the
voting method did not significantly improve the overall error rate. This was due to the
large variance in recognition answers when the input was noisy.

There are also methods based on confidence measures. Unfortunately, it is difficult to
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define a confidence measure that is comparable between different recognition paradigms.
Similarly, other numerical scores such as distances and estimates of posterior probabilities
are difficult to use directly because of the basic incompatibility of the assumptions in the
data to be combined [87].

Aside from the question of how to combine classifiers is the question of which classifiers
to include in the merging. If estimates of classifier performance were exact, no such choices
would be necessary. Estimates of accuracy are flawed, however, especially for unexpected
inputs, so the choice of classifiers to be combined must be carefully considered. Experimental
evidence from Woods et al. further illustrates this point. They found that certain subsets
of four classifiers outperformed a combination of all five classifiers [206].

In the field of automatic speech recognition, the decoding stage adds an additional
level of complexity in the combination process. As a result of the dynamic programming in
decoders, there is only an indirect relationship between probability estimation and improved
accuracy. Common approaches to combining multiple sources of information include N-best
list rescoring and word-lattice rescoring.

For the work in Chapter 4, the combining took the form of constraining the decod-
ing process of one system with the output of another. The combination methods used
in Chapter 6 are based on the linear combination of the log probability outputs of each
recognition system, a standard classifier fusion technique. These proved to be more suc-
cessful than attempts at classifier selection. Chapter 6 further describes investigations of
differing frameworks for combination where the granularity of the combination unit was
systematically varied from the whole sentence to the phone/frame level.

For combining at the frame level (i.e., at the output of the neural network), simply mul-
tiplying the corresponding probabilities for each frame was effective. The result can then be
passed into the decoding process as usual. A method recently reported by Bourlard, Dupont
and Ris provided an avenue for experimenting with combining systems at the syllable level.
Bourlard et al. experimented with what they term HMM-recombination [19], a variant of
the HMM decomposition technique [193, 194, 66] more commonly used to statistically de-
compose noise and speech (independent sources of sound information). Dupont, Bourlard
and Ris [45] have begun investigating combining speech information from several streams,
each representing a different time-scale (e.g., phones and syllables) with some asynchrony
permitted between recombination points. Potential advantages listed by Dupont et al. in-
cluded better robustness to noise. The work presented in Chapter 6 used their technique
to combine hypotheses at the syllable level during decoding. The combination procedure
at the utterance level used N-best rescoring to determine the best utterance overall. Fach
method had distinct advantages and disadvantages for implementation and optimization.
These issues are discussed further later in this thesis.

3.6 Summary

While some speech recognition applications are currently enjoying some measure of com-
mercial success, accurate and robust speech recognition, particularly for naturally spoken,
conversational speech, is still a considerable challenge for ASR systems.
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The Numbers corpus is a small vocabulary, naturally spoken speech database ideal
for these exploratory studies. For evaluation purposes, the Numbers corpus provides a
manageable but nontrivial recognition task. An artificially reverberated version of the test
set was used to model one kind of adverse environmental condition. Humans can recognize
both the clean and the artificially reverberated test set with very few errors. Machines, on
the other hand, usually produce dramatically more errors than humans [120]. Thus, there
is considerable room for improvement in ASR. The work reported in Chapters 4, 5 and 6
used the ICSI speech recognition system (a hybrid neural network/hidden Markov model
paradigm) as a starting point.

The experiments in this thesis involve manipulating the decoding stage of the speech
recognition process, either by introducing syllable onsets or by combining two streams
of recognition output. There are many possible combination methods. The experiments
described in later chapters focus on linear combinations of probabilities at the frame-,
syllable- and utterance-level. Each of these combination strategies has distinct advantages
and disadvantages.

The rest of this thesis focuses on using the decoding and combining techniques outlined
in this chapter to incorporate syllable-based information into speech recognition.
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Chapter 4

Integrating Syllabic Onsets

Accurate estimation of the beginnings of spoken syllables can reduce the number of vi-
able utterance hypotheses and thus improve automatic speech recognition performance. In
the work described in this chapter, wel explored the integration of syllable onsets into the
speech recognition process via a specially-designed decoder. The first set of experiments
used artificial onsets derived from advance knowledge of correct syllable boundaries. The
results of these trials showed that onset information could be useful in improving recogni-
tion accuracy. The second set of experiments used onsets estimated directly from acoustic
information. This added information produced a reduction (10% relative) in the word-error
rate for the Numbers task. The latter experiment also suggested additional study of coor-
dinating acoustic and lexical representations of speech. From this arose the inspiration for
the work described in Chapters 5 and 6.

This chapter begins with a review of the background and previous work with syllable
boundaries. Section 4.2 describes the special purpose decoder used for these experiments.
The recognition system is further outlined in Section 4.3. Section 4.4 reports the results of
the experiments with syllable onsets.

4.1 Detecting Syllable Boundaries

Approaching the question of speech recognition from the syllabic level, rather than from the
phonetic level, may confer several benefits, as discussed in detail in Chapter 2. Statistical,
structural regularities suggest that the boundaries of syllables may be more precisely defined
than that of phonetic segments in both speech waveforms and spectrograms. This effect
is particularly visible during conversational speech. Research by Cutler, Butterfield and
Norris indicated that humans perceive word-initial clusters of phones as integral units [37].
Statistics gathered by Greenberg show that syllabic onsets are expressed in canonical form
far more frequently than the rest of the syllable. The syllabic onset exhibits more stability
than either the nucleus or the coda [78]. Figure 4.1 shows roughly regular patterns at

!The study detailed in this chapter was the result of collaboration between Michael Shire and myself,
with additional input by Steven Greenberg and Nelson Morgan. We described parts of this work during a
presentation at the International Conference on Acoustics, Speech and Signal Processing, 1997 [210].
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Figure 4.1: Spectrogram of the utterance “seven seven oh four five” with syllabic onsets
marked as vertical lines [184].

the syllabic level in a representative example spectrogram with the beginnings of syllable
onsets marked. Attempting to detect syllable boundaries and nuclei is not a new idea. The
approach reported in this chapter differs from previous work in that these experiments are
perceptually-oriented and focus on the recognition of spontaneous, naturally spoken speech.

4.1.1 Syllable Nuclei and Boundaries in Speech Recognition

Researchers have documented studies focused on detecting syllabic properties such as bound-
aries and nuclei in speech research literature since 1975, as described in Chapter 2. The
two most closely related projects are discussed in further detail below.

In the mid-1970s, Mermelstein described a method for the automatic segmentation of
speech into syllabic units using a loudness criteria [129]. Hunt, Lennig and Mermelstein
incorporated this method into a speech recognition system [92, 91]. As mentioned in Chap-
ter 2, Mermelstein calculated their loudness function over the entire power spectrum. In
their recognition experiments they used a single speaker for both training and testing the
system. The test set comprised the same word sequences as the training set, re-recorded by
the speaker. They concluded from their experiments that a syllable segmentation system
provides sufficiently encouraging results as to warrant further investigation.

In the experimental work described in this chapter, the focus is on syllable onsets rather
than on boundaries because of the perceptual evidence that syllabic onset structures are bet-
ter preserved in spontaneous conversational speech than syllabic coda structures. Syllabic
onsets were estimated from distributions of energy in 9 separate bands. The recognition
system used in these experiments was tested in a speaker-independent manner; speakers
and utterances from the training set did not appear in the test set. These experiments have
also had the benefit of more experience with stochastic methods and decoding strategies
which has become available since the time of the experiments reported by Hunt et al.
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Figure 4.2: Major processing steps for deriving the syllable onset features [184].

More recently, Green, Kew and Miller [73, 72] have worked on estimating syllable onsets
for incorporation into the SYLK project, ultimately for the recognition of TIMIT utterances.
They focused on improving the discriminative abilities of their system through refinement
of training techniques. The SYLK project reported phone and phone-class results, but did
not report word recognition scores.

The work described in this chapter differs from the SYLK project in that the experi-
ments focus more exclusively on using specialized acoustic features. The perceptually-based
method of estimating syllable onsets, developed by Shire and Greenberg [210, 184], allows
the incorporation of onset information into the decoding process and produces results with
word recognition.

Estimating syllable nuclei has also been an active area of interest. In the mid-1970s,
the Hearsay system’s [48] word sequence generation process started with a syllable-nucleus-
identification function. The recognition system generated hypotheses based on the positions
of the nucleus. For German, several researchers have used syllable nuclei position esti-
mates [203, 169, 154, 155, 162], sometimes in combination with demisyllable-based speech
recognition systems. The syllable onset detection method discussed here could potentially
be combined with nuclei detection for overall better segmentation, but so far work by Shire
towards this end remains inconclusive.

4.1.2 Detecting Syllable Onsets

This investigation used a perceptually-oriented method of estimating syllable onsets devel-
oped by Shire and Greenberg for spontaneous, conversational speech [184], also described
in [210].

In these experiments, artificial neural networks estimate the probability of syllable onsets
and thereby automatically provide online calculation of syllable boundaries. Patterns of
synchronized rises in subband energy spanning adjacent subbands typically characterize
syllable onsets [74]. The time course of these coordinated changes in energy level roughly
correlate with the length of syllables in naturally-spoken English, i.e., about 100-250 ms.

Figure 4.2 illustrates the signal processing procedures designed to enhance and extract
these observed acoustic properties. The process decomposes the speech waveform via short-
time Fourier analysis into a narrowband spectrogram, and then convolves the result with
both a temporal filter and a channel filter, effectively creating a two-dimensional filter.

66



seven seven oh four five

I T T T T T T
gl |seh seh ow fayv i
5 v ahn vahn fowr
o]
S of :
[
o
24r .
©
Q
] ! |
| | | | | 1 | | | |

|
20 40 60 80 100 120 140 160 180 200 220
frame

Figure 4.3: Example of onset features derived for the utterance “seven seven oh four five.”
The vertical lines denote syllable onsets as derived from hand-transcribed phone labels.
[184]

The temporal filter (a high-pass filter analogous to a Gaussian derivative) was tuned for
enhancing changes in energy on the order of 150 ms. The filter smoothes and differentiates
the waveform along the temporal axis. The (Gaussian) channel filter performs a smoothing
function across the channels, providing weight to regions of the spectrogram where adjacent
channels are changing in coordinated fashion.? Half-wave rectification preserves the positive
changes in energy, thus emphasizing the syllable onsets.

Large values in this representation correspond to positive-going energy regions where
hypothesized syllable onset characteristics occur. The channel outputs are subsequently av-
eraged over a region spanning 9 critical bands, the result of which is referred to as “roband”
features, illustrated in Figure 4.3.

The process produced updates of these features every 10 ms. The resulting vectors
were concatenated with eighth-order RASTA-PLP [86]% features computed over a 25-ms
frame every 10 ms. This combination formed the input to a neural network for estimat-
ing the locations of syllabic onsets. For the given acoustic patterns described above, a
trained, single-hidden-layer, fully-connected, feedforward multilayer perceptron with 400
hidden units estimated the probability that a given frame was a syllable onset. For the
purposes of training, a series of 5 frames represented the syllable onset (as derived from
automatic segmentation of phonetic hand-transcriptions), where the initial frame corre-
sponded to the actual beginning of the syllable.

A simple numeric threshold applied to the probability estimates generated by the neural
net determines the identification of any given frame as a syllabic onset. The choice of
the threshold value primarily optimized correct identification of onsets and secondarily
minimized insertions, on the cross-validation set. This procedure correctly detected 94%

“More details concerning the filter specifications of this system can be found in [184].

SRASTA-PLP is described in more detail in Section 3.3.1.
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of the onsets computed from phonetically transcribed data (within the 5-frame tolerance
window defined for training). The procedure also mistakenly inserted syllabic onsets where
there were none (false positives) in 15% of the frames outside the tolerance window of any
onset. A syllable-based decoder uses these onset decisions as frames corresponding to the
beginnings of syllables.

4.2 Speech Decoder With Additional Syllabic Level

This study involved the design and implementation of a special-purpose speech decoder,
suitable for small vocabulary tasks. Its most notable departure from standard decoders is
that it incorporates an intermediate, syllabic level of abstraction between the level of the
phone and the level of the word or sentence.*

This decoder processes phonetic probabilities from a neural network using a conventional
Viterbi algorithm with hidden Markov models. Using a bigram syllable grammar, the
decoding process creates a syllable graph (a derivative of the word graph described in
Section 3.4) from the phonetic information. Trials without a syllable grammar showed that
the grammar plays an important role in the efficient pruning of hypotheses. Each arc in the
graph represents a single syllable hypothesis, to which the decoder assigns a likelihood value.
The endpoints of the arc indicate the beginning and ending times of the syllable hypothesis.
The next stage, the program’s stack decoder, uses this syllable graph as input along with
a bigram word grammar. The stack decoder® determines the most likely sequence of words
given the syllable graph. This procedure is a type of multiple-pass decoding method and is
conceptually similar to the two-level dynamic programming algorithm [171]. The additional
complexity of the decoder design permits the explicit representation of the relationship of
phones to syllables and syllables to words. The algorithm’s representation of the syllable
as an intermediate stage in the design allows easier expansion and experimentation at the
syllabic level. Syllable onset information appears as an additional input at the level of the
syllable graph, as illustrated in Figure 4.4.

To validate the design and implementation of the special-purpose decoder, we compared
the performance of the recognition system with this decoder to the performance of the
same system except with Y0 and NOwWAY performing the decoding function. Without the
introduction of syllable onset information, the special purpose decoder produces word-error
rates on the Numbers corpus roughly comparable to the more established decoders available,
given similar input.

4.3 Recognition System

The recognition system for these experiments was derived from the ICST hybrid HMM /MLP
system, described in Section 3.3, with extensions for incorporating syllable onsets. The
baseline system used the following elements:

*Future work that was planned for this decoder was eventually subsumed into other directions which did
not require the use of this specially-designed decoder.
Stack decoding is also discussed in Section 3.4.
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Figure 4.4: Tllustration of recognition system incorporating syllable onset information into
decoding [184].

e RASTA-PLPS features, 25-ms frames, calculated every 10 ms. (A total of 18 features
per frame.)

e Phone-based recognition units.

e A 400 hidden unit, fully-connected, single hidden layer neural network with 9 frames
(nominally 105 ms) of neural network input context.

e A special-purpose decoder with an explicitly represented syllable level, as discussed
in the previous section.

e A bigram backoff grammar® derived from the training set.

o A single pronunciation lexicon for the initial pilot experiments with artificially de-
rived onsets and a multiple-pronunciation lexicon for the later experiments with
acoustically-derived onsets.

As described above, the syllable-onset estimation system used the following elements:

e RASTA-PLPS features, 25-ms frames, calculated every 10 ms. (A total of 18 features
per frame.)

e Roband features, calculated every 10 ms.
e Onset/no onset training targets.

e A 400 hidden unit, fully-connected, single hidden layer neural network with 9 frames
of neural network input context.

4.4 Experiments

The experiments with syllable onsets were performed with the “core subset” of the OGI
Numbers corpus described in Section 3.2. In each set of experiments, decoding parameters,

5The grammar is described in Section 3.2.
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Figure 4.5: Hllustration of where the decoder hypothesized the beginning of syllable models
in the first set of pilot experiments (at vertical, dashed lines only).

such as word-transition penalty and language model scaling factor, were independently de-
rived from a series of experiments with the cross-validation subset. Any parameter tuning
that was needed involved only this cross-validation subset of the training set. The experi-
mental results below are reported for the Numbers development test set.

4.4.1 With Previously Determined Syllabic Onsets

An initial set of experiments (a pilot study) using onset information derived from advance
knowledge” of the true word-transcriptions of the test utterances helped to ascertain the
potential value of incorporating syllabic onsets into decoding.

The lexicon for this set of experiments included 32 single-pronunciation words, compris-
ing 30 different syllables. These pronunciations were derived from the Carnegie Mellon Uni-
versity (CMU) dictionary [202] and syllabified according to standard dictionary principles.
In general, the pronunciations reflected orthodox pronunciations of the words. For example,
the word “twenty” was defined (in ICSI56 phone orthography, listed in Appendix A.1) as “t
w eh n t iy” even though the word is often pronounced in actual speech without the middle
“t,” as in “t w eh nx iy.” An embedded training process calculated context-dependent
phonetic durations from the training data.

A forced-alignment procedure® with the lexicon described above generated phone align-
ment labels based on word transcriptions, which were provided for all the utterances in the
test set. An automatic process inferred syllable boundaries from the phone labelings us-
ing the syllabified lexicon. Due to this top-down process, the resulting syllable boundaries
corresponded to a word-level idealization of the utterance. Artificial syllabic onsets with a
duration of one 25-ms frame were then derived from these forced-alignment labels.

During recognition the decoder hypothesizes a syllable model only when its beginning
frame is identified as an onset frame by advance information, as depicted in Figure 4.5.
In these experiments, the decoder contained no restriction on the end-of-syllable-model
location. It was therefore possible for one model to overrun later-indicated onsets. The
decoder had access to only syllabic onset information from the test set and not to any other

"That is to say, this was a “cheating” experiment.
8Section 3.3 discusses the advantages and disadvantages of forced alignment.
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‘ System Word Error Rate ‘

no onset information 10.8%

with known syllable onset times, Total frames/onset = 1 6.7%

Table 4.1: Performance results (word error rates) for decoding using a single-pronunciation
lexicon, with and without artificial syllabic onsets derived from forced alignment. Represents
ideal conditions.

prior knowledge from the test set, such as phonetic information. Therefore, changes in the
recognized output can be associated directly with the onsets provided.

If the dynamic programming decoding procedure and the speech input were ideal, and
if the available phonetic information were sufficient to resolve ambiguities, the addition
of artificially derived syllabic boundary information would, in theory, provide little or no
improvement in recognition performance. In principle, the decoding process assumes that
models can begin at any frame, including the ones specified as syllabic onsets. In this
experiment, however, the incorporation of the artificially-derived syllable segmentation in-
formation reduced the word error rate from 10.8% to 6.7% (Table 4.1), a substantial relative
reduction of 38%. When the system’s phone probability estimator, in conjunction with the
decoder, hypothesized incorrect word sequences as the most likely recognized phones, these
sequences often had syllable onsets that did not match the beginnings of syllables in the
correct utterance. Supplying syllabic onsets compensated for this kind of error by allowing
the recognition system to discard misaligned hypothesis. The decoder is able to override the
phones erroneously recognized as most likely, resulting in greater word accuracy. The large
reduction in word error observed suggests that correct syllabic boundary information can
significantly improve speech recognition performance when incorporated into the decoding
process. This may be due to the syllable onset information providing a separate dimen-
sion of knowledge about the speech signal from the phonetic information. If the estimation
of syllable onsets from acoustic information can be performed accurately enough, this pi-
lot experiment shows that the syllable onsets can overcome shortcomings in the phonetic
estimates to produce a significant reduction in error rate.

A second series of experiments focused on assessing the precision required for syllable
onset estimates to be of significant benefit in decoding. Multiple 25-ms frames, with a 10-ms
step between the beginnings of adjacent frames, were associated with each onset, instead
of just one frame. The decoder hypothesized the beginning of syllable models at any of the
expanded onset frames, as shown in Figure 4.6. As the window of frames for each onset
widened from 5 to 13 frames, the word error rate increased, as shown in Table 4.2. In the last
experiment each onset encompassed up to 13 frames where syllables could be hypothesized
and the word-error rate was still 21% better (10.8% versus 8.5%) than without the onset
information. This suggests that some erroneous word sequences recognized by the system
had corresponding syllable onsets that were more than 13 frames from the actual onsets of
the utterance. Providing the onset information, even with 13-frame precision, allowed the
decoder to discard these misaligned hypotheses. Thus, syllabic onset information of even
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Figure 4.6: Illustration of where the decoder hypothesized the beginning of syllable models
in second set of pilot experiments (at vertical, dashed lines plus a fixed interval to the left
and right of the onset).

‘ Number of Frames Centered on Each Onset ‘ Frror Rate ‘

Total frames/onset = 5 7.3%
Total frames/onset = 9 7.8%
Total frames/onset = 13 8.5%

Table 4.2: Performance results (word error rates) for single-pronunciation decoding, using
syllable hypotheses that were allowed to begin within several frames of artificial onsets
derived from forced alignment.

limited precision can be beneficial in decoding in speech recognition systems. Fairly broad
hints as to the location of syllable boundaries were sufficient to overcome faulty phonetic
recognition and improve recognition accuracy in many utterances. These results indicate
that syllable onset information, if reasonably accurate, has high value, separate from that
of phonetic information.

4.4.2 With Acoustically Determined Syllabic Onsets

Since speech recognition systems do not usually have access to true syllabic timing infor-
mation, systems must infer syllable boundaries from other sources. In the next series of
experiments, the decoding process was constrained by acoustically-derived syllable onset
estimates from the procedure outlined in Section 4.1.2. The trials described below did not
incorporate any advance information from the test utterances.

The subset of the Numbers corpus used for these experiments was phonetically tran-
scribed at OGI [30]. Dan Ellis’ (at ICSI) adaptation [47] of Bill Fisher’s (NIST) syllabifica-
tion program TSYLB2 [51] automatically generated syllable boundaries for the training data
from the phonological interpretations of the phonetic transcriptions. The neural network
training procedure in Section 4.1.2 used these onsets. These syllable boundaries do not nec-
essarily respect word boundaries, unlike the syllabifications used in the pilot experiments.

The neural network was trained on targets derived directly from the phonetic hand-
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Figure 4.7: Illustration of where syllable models were hypothesized to begin in experi-
ments with acoustically-determined probabilities from an onset- detection neural network
(at frames covered by horizontal, dashed arrow).

transcriptions to preserve the relationship between the acoustic properties of syllable onsets
and the linguistic assignment of phones as much as possible. To provide a closer match
between the phonetically transcribed material and the acoustically-determined syllabic on-
sets from the neural network, a new lexicon, with attendant grammars, was needed. Dan
Gildea and Eric Fosler-Lussier (both at ICSI) created the new lexicon using the phonetic
transcription data from the training set of the Numbers corpus. The resulting lexicon in-
cluded 32 words (and their range of 178 possible pronunciations), comprising 118 different
syllables [69]. This lexicon included approximately 90% of the pronunciation variations in
the corpus, as reflected in the hand-transcriptions.

The incorporation of multiple pronunciations based on the actual manifestations of
words in the training set improved the performance of the baseline system relative to the
pilot experiments, which used only single, canonical pronunciations for each word. Words
can vary in pronunciation depending on factors such as phonological context and individual
speaker characteristics. Multiple-pronunciation models derived from training data more
accurately characterize the representative acoustic information for each word than canonical
definitions. This results in somewhat higher accuracy, a documented effect in the ICSI
system [207].

Forced alignment and embedded training techniques were not used to optimize the
training labels and lexicon for this experiment. Forced alignment and embedded training
typically cause the training labels and lexicon to become closely matched and tuned to the
stochastic properties learned by the neural network. The work in Chapter 5 demonstrates
that this considerably improves recognition accuracy rates for Numbers. For the experi-
ments in this chapter, however, it was judged that forced alignment and embedded training
could obscure the simple relationship between the phone labels and acoustically determined
syllabic onsets.

Auxiliary language and word modeling files were modified in accord with the new lexicon.
Context-dependent phone durations were computed for the lexicon from the transcription
material. The word grammar, derived from the word-level transcriptions of the training set,
was the same as in the experiments in Section 4.4.1. A new syllable grammar was developed
that matched the syllables in the lexicon.

The decoder applies a simple, empirically determined threshold to the output of the
onset detection neural network to determine the possible occurrence of a syllabic onset, as
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‘ System ‘ Error Rate ‘

with data-derived lexicon, no onset information 9.1%

with data-derived lexicon, with onsets derived from threshold 8.2%

Table 4.3: Word-error rates for multiple-pronunciation (data-derived) decoding, with and
without acoustically-derived onsets.

described in Section 4.1.2. In the illustration in Figure 4.7, the lightly filled rectangular
box represents the threshold. If the value of the neural network’s onset-detection output is
greater than the threshold for a frame, then the decoder considers the frame to contain an
onset. The decoding algorithm begins syllabic models at frames containing hypothesized
onsets. The decoder also starts syllabic models in the 5 frames before a frame identified as
an estimated syllable onset. That is, if the onset-detection neural network indicates an onset
at frame number 17 via the threshold criterion, then the syllable-based decoder hypothesizes
syllable models as beginning at frames 17, 16, 15, 14, 13 or 12. This reduced the number of
potential starting frames for syllabic models by 58% in the Numbers development test set.

When the decoder incorporated acoustically-derived syllabic onset estimates into the
decoding process, the recognition performance improved slightly. The word-error rate de-
creased by 10%, from 9.1% to 8.2%, as shown in Table 4.3. Since this improvement was
produced by the addition of only syllable onset estimates, this result indicates there is po-
tential performance benefit to be gained from this method. The syllable onset information
may better encapsulate certain properties of the speech signal than phonetic probabilities.

4.5 Discussion

The process of constraining decoding with syllable onsets can be interpreted from the view-
point of hypothesized syllabic interval units. The syllable onset estimates are hints as
to where hypothesized syllable intervals begin. Decoding of phonetic information is then
restricted to fitting syllable models into plausible intervals between syllable onsets. The
decoding process can be thought of attaching the syllable onset hints and the most likely
phonetic realizations as features to hypothesized syllabic intervals. This interpretive model,
based on the framework of the syllable, is consistent with the discussion of the human
speech perceptual process in [78]. This model will be discussed again in the context of the
work with combining recognition systems at the syllable level in Section 6.4. The syllable
interval interpretation provides an instructive connective fabric between these experiments
and those of Chapters 5 and 6.

Resyllabification Phenomena

The experiments described in Section 4.4.2 illuminated certain limitations in the recognition
system used for this study that necessarily impacted its performance. One such limitation
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in the experimental paradigm used was the mismatch between the acoustic-phonetic and
phonological representations of the syllable forms employed for word recognition. The
syllabic segmentation method depended largely on acoustic-phonetic criteria, where the
input was streams of phones composing a multi-word utterance. The syllabification of
the lexical items used for decoding came from the phone sequence of a word in isolation.
Thus, this method did not account for cross-word effects in the lexicon used for decoding.
An instance where this distinction was of particular significance in word sequences was
one in which the syllable coda of the first word was consonantal and the onset of the
following word was vocalic, as in “five eight.” The phonological representation of such a
sequence would be /f ay v/ /ey t/, while the phonetic realization was more typically /f
ay/ /v ey t/, where the /v/ resyllabified to the /ey t/ syllable. Such “re-syllabification”
phenomena are not easily accommodated within the syllabic representational framework
used in the decoder in a generalizable fashion. One possible solution, which increases the
complexity of the decoding considerably, is to use multiword clustering, as described in [50].
By modeling multiple words in sequence together, alternate syllable segmentations can be
modeled. Re-syllabification, however, can happen in a large number of word combinations,
so the multiword set may become very large.

Extension to Larger Vocabulary Tasks

Subsequent to the main body of work in this chapter, a strategy was defined that allowed
the incorporation of onset information into the input to standard decoders. This eliminated
the need for a special-purpose decoder? and allowed for easier extension to larger vocabulary
tasks. The dominant decoding technologies at ICSI, YO and NOwWAY, both define lexicons
via HMM states and accept input from neural networks in the form of one probability value
per neural network output per frame. By taking an “outer product” of the phonetic neural
network output and the onset estimation neural network output, and marking states at the
beginnings of syllables in the lexicon as special, this modified input can be used with v0 or
NOWAY to perform recognition constrained by onset estimates.

The method essentially adds phone probabilities conditioned on whether the phone is
also a syllabic onset or not to the original set of phone probabilities. This can also be
thought of as altering the first state of each syllable in the HMM. Functionally, the strategy
uses a phonetic neural network output stream double the original in size. Instead of 56
phones per frame, the scheme uses 112. Qutputs 0-55 are the original phonetic values and
outputs 56-111 represent the same 56 phonetic values, gated by whether the onset-detection
neural network considers the frame as containing a syllabic onset or not. The lexicon
representation needs modification only in that the initial state of the phone at the beginning
of a syllable is converted from a regular phone output to a phone output conditioned on
syllabic position. Thus, during recognition the decoder implicitly synchronizes the syllabic
onsets in the lexicon with onsets indicated in the modified neural network output stream
without modifying the internal code of the decoder.

This scheme has the potential of affecting the decoder’s pruning and other optimiza-
tion strategies because the decoder performs recognition in a manner for which it was not

°The method was developed with Philip Faerber (then at ICSI).
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intended. Pruning parameters and other user-defined arguments can be used to mitigate
the effect. While a special purpose, syllable-based decoder has advantages for ongoing,
highly experimental work, this manipulation of the decoding input which allows the use of
a standard decoder can facilitate the limited use of syllable onset information into large
vocabulary tasks. The two methods are functionally equivalent, but the second involves
considerably lower implementation effort since existing decoders can be used unmodified.
Preliminary trials with this scheme showed that for the Numbers test set the error rate was
not negatively impacted. The HMM-recombination work in Section 6.4 used a similar, but
more elaborate paradigm.

We shared this strategy with Cook and Robinson, who incorporated syllable boundary
information into an experimental version of their ABBOT recognition system [34] for the
DARPA Hub-4 Broadcast News task [71]. Their system included a trigram language model
and a 65,000-word vocabulary. Using a very similar methodology to detect syllable onsets
and the aforementioned scheme for incorporating onsets into their system, Cook and Robin-
son found their error rate improved from 31.5% to 28.8%, a 8.6% relative reduction in word
error rate [33].

4.6 Summary

Detecting syllable boundaries and nuclei has the potential to improve recognition accuracy
by helping to accurately segment speech signals. FEstimates of syllable onsets were used
as constraints in a special-purpose decoder that explicitly represented the syllable as an
intermediate stage between phones and words.

Pilot studies with “cheating” information indicated that considerable potential improve-
ment could be achieved by accurate syllable-level segmentation. With the artificial bound-
aries in the cheating experiment, the system showed a 38% relative improvement over the
baseline system. The pilot study also showed that the system required only modest precision
from the onset detection mechanism to produce significant improvements in performance.

Further experiments used acoustic segmentation estimates derived from a signal pro-
cessing method based on general principles of auditory analysis (“non-cheating”). The
word-error rate was reduced by 10% for the boundary information derived from the acous-
tic segmentation method. We assisted Cook and Robinson in implementing these ideas for
their large vocabulary system and they also found a roughly 10% improvement through the
use of syllable onsets.

4.7 Conclusions

Incorporation of syllabic onset information has the potential to significantly increase the
accuracy of word-level recognition. The onset information has been used in these exper-
iments to hypothesize syllable-length intervals in the speech signal. Phones were then
used for decoding on a syllable-by-syllable basis. These results with the small Numbers
database indicate the potential utility of incorporating syllable boundary information in
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future speech recognition systems. Although the improvement seen with the Numbers test
set was slightly too small to be statistically significant at the 0.05 level,'® experiments by
Cook and Robinson showed a similar result with a larger test set for a different task which
was indeed statistically significant. Furthermore, the results by Cook and Robinson used a
large vocabulary, demonstrating the extensibility of these ideas.

10Gignificance testing used normal approximations to binomial distributions and used a Z-score to test
whether the two distributions were significantly different.
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Chapter 5

Incorporating Syllable Time
Scales

The work with syllable onsets, described in Chapter 4, indicated that syllable-based infor-
mation has the potential to provide meaningful improvements to speech recognition technol-
ogy. This suggested that the incorporation of additional pieces of syllable-based information
may be helpful as well. This chapter describes the development of an experimental speech
recognition system that incorporates syllable-timed information at three different stages of
the recognition process: at the feature extraction level, at the input to the neural network
and in the statistical representation of the pronunciation models. In this system, selected
elements of the baseline system setup were replaced by new, syllable-based elements, with a
focus on the long-time span properties of speech (on the order of the length of the syllable,
i.e., about 200 ms). The development of three additional systems, each incorporating some
subset of these syllable-based elements, provided additional context for analysis and com-
parison. Each of the four experimental systems represents one of the possible combinations
of a feature analysis method (RASTA-PLP or modulation spectrogram) and a recognition
unit (phone or half-syllable). This chapter and the one following concentrate primarily upon
the system with the maximum number of syllable-based elements, and use the other three
systems for understanding more completely the effects of introducing syllable-based infor-
mation. For simplicity, the system with the maximum number of syllable-based elements
is referred to as the “focus” experimental system. Word error rate results showed that the
more syllable-oriented experimental systems underperformed the baseline in many cases.
All of the experimental systems, however, were still fairly good recognizers, as judged from
the Numbers test sets.

Examination of the recognition outputs showed that the errors made by each system
differed considerably from the errors made by the baseline system, particularly in the case
of the focus experimental system. This suggested that combining the focus system with the
baseline system may be advantageous, as discussed and demonstrated in Chapter 6. The
following chapters recount investigations into how longer time intervals can affect speech
recognition performance through combination with a mature, phoneme-based system.

This chapter describes the development of the baseline and the experimental, syllable-
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based systems in detail. This exposition begins with a brief review of the background of the
modulation spectrogram features [80, 107, 105]. Next, Section 5.2 describes the syllable-
based training and recognition targets and lexicon. The system components and individual
recognition performance results for the focus experimental system and each of the other
experimental systems are reported for the Numbers task, for both clean and reverberant
versions of the test sets in Sections 5.3 and 5.4. The chapter ends with a brief summary
and conclusions.

5.1 Feature Extraction: Modulation Spectrogram

As described in Chapter 3, the baseline phoneme-oriented system for these experiments
processed raw acoustic input with RASTA-PLP features. Two of the experimental systems
developed, including the focus system, used modulation spectrogram features to incorpo-
rated syllable-timing at the feature extraction level. The modulation spectrogram features
supplanted the RASTA-PLP features used in the baseline recognition system.

This section summarizes the work of Greenberg, Kingsbury and Morgan [80, 105, 107] on
the modulation spectrogram features, as used for the work described in this thesis. Green-
berg began looking towards the modulation spectrum as a means for explaining the effects
of many sources of acoustic variation in speech, such as speaker differences and adverse
environmental conditions. A stable representation of speech that encapsulates the most im-
portant features of speech can be an invaluable tool for the investigation of pronunciation
variability.

Current speech recognition applications reduce the problems of reverberation! and en-
vironmental noise by gathering speech input with close-talking microphones. Ultimately,
however, ideal speech applications should be accessible without the need to speak directly
into a microphone. In this case, the problem of recognizing reverberant speech must be
handled. Currently, as discussed in Section 3.2, speech recognition systems with high ac-
curacy rates for clean speech make many more errors in the presence of moderate to high
reverberation. Human subjects, when asked to transcribe the words in moderately rever-
berant speech, achieve a performance level that is vastly better than the best automatic
speech recognizer, as illustrated with Numbers in Section 3.2 and in [106].

Kingsbury implemented and refined the original modulation spectrogram proposal and
focused his attention on improving the accuracy of speech recognition systems in the case
of reverberant speech? and in the presence of additive noise. Greenberg and Kingsbury
observed that many unexpected variations in speech, such as speaker differences, and dis-
tortions, such as moderate levels of background noise and reverberation, that have little
effect on the intelligibility of speech for humans, can dramatically affect the most popu-
lar speech representation, based on either the narrowband or wideband spectrogram. The
modulation spectrogram appears to more stably represent speech by reducing the presence
of parts of the speech signal that are not important in determining phonetic identity.

!Chapter 3 also discusses reverberation.
?Avendano, Tibrewala and Hermansky discuss another approach to improving recognition accuracy for
reverberant speech [5].
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Figure 5.1: Modulation spectrogram feature extraction method [104].

The primary hypothesis behind the modulation spectrogram is that phonetic informa-
tion is encoded in the speech signal as relatively slow changes in the spectral structure of
speech.? Such a hypothesis matches the timing properties of the articulators and auditory
cortical neuron activity [80]. The modulation spectrogram represents the speech signal as
a distribution of slow modulations, from 0 to 8 Hz with a peak at 4 Hz, across time and
frequency. The 4-Hz sensitivity corresponds roughly to syllabic frequencies. This serves as a
matched filter that passes only signals that share the same modulation properties as speech.
The features are computed in critical-band-wide channels in order to expand the represen-
tation of the low-frequency, high-energy portions of speech and match the characteristics of
the human auditory system. The modulation spectrogram incorporates a simple automatic
gain control and emphasizes spectro-temporal peaks. The specific signal processing details
required to produce the modulation spectrogram features are described in [80, 105, 107]
and illustrated in Figure 5.1. These steps improve the relative stability of these features in
comparison to the conventional spectrogram. The signal processing results in 15 features
plus 15 delta features for a total of 30 features per frame.

As a result of the signal processing steps involved, the modulation spectrogram loses
some of the fine details of speech that are evident in the conventional narrowband or wide-
band spectrogram, such as harmonic structure and onsets. The coarse picture of the distri-
bution of energy, however, provided by the modulation spectrogram seems to have greater
stability in the presence of noise and reverberation than does the narrowband or wideband
spectrogram. Greenberg et al. demonstrated that syllable durations coincide with energy

TRASTA-PLP also restricts the signal to low frequency modulations, but the filter characteristic is less
extreme than in the modulation spectrogram case.
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‘ Features H Clean W. E. R. ‘ Reverb W. E. R. ‘

PLP 6.4% 37.6%
RASTA 6.4% 26.0%
modulation spectrogram 8.5% 27.3%
RASTA combined with PLP 5.7% 26.9%
1RA.STA combined with modu- 5.5% 90.1%
ation spectrogram

Table 5.1: Partial list of performance results (word error rate) from original experiments
with modulation spectrogram features [107].

distribution in the modulation spectrum [79] for conversational American English. Arai and
Greenberg showed a similar pattern for Japanese [1]. Kingsbury and Morgan speculated
that the performance improvement with reverberation provided by the modulation spec-
trogram features could be attributed to a more robust representation of syllabic segments
leading to fewer deletions [106]. Modulation spectrogram features seem to emphasize the
high-energy portions of the speech signal usually associated with syllabic nuclei. Kingsbury
et al. pointed out again in [107] that most of the energy that appears in displays of the mod-
ulation spectrogram falls between onsets, and the observed energy appears to correspond
roughly with syllabic nuclei.

The performance of a recognition system based on modulation spectrogram features
is compared to the performance of systems based on other feature analysis methods in
Table 5.1, reproduced from [107]. Kingsbury et al. produced these experiments with an
ANN/HMM hybrid system similar to the paradigm used for this thesis work (i.e., both are
based on the ICSI system). Their systems had somewhat different parameters, but used the
same Numbers task for evaluation. In the experimental trials reported by Greenberg and
Kingsbury [80], they found that the modulation spectrogram features performed slightly
worse than a more conventional front-end method, PLP, for clean speech, but better for
reverberant speech, by a statistically significant margin, as shown in Table 5.1. While the
modulation spectrogram by itself did not outperform RASTA-PLP, a simple, frame-level
combination of the modulation spectrogram system with the RASTA-PLP system produced
statistically significant improvements on reverberant speech and a range of additive noise
conditions. In this simple approach, the scaled phone likelihoods from the pair of MLPs were
multiplied as they were output from the neural network. The same combination procedure
applied to PLP and RASTA-PLP did not produce a similar improvement. Kingsbury et
al. speculated that the improvement was due to the modulation spectrogram features
complementing the RASTA-PLP features; the modulation spectrogram emphasized syllabic
nuclei while the RASTA-PLP analysis emphasized the onsets of speech sounds. This simple
approach shows that combining different features with disparate properties is a promising
paradigm. The same frame-level combination approach is analyzed more thoroughly later,
in Chapter 6.

Kingsbury et al. has continued to develop the modulation spectrogram beyond the
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version used for the work in this thesis; the details about his continuing work can be found
in his Ph.D. thesis [105]. It was necessary to choose a version of the modulation spectrogram
features for this thesis work, however, and it was not practical to continuously update the
work with revised features. The older version of the modulation spectrogram features, used
in this thesis, contains many of the major features of the current work of Greenberg and
Kingsbury.

5.2 Recognition Unit: Syllables

In some of the experimental systems described in this chapter, the recognition units were
oriented towards the syllable by using syllable-based units as an alternative to phone units
as training targets (the output of the neural network) and in the definition of word pro-
nunciations (statistical representations of pronunciation models). The syllable-based units
typically spanned one to four distinct, consecutive phones in the Numbers experiments and
therefore tended to cover a larger contiguous length of the speech input then was typical
for individual phones.

Fach syllable was represented with 2 distinct states. The syllables were divided in
the middle of each syllable’s nucleus. The halves are referred to in this thesis as “half-
syllables.” These units are not called “demisyllables” as defined by Fujimura [60, 61],
though conceptually they are similar, in order to avoid the additional context and meaning
carried by the term “demisyllable” in the research literature. Typically, demisyllables are
formed from syllables divided just after the initial CV transition, not in the middle of the
nucleus as with these half-syllables.

Half-syllables have as boundaries the syllable features most likely to be easily identified:
syllable beginnings (or endings) and the syllable nucleus. Since there are many more sylla-
bles than there are phonemes in English, this scheme allowed parts of syllables to be shared
between syllables, for example, the beginnings of “-ty” and “-teen” for some pronunciations.
This reduced the total number of recognition units over using whole syllables.

Each syllable could have been represented with more than 2 states, each with indepen-
dently derived probability densities, as in the pilot study by Schiel [174].° The half-syllable
unit appeared to be a reasonable starting point for the investigations in this thesis. The
2-state framework minimally reflects the heterogeneous structure of the syllable; syllable
onsets are generally preserved and but syllable codas are often deleted [78]. The boundary
between the 2 states is initialized to be the nucleus, which usually maintains its vocalic
nature through transformations.

Representing each half-syllable as a single unit is functionally similar to the representa-
tion of phones with a single unit in the baseline systems and sufficient for these experiments;
these units are easily mappable into the ICSI frame-based HMM /MLP system without cre-
ating an explosion in the number of states. In the ICSI system, where each 25-ms frame
is assigned a phonetically classification, a sequence of frames attributed to the same phone
can be either multiple, separate instantiations each with short duration or a single instan-

*My thanks to Steve Greenberg for this suggestion.
®Florien Schiel’s syllable-oriented work is discussed briefly in Chapter 2.
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tiation with a long duration. Usually, but not always, the use of word models resolves this
uncertainty. Representing each syllable with only a single probability density state could
similarly lead to confusion as to whether the neural network was indicating repeated short
outputs or one long output, for example in the utterance “one one one,” but without read-
ily available means to distinguish between the two cases. Using a minimum of 2 states per
syllable is one convenient avenue for avoiding this problem and also remains consistent with
the observations of syllabic structure noted above.

In this thesis the set of syllables includes only those occurring in the Numbers cor-
pus, a tiny fraction of the syllables occurring in the English language. Fisher’s automatic
syllabifier TsYLB [51] (via a Tcl/Tk interface created by Dan Ellis (at ICSI)) partitioned
the pronunciations in the lexicon. The process uses pronunciations defined in terms of the
1CSI56 phone set, to produce a set of corresponding syllables. Another automatic process
partitioned the resulting syllables into “halves,” where the procedure took the “middle”
of the syllable to be the durational middle of the nucleus, usually a vowel. The target
labels were then either the first half or the second half of a syllable. Multiple instantia-
tions of the same half-syllable represented minimum durations for each unit, just as in the
phoneme-based system.

Multiple iterations (max of 3) of forced alignment matched the created labels to the
trained system. The best iteration was, as usual, selected according to the systems’ perfor-
mance on the clean version of the cross-validation set. After the forced alignment process,
the boundary between the two halves of a syllable may no longer be strictly the middle of
the nucleus due to compounded shifts during the automatic labeling process. The place-
ment of this boundary, however, represents the best location according to the usual global
likelihood criterion.

5.3 Recognition System

This section describes the specific parameters of the automatic speech recognition systems
used for these experiments. Chapter 3 reviews the general system description. The fol-
lowing description outlines the baseline system, the focus experimental system and the
three supplemental systems more specifically. As mentioned previously, the system with
the largest number of syllable-relevant attributes is the focus of this chapter and the next
(hence the “focus” system). The other variant systems provide context and contrast to pro-
mote more thorough understanding. FEach of these systems differed from the next only in a
small way. With two different feature analysis methods, (i.e. RASTA-PLP and modulation
spectrogram), and two different recognition units, (i.e. context-independent phones and
half-syllables), there were four unique systems that were different from the baseline system,
for a grand total of five systems:

e RASTA-PLP feature analysis with phonetic recognition units, 9 frames (nominally
105 ms) of neural network input context, the baseline system.

e RASTA-PLP feature analysis with phonetic recognition units, 17 frames (nominally
185 ms) of neural network input context.
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o RASTA-PLP feature analysis with half-syllable recognition units, 17 frames of neural
network input context.

e modulation spectrogram analysis with phonetic recognition units, 17 frames of neural
network input context.

e modulation spectrogram analysis with half-syllable recognition units, 17 frames of
neural network input context, the focus system.

The baseline system was patterned after the established systems at ICSI, used for both
small and large vocabulary speech recognition tasks. This system differed from the second
system in the list only in that the baseline system used a 9-frame context window. Fach of
the experimental systems used a 17-frame neural network context window, in keeping with
the emphasis on long-time span approaches. A 17-frame span of speech is more likely to
contain sizeable parts of syllables than a 9-frame segment.

With these systems, these experiments explored two test conditions, namely clean speech
and speech with artificially added reverberation.® Since the object is to develop a general
speech recognition system, not one tuned specifically toward the reverberant speech cate-
gory, decisions about the recognition system components used only error rates representing
clean speech performance, not data collected with the reverberant sets.

5.3.1 Experimental Procedure

The baseline system, the focus system and each supplemental experimental system variant
were very similar and used the following elements:

e A 400 hidden-unit, fully-connected, single hidden-layer neural network, for frame-level
probability estimation.

e A Viterbi decoder, Y0 [88]. Some experiments also used Noway [164, 163, 165],
a stack decoder using a Viterbi criterion, for its lattice generation capability, and
LATTICE2NBEST [166], for its N-best list generation function.

o A backoff bigram grammar” derived from the training set.

e A multiple pronunciation lexicon represented as a set of HMMs, with simple minimum
duration modeling.

A set of optimization trials with the cross-validation set empirically determined the
language model scaling factor (i.e., a weighting that adjusts the relative influence of the

language model and the acoustics).®

In addition, each system had one or more of the following;:

SReverberation and the creation of the reverberant test sets are discussed further in Chapter 3.

"The grammar is described in Section 3.2.

8Language model scaling factors are empirically determined values that weight the influence of the lan-
guage model over the acoustic information during decoding. This is discussed more fully in Chapter 3.
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RASTA-PLP features, 25-ms frame size, calculated every 10 ms. Includes 8 features,
8 delta features, 1 energy feature and 1 delta energy feature.

Modulation spectrogram features, calculated every 10 ms. Includes 15 features, 15
delta features.

9 or 17 frames of MLP context.

e Phone recognition units (56 total, 31 active).

e Half-syllable recognition units (124 total, all active).

The two standard techniques for stochastically optimizing speech recognition systems,
forced alignment and embedded training that includes updating the system lexicon, are
appropriate for optimizing each of the experimental systems discussed in this chapter. Fach
of the recognition systems involved in these experiments underwent an initial training and
then a maximum of three iterations of forced alignment without lexicon updating. As before,
with the phone units, this served to closely match the recognition capabilities of the system
with its training labels given a fixed lexicon. Recognition trials with the cross-validation
set indicated the system from the best performing iteration; the selected system in each
case was used for the rest of the performance figures in this chapter and the analysis and
combining work in Chapter 6.

For each system, pilot studies tested the idea of optimizing the lexicon after the initial
training. In these early trials, the hidden Markov models were updated once, in order to
more closely match the lexicon to the learning abilities of the neural network. This indepen-
dent optimization of the experimental system lexicons proved to have negligible effect on the
accuracy of the resulting systems. Additionally, the resulting systems were less amenable
for combination, due to mismatches in training and lexicon formulation between systems.
In the interests of simplifying the experimental procedure, the lexicon-adaptation was dis-
carded. The experiments reported used only systems without this particular optimization.
Because the work in this thesis involved combining like hypotheses, over-optimization of
individual lexicons was undesirable. This led to the selection of the best experimental sys-
tems without lexicon adjustment for the comparison and analysis work later in this chapter
and in Chapter 6.

5.3.2 The Impact of Enlarging Hidden Layers

Because the systems varied in the number of input features and in the number of outputs,
but not in the number of hidden units, the number of parameters in each system also varied.
The baseline system had 77,600 neural network weights and the focus system, the largest of
the experimental variants, had 253,600 parameters, as shown in Table 5.2. The table also
shows the number of parameters associated with each of the other experimental systems.
Keeping the number of hidden units the same (at 400) in every system reduced the number
of variables affecting the training behavior and helped to keep the abilities of the hidden
layer roughly the same between systems. If the largest of the variants, which had 510 input
units (30 modulation spectrum features per frame over 17 frames) and 124 output units
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Total Number
System Description of Parameters
RASTA + phones, 9 frames **baseline** 77,600
RASTA + phones, 17 frames 135,200
RASTA + half-syllables, 17 frames 172,000
modulation spectrogram + phones, 17 frames 216,300
modulation spectrogram + half-syllables, 253,600
17 frames **focus**

Table 5.2: Number of parameters for each of the baseline and experimental systems. Fach
had either 18 RASTA-PLP features or 30 modulation spectrogram features per frame.

(124 half-syllable units), were equalized in the number of parameters with the baseline by
reducing the size of the hidden layer, it would have had only 137 hidden units. From early
trials, indicated in Table 5.3, this appeared to be too few for this amount of data.

The role of the hidden layer in a neural network is to effect a nonlinear transformation
on input data towards maximizing a discrimination measure [14]. This can be informally
thought of as carving the input space with hyperplanes. The number of hidden units is
related to the granularity of the pieces of the input space compartmentalized by these
hyperplanes. The larger the number of hidden units, the finer the granularity. Empirically,
researchers have observed that improvements in discrimination due to increasing the hidden
layer size eventually asymptote. One interpretation of this effect is that the granularity
eventually reaches an optimum for the given discrimination task. Adding complexity to the
nonlinear mapping function does not necessarily translate to improved discrimination.

How much does a simple increase in the number of parameters affect recognition re-
sults? Experiments with several systems that differed only in the number of hidden units
used, addressed this issue. No other properties in these systems were altered. Each used
RASTA-PLP input with delta features, 17 frames of context and phone recognition units.
Each underwent up to 3 iterations of forced alignment, in addition to the initial training,
to optimize the training labels, but the lexicon was not modified. The best of the itera-
tions for each system was chosen based on the system’s performance on the clean version of
the cross-validation part of the training set. These development set experimental results,
listed in Table 5.3, indicated that because the training set was fairly small and highly con-
strained, increasing the number of parameters did not significantly affect the performance
of the system on the clean version of the test set once the system contained about 100,000
parameters. The word error rate remained close to 6.5%, the asymptote, for systems with
400 hidden units or larger. This suggested that a simple increase in the number of parame-
ters would make only a minor contribution to improving recognition performance for clean
speech. Apparently, the complexity of the nonlinear mapping represented by the hidden
layer reached an optimum level for the given input. For the main body of these experiments,
400 units was used as the size of the hidden layer.

As the number of hidden units increases, Table 5.3 shows a modest reduction in word
error rate for the reverberant version of the development test set, from 27.6% to 24.3% going
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Total Number
Hidden Layer Size || of Parameters | Clean W.E.R. | Reverb W.E.R.
100 33,800 9.4% 31.7%
200 67,600 7.7% 27.6%
400 135,200 6.5% 27.6%
600 202,800 6.7% 26.8%
800 270,400 6.4% 26.0%
1000 338,000 6.4% 24.3%
2000 676,000 6.3% 26.0%

Table 5.3: Performance results (word error rates) for both the clean and the reverberant
versions of the Numbers development set. Fach system used about 17 frames of neural
network input context and differed only in the size of the hidden layer.

Total Number
System Description of Parameters | Word Error Rate
RASTA-PLP (original) 94,672 6.4%
RASTA-PLP (doubled in size) 189,344 5.9%
modulation spectrogram (original) 99,056 8.5%
modulation spectrogram (doubled in size) 198,112 8.2%

Table 5.4: Performance results (word error rates) showing the effect of doubling the number
of parameters by increasing the number of hidden units, from 488 to 976 (RASTA-PLP)
and from 328 to 656 (modulation spectrogram) [107].

from a hidden layer size of 400 to 1000 units. Increased complexity in the mapping provided
by the hidden layer of the neural network produced some benefit. This is not unreasonable
in view of the added variation introduced by the artificial reverberation. A trial with 2000
hidden units showed that the downward trend in the word error rate does not continue
indefinitely. Reverberant speech is used as an exemplar of realistically distorted speech in
order to test the robustness of the system. Since the object is not to customize the speech
recognition system for reverberant speech, the system parameter decisions account only for
performance on the clean version of the speech data. The word error rate scores for rever-
berant speech are provided in Table 5.3 for comparison purposes with other experimental
systems with similar numbers of parameters.

Kingsbury et al. report similar effects when the number of parameters in their systems
were doubled on the same task [107]. Although the systems in the paper by Kingsbury et
al. use the same ICSI methodology, their systems had 9 frames of neural network input
context instead of 17 frames. The results of Kingsbury et al. with doubling the number of
hidden units in the neural network from 488 to 976 (with RASTA-PLP features) and from
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328 to 656 (with modulation spectrogram features) are shown in Table 5.4, reprinted from
[107]. The performance results with double the number of hidden units are not statistically
different from the original system.

As has been observed in the past by others, the technique of merely adding more parame-
ters eventually produces diminishing returns and requires more complex training algorithms.
For practical purposes, this method reaches a limit with respect to how much performance
improvement can be attained and considerably increases the amount of time required for
training and recognition. A better organization of data, however, has the potential to use
additional parameters more effectively.

5.4 Recognition System Performance

This section describes the recognition results of each system individually on both the clean
and the reverberant versions of the development and evaluation test sets. FEach system
was evaluated under each condition at the sentence, word, syllable and frame level. The
following sections show the performance results.

To evaluate the performance of each of the systems, it is necessary to have a notion
of the “right answer” or “ground truth.” That is, some reasonable assignment of possible
answers to questions that can be considered to be correct by some consistent and, hopefully,
meaningful interpretation. As discussed by Chase [24], what the “right” answer is for the
output of a recognizer or a stage of a recognizer can depend on many factors and can
vary across levels of analysis. For each of the analyses discussed below, the notion of the
“truth” for the relevant scoring method is discussed. Consistent application of a reasonable
assignment of truth can yield a performance description that furthers the understanding of
syllable-based recognition systems.

Word error rate has been and continues to be the dominant assessment criterion for
ASR systems. This scoring method or an analogous procedure is universally applicable
and allows comparisons between diverse applications; all speech recognition tasks consist of
words or analogous tokens. The algorithm is generally simple and easily applied. Basic word
scoring, however, has a number of conceptual shortcomings that limit its diagnostic value.
For example, word error rate calculations treat all words equally, but this may not produce
the most useful assessment in practice. Some word classes, such as nouns and verbs, are
often more important for understanding than such classes as articles. Thus, this measure
is of limited utility for assessing refinements that address more accurate understanding of
speech. With the Numbers task, however, all of the vocabulary words are nouns that refer
to numerical values. Deleting any single word affects the correct decoding of the utterance
meaning so the word error rate measure is probably a fair metric of evaluation.

The word error rate score is typically calculated using dynamic programming to deter-
mine the minimum number of insertions, deletions and substitutions required to reconcile
a recognized string with a given correct string of words. The algorithm has been stan-
dardized; the scores reported here use the SCLITE [142] scoring utility and the ICSI-local
WORDSCORE [161] utility. Both are consistent with the NIST standard. The simple dy-
namic programming method of scoring has the disadvantage of not applying higher-level
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knowledge or time-alignment information. The algorithm blindly finds insertions, deletions
and substitutions without regard for the phonetic content or the temporal alignment of
the errors.” For example, the scoring algorithm can theoretically find a large number of
insertions between one word and the next, even though this situation is unlikely or is not
consistent with the time alignments of the correctly recognized words.

These same scoring utilities can compute syllable error rates. In this case, canonical
syllables are the basis for performance assessment, not the syllabary used in the recogni-
tion experiments. The syllable level generates a slightly finer granularity of analysis. For
example, in the case of comparing “forty” to “fourteen,” a syllable-level analysis accounts
for the similarity in the first syllable and the difference in the second. Each word has
a single canonical, (“dictionary”) pronunciation composed of canonically defined syllables
(Appendix A.3). After first replacing each word by its canonical syllable-based pronun-
ciation, the same scoring algorithm as for words (SCLITE and WORDSCORE) calculated a
syllable error rate for each system.

Using canonical syllables instead of the syllables in the recognition syllabary avoids
the difficulty of dealing with mismatches between the syllables in the reference string and
the recognized string where the corresponding words are actually the same. For example,
if the word was “seven,” and the reference string contained the syllables /s-eh/ /v-ih-n/
and the recognized string contained the syllables /s-eh/ /v-ix-n/, and both are acceptable
pronunciations of “seven,” the syllable string should be marked as correct. The syllable
deletion effect in spoken speech can skew the accuracy scoring, but complete syllable deletion
is very infrequent; usually the syllable onset, at the very least, is preserved [78]. In these
experiments, syllable error rates varied moderately from word error rates, but, in general,
word error rate is a good predictor of syllable error rate and vice versa.

It was possible to use a simpler procedure to compute frame-level error scores since
every frame has a label and has been assigned phonetic probability estimates by the neural
network. A “correct frame” is defined as one where the maximum-valued output of the
neural network matches the label assigned to that frame. In this case multiple, successive
frames can have the same phonetic assignment, but they are considered to be separate
instances for the purposes of statistics gathering. Alternatively, the analysis method could
consider segments of varying lengths of the same recognition unit as one instance. For the
purposes of this thesis, however, and for the combination methods explored, the frame-
level procedure was sufficient. In this case, no dynamic programming is necessary, a simple
one-to-one comparison yielded the performance score. This avoids the additional effect
of the decoding procedure and removes any time alignment problems between different
tokens, but does introduce a strong dependence on correct labels. The procedure takes
the labels generated by the fully trained baseline system using forced alignment to be
the “correct” labels of the test set. When the experimental systems incorporate forced
alignment, the ground truth labels become somewhat mismatched, so the frame-level error
rate reported may be slightly inflated. In most cases, however, the best systems selected
were the ones without additional forced alignment, so the “ground truth” labels are adequate
for evaluation.

°Lin Chase suggests some solutions to these issues [23, 24].
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Syllable- Utterance-
Frame-level level Word-level level

| Number of Tokens | 230,000 | 5703 [ 4673 | 1206 |

Table 5.5: Number of recognition tokens at each level for the Numbers development test
set. The number of frames is approximate, since this can change depending on the feature
extraction method and context window size.

The scoring utilities also provide an utterance-level score, where an utterance is correct
only if the recognized words exactly match the reference string. The programs calculate
the utterance level error scores by matching recognized sequences of words with the cor-
rect sequence. Alternatively, the utterance-level error scores can be calculated using the
sequences of syllables. For Numbers, since the vocabulary is highly constrained, these two
methods yield the same result; however, for large vocabulary tasks, the methods may gener-
ate disparate numbers. At such a large granularity of analysis, detailed effects are lost. The
analyses in Chapter 6 showed, however, that considering the outputs of recognition systems
at the level of the entire utterance still has some utility, particularly for the combination of
systems.

5.4.1 Clean Speech

“Clean” speech in the case of Numbers is a misnomer; the original acoustic data were
collected over the telephone, so the acoustic signal includes a variety of line and background
noises. For example, one utterance has the sound of a wailing baby in the background. For
the purposes of this thesis, “clean” refers to this relatively pristine version of the recorded
speech.

Table 5.6 shows the word error rates of each of the selected five systems on the original
task’s development test set. The total number of recognition tokens in each category is
shown in Table 5.5. In addition, Table 5.6 also shows frame error rates, syllable error
rates and whole-utterance error rates. The error rates between each column are strongly
correlated and are reported to provide context for the comparisons in the next chapter. For
direct comparison with the experimental results in Chapter 6, Table 5.7 shows word error
rate scores on the evaluation test set. Tuning of any parameters thus far was performed
using only the cross-validation portion of the training set, not the development test set.
The evaluation test set was reserved, according to usual practices, until all system design
decisions were fixed and was not used for empirical determination of any parameters.

As can be seen from Table 5.6, the baseline word error rate for the clean speech version
of the Numbers development test set was 6.8%. The experimental system variants had word
error rates ranging from 6.9% to 10.6%. The word error rates show that the experimental
system variants incorporating modulation spectrogram features and/or the half-syllable
unit, including the focus system, clearly performed worse than the more established forms
using only RASTA-PLP and phoneme-based recognition units, though all the recognition
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Syllable- Utterance-
System Description Frame-level level Word-level level
RASTA 4+ phones, § frames 14.9% 6.6% 6.8% 20.1%
**haseline**
RASTA + phones, 17 frames 15.7% 6.5% 6.9% 19.7%
RASTA + half-syllables, 93.9% + 8.2% 8.3% 23.1%
17 frames
modulation spectrogram + 20.1% 8.6 9.2% 96.1%
phones, 17 frames
modulation spectrogram +
half-syllable, 17 frames 28.3% 1 10.1% 10.6% 27.9%
**focus**

Table 5.6: Performance results (error rates) for the baseline and experimental systems on
the complete, clean Numbers development test set. Frame-level error scores labeled with a
 are not directly comparable to the other values in the same column, due to a difference
in recognition unit.

systems achieved a reasonably high level of accuracy. At a word error rate of 10.6%, the
focus system was the least accurate.

The influence of the decoding (dynamic programming) step in recognition accuracy can
be seen in that the frame-error scores in Table 5.6 are categorically larger than the syllable-
or word-level error scores. The process of constructing words and sentences from phones
smoothes the errors that occur at the phone level. The syllable-level scores are essentially
the same as the word level scores, an indication that with Numbers, there is a strong
correlation between correct syllable recognition and correct word recognition. Since the
Numbers vocabulary is highly restricted, this is not surprising. A large vocabulary task
may produce a somewhat different relationship. The larger error values at the utterance
level indicate that word and syllable errors are not concentrated in particular sentences,
but are rather dispersed. That is, the word errors are not the result of a few very difficult
sentences.

A more detailed consideration of Table 5.6 reveals that the first and second rows are
roughly the same at each level. This means that the baseline system and the experimental
variant most similar to the baseline produced approximately the same performance. There-
fore, extending the length of the neural network window did not affect overall word error
rate for clean Numbers speech.

The RASTA-PLP system with half-syllable recognition units achieved a comparable per-
formance to the modulation spectrogram system with phoneme-based units when measured
at the syllable or word level. Using half-syllables as the recognition unit had approximately
the same degradation in performance as using the modulation spectrogram. Combining the
modulation spectrogram with half-syllable units caused significant further degradation in
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System Description H Word Error Rate ‘

RASTA + phones, 9 frames **baseline** 6.7%
RASTA + phones, 17 frames 6.6%
RASTA + half-syllables, 17 frames 8.1%
modulation spectrogram + phones, 17 frames 8.6%
modulation spectrogram + half-syllables, 10.0%
17 frames **focus**

Table 5.7: Performance results (word error rates) for each system for the complete, clean
Numbers evaluation test set.

performance.

Since the RASTA-PLP system with half-syllable recognition units had a higher frame
error rate, perhaps the half-syllable units were more easily confused by the neural network.
Examination of the half-syllable units showed that a number of the automatically created
units have confusable characteristics. The multiple pronunciation lexicon partially com-
pensated for some confusions. The lexicon included variants that are very similar, often
differing only in the identity of the vocalic segment. Therefore, differing frame-level es-
timates could map to the same, correct word. Since there are 124 half-syllable units as
opposed to the 31 phone units, there were fewer training patterns for each half-syllable unit
than for each phone unit. The half-syllable unit also spans a longer contiguous segment of
speech and therefore maybe subject to increased variability in training patterns compared
to the shorter phones, making training more difficult.

Coarser units and features led to somewhat lower accuracy rates on clean speech by
themselves. Frame-level evaluations suggest that using the modulation spectrogram fea-
tures led to a lower frame-level accuracy than using RASTA-PLP features, possibly due to
increased confusions of blurred featural details.

The performance results from the reserved evaluation set, Table 5.7, reflect the same
word-level performance characteristics observed with the development set. This independent
validation using the evaluation set is repeated throughout this series of experiments.

The focus system had multiple sources of long-time span smearing, so it is reasonable
to expect that the focus system has the worst error rate. The comparison here may not
be entirely fair, since the lexicon and phonetic labels used as a starting point for training
were optimized for the baseline, a well-established system. It is possible that additional
optimization of the experimental systems may help close the gap in error rates. As men-
tioned previously, the ultimate goal of combining systems limits the utility of individually
optimizing the experimental systems. In the next chapter, experiments will determine if
long-time span information can help in combination with finer grain features and units.
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Syllable- Utterance-
System Description Frame-level level Word-level level
RASTA 4+ phones, § frames 43.7% 28.6% 29.3% 65.5%
**haseline**
RASTA + phones, 17 frames 39.9% 25.5% 25.6% 60.8%
RASTA + half-syllables, 47.8% + 31.3% 30.5% 66.6%
17 frames
modulation spectrogram 38.8% 27.0% 26.6% 60.2%
phones, 17 frames
modulation spectrogram +
half-syllables, 17 frames 45.7% 1 30.0% 30.1% 65.0%
**focus**

Table 5.8: Performance results (error rates) of each system for the complete, reverberant
version of the Numbers development test set. Frame-level error scores labeled with a  are
not directly comparable to the other values in the column, due to a difference in recognition
unit.

5.4.2 Reverberant Speech

The tables in this section show the error rates of each of the systems on the Numbers
development test set where the speech was artificially made reverberant with a 0.5-second
reverberation time.'® The number of recognition tokens in each category is the same as in

Table 5.5.

The relationships between the columns of Table 5.8 reflect those observed with the clean
speech case. As was found by Kingsbury et al. [107], the modulation spectrogram system
with phoneme-based recognition units performed almost as well as a comparable RASTA-
PLP system, also with phoneme-based recognition units. Both resulted in a word error
rate of around 26%. Using a larger input window to the neural network longer acoustic
context) always seemed to help. All other systems showed some amount of degradation
in performance compared to the best system, with the focus system once again producing
the worst error rate of 30.1%. The difference in accuracy from the best to worst system,
however, is within 5% absolute. Error rates at several stages of consideration for each

system are given in Table 5.8 for the development test set.

Word error rates are given in Table 5.9 for the reserved evaluation test set, again to
validate the word-level trends observed in the development set.

10Reverberation and the creation of the reverberant test set is discussed in more detail in Chapter 3.
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System Description H Word Error Rate ‘

RASTA + phones, 9 frames **baseline** 28.0%
RASTA + phones, 17 frames 25.1%
RASTA + half-syllables, 17 frames 30.9%
modulation spectrogram + phones, 17 frames 25.8%
modulation spectrogram + half-syllables, 30.1%
17 frames **focus**

Table 5.9: Performance results (word error rates) of each system for the complete, rever-
berant version of the Numbers evaluation test set.

5.5 Summary

These experiments explored the effects of substituting syllable-based processing elements
into the established baseline speech recognition system. A series of experiments with a
focus experimental system and three supplemental systems using the Numbers database
showed that a wider context window (17 frames vs. 9 frames) had no effect on clean
speech, but improved speech recognition accuracy moderately for reverberant speech. Using
modulation spectrogram instead of RASTA-PLP features resulted in significant degradation
in the clean speech case and did not help in the reverberant speech case.!! Using half-syllable
targets caused significant degradation in both clean and reverberant speech. The individual
performance of the focus system was the worst overall for both test sets.

5.6 Conclusions

It is not surprising that the baseline and the experimental system most similar to the
baseline should outperform the other experimental systems for clean speech. The baseline
system was a mature system, the result of optimization and improvement efforts over several
years. A comparable effort for the focus system and each of the three supplemental system
variants was not possible; independently optimizing the syllable-oriented systems could
potentially confound the combination experiments, as discussed in the next chapter. Some
of the combination methods required the two constituent systems to have closely coordinated
recognition behavior. While syllable-based elements did not seem to help much, the syllable-
oriented systems were still reasonably accurate; the difference between the best and the
worst performance was less than 5%, absolute. Chapter 6 discusses how the coarser, syllable-
oriented focus system can be combined with the finer-grain phone-oriented baseline system
to produce a lower error rate overall.

" Kingsbury has recently refined the features further; they now produce an improvement for the reverber-
ant case. Future work will incorporate this revision.
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Chapter 6

Combining Systems

The results described in Chapter 5 showed that substituting syllable-based elements into the
baseline system could increase word-error relative to the phoneme-based system, though the
resulting systems were still fairly accurate. Studying the recognition outputs revealed that
syllable-oriented systems tended to make different errors, complementary to the phoneme-
oriented baseline. The introduction of syllable-based information promoted a divergence in
error patterns. This effect was most marked with the focus system, the system variant that
incorporated syllable-based time-span elements at the feature extraction level, in the context
window of the neural network and at the recognition unit level. The focus and baseline
systems both had reasonably good performance and a low degree of error correlation. These
observations suggested that a combination of the two systems may produce a system more
accurate than either of the constituents alone if a suitable combination method could be
found.

This chapter first describes the error analysis method used and discusses one case study
in detail- the analysis of word errors. Section 6.2 discusses the combination methods used for
integrating the outputs of the experimental systems with the baseline system at three stages
of the recognition process. The following three sections discuss the analysis and combining
results at each of the stages: at the frame level (at the output of the neural network), at
the syllable level, and at the whole-utterance level. The analysis of the experimental results
pointed out the different strengths and weaknesses of the focus and the baseline systems. In
all cases combining systems improved the overall recognition performance moderately for
clean speech, and more substantially for reverberant speech. The chapter concludes with a
summary and discussion of the results.

6.1 Analysis

This chapter focuses not on individual performance, but rather on finding complementary
attributes of experimental systems that can be used to improve speech recognition perfor-
mance through a combination scheme. For this objective, comparative error analysis can
quantify some of the differences in behavior between systems.
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6.1.1 Background and Methods

As discussed in Chapter 5, there are many ways to assess speech recognition performance,
and to analyze and compare different recognition systems. Although word error rate is
the most universally applied criterion, it has its limitations. It does not convey a complete
picture of performance and is not enlightening for comparing two systems with similar error
rates. A simple word error rate metric does not reveal deviations in behavioral properties
from the baseline system. More specific analysis and comparison methods that can expose
the differences in performance characteristics among systems are more helpful. At each level
of consideration (i.e., frame, syllable and whole-utterance) there are many possible analysis
methods. The primary tool used in this chapter is a coarse error analysis method that
has roughly analogous procedures at each level. By using similar procedures, trends that
appear across recognition stages can be made more apparent. At some stages, additional
evaluation was helpful, as discussed in the later sections of this chapter.

The work of Farrell, Ramachandran and Mannone on combining systems in the context
of speaker verification [49] inspired the error analysis method described in this chapter. In
their paper, Farrell et al. evaluated four commonly-used models for the speaker verification
task and three ways to combine the four scores. They calculated the error correlation among
model outputs and used this measure to select models for their combination experiments.
Their experimental trials supported their hypotheses about the best combination pair, based
on the error correlation information.

Speech recognition has outputs that are considerably more complex than those of speaker
verification. Typically the speaker verification task has only “accept” and “reject” outputs
for a given input, possibly along with an estimate of confidence. Therefore, some adaptation
of the above general idea is necessary. The adopted analysis method compares the baseline
speech recognition system with the focus system and with the other variants, one pairing
at a time. For each pair, the method considers only those outputs for which at least one
of the systems makes an error, since outputs that are correctly identified by both systems
do not bear on the error analysis. The analysis procedure uses a simple characterization of
errors that does not distinguish degrees of error. Hence, for each output, only four possible
outcomes are measured in the analysis:

1. The baseline system was correct and the experimental system
variant was wrong. (“Baseline Only Correct”)

2. The baseline system was wrong and the experimental system
variant was correct. (“Variant Only Correct”)

3. Both systems were wrong and reported the same erroneous value.
(“Identical-Incorrect”)

4. Both systems were wrong, but reported different erroneous
values. (“Different-Incorrect”)

The goal of this analysis procedure is to represent, as simply as possible, the coarse
differences in system behavior that can affect combination strategies. Word error rate is
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not sufficiently informative for this. The error analysis procedure outlined above contains
considerably more information than word error rate; nonetheless it is only one way to
describe these details. The possibility that some types of errors are more egregious than
others is ignored in favor of simplifying the analysis as much as possible. For example,
mistaking “four” for “forty” might be regarded as less of an error than mistaking “four” for
“hundred,” but both errors are equivalent in this analysis.

Of these four different categories of comparison results, the category that contributes
the least straightforwardly toward a better combined error rate is (3) Identical-Incorrect
errors. It is very tricky for combination algorithms to correct errors of this type. Most
combination schemes enhance accuracy by balancing the outputs of different systems against
each other. If the different systems both agree on the best answer and that answer is wrong,
designing an algorithm that can both detect and correct the error is a much more formidable
problem. Omne possible method is to use local accuracy estimates [206] or measures of
confidence [204] for both systems. The reliability of such methods, however, can degrade
when the recognition system encounters speech that is markedly divergent from the training
samples.

In these experiments, the differences between systems are distilled down to the propor-
tion of exactly alike errors in the respective recognition outputs. For ease of discussion, this
percentage value is referred to as the “Identical-Incorrect” measure; these percentages are
highlighted in boldface type in the relevant tables of this chapter. The system pairs with
the greatest potential for increased accuracy through simple combination methods are likely
to have good individual performance and a small number of Identical-Incorrect errors. This
measure is one way to characterize the behavioral differences between systems as it affects
combination strategies. It can indicate, in a coarse way, how “different” a system variant
is from the baseline.

At the frame-level, each system generates an output for each 25-ms frame of input.
This one-to-one correspondence makes the comparison between systems simpler. Two of
the experimental recognition systems, however, have output values based on half-syllables
which can not be compared directly (at the frame level) to the phoneme-oriented baseline
system.

In analysis at the syllable or word level, recognized values can potentially encompass
variable-length, unaligned sections of speech. In this case the analysis procedure first com-
pares the output word or syllable strings to the correct reference string and then compares
each of the identified errors on a one-to-one basis. For example, imagine that for the ut-
terance “one two three four five,” System 1 recognized “one oh six nine five” and System 2
reported “two six oh five,” as illustrated below:

one  two three four  five (correct string)
System 1:  one  oh six  nine five [cor]| [[sub]| |[sub]| |[[sub]| [cor]
System 2: —  two  six oh  five [del] [cor]| |[sub]| |[[sub]| [cor]

The scoring programs first generate an assessment of the recognition output using dynamic
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programming. These programs output words correct ([cor]), deleted ([del]), inserted ([ins])
and substituted ([sub]). The System 1 error evaluation generated by the scoring would
be “[cor] [sub] [sub] [sub] [cor]” and System 2 would have “[del] [cor] [sub] [sub] [cor],” as
illustrated above. After discarding words that were correctly recognized by both systems,
the analysis procedure then considers the differences between the words corresponding to
“[cor] [sub] [sub] [sub]” and the words corresponding to “[del] [cor] [sub] [sub],” marked by
boxes in the example. The procedure compares the recognized strings “one oh six nine”
and “[del] two six oh” by pairs of words. For exposition purposes, each pairing of words
between the recognized strings, filtered in this way, is referred to as an “error token.” In
the example, there are four such error tokens, outlined by boxes.

Using dynamic programming to match the recognized word strings with the correct se-
quence avoids the problem of comparing two streams of words in which correctly recognized
words are offset temporally, a situation that should not affect the error analysis. Fach sys-
tem included some independent training so it is reasonable for the beginning and end times
of the recognized words to shift from system to system. Not using the exact temporal values
for the beginning and end points of each word exposes the possibility that, due to the va-
garies of the scoring algorithm, two words are compared that do not actually share the same
acoustic segment. This simple analysis method, however, proves useful for revealing some
general trends, despite this potential drawback. For the frame-level and whole-utterance-
level analyses there is no time-alignment discrepancy problem between compared recognition
outputs. The trends at these two levels validate the similar trends observed at the syllable
and word level.

The error analysis described should be viewed as providing comparative information
about two systems, rather than predictive data about the combining process. The simple
analysis method does not account for specific combination strategies so it can not be used
to derive concrete performance expectations. Also, as mentioned previously, the method
does not incorporate the magnitude of error, which can be a factor in the behavior of the
combination method. This analysis is useful for distilling comparison information into a
small number of values that can be used to guide experiments in combination. The analysis
charts show generalized characterizations; large discrepancies in values between recognition
systems are meaningful.

The charts can be used to design new combination strategies that capitalize on the
trends displayed. For example, if a chart shows that between two systems, at least one is
always right (that is, there are no instances where both are wrong), the system designer
should consider concentrating on recognizer selection combination schemes. Such strategies
are typically based on confidence values and assessments of the relative correctness between
two systems. On the other hand, if the chart shows that two systems always recognize
the same tokens erroneously (that is, there are no instances where one system recognizes
the token correctly and the other does not), then the system designer would be better
rewarded by using a combination method that melds recognition results and ameliorates
wrong answers. The chart coarsely summarizes the potential for improvement through
combination, if selection and fusion between two recognizers could be performed perfectly.
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Clean Reverberant

Number Number

of Error | Percentage of || of Error | Percentage of
Variant (paired with Baseline) || Tokens | Total Tokens Tokens | Total Tokens
RASTA + phones, 422 8.8% 1,646 33.4%
17 frames
RASTA + half-syllables, 597 11.0% 1,898 38.4%
17 frames
modulation spectrogram + 578 12.0% 1.965 30.9%
phones, 17 frames
modulation spectrogram +
half-syllables, 17 frames 652 13.6% 2,125 42.6%
F*focus**

Table 6.1: Number of tokens contributing to the error analysis along with the percentage of
total tokens that these error analysis words represented in the clean and reverberant speech
versions of the Numbers development test set.

6.1.2 A Case Study

Data generated by this procedure at the word level are shown in Tables 6.1, 6.2, and 6.3.
These tables illustrate the error analysis method in more detail. Table 6.1 shows how many
word tokens the analysis used and what fraction of the total number of word tokens these
error tokens represented. As expected, a much larger number of word tokens contributed
to the error analysis under reverberant conditions than under clean conditions. Also, each
comparison between an experimental system and the baseline resulted in a different number
of word error tokens. Nevertheless, the number of error tokens generated by each pairing is
roughly similar, particularly for reverberant speech.

Table 6.2 displays the distribution of error tokens between the four error categories for
the clean version of the Numbers development test set. The percentages corresponding to
the Identical-Incorrect measure outlined previously are shown in boldface type. The word-
level exhibits several trends that are also reflected in the frame-, syllable- and utterance-level
analyses. These are examined in detail below:

Clean Speech: Relative Accuracies

The first two analysis columns in Table 6.2 illustrate the relative accuracy of each system
individually by showing how often one system was correct and the other in error. This
information is most relevant for recognizer combination by selection methods. In any pairing
the baseline tended to be more correct than the experimental variant system. This reflects
the relatively lower word error rate of the baseline compared to the word error rates of the
experimental variants. The variant in each pairing was correct where the baseline was in
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Baseline Variant Identical-

Only Only Incorrect Different-
Variant (paired with Baseline) || Correct Correct (count) Incorrect
RASTA + phones, 23.9% | 22.7% | 43.6% (184) | 9.7%
17 frames
RASTA + half-syllables, 30.1% 26.0% | 24.9% (131) | 10.1%
17 frames
modulation spectrogram + 44.5% 25.1% | 21.5% (124) |  9.0%
phones, 17 frames
modulation spectrogram +
half-syllables, 17 frames 50.8% 23.5% 14.1% (92) 11.7%
F*focus**

Table 6.2: Distribution of error tokens across the four analysis categories in the clean speech
version of the Numbers development test set. The actual number of error tokens is shown
in parentheses for the Identical-Incorrect column.

error for about a quarter of the error tokens.

The similar values in the top row of the first two columns correspond to the comparable
accuracy levels of the two systems. The considerable disparity in the values of the same
two columns in the bottom row demonstrates the superior accuracy of the baseline system
over the focus system. The similarity in values for these first two columns between rows 2
and 3 suggests that the use of the half-syllable unit results in a degradation comparable to
the use of the modulation spectrogram features. The degradation increases when the two
are used together, as in the focus system.

Clean Speech: Relative Differences

The last two analysis columns provide crude information about the errors made when both
systems recognize the input incorrectly. Such information is useful for recognizer fusion
strategies.

The data show that when the baseline and the experimental variant were both wrong,
the focus system (i.e., the system with the most syllable-based elements) was the least
correlated with the baseline. The Identical-Incorrect value between the baseline and the
focus system (14.1%) was smaller than in any other pairing. That is, the percentage of
tokens where both the baseline system and the focus system recognized the same erroneous
values was smaller than the corresponding percentage in any of the other pairs.

Syllable-based elements helped produce more complementary behavior. The large pro-
portion of Identical-Incorrect errors and the relatively small number of Different-Incorrect
errors in the top row suggests that the behavior of the two systems is similar— the two sys-
tems in the first pairing tended to make the same errors. In contrast, the relatively smaller
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Baseline Variant Identical-

Only Only Incorrect Different-
Variant (paired with Baseline) || Correct Correct (count) Incorrect
RASTA + phones, 16.8% | 27.3% | 38.9% (640) | 17.0%
17 frames
RASTA + half-syllables, 27T8% | 24.8% | 25.7% (488) | 21.7%
17 frames
modulation spectrogram +

30.3% 36.6% 13.6% (267) 19.5%
phones, 17 frames
modulation spectrogram +
half-syllables, 17 frames 35.5% 33.6% 11.0% (234) 19.9%
F*focus**

Table 6.3: Distribution of error tokens across the four analysis categories in the reverberant
speech version of the Numbers development test set. The actual number of error tokens is
shown in parentheses for the Identical-Incorrect column.

number of Identical-Incorrect errors for the comparison of the baseline with the focus sys-
tem suggests that these two systems acted differently. Again, the similar values shown in
rows 2 and 3 of these two columns suggest that the half-syllable unit and the modulation
spectrogram unit had comparable influence on the recognition process. The use of the two
in tandem, in the focus system, created a larger effect. This suggests that the half-syllable
unit affects recognition in a distinct, complementary manner when compared to the signal
processing features.

Reverberant Speech: Relative Accuracies

The reverberant version of this analysis shows many of the same trends.

In the first two columns of Table 6.3, the baseline was found to be more often in error
than two of the variant systems: the RASTA-PLP system with phoneme-based units and
a 17-frame input window (row 1), and the modulation spectrogram system with phoneme-
based units and 17-frame input window (row 3). In other baseline/variant comparisons,
the baseline was more correct, though the gap between the values in these columns is
considerably reduced compared to the clean case. This suggests that using the 17-frame
input window was an advantage for recognizing reverberant speech, along with using the
modulation spectrographic features.

Reverberant Speech: Relative Differences

Examining the last two columns in Table 6.3 shows that the modulation spectrogram alone
had a considerable effect in causing errors to diverge between systems. Moving from clean
to reverberant conditions widened the difference between the information provided by the
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modulation spectrogram and that derived from RASTA-PLP. Using the half-syllable units
had a smaller, but still noticeable effect. As with clean speech, when both systems were in
error, the focus system (the most syllable-oriented of the variants) was the least correlated
with the baseline, as reflected in the 11.0% Identical-Incorrect measure.

Trends

Subsequent sections of this chapter continue this analysis and comparison of recognition
systems more briefly at the frame, syllable and at the whole utterance level. Some com-
monalities appear at every level in the systems tested:

e The total number of error tokens is much greater for reverberant speech than for clean
speech.

e Systems with RASTA-PLP features and phone recognition units are more often correct
than the other experimental variants for clean Numbers speech.

e Systems with syllable-based features and recognition units perform less poorly relative
to the baseline on reverberant speech than on clean speech.

e The 17-frame context window for the neural network improved the recognition of
reverberant Numbers speech.

e The use of the modulation spectrogram and the half-syllable units minimizes the
number of Identical-Incorrect errors.

As mentioned previously, informal inspection of recognition outputs suggested a concen-
tration on combining the baseline system with the modulation spectrogram system including
half-syllable units. The more detailed error analysis described above supports this decision
by demonstrating that this pairing minimized the number of word errors in which both
systems made the same error (the Identical-Incorrect measure). The analysis sections of
the rest of this chapter more briefly describe results that reflect trends similar to those
observed at the word-level. These findings support the hypothesis that there are benefits
in combining the baseline system with syllable-based systems.

6.2 Combining: Background and Methods

Many researchers have espoused the idea that the human speech perception system inte-
grates information over several levels. Greenberg suggests that human speech recognition
relies on temporal dynamics in coarse spectral patterns [74]. For efficient communication,
human beings rely on the use of multiple, redundant, coarse patterns to obtain the ro-
bustness to noise and other nonlinguistic sources of variability [75]. The human brain may
employ a rather sparse representation that exhibits most of the temporal dynamics of the
speech signal. Todd incorporates the temporal, or rhythmic nature of auditory processing
via what he refers to as dynamic spatio-temporal receptive fields [189, 190]. Todd and Lee
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also discuss the combination of simultaneous information into some sort of multimodal,
multi-scale sensory representation in the human brain. Todd postulates the existence of
neurons that combine primary inputs into higher level features, possibly via a cascade of
secondary receptive fields that process information from primary units. Although the com-
bining methods described in this thesis bear only a passing similarity to the physiologically-
motivated perspectives of Greenberg and of Todd, such perspectives from human auditory
processing support the basic idea of combining multiple sources of information for recogni-
tion.

Inspection of the word recognition outputs of the baseline system and the focus system
suggested that if a recognizer could dynamically select the best system for each input
then a higher performance could be attained overall. This “dynamic recognizer selection”
requires some sort of numerical evaluation of the relative accuracy of the systems for a
given input. As discussed in Section 3.5, such evaluation is currently regarded as difficult.
Some obvious methods include using confidence measures based on likelihoods, posteriors or
lattice densities, for example. But some preliminary trials along these lines for the Numbers
corpus were not successful in choosing the better outputs based on simple calculations.
Other methods, not addressed here, might involve training neural networks to perform the
selection (e.g., mixtures of experts).

The dual to recognizer selection is “recognizer fusion,” the merging of the outputs of
multiple systems. Combining the outputs of multiple neural networks is an open research
topic that this thesis does not fully address. Included among the many possible techniques
is the neural network boosting algorithm AdaBoost [57]! and parallel consensual neural
networks [13]. Because ASR includes a crucial decoding step subsequent to the pattern
classification stage, there is an added level of complexity when considering the combina-
tion of neural network outputs. Combining methods for multiple recognition streams are
discussed more generally in Section 3.5.

In this chapter the combining method is a simple multiplication of probabilities, that is,
an unweighted linear combination of log probabilities (effectively an average). Greenberg
and Kingsbury first demonstrated the value of this method for a phone-based recognizer
employing modulation spectrogram features combined at the frame level with a RASTA-
PLP system [80]. The combining experiments summarized below replicate the original
findings, and extend the strategy to larger granularity combinations with the focus system
(such as at the syllable and whole-utterance level).

Combining two recognition systems increases the total number of parameters involved.
This complicates the comparison between the combined system and the performance of
the individual, constituent systems. Nevertheless, as mentioned in Section 5.3.1, merely
increasing the number of parameters beyond the default 400 hidden units of the baseline
system did not increase the system’s accuracy for the clean version of Numbers. Fven for the
reverberant speech test set, enlarging the size of the hidden layer of the neural network only
moderately improved performance. The combined systems described in this chapter did not
exceed the parameter count of the 1000-hidden-unit neural network system in Table 5.3.
Therefore, the further performance improvements in the combined systems must result from

!Schwenk has implemented a version of AdaBoost for the Numbers corpus [179].
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the additional structuring of the parameters.

Combining multiple recognition streams exhibited performance advantages over the in-
dividual constituent systems at each of the three stages of decoding. Each level, however,
(i.e. at the frame, syllable and whole-utterance levels) has separate interpretations and
implementation properties. The remainder of this chapter describes in detail these issues
and the results of the analysis and combination.

6.3 The Phoneme/Frame Level

This section considers the combination of recognition output streams at the frame level,
that is, at the output of the neural network before the decoding process. Since frame level
integration entails combining similar outputs in a one-to-one manner, dissimilar output
units can not be directly combined. The subsequent decoding essentially uses probability
estimates from each stream in a lockstep manner. For example, in each time frame, the
probability of an /ah/ from System 1 is combined with the probability of an /ah/ from
System 2 and nothing else. This constraint ensures that both streams are decoded to be in
the same HMM state at the same time. Because the focus system uses different HMM states
(half-syllables) than the baseline (phones), this pairing can not be combined at the frame
level. For this reason, the variant system used for combining with the baseline was the
system with modulation spectrographic features and phone recognition units. The frame
level is relatively advantageous in that it may be easier to isolate short-time trends, such
as patterns in phone identification. Since this analysis reflects information prior to the
decoding stage, however, these findings can be somewhat decoupled from the final word
error rate.

6.3.1 Analysis

This section reports on the analysis of the raw neural network outputs in each system.
As mentioned in Section 3.3.3, a forced alignment process used the baseline system (400
hidden units, phone recognition units, 9 frames of neural network context) to generate
“correct” frame-level phone labels for the development test set, given knowledge of the true
word transcriptions. These analyses used this labeling as the “ground truth,” as discussed
previously in Section 5.4. Because the experimental variants included systems which were
further optimized using forced alignment, comparing the frame-level output of these systems
with the baseline may overstate the number of mismatches.? These analyses compare only
systems with the same recognition unit; it is not clear how to compare systems with different
targets, i.e., a phoneme-based system and one based on the half-syllable model. Even with
these caveats, the analyses below are in keeping with the general trends observed; the
baseline and the system variants had roughly similar percentage accuracies, but tended to
make different errors.

Modulation spectrographic features may help systems recognize certain sounds more
accurately than RASTA-PLP. Fvaluating the frame-correct values according to training

2The issue of forced alignment is discussed in more detail in Section 5.4.
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Clean Reverberant
Number of | Percentage || Number of | Percentage

Error of Total Error of Total
Variant (paired with Baseline) Frames Frames Frames Frames
RASTA + phones, 47,286 22.9% 105,988 51.2%
17 frames
modulation spectrogram 56,073 29.9% 114,375 54.9%
+ phones, 17 frames

Table 6.4: Number of frames which contributed to the error analysis and the percentage
of total frames these error analysis frames represented in the clean and reverberant speech
versions of the Numbers development test set.

target type produced inconclusive results; the modulation spectrogram system did not pro-
duce clear patterns of performing well on some sorts of targets and poorly on others. A
comparison of the two variants that differed only in their input features— RASTA-PLP or
modulation spectrogram— while keeping the phoneme-based targets and 17-frame context
window the same, showed that the modulation spectrogram system consistently underper-
formed the RASTA-PLP system for clean speech. At best, the modulation spectrogram
system equaled the performance of the RASTA-PLP system for some targets. For rever-
berant speech, however, the modulation spectrogram system significantly outperformed the
RASTA-PLP system for 13 out of the 31 phones used. Inspection of the values revealed
no obvious pattern among these 13. The Numbers task may be too limited to illuminate
phonetic trends.

The error correlation analysis method helped characterize the differences between sys-
tems. In a procedure analogous to the word-based analysis described above, the phoneme-
based variant systems were paired with the baseline (having the same recognition unit type).
Frames where both systems generated the correct value were discarded. This left frames
where one system was correct and the other was not, or where both systems were incorrect.
Table 6.4 shows the number of frames, out of approximately 210,000 in the development
set, remaining after this pruning process for both the clean and the reverberant versions of
the Numbers development test set.

Tables 6.5 and 6.6 show the percentage of the error frames in each of the 4 categories
defined above for the clean and the reverberant versions of the development test set. Many
of the trends observed in the word-level case study (Section 6.1) appear in this frame-level
version.

For the clean case the baseline was again correct more often than the experimental vari-
ants. For reverberant speech, the situation was reversed and the variant systems were more
often correct, indicating that under reverberant conditions the modulation spectrogram
and the wide neural network input window were beneficial to recognition performance. The
Identical-Incorrect columns of Tables 6.5 and 6.6, highlighted in boldface, show that the
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Baseline Variant Identical-
Only Only Incorrect Different-
Variant (paired with Baseline) || Correct Correct (count) Incorrect
RASTA + phones, 34.6% 31.3% | 20.9% (9.883) | 13.3%
17 frames
modulation spectrogram 14.8% 25.3% | 14.8% (8,299) | 15.2%
+ phones, 17 frames

Table 6.5: Distribution of error frames across the four

in parentheses for the Identical-Incorrect column.

analysis categories in the clean
version of the Numbers development test set. The actual number of error tokens is shown

Baseline Variant Identical-
Only Only Incorrect Different-
Variant (paired with Baseline) || Correct Correct (count) Incorrect
RASTA + phones, 14.7% | 222% | 38.2% (40487) | 24.9%
17 frames
modulation spectrogram 20.8% 29.4% | 19.1% (21,846) | 34.9%
+ phones, 17 frames

Table 6.6: Distribution of error frames across the four analysis categories in the reverberant
version of the Numbers development test set. The actual number of error tokens is shown
in parentheses for the Identical-Incorrect column.

modulation spectrogram features produced a divergence in the recognition behavior. The
features apparently introduced a variation in the errors produced by the neural networks,
especially with reverberant speech, causing a decrease in the correlation between errors
committed by each system.

The results of these analyses show that the system variants achieved a fairly good overall
percentage correct at the frame level, but were correct for a somewhat different set of frames
from the baseline system, more notably in the presence of reverberation. These analyses
support the general conclusion that combining the systems at the frame level may capitalize
on the individual system strengths while diluting weaknesses, resulting in an improved error
rate overall.

6.3.2 Combining

The combining method for merging two recognition systems at the frame level involved
multiplying the probabilities as output from each system’s neural network. The Y0 decoder
[88] (no modification necessary), used these probabilities as input and produced words and
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Figure 6.1: Combination of systems at the frame level.

sentences, as illustrated in Figure 6.1. The only change made to the decoder parameters
was that the language model scaling factor® was doubled. The logarithms of the acoustic
probabilities were, on average, twice the magnitude that they had been in the original,
independent systems.

As noted earlier, since the combining method multiplied output probabilities on a one-to-
one basis, only systems with matching outputs could be combined with this simple method.
Therefore only systems using phoneme-oriented units could be combined with the baseline
system. Since this precluded a combination with the focus system, the modulation spectro-
gram system with phone units was used for these experiments, being the closest to the focus
system while still meeting the matching-output requirement. This system incorporated the
most syllable-based information given the constraints on choice of recognition unit. Error
analysis with this system, detailed in the previous section, supported this choice by showing
that it produced the smallest proportion of identically-incorrect errors with the baseline.
The resulting error rates for this combination, on both clean and reverberant Numbers test
sets, are listed in Tables 6.7 and 6.8, along with the error rates of the systems individually.

The simple combining of the systems at the frame level resulted in a significant decrease
in word error rate, 13.4% relative for clean speech and 36.8% for reverberant speech. These

?Language model scaling factors are empirically determined values that weight the influence of the lan-
guage model over the acoustic information during decoding (and is discussed more fully in Chapter 3). Trials
with the cross-validation set that doubled the language model scaling factor for the baseline alone showed
no appreciable difference in performance.
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W. E. R. W. E. R. W. E. R.
Baseline Variant Condition Baseline Variant Combined
RASTA + modulation clean 6.8% 9.2% 5.9%
phones, spectrogram +
9 frames phones
’ b 29.3% 26.6% 19.4%
**haseline** 17 frames revet ¢ ¢ ¢

Table 6.7: Performance results (word error rate) scores of each system independently and
after combining, at the frame level on clean and reverberant versions of the Numbers de-

velopment test set.

W. E. R. W. E. R. W. E. R.
Baseline Variant Condition Baseline Variant Combined
RASTA + modulation clean 6.7% 8.6% 5.8%
phones, spectrogram +
9 frames phones
’ b 28.0% 25.8% 17.7%
**haseline** 17 frames revet ¢ ¢ ¢

Table 6.8: Performance results (word error rate) scores of each system independently and
after combining, at the frame level on clean and reverberant versions of the Numbers eval-

uation test set.
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findings are consistent with those previously reported [107]. They are also consistent with
the suggestions of the frame level analyses and comparisons. Although the method enforces
a lockstep synchronization between the two recognition systems and prevents the use of the
focus system in this experiment, the results show that much improvement can be gained
with a relatively simple combining scheme, and with minimal changes to existing systems.

6.3.3 Discussion

The frame-level analysis examines the abilities of the baseline and variant systems to clas-
sify individual frames. The scores showed that the experimental variants were more accu-
rate than the baseline for reverberant speech. Since reverberation tends to smear spectro-
temporal information in time, it was reasonable to expect that the integration of information
over a longer time window could be helpful. The introduction of modulation spectrogram
features produced not only greater frame-level accuracy for reverberant speech, but also
more complementary patterns of recognition behavior, a boon for combining strategies.

The frame-level combination can be thought of as two independent perceptual systems
interfacing at the level of the phone, with no other intermediate structure, to produce
words and sentences. The speech was essentially statically segmented into 25-ms frames;
then each system used different criteria to associate phones with each interval. A subse-
quent process then simply accepted these hypotheses with equal weighting and formulated
a unified recognition output. The baseline system, with RASTA-PLP features, emphasized
phonetic segment transitions and integrated this information over 9-frame neural network
windows. The modulation spectrogram system emphasized the energy over syllable-timed
intervals, integrated over 17-frame neural network windows. The segment onsets appar-
ently supplied information that was somewhat orthogonal to the syllable-length analysis,
resulting in higher accuracy overall when combined.

6.4 The Syllable Level

This section considers combining recognition system output streams at the syllable level.
The error rate calculations are in terms of canonically defined syllables, not the syllables
in the task’s syllabary; this was done for ease of scoring, as discussed in Section 5.4. The
analyses and comparisons are based on canonical syllables as well, and indicate that syllable
error rates are closely related to word error rates and exhibit very similar trends.

Combining at the syllable level allowed the decoder to use information from each of
the streams in a more desynchronized manner. In the version of the HMM recombination
strategy [45] implemented at ICSI,* the decoding could use a phone probability from one
stream and a half-syllable (from the syllabary) probability from the second stream subject
only to the constraint that the two streams have common syllable beginning and end points.
While this removed the limitation experienced with frame-level combinations of requiring
that the two systems have the same output unit, matching phones with their corresponding
half-syllables does require that pronunciations in the two streams be the same at the syllable

*With Nikki Mirghafori.
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Clean Reverberant

Number Number

of Error | Percentage of || of Error | Percentage of
Variant (paired with Baseline) || Tokens | Total Tokens Tokens | Total Tokens
RASTA 4 phones, 496 8.5% 2,016 32.9%
17 frames
RASTA + half-syllables, 636 10.7% 2,392 38.1%
17 frames
modulation spectrogram + 674 1.5% 9438 39.0%
phones, 17 frames
modulation spectrogram +
half-syllables, 17 frames 771 13.0% 2,627 41.7%
F*focus**

Table 6.9: Number of tokens which contributed to the error analysis and the percentage of
total tokens these error analysis syllables represented in the clean and reverberant speech
version of the development test set of Numbers.

level. The focus system fits within these constraints, so the combination experiments in this
section involve merging the baseline with the focus system.

6.4.1 Analysis

The analysis procedure first decomposes recognized words into their canonical (i.e., dic-
tionary) syllable components with a single pronunciation per word. The list of canonical
syllabic pronunciations used in these analyses is provided in Appendix A.3. These differ
from the recognition system lexicon’s syllabary; for example, the word “twenty” is analyzed
as the syllables /t-w-eh-n/ /t-iy/ (ICSI56 orthography), rather than as one of the word’s
10 pronunciation alternatives in the Numbers’ lexicon.

As described in Section 5.4, the canonical pronunciations were chosen for two reasons:
1) This method smoothed over the recognition of different syllables that correspond to the
same word; for these experiments, recognizers should not be penalized for recognizing differ-
ent syllables if the output is word-consistent. 2) Human listeners probably perceive speech
in terms more similar to canonical lexical units than to syllabary units. Moreover, they do
not generally perceive small variations in syllables in conversational speech, if the word is
correctly understood. For example, it was found by transcribers in the Switchboard Tran-
scription Project [76] that the word “problem” was often pronounced in a reduced manner,
“proem,” though the word was initially perceived, before careful examination of the spec-
trogram, as the fully expressed, two-syllable word. While whole syllables can occasionally
be deleted, as discussed previously, the rate of complete deletion is very small compared to
the deletion rate of phones [78].
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Baseline Variant Identical-

Only Only Incorrect Different-
Variant (paired with Baseline) || Correct Correct (count) Incorrect
RASTA + phones, 23.8% | 25.2% | 42.7% (212) | 8.3%
17 frames
RASTA + half-syllables, 10.6% | 26.6% |23.3% (148) | 9.6%
17 frames
modulation spectrogram + 43.9% 26.9% | 20.5% (138) | 8.8%
phones, 17 frames
modulation spectrogram +
half-syllables, 17 frames 51.0% 25.3% | 13.4% (103) | 10.4%
F*focus**

Table 6.10: Distribution of syllable error tokens across the four analysis categories in the
clean speech version of the Numbers development test set. The actual number of error
tokens is shown in parentheses for the Identical-Incorrect column.

The analysis process, analogous to the one described for words, computed the error
correlation between systems in terms of syllables. The procedure compared the focus system
and each of the supplemental systems to the performance of the baseline system. Table 6.9
shows the total number of syllable error tokens used in the analysis. Tokens identified
correctly by both systems in a pairing were eliminated.

The comparisons reflect those in the word-level case study, examined in detail in Sec-
tion 6.1. The syllable analysis level exhibits very similar trends.

Table 6.10 shows that the systems with modulation spectrogram features or half-syllable
recognition units were less correct than the baseline by a considerable margin. When both
systems of a pair were wrong, the errors were more likely to be of the Identical-Incorrect
variety than its complement (Different-Incorrect). The focus system, with both modulation
spectrogram features and syllable-based recognition units, had the lowest proportion of
Identical-Incorrect errors.

With reverberant speech, illustrated in Table 6.11, the modulation spectrogram and the
half-syllable unit had the effect of narrowing the gap between the number of error tokens
identified correctly only by the baseline system and the number identified correctly only by
the variant. Further, when the two systems both produced erroneous outputs, the focus
system again had the lowest Identical-Incorrect value. These analyses further motivated
combining the systems.

6.4.2 Combining

Combining at the syllable level entails merging the probabilities of different hypotheses at
the end of each syllable, a process illustrated in Figure 6.3. The desired functionality is to
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Baseline Variant Identical-

Only Only Incorrect Different-
Variant (paired with Baseline) || Correct Correct (count) Incorrect
RASTA + phones, 19.1% | 27.7% | 87.0% (746) | 16.2%
17 frames
RASTA + half-syllables, 31.8% 25.3% | 22.5% (538) | 20.4%
17 frames
modulation spectrogram +

33.1% 36.7% 12.6% (307) 17.6%
phones, 17 frames
modulation spectrogram +
half-syllables, 17 frames 37.9% 34.8% 9.7% (255) 17.5%
F*focus**

Table 6.11: Distribution of syllable error tokens across the four analysis categories in the
reverberant speech version of the development test set of Numbers. The actual number of
error tokens is shown in parentheses for the Identical-Incorrect column.

have two independent speech recognition processes that interact only at the endpoints of
syllables. At these combination points, hypothesis scores for each path are integrated before
the recognition processes continue with their individual computations. In the example
shown in the upper portion of Figure 6.2, two recognition processes are depicted, each
recognizing the word “ten.” At the end of the syllable the paths meet and combine values
before separating again for the next syllable. Between combination points the recognition
behavior of the systems can diverge and desynchronize.

This combination method uses the HMM-recombination algorithm of Bourlard and
Dupont [19]. The background of this method is discussed in Section 3.5. To use stan-
dard decoders without modifying them, Bourlard and Dupont combined HMM models in a
many-to-many mapping before the model was input into the decoder.

As mentioned previously, the HMM-recombination scheme was reimplemented at ICSI
for the YO [88] decoder. As illustrated for a simple example in Figure 6.2, the HMM-
recombination scheme expands two parallel HMMs (an atypical form) into a single HMM
with a conventional description. For these experiments, the amount of desynchronization
between the states of the two parallel models was limited by stipulating that the current
states of the two streams must share a phone constituent. For the case in which one
stream involved a phoneme-based HMM and the other was syllable-based, this amounts to
requiring that the syllable of the current syllable-based HMM state contain the phone of
current phoneme-based HMM state. The decoder can use the /t/ of the phoneme-based
stream only at the same time that the decoder uses the /t-eh/ of the syllable-based stream
(Figure 6.2). The decoder, however, can use the /eh/ of the phoneme-based stream at
the same time as either the /t-eh/ or the /eh-n/ of the syllable-based stream. The HMM
states of the new, expanded HMM represent all of the permissible temporal synchronization
conditions between the phoneme-based stream and the syllable-based stream. This HMM-
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Figure 6.2: A simple example of an HMM recombination implementation for the word
“ten,” with desynchronization allowed only within half-syllables.

recombination scheme also creates a single probability stream from the dual probability
steams of the individual neural networks. The corresponding probabilities are multiplied to
generate new values for these expanded states. Word models are formed by concatenating
these syllable-sized expanded HMMs. With complex syllables, minimum duration models
implemented with repeated states and multiple pronunciations, the full word-length HMMs
comprised hundreds of probabilities and thousands of states.

Arcs at the bottom of the lower model in Figure 6.2 show that states can be skipped,
reflecting the different ways the two streams can proceed in parallel. Thus, as the decoding
progresses from one frame to the next, the phoneme-based stream can proceed from /t/ to
/eh/ and the syllable-based stream can proceed from /t-eh/ to /eh-n/ or stay with /t-eh/.
As illustrated in Figure 6.2, the two streams meet only at the beginnings and ends of each
syllable HMM. This has the effect that probabilities for the same sentence hypothesis from
the two different systems are linearly combined at the end of each syllable, an enforced
synchronization point.

Bourlard and Dupont combined a phonetic stream with a syllabic stream, where a single
model described all syllables. In the work described in this thesis, there is a separate, unique
model for each syllable. HMM-recombination was used to integrate the baseline system with
the focus system, i.e., the system incorporating the most syllable-based information. Error
analysis, detailed in the previous section, had showed that this pairing had the lowest error
correlation values.

The word error rates for the combined system, tested on the Numbers task, are listed
in Tables 6.12 and 6.13. This combination method produced a considerable improvement
in accuracy over the performance of each constituent system alone, amounting to a 23.9%
relative gain for clean speech and a 40.3% relative improvement for reverberant speech. The
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Figure 6.3: Combination of systems at the syllable level.
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W. E. R. W. E. R. W. E. R.
Baseline Variant Condition Baseline Variant Combined
RASTA + modulation clean 6.8% 10.6% 5.4%
phones, spectrogram +
9§ half-syllables,
rames 17 frames reverb 29.3% 30.1% 17.6%
**haseline** sk o stk

Table 6.12: Performance results (word error rate) scores of each system independently and
after combining, at the syllable level on clean and reverberant versions of the development

test set.
W. E. R. W. E. R. W. E. R.

Baseline Variant Condition Baseline Variant Combined
RASTA + modulation clean 6.7% 10.0% 5.1%
phones, spectrogram +
9§ half-syllables,

rames 17 frames reverb 28.0% 30.1% 16.7%
**haseline** sk o stk

Table 6.13: Performance results (word error rate) scores of each system independently and
after combining, at the syllable level on clean and reverberant versions of the evaluation
test set.

complexity of the combination-method implementation, however, was much larger than with
the frame-level method.

6.4.3 Discussion

The syllable-level error analysis compared systems based on recognized syllables. For clean
speech, the introduction of syllable-based elements produced a degradation in accuracy but
an increased divergence in errors compared to the baseline. The divergence in errors was
more pronounced with reverberant speech. Also evident for reverberant speech, the long-
time span neural network context window provided greater accuracy than the baseline for
the variants with phoneme-based output units.

The combination strategy, HMM-recombination, can be likened to two separate percep-
tual processes interfacing at the level of the syllable. As in the discussion of Section 4.5,
the combination process can be interpreted as dynamically hypothesizing syllable-length
intervals in the speech stream and attaching to them information from the two separate
perceptual processes. The phone hypotheses from the baseline, and the half-syllable hy-
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potheses from the focus system become features of the underlying syllable-length interval.
Greenberg uses such a model to explain pronunciation variation [78].

The resulting improvement in word-error rate is probably due to the successful com-
bination of the complementary aspects of the two recognition systems. This combination
strategy produced the lowest error rates of the all methods examined.

6.5 The Utterance Level

This section considers recognition system output streams at the whole-utterance level, the
unit used for analysis and combining.® Because a recognized string of words can have both
correctly and incorrectly recognized words, analyses at the whole utterance level can mask
trends involving smaller speech units. An entire utterance may often be too large a unit
for combining methods in general, though it is manageable for the Numbers corpus. In
practical applications with large vocabularies and long input utterances, one might imagine
combining recognition system output streams at the phrase level.

By combining at the utterance level, the combined streams can become completely
desynchronized between the beginning and the end of the speech input. In the extreme, one
stream can produce completely different syllables or phones from another stream for the
same acoustic input. If the word strings are the same, this combining method considers the
outputs from two different streams to be the same answer regardless of the internal temporal
alignment of word boundaries or recognized phones and syllables. Combining enforces
synchronicity only at the start and termination of the utterance. Thus, the recognition
systems can be completely different and separately optimized.

6.5.1 Analysis

The error analysis method can also be used at the whole-utterance level. Table 6.14 shows
the number of sentences that contribute to the error analysis. As previously, the sentences
that both systems in each pair recognized 100% accurately have been removed.

The trends observed with the detailed case study at the word-level are also evident in
the utterance level analysis.

For clean speech, Table 6.15 shows the percentage of sentence errors where only one
system in a pairing recognized the utterance with 100% accuracy. The table also shows the
percentage of sentence errors where both systems made errors in recognizing utterances.
As in the other analyses, the systems with modulation spectrogram or half-syllable unit
elements produced more errors than the baseline. When both systems produced erroneous
output, these systems tended to produce errors different from the baseline; these recognizer
pairings produced lower proportions of Identical-Incorrect errors. The focus system, with

®Parts of the study involving combining hypotheses at the whole-utterance level, as detailed in this section,
were the result of a collaboration between Brian Kingsbury and myself, with advice from Nelson Morgan and
Steven Greenberg. This work was briefly presented at the International Conference on Acoustics, Speech
and Signal Processing, 1998 [209].
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Clean Reverberant

Number Number

of Error | Percentage of || of Error | Percentage of
Variant (paired with Baseline) Sents Total Sents Sents Total Sents
RASTA 4 phones, 286 23.7% 863 T1.6%
17 frames
RASTA + half-syllables, 360 929.9% 920 76.3%
17 frames
modulation spectrogram + 378 39.1% 936 77.6%
phones, 17 frames
modulation spectrogram +
half-syllables, 17 frames 419 34.7% 976 80.9%

**focus**

Table 6.14: Number of sentences which contributed to the error analysis and the percentage
of total sentences these error analysis utterances represented in the clean and reverberant
speech versions of the Numbers development test set.

both modulation spectrogram information and half-syllable units, had the lowest proportion
of Identical-Incorrect tokens.

As mentioned previously, using such large units for comparison can mask more detailed
trends. Table 6.16 shows further analysis of the sentences where systems produced erro-
neous, but differing outputs; in this case, the experimental system variants tended to be
more correct than the baseline.

For reverberant speech, Tables 6.17 and 6.18 give the analogous error analysis cate-
gory values. As before, the reported figures represent the percentage of sentences where
one or both systems in a pairing made errors in recognizing the utterance. As observed
with the other analyses, the gap between the Baseline-Only-Correct percentages and the
Variant-Only-Correct percentages was reduced compared to the clean speech case for the
systems with modulation spectrogram and/or half-syllable unit elements. When both sys-
tems produced erroneous output, these systems exhibited lower error correlation values (a
smaller Identical-Incorrect percentage). They also exhibited a tendency to produce different
errors rather than the same erroneous sentence. The focus system, with both modulation
spectrographic features and half-syllable recognition units, again had the lowest number
of Identical-Incorrect tokens. Further evaluation of the sentences where systems produced
erroneous, but differing outputs showed that the variant systems with the half-syllable unit
were more correct than the baseline.

In Chapter 5, analyses showed that sentence error was roughly correlated with word er-
ror rate. One might hypothesize that the systems with the larger error rates would tend to
perform less well uniformly across sentence inputs. The analyses above show that for some
of the sentences the variants were more correct than the baseline. An early pilot experiment
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Baseline Variant Identical-

Only Only Incorrect Different-
Variant (paired with Baseline) || Correct Correct (count) Incorrect
RASTA 4 phones, 15.4% 171% | 43.4% (124) | 15.4%
17 frames
RASTA 4 half-syllables, 32.8% 22.5% | 20.0% (72) | 24.7%
17 frames
modulation spectrogram + 37.5% 18.6% | 19.4% (73) | 24.5%
phones, 17 frames
modulation spectrogram +
half-syllables, 17 frames 42.2% 19.8% 10.0% (42) 27.9%
F*focus**

Table 6.15: Distribution of error sentences across four analysis categories in the clean speech
version of the Numbers development test set. The actual number of error tokens is shown
in parentheses for the Identical-Incorrect column.

Baseline Variant Both

More More Equally
Variant (paired with Baseline) Correct Correct Wrong
RASTA + phones, 26.1% 31.9% 42.0%
17 frames
RASTA + half-syllables, 19.1% 31.5% 49.4%
17 frames
modulation spectrogram + 93.9% 37.9% 38.9%
phones, 17 frames
modulation spectrogram +
half-syllables, 17 frames 17.2% 38.5% 44.4%
**focus**

Table 6.16: The percentage of sentences where one system was more correct than the other
or where both systems were equally wrong for the Different-Incorrect sentences on the clean
speech version of the Numbers development test set.
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Baseline Variant Identical-

Only Only Incorrect Different-
Variant (paired with Baseline) || Correct Correct (count) Incorrect
RASTA + phones, 8.5% 151% | 33.2% (287) | 43.5%
17 frames
RASTA + half-syllables, 14.1% | 127% | 17.1% (157) | 58.1%
17 frames
modulation spectrogram + 15.6% 224% | 8.8% (82) | 53.2%
phones, 17 frames
modulation spectrogram +
half-syllables, 17 frames 19.1% 19.7% 5.8% (57) 55.4%
F*focus**

Table 6.17: Distribution of error sentences across the four analysis categories in the rever-
berant speech version of the Numbers development test set. The actual number of error
tokens is shown in parentheses for the Identical-Incorrect column.

Baseline Variant Both

More More Equally
Variant (paired with Baseline) Correct Correct Wrong
RASTA + phones, 37.9% 924.3% 37.9%
17 frames
RASTA + half-syllables, 25.8% 33.1% A11%
17 frames
modulation spectrogram + 33.3% 99.3% 37.3%
phones, 17 frames
modulation spectrogram +
half-syllables, 17 frames 28.1% 32.0% 39.9%
**focus**

Table 6.18: The percentage of sentences where one system was more correct than the other
or where both systems were equally wrong for the Different-Incorrect sentences on the
reverberant speech version of the Numbers development test set.
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Variant Better Variant Baseline W.E.R.

Variant Than Baseline | W.E.R. on | W.E.R. on After
(paired with Baseline) sents (words) Subset Subset Combining
RASTA + phones, 67 (269) 8.6% 37.2% 5.2%
17 frames

RASTA + half-syllables, 98 (366) 5.2% 36.3% 4.4%
17 frames

modulation spectrogram + 94 (392) 6.9% 36.0% 4.4%
phones, 17 frames

modulation spectrogram +

half-syllables, 17 frames 103 (406) 5.9% 35.2% 4.3%

**focus**

Table 6.19: On some sentences the experimental variant systems performed better than
the baseline system, with the clean version of the Numbers development test set (1,206
sentences, 4,673 words). The number of words in these subsets of sentences, selected by an
oracle, is shown in parentheses.

examining the idea of combining systems at the utterance level involved a “cheating” proce-
dure for estimating an approximate upper bound on the accuracy achievable by combining
the best output from two systems. This cheating procedure does not yield an actual upper
bound for the combining procedure described in the next section, because the combining
procedure uses more hypotheses per utterance.

In this cheating experiment the combined sentence output was created by taking the best
scoring sentence from either of the systems in each pair, with knowledge of the true answers.
Table 6.19 shows the number of sentences where the experimental system performed better
than the baseline system. The table also gives word error rates for each system on this subset
of sentences. These percentages illustrate that on a significant number of sentences the
experimental systems achieve substantially greater accuracy despite a higher overall error
rate. The table also shows that the system with the syllable-based elements (modulation
spectrogram features and half-syllable recognition units) produced the largest number of
better-than-baseline sentences. The RASTA-PLP system with half-syllable units was the
runner-up. As seen in Table 6.20, with reverberant speech the system with modulation
spectrogram features and phoneme-based units produced the largest number of better-
than-baseline sentences. The focus system, with modulation spectrogram features and
half-syllable recognition units, was not far behind.

These analyses and pilot experiments indicate that a careful combination of the outputs
of two systems may afford considerable reduction in word error rate, to a level better than
either of the constituent systems separately.
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Variant Better Variant Baseline W.E.R.

Variant Than Baseline | W.E.R. on | W.E.R. on After
(paired with Baseline) sents (words) Subset Subset Combining
RASTA + phones, 974 (1,123) 18.8% 51.9% 21.3%
17 frames

RASTA + half-syllables, 251 (968) 19.0% 53.3% 22.2%
17 frames

modulation spectrogram + || 77 ) 594 15.2% 48.1% 18.0%
phones, 17 frames

modulation spectrogram +

half-syllables, 17 frames 345 (1,393) 15.8% 50.6% 18.9%

**focus**

Table 6.20: On some sentences the experimental variant systems performed better than the
baseline system, with the reverberant version of the Numbers development test set (1,206
sentences, 4,673 words). The number of words in these subsets of sentences, selected by an
oracle, is shown in parentheses.

6.5.2 Combining

The combining procedure at the utterance level added the log likelihoods of the same
sentence hypotheses from each of two systems at the end of the decoding process. This
scheme was implemented using a sequence of three different decoders, Y0 [88] for its forced
alignment capability, Noway [164, 163, 165] for its lattice generation function, and LAT-
TICE2NBEST [166] for its lattice decoding ability.® A number of interfacing scripts glued the
programs together, enabling state desynchronization to occur over the entire utterance.

The decoding sequence used can produce a somewhat different behavior from v0. The
pruning of hypotheses is managed first by NOwAy, then by LATTICE2NBEST with a strict
upper limit on the number of distinct hypotheses. Because of the dissimilar properties of the
decoding process, these word error rates are not strictly comparable with other error rates
reported thus far using only v0, though they do represent the best performance achieved
with this approach.

The utterance combination procedure, illustrated in Figure 6.4, involved generating up
to 150 best hypotheses from each system (i.e., the baseline system and the focus system).
First, NOwAY was used to produce a lattice from each system, which was passed to LAT-
TICE2NBEST to obtain the N-best hypotheses. The combining procedure merged the two
hypothesis lists and rescored each utterance with forced alignment (via v0) using both
recognition systems. Rescoring was necessary because the sets of utterances from the two
systems were often different. The procedure added corresponding pairs of scores for each
utterance in the merged N-best list and reordered the list of utterances according to this

SRelated decoding technology is discussed in more detail in Section 3.4.
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Figure 6.4: Combination of systems at the whole utterance level.

result. The top scoring (i.e., lowest cost) hypothesis of the combined list then emerged as
the overall recognized sentence for the joined systems. The results of this procedure are
shown in Tables 6.21 and 6.22.

The combining resulted in a substantial improvement in accuracy compared with the
performance of the constituent systems with both clean and reverberant speech. The num-
bers show a 17.9% relative improvement in clean speech and a 30.0% relative improvement
for reverberant speech. These results, however, were not quite as good as the combination
scores for the syllable-level method, which restricted desynchronization to shorter intervals
and allowed the two systems to interact at an earlier stage of processing.

6.5.3 Discussion

The utterance level analysis is consistent with the trends observed at the word level and at
the frame and syllable levels.

Combining at the utterance level can be likened to two perceptual processes indepen-
dently creating complete hypotheses for the spoken word sequences; one based on phones,
the other based on syllables. A subsequent process then combines the complete set of
hypotheses with an equal weighting and produces a unified output. The improvement in
word-error rate can again be attributed to the successful fusion of two recognition systems
with divergent behavior.
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W. E. R. W. E. R. W. E. R.
Baseline Variant Condition Baseline Variant Combined
RASTA + modulation clean 6.8% 10.6% 5.6%
phones, spectrogram +
9 frames half-syllables,
**haseline** 17 frames reverb 29.3% 30.1% 20.0%
**focus**

Table 6.21: Performance results (word error rate) scores of each system independently

and after combining, at the utterance level on clean and reverberant versions of Numbers
development test set.

W. E. R. W. E. R. W. E. R.
Baseline Variant Condition Baseline Variant Combined
RASTA + modulation clean 6.7% 10.0% 5.5%
phones, spectrogram +
9 frames half-syllables,
**haseline** 17 frames reverb 28.0% 30.1% 19.6%
**focus**

Table 6.22: Performance results (word error rate) scores of each system independently
and after combining, at the utterance level on clean and reverberant versions of Numbers

evaluation test set.
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Test Baseline Frame-Level Syllable-Level Utterance-Level
Condition || phones | phones+phones | phones+half-syllables | phones+half-syllables

clean 6.7% 5.8% 5.1% 5.5%
reverb 28.0% 17.7% 16.7% 19.6%

Table 6.23: Performance results (word error rates) of baseline and combined systems for
clean and reverberant versions of the Numbers evaluation test set.

6.6 Summary

In these experiments combining reasonably good recognition systems with low error cor-
relation led to an improvement in recognition accuracy. The results are summarized in
Table 6.23. The merging of the baseline system with the focus system at the syllable-level
produced a 24% improvement in word error rate in the clean version (from 6.7% to 5.1%)
and a 40% improvement in the reverberant case (from 28.0% to 16.7%). Combining these
systems at other levels than the syllable-level also produced large increases in accuracy.

The analyses in this chapter indicate that these improvements are attributable to inte-
grating the differences in recognition behavior between the baseline system and the focus
system. The systems with syllable-based elements tended to make different errors from the
phoneme-based baseline system. Counting the number of errors where a system variant
and the baseline system recognized the same value yielded an error correlation measure,
referred to as “Identical-Incorrect.” This represents one method of coarsely quantifying
the “sameness” of the errors between the two systems. This measure certainly does not
reflect the full spectrum of behavioral differences between two systems. Its value lies in
summarizing a considerable amount of information relevant to combination strategies in
a few values. Tables 6.24 and 6.25 show the results of calculating this Identical-Incorrect
value for the baseline system paired with the focus system as well as with each of the three
supplemental variants for both clean and reverberant versions of the Numbers development
test set. The percentages in these tables represent the fraction of total error tokens that
fall under the Identical-Incorrect category. The columns corresponding to Tables 6.24 and
6.25 are highlighted in the main body of this chapter in boldface.

In each column from syllable level to utterance level, the tables show that the focus
system has the smallest number of Identical-Incorrect errors.” These figures support the
observation that the behavior of the focus system is largely complementary to that of the
baseline system. Incorporating syllable-based elements appeared to promote divergence
in recognition behavior and help create systems that can be combined towards an overall
improvement in accuracy.

"For frame-level combination, the systems were constrained to be based on phoneme-oriented units only.
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**focus**

Frame- Syllable- Word- Utterance-
Variant (paired with Baseline) Level Level Level Level
RASTA + phones, 20.9% 42.7% 43.6% 43.4%
17 frames
RASTA + half-syllables, N/A 93.3% 94.9% 20.0%
17 frames
modulation spectrogram + 14.8% 920.5% 91.5% 19.4%
phones, 17 frames ' ' ' '
modulation spectrogram +
half-syllables, 17 frames N/A 13.4% 14.1% 10.0%

Table 6.24: The Identical-Incorrect values, as a percentage of total error analysis tokens,
for each of the system variants paired with the baseline, at each of four stages. Reported
for the clean speech version of the Numbers development test set.

**focus**

Frame- Syllable- Word- Utterance-
Variant (paired with Baseline) Level Level Level Level
RASTA + phones, 38.2% 37.0% 38.9% 33.2%
17 frames
RASTA + half-syllables, N/A 99.5% 94.9% 171%
17 frames
modulation spectrogram + 18.6% 12.6% 13.6% 8.8%
phones, 17 frames ' ' ' '
modulation spectrogram +
half-syllables, 17 frames N/A 9.7% 11.0% 5.8%

Table 6.25: The Identical-Incorrect values, as a percentage of total error analysis tokens,

for each of the system variants paired with the baseline, at each of four stages. Reported
for the reverberant speech version of the Numbers development test set.
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6.7 Conclusion

Combining experimental, syllable-based systems with the baseline system improved the
recognition accuracy of Numbers over that of the individual systems alone, as can be seen
in Table 6.23. These combined results are significantly improved over the baseline at the
0.05 significance level.® Analyses and comparisons of the systems individually and in pairs
suggests that this benefit is due to the differences in recognition characteristics between
the systems. When the error correlation between two systems is low, as quantified by the
Identical-Incorrect measure, the systems appeared to complement each other, mitigating
weaknesses and enhancing strengths.

The addition of syllable-based information helped to create systems with both reason-
able recognition performance and disparate error characteristics by emphasizing different
properties of the acoustic signal. The modulation spectrogram features, developed by Kings-
bury and Greenberg, promoted divergence in errors. The half-syllable unit also added to
the dissimilarity between systems, but not as much as did the features. A lower Identical-
Incorrect value resulted between the baseline and the experimental alternatives with more
syllable-based elements, shown in Tables 6.24 and 6.25. The focus system, with both mod-
ulation spectrogram features and the half-syllable recognition unit, was the most consistent
across analysis levels in having the smallest proportion of errors identical to the baseline.

Combining this system with the baseline at the syllable level produced the overall best
error rate for both clean and reverberant versions of the Numbers test sets. The improve-
ment is also slightly greater than with the frame-level combination, a statistically significant
effect (p < 0.05) for reverberant speech, with development test set data. With the reverber-
ant version of the evaluation test set, the positive effect is not significant. The improvement
observed with reverberant speech with this combining method is significantly larger than
that for utterance-level combining. The major difference between this strategy and that
at the shorter frame or longer utterance level was the added, heterogeneous structure pro-
duced by synchronization at the ends of syllables, which could vary considerably in length.
The frame-level and utterance-level combination methods had more homogeneous, fixed
interval synchronization properties. The error-rates for the frame-level combination scheme
were almost as low as for the syllable-level, however, as shown in Table 6.23. The frame-
level combination scheme had an implementation that was considerably simpler than the
syllable-level approach.

Combining strategies that involve a common beginning for each syllable, such as com-
bining at the frame and syllable level, allow for the possibility of using syllable onset infor-
mation from Chapter 4 during the combining process. From the implementation point of
view, the frame-level combination method can integrate this information most directly. At
the syllable level, syllable onset information is less readily merged into the HMM recom-
bination strategy® used. Incorporating syllable onsets would double the already enormous
HMM models and neural network activation files required by the syllable-level combination
implementation. For combining at the utterance level, where the two streams can become

8Gignificance testing used normal approximations to binomial distributions and used a Z-score to test
whether the two distributions were significantly different.
°HMM recombination is described in more general terms in Section 3.5.
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completely desynchronized, the syllable onset information must be incorporated into the two
constituent recognition systems before the combining stage. Although not pursued here,
using syllable onset information can make a further improvement in the overall accuracy of
these systems.

This chapter explored combining the baseline system with the focus system at three
levels: frames, syllables, and whole utterances. Combination methods varied from the very
simple (frame level), to the somewhat more involved (syllable level), to the complex (utter-
ance level). Each of the different combining levels has separate advantages and disadvan-
tages, yet combining at any of the levels showed significant improvement over using a single
system by itself. This suggests a possibly useful, more general hypothesis for combining
systems, not limited to syllable-based investigations: given multiple recognition systems,
each with reasonably good performance and low error correlation characteristics, merging
the probabilities at some level can improve speech recognition performance over that of the
individual, constituent systems.
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Chapter 7

Discussion and Conclusion

Many of the basic brain mechanisms underlying human speech processing are still poorly
understood. There is some evidence, however, that speech perception incorporates informa-
tion related to the temporal properties of syllables. This observation suggested a strategy
for automatic speech recognition, that of combining syllable-based information with a well-
established phoneme-based speech recognizer. Combination and merging paradigms are
not new; research along similar lines has been pursued at least since the early 1970s. The
work described in this thesis has attempted to capitalize on the most recent research ad-
vances by using feature analysis methods newly developed by colleagues at ICSI and by
pursuing combination strategies at several separate stages in the recognition process for
greater overall performance. These experiments demonstrate the potential for improving
speech recognition accuracy using systems and procedures that incorporate syllable-based
information. These methods were effective for a modest-sized pilot task; work remains to
develop efficient versions of these techniques for large vocabulary versions.

This chapter begins with a summary of the thesis. Section 7.2 discusses the implications
of these results in detail and Section 7.3 lists the contributions made by this thesis to
automatic speech recognition. Section 7.4 explains the future possibilities for this work,
including the issue of large vocabulary tasks. The thesis concludes with some general
reflections on the field of automatic speech recognition and its relation to this work.

7.1 Summary

This thesis began with a discussion of the role of the syllable in the identification and
segmentation of speech. A short review described some of the syllable’s function in lexical
access in human perceptual systems. A literature search revealed that the syllabic properties
of speech are highly controversial with, as yet, no definitive consensus. A study of syllable
usage in conversational speech showed that a representative sample of casual speech (of
considerable size) was relatively simple to describe with syllables and that the syllable
may be an effective representational and organizational unit. This led to reconsidering
the syllable for automatic speech recognition systems, which revealed both advantages and

disadvantages for ASR.
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‘ System H Error Rate ‘

no onset information (baseline) 9.1%
onset used with threshold 8.2%

Table 7.1: Performance results (word error rates) with and without acoustically-derived
onsets.

The exposition continued with a discussion of the background of the ICSI speech recog-
nition system and the Numbers task, the basis for all the experiments in this thesis.

Experiments incorporating syllable-based information into speech recognition began
with integrating acoustically estimated syllabic onsets into a speech recognition system.
The chosen methodology involved the design and implementation of a decoder with a sepa-
rate syllabic level. “Cheating” experiments (using artificial onsets) showed that hints about
the syllable segmentation of the speech input could substantially decrease the overall word
error rate of the speech recognition system, even if the onsets were determined with only a
modest degree of accuracy. Acoustically-estimated (non-cheating) onsets, based on acoustic
features developed by Shire and Greenberg [184], were incorporated into the speech recog-
nition system resulting in a 10% relative improvement in accuracy with clean speech (OGI
Numbers), as shown in Table 7.1. A method for incorporating onsets without the use of a
special decoder was later developed and shared with colleagues who applied these ideas to
Broadcast News, a large vocabulary corpus, and achieved a similar improvement in accuracy

[33].

These experiments indicated the potential of using syllable-based information at other
levels. Investigating this involved the development of a focus experimental system with
syllable-based, long-time-span elements at the levels of feature analysis, neural network
output and recognition unit. The experiments also involved the development of three sup-
plemental system variants, each with a different subset of syllable-based processing elements.
The supplemental systems provided contrast and additional context for comparisons and
analyses. The substitution of features or recognition units based on syllable-length, long
time spans into the baseline system caused recognition performance to degrade moderately
for clean speech and did not improve accuracy for reverberant speech. Using a longer con-
text window helped improve recognition performance to some degree for the reverberant
version of the Numbers corpus.

Inspection of the recognition output suggested that the experimental variants made
different errors from the phone-oriented baseline system. That is, the variants produced
recognition results with a low degree of error correlation with the baseline system, as as-
certained by the error analysis described in Chapter 5. Pairing the baseline with the focus
system, which incorporated the largest number of syllable-based elements, turned out to
produce the lowest proportion of Identical-Incorrect errors (a measure of error correlation)
over several levels of analysis, as shown in Table 7.2. The combining experiments involved
merging systems at three stages of the decoding process: at the frame level (i.e., using the
neural network outputs), at the syllable level and at the whole-utterance level. Combin-
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Variant Frame- Syllable- Word- Utterance-

(paired with Baseline) Level Level Level Level
RASTA + phones, 38.2% 37.0% 38.9% 33.2%
17 frames

RASTA + half-syllables, N/A 99.5% 94.9% 171%
17 frames

modulation spectrogram + 18.6% 12.6% 13.6% 8.8%
phones, 17 frames ' ' ' '
modulation spectrogram +

half-syllables, 17 frames N/A 9.7% 11.0% 5.8%

**focus**

Table 7.2: The proportion of Identical-Incorrect errors, as a percentage of total error analysis
tokens, for each of the system variants paired with the baseline, at each of four stages.
Reported for the reverberant version of the Numbers development test set.

Test Baseline Frame-Level Syllable-Level Utterance-Level
Condition || phones | phones+phones | phones+half-syllables | phones+half-syllables
clean 6.7% 5.8% 5.1% 5.5%

reverb 28.0% 17.7% 16.7% 19.6%

Table 7.3: Performance results (word error rates) of Baseline and combined systems.

ing the baseline system with the appropriate syllable-based system at any of these levels
produced significant reductions in error rates (shown in Table 7.3) of up to 24% relative
reduction for clean speech! and 40% relative reduction for reverberant speech. This sug-
gested that the approach was effective at improving the accuracy and robustness of the
speech recognition system, especially with respect to reverberation in the speech signal.

7.2 Discussion

The research in this thesis was conducted along two major themes: 1) using syllable-based
information in ASR and 2) using combination methods to incorporate additional informa-
tion into a well-established, phoneme-based speech recognition system. The end result was
an increase in recognition accuracy, beyond that achieved by the constituent systems singly.
Attaining this research goal required that these two major points be developed in tandem.
Experiments that considered only one of these two themes did not display the advantages

'A different baseline was used in the syllable onset experiments than in the combining of syllable-based
systems experiments.
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observed by integrating both. Studies with the Numbers corpus showed that the perfor-
mance of the individual syllable-based systems represented a degradation compared to the
baseline, while combining systems that were similar and that did not use much syllable in-
formation exhibited little of the marked improvements obtained by the best combinations.

7.2.1 Implications for Syllables in ASR

Researchers have generally assumed that there is a single basic unit of speech recognition.
The arguments are often phrased in terms of “the syllable is right and the phoneme is
wrong” or vice versa. These experiments and exploratory studies found that using syllable-
based, long-time span information design elements in speech recognition elicited a kind of
behavior different from phoneme-based, short-time span based systems. The longer-time
span elements, however, caused a degradation in the representation of fine detail, probably
due to the smearing of information over a longer time span. Hence, the best methodology
was a combination of both systems. This simultaneously capitalized on long-time-span
integration and short-time-span detail. The best result was obtained by the combination at
the syllable-level. In terms of the literature discussion in Chapter 2, it appears that both
syllables and phonemes are important units for automatic speech recognition.

Each of the recognition paradigms expressed in these experiments can be interpreted in
terms of a dynamic association between particular units and hypothesized speech intervals.
In the experiments with syllabic onsets, the speech interval was the length of a syllable
and the associated units were phones and syllable onsets. Similarly, combining systems
at the syllable-level can be interpreted as first hypothesizing syllable-length segments in
the speech signal, then attaching phone and half-syllable units to these intervals. At the
frame and utterance level, the experimental setup established the speech intervals a prior:
as the 25-ms frame and whole utterance, respectively. The experimental data gathered so
far suggest that the dynamic segmentation of the speech signal at the syllabic level offers
the greatest potential for significant gains in ASR performance.

Chapter 2 also related a number of advantages and disadvantages of using syllables
in speech recognition. These experiments have touched upon a portion of the advantages
cited in favor of syllables in ASR, namely those using syllable segmentation information and
integrating speech information over syllable-length intervals. However, this thesis does not
address several other syllable-related factors for ASR, such as the issue of using syllables
to incorporate prosody. The systems developed also do not explore the potential savings in
storage and execution time by sharing syllables, or of the potential improvement in search
efficiency by exploiting the regular structure of syllables. The positive results reported in
this thesis may be taken to indicate the latent benefit in incorporating additional properties
of syllables.

In the experiments in this thesis, incorporating syllables has led to improvements in ac-
curacy despite certain realized complications and other potential problems. The ambiguous
nature of syllable boundaries is probably the most important factor limiting improvement
due to using syllable onsets. However, Cook and Robinson were able to use the same syl-
lable onset scheme to a similar, positive effect in a large vocabulary task, thus showing
that the benefits are consistent and the method is scalable [34]. The ambiguity of syllable
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boundaries did not directly affect the recognition performance of the systems with syllable-
based elements at the signal processing, neural network context window and recognition
unit level since these systems did not enforce rigorous temporal boundaries. Consistent,
albeit phonologically approximate, syllabification of the words was sufficient for these ex-
periments. Therefore, it may be possible to obtain improvements for other recognition
tasks by using syllable-based information even without a perfect definition of the syllable
or syllable boundary, and without waiting for the controversy surrounding the syllable to
be resolved.

7.2.2 Implications for Combination in ASR

Increasing the number of parameters available to a recognition system without adding struc-
ture produced diminishing returns. The combination of syllable information with phone
information enabled the more effective use of additional recognition system parameters.
Long-time-span based information, most notably the modulation spectrogram features of
Kingsbury and Greenberg, was key to developing a recognition system that produced sig-
nificant improvements when combined with the baseline. The modulation spectrogram
and half-syllable unit representations provided recognition results with errors different from
those of the phone-based system.

Error analysis and the Identical-Incorrect metric broadly characterized the potential for
improvement through combinations of multiple recognition systems. Table 7.2 shows the
proportion of Identical-Incorrect errors committed by both the baseline and the experimen-
tal system variants. The number of such errors was lowest for the focus system, which had
the most syllable-based design aspects. This suggests a paradigm of first developing sys-
tems that have reasonably good performance and low error correlations with one another,
and then combining their outputs. This strategy may be particularly effective in improving
robustness to surprises in the test set (i.e., where the test set has characteristics different
from the training set).

Comparative error analysis is applicable in more general pattern classification tasks
as well. Similar analyses can help coarsely quantify the differences in behavior between
classifiers into a few meaningful numbers and thereby highlight possibilities for improving
accuracy. The distribution of errors in the analysis categories can suggest the most promis-
ing combination strategy. For example, if a comparison between two systems showed that
they produced entirely complementary errors (i.e., they never got the same word wrong),
the desired combination strategy would be quite different than if the two systems always
recognized the same words incorrectly, but recognized them in a disparate fashion.

7.3 Thesis Contributions

Humans can understand utterances from the Numbers corpus with near perfect accuracy in
both clean and moderately reverberant conditions. Clearly, there is much work remaining
in improving automatic speech recognition for even this simple task.

This thesis contributes to the advancement of computer science by presenting a viable
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method for improving speech recognition by machines. The ASR community seems to be
generally inclined against using the syllable for English due to unresolved linguistic issues
and the considerable success of the phone. The experiments discussed show that improve-
ments are possible using certain aspects of the syllable even in the absence of complete
answers to the linguistic questions. The results of this work also contribute to the mount-
ing evidence that combination methods have significant potential for improving speech
recognition.

This research has incorporated several ideas derived from, or consistent with, theories of
human speech perception, including the use of syllable onsets and syllable-length intervals
and the combination of coarse processing elements. The experimental results underline the
usefulness of clues from human audition for the interpretive understanding and development
of automatic processing.

On a personal note, my work has been to develop, refine and extend the concepts and
suggestions originally shared with me by Professors Morgan and Greenberg. I like to think
that many of the ideas expressed in this thesis came from synergistic collaboration with
my professors and my colleagues, rather than a one-way transferral. A major portion of
my time was devoted to developing the infrastructure for experiments to demonstrate that
syllable-based information can improve recognition accuracy. Speech recognition research is
conducted largely through experiments; much of my effort has been invested in performing
a large number of different trials. In this work I have greatly benefited from the atmosphere
of mutual cooperation in ICSI’s Realization Group; there is a great tradition of sharing
ideas and implementations. Therefore, it may be instructive to attempt to list my specific
contributions concretely.

In the beginning, I created the first scripts for the initial gathering of data about the
use of syllables in conversational speech, before the study was later extended and expanded
by others. For the work with syllable onsets, I designed and implemented a special purpose
decoder, conducted numerous trials with incorporating Michael Shire’s (ICSI) syllable onsets
and designed alternatives to the special decoder for our distant colleagues to use. For the
work with syllable-oriented recognition, I implemented the half-syllable unit representation
and trained the syllable-based recognition systems. I conducted numerous experiments with
these systems individually and in combination to examine their behavior. I derived and
implemented error analysis techniques from the work of other researchers. Brian Kingsbury
and Nikki Mirghafori (both of ICSI) helped with the implementation of the more successful
combination methods, and Brian also contributed to running some of the later experiments.

This work entailed the implementation of considerable supporting software for incor-
porating syllable onsets, syllable-based recognition, combining at three different levels and
automatic error analysis. These items can be used by others to pursue additional avenues
in syllable-based recognition, or to analyze and combine two arbitrary systems. Some of
this material is already being integrated into the research projects of colleagues at ICSI.

7.4 Future Extensions

Inevitably, there are parts of the story that remain incomplete.
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7.4.1 Further Optimization

As mentioned in Chapter 5, the recognition systems that incorporate syllable-based elements
have not been optimized as fully as the mature phoneme-based system. Experimental
methods and time constraints limited the individual refinement of the systems. Further
optimization possibilities include:

Using Improved Features

A revised version of the modulation spectrogram features is under development by Kings-
bury and Greenberg [105]. The latest version of the features outperforms the older version
used in this thesis, particularly for the reverberant test case. Using the refined version of
the modulation spectrogram features may help to reduce the absolute error rate for the
combined systems.

Using Improved Recognition Units

The half-syllable unit is a reasonable and effective starting point for representing syllables
in speech recognition, but further study may reveal a more appropriate unit, such as whole
syllables, or smaller parts of syllables, as have been used by others.? Further work along
these lines may improve the performance of the syllable-based systems and therefore of the
combined systems overall.

Selecting And Improving a Single Combination Strategy

Exploring combination strategies at different levels with the same systems has limited the
degree to which the individual systems could be optimized. The latitude available for im-
proving individual systems within a combination expands as the time between combination
points increases. At the frame-level, refinements are restricted to those that do not cause
mismatched phone recognition behavior. For direct comparison of error rates, the frame-
level constraint limited the design of the system for combining at higher levels.

Selecting a single level of combination would allow extra optimization appropriate at that
level. If the combination is to be performed at the frame level, system improvements would
be limited to the areas of feature extraction and neural network architecture and training.
The improvements should not alter the form of the output probabilities. The syllable
level does not require common units since some amount of desynchronization between the
recognition outputs of the two systems can be absorbed during the combination process.
This means that training labels and recognition units can be independently optimized, so
long as the recognition process can still synchronize at the endpoints of syllables. At the
whole utterance level, the combining method imposes no optimization constraints. Each
system can be optimized in an independent fashion since the recognition systems interact

2More information on previous use of different kinds of syllable-based information is described in Chap-
ter 2.
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only at the endpoints of an utterance. However, performance results on reverberant tests
exhibited the least improvement of the three methods.

7.4.2 Scaling to Larger Vocabulary Tasks

Numbers is a practical and useful corpus for this experimental research, but it possesses a
rather small lexicon, comprising only 32 words. The results derived from this small corpus
may still extend to larger vocabulary tasks because of the general acoustic character of the
corpus. Scaling up to larger tasks will entail addressing the following issues:

Dynamic Syllabification for Syllables Onsets

The extensibility of incorporating syllable-onsets is indicated by the work of colleagues with
a 65,000-word vocabulary task [33]. Nonetheless, there are unanswered questions relating
to the application of syllable-onsets to larger vocabularies. The pilot studies using onsets
derived from knowledge of the correct answers (the “cheating” experiments) indicated a
larger potential for improvement than has been realized. A likely impediment is the inade-
quacy of the current definition for syllable onset and the way it is currently incorporated on
the basis of isolated words. Context-dependent syllable models may be useful in addressing
this issue.

Syllable-level Combination with Large Vocabularies

For experiments with combining different systems, the best overall error rate was found with
combinations at the syllable level. The particular method of combining at the syllable-level
(HMM-recombination), however, requires additional implementation issues to be resolved.
Even for the Numbers task, a combination of only two systems with limited desynchroniza-
tion between streams required hundreds of probabilities per frame and word HMMs with
thousands of states.

A method that avoids the creation of massive HMMs would ease the computational
resource problem. FEric Fosler-Lussier (of ICSI) has been working on a two-level Viterbi
decoder [54]. The two-level decoding algorithm [171, 159] was historically set aside in favor of
the more efficient single-pass Viterbi decoding algorithm. The two-level approach, however,
is more amenable to combination schemes. The likelihood for each word is calculated for
every possible time alignment. Thus, combining scores from two systems at the ends of
words is straightforward. Combination can be implemented without resorting to HMMs
with thousands of states or other complex means, keeping the demand on computational
resources at moderate levels. Combining at the ends of syllables within words would require
an additional level of processing, because phone probability information would first have to
be decoded into syllables, before the syllables could be decoded into words.

The method of combining recognition systems at the frame-level is fully extensible to
larger tasks since the procedure merges probabilities at the phone/frame level. The error
rates found by combining at the frame level were similar to the best error rates found at
the syllable level and required much less implementation effort.
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Combining at the utterance level does not involve such a close integration of the decoding
procedure. Increasing the size of the vocabulary and the length of the utterances would
require longer N-best lists to achieve good performance, and thereby lengthen the execution
time of the complex rescoring process. This problem could be mitigated by using phrases
or between-pause segments instead of entire utterances.

Number of Unique Syllable Units

Large vocabularies will incur a greater number of distinct syllable-based targets. As the
number of different training targets increases, the number of training patterns for each
target decreases, potentially reducing the accuracy of the probability estimation process.
As the size of the task syllabary increases, issues such as similar sounding syllables and
resyllabification phenomena arise. These may exert a much larger negative impact than
in Numbers. These problems, however, mirror those of context-dependent units such as
triphones. Strategies similar to ones developed for those units can be used to handle the
increased complexity of a large number of syllables.

Efficiency and modularity might solve some of the scaling problems of syllable-based
approaches. For example, instead of one massive neural network, using several smaller
networks, perhaps arranged in a hierarchy of graduated generality, can perhaps be used
to manage the complexity. Fritsch suggested and implemented this strategy for context-
dependent acoustic models [58].

The Syllable-based Speech Processing Team of the 1997 LVCSR Workshop [67] devel-
oped a means of dealing with the problem of augmenting a syllabary for a large vocabulary:
they used syllable models for the more frequently occurring words and handled the re-
mainder with standard phoneme-based models. The team reported some success with this
method. Such a strategy addresses the need for accommodating unusual syllable types,
such as “scrounged” and “strength.” Fxotic syllable types can be described most straight-
forwardly in terms of phonemes.

7.4.3 Further Combining

This thesis described the use of syllabic information for ASR in two phases: the incorpora-
tion of syllable-onset estimates and the combining of syllable-based systems with phoneme-
based systems. One direction for future work is the further combination of these two types
of information. As mentioned previously, the syllable onset experiments can be related to
the combining experiments at the syllable-level through an interpretation based on syllable-
length intervals. Both methods can be said to hypothesize syllable-length intervals in speech
and attach various features to the segments. Using syllable-onset information to constrain
decoding in the component recognition systems of a combination may show a larger im-
provement than either method alone. Additional speech unit values could be attached to
the same hypothesized, syllable-length interval. This further permutation requires closely
matching the syllabary in each of the three constituent recognition systems. Since this
question depends on the specific definition of the syllable, further research is necessary.
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7.4.4 Parallel and Concurrent Computing

As noted in the introductory chapter, this work arose out of studying the syllable with a view
to developing parallel decoding algorithms for a vector microprocessor. The syllable has
several properties that are desirable for vector computing: 1) Syllable-based models may be
conducive to removing conditional branches during execution and 2) Syllable-based models
are a natural organizational unit for reducing redundant computation and defining the
search space. Although the work in this thesis does not explore parallel computing further,
some of the conclusions of this work are applicable to concurrent processing. Namely,
combining information from multiple streams is an obviously concurrent operation. FEric
Fosler-Lussier’s two-level decoder [54] may map neatly onto a multiple processor machine,
since the probabilities of different words (or syllables) are computed independently.

As mentioned in Chapter 3, some recent advances in speech recognition technology have
been attributed to general improvements in hardware performance [32]. If this is the case,
using parallel and concurrent machines should be highly advantageous to speech recognition
research.

7.5 Reflections on the Future of ASR Research

The field of automatic speech recognition is entering a new stage of maturation. As a
result, the research paradigm used is undergoing certain transitions. Integrating separate
knowledge sources and merging systems that run in parallel will probably play a more
substantial role in future investigative directions.

Not long ago, commercial ASR products were limited to fairly simple systems. More
complex systems (e.g., large vocabulary, continuous speech) systems were confined to re-
search laboratories. At the same time, the state of the art was basic enough that every
researcher could create a personal speech recognition engine from scratch. Since then, re-
search systems have increased dramatically in complexity and size. Without evidence using
competitive systems, research results are often regarded as incomplete. Small research
groups are currently encountering significant difficulties in developing their own recognition
systems that are competitive with the offerings of larger, established players. Many small
groups develop their systems with the help of HTK (Hidden Markov Model Tool Kit) [212],
the CSLU Speech Toolkit [22], or STRUT (Speech Training and Recognition Unified Tool)

[15], which provide many of the processing elements needed.

ASR has also grown into viable commercial products. As the market for speech recogni-
tion applications enlarges, consumers will begin to drive the industry. The product features
desired by users, rather than basic science interests, will dictate the research agenda of many
organizations [128]. For example, the commercial viability of using speech recognition for
information retrieval has focused interest, and funding, on the aspects ASR appropriate
for this task. Customers will more strongly influence the direction of research than will
academia.

A similar evolutionary process occurred in the field of microprocessor design. Not very
long ago, microprocessors had only tens of thousands of transistors and research groups
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commonly designed and fabricated special purpose chips for local interests. Today, micro-
processors are a consumer commodity; directions in new chip designs are driven by market
forces. State of the art microprocessors are highly complex with millions of transistors
and are continuously increasing in complexity. Researchers in academia very rarely create
complete microprocessors from scratch because of the massive expenditure in resources nec-
essary to achieve competitive performance. Instead, they focus on specific angles, such as
low-power operation, and build simplified prototypes. Complete chips are most often left
to large corporations to fully develop.

In ASR, academic recognition systems can still compete with industrial systems. Univer-
sity systems, such as Cambridge University’s HTK and connectionist groups, and Carnegie
Mellon University’s group, are still among the front runners in organized evaluations [35].
Because state-of-the-art performance is considered critical, research directions have suffered
from a certain degree of inertia. Innovative new systems are usually couched in small pilot
studies which suffer in comparison to larger, more mature systems. Attempting radical
departures from the established mode has become increasingly difficult [17]. There are ini-
tiatives aimed at combating this trend: some research organizations attempt to contribute
by attaching their work to existing, state-of-the-art systems. Boston University, for exam-
ple, entered the 1997 ARPA Switchboard Evaluation in collaboration with an industrial
partner [149].

Collaborative efforts between research partners will figure more prominently in the future
of automatic speech recognition. Joint efforts can be integrated in many different ways. Two
common methods are illustrated in this thesis: 1) adding an auxiliary knowledge source to
the main recognition system (the syllable onset work) and 2) computing information in
parallel and merging the results (the combining of systems work). These kinds of methods
have already given researchers an opportunity to take advantage of strengths and soften
weaknesses within a flexible structure. Integrating information from various sources is
probably the paradigm the human brain uses.

Interfacing among parts in collaborative work is a difficult engineering issue by itself,
as shown by the efforts of the Verbmobil engineers. The Verbmobil project in Germany
involved, at one point, 29 separate sites with 150 researchers and engineers [21]. The inte-
gration of the efforts was a large and time-consuming task, aside from the speech recognition
aspects. The syllable can play a part in smoothing many kinds of interactions because of its
function as a basic unit. The elemental role which the syllable is believed to play in many
separate parts of the human auditory system can possibly be exploited to help with these
engineering concerns.

This kind of collaborative research activity can be seen in the compiler community.
Modern compilers have also become ponderously large, with many similar performance
evaluation issues as speech recognition software. The National Compiler Infrastructure
project attempts to address some of these problems: the project uses SUIF (Stanford Uni-
versity Intermediate Format) as a platform for supporting collaboration between compiler
researchers [187]. SUIF aims towards a modular architecture that is easily extensible and
maintainable. Some ASR research groups have already taken steps towards similar frame-
works for speech recognition (for example, the public domain speech recognition technology
effort headed by Joe Picone [152]).
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Of course, not every research interest can fit into a combination or interface model. Some
directions will necessitate the development of complete recognition systems from scratch.
Extensive alliances also raise many logistical and political issues. Despite these drawbacks,
collaboration through various forms of combining will probably become a more common
occurrence in speech recognition research.

7.6 Conclusion

In this thesis I have shown that incorporating syllables into an established automatic speech
recognition system can improve continuous speech recognition accuracy and robustness
for a small vocabulary corpus. Syllable-oriented recognition extracted a different aspect
of the speech signal from the phoneme-oriented recognition which led to greater overall
performance when used together. Experiments with Numbers resulted in up to a 24%
relative improvement for clean speech and up to a 40% relative gain for reverberant speech.

The improvement in recognition accuracy in the combined systems is attributed to the
influence of syllable-based information in creating systems with strengths and weaknesses
complementary to those of the baseline, phoneme-based system. In particular, modulation
spectrogram features played a large role in creating systems with divergent errors. The use
of the half-syllable unit further promoted the dissimilarity of errors, although to a lesser
extent than the features. At each level of combination (frame, syllable and utterance),
coarse error analyses showed that the system with the largest number of syllable-based
design elements was also the system with the lowest error correlation with the baseline
system.

The results of these experiments showed that the simplest method, frame-level combina-
tion, achieved a large proportion of the maximum gain observed.® Syllable-level combining
achieved a slightly higher accuracy, but required additional complexity. The syllable-level
and utterance-level combining methods admit considerably more possibilities for individu-
alized optimization than does frame-level combination, because only similar outputs can be
combined at the frame-level. Combining at the utterance level was the least effective for
degraded speech, but the combination of systems across all levels resulted in performance
improvements over the baseline.

Speech recognition has become a product in demand; there is considerable motivation
to solve the problems that keep speech recognition applications from universal deployment.
The work in this thesis uses the syllable unit and combination methods to take a small step
towards that goal.

Even the systems combined at the frame-level incorporated signal processing and neural network time
spans that were roughly syllabic in length.
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Appendix A

Recognition Units

This appendix lists, in table format, the phone set, half-syllable set and canonical pronun-
ciations used in the recognition systems discussed in this thesis.
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A.1 1ICSI 56 Phoneme Set
‘ ASR Phoneme Symbols! ‘

ICSI56set | IPA | Example || ICSI56set | IPA | Example
pel p° | (p closure) bel b® | (b closure)
tel t° | (t closure) dcl d® | (d closure)
kel ke | (k closure) gcl g° | (g closure)
p p pea b b bee

t t tea d d day
k k key g g gay
ch tf choke dx r dirty
f f fish jh dz Jjoke
th 0 thin v v vote
s s sound dh 0 then
sh i shout z z 700
m m moon zh 3 azure
em m bottom n n noon
ng )y sing en n button
nx r winner el ] bottle
| | like T T right
W W wire v j yes
hh h hay hv h ahead
er 3 bird axr o butter
iy i beet ih L bit
ey e bait eh € bet
ae ® bat aa a father
a0 o) bought ah A but
ow 0 boat uh @® book
aw u boot ix i debit
aw a® about ay ay bite
oy oY boy ax =) about
h# (silence)

!Table derived from table for TIMIT, from Eric Fosler-Lussier, originally from Charles Wooters.
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A.2 Half-Syllable Units

Half-Syllable Units?

First Halves ‘ Second Halves
s-eh v-ih eh ih-n-tcl
t-iy v-ax iy-n ax-n
n-ah n-tcl-t-iy | eh-v iy
t-ih v-ah ah-n-tcd  ah
f-ih ey ih-f-tel ih-n
eh w-ah ey-tcl ax-n-tcl
th-er tcl-th-er er-tcl ah-n
s-ah v-eh eh-n eh-v-n
ih d-iy ih ey-dcl
s-ih s-tcl-t-iy | ih-kel ey
d-tcl-t-iy ~ hh-ah eh-dcl-d  ih-kcl-k
d-r-eh hv-ah ih-dcl-d ih-dcl-t
d-r-ih d-er er-dcl-d ah-n-dcl
d-eh d-ih eh-dcl er-dcl
d-ow r-eh oW ih-dcl
tcl-t-w-ae  t-w-eh eh-1-f ae-1
tcl-t-w-ow  tcl-t-w-ah | ow-v ah-1-v
tcl-t-w-eh  n-ay eh-1-v ay
n-iy n-dcl-d-iy | ay-n ih-n-dcl
v-uh n-d-iy uh-n-dcl  eh-n-tel
n-ih ah er ax
z-ih tel-t-w-ax | ey-tcl-t ey-t
th-ih r-iy ih-kel-k-s  ay-n-tcl
s-tcl-t-ih f-ow OW-T ay-tcl
t-eh tcl-t-eh ih-k ao-r
r-ah z-1y ow-r-del  ow-r-tcl
t-w-ah iy ao-tcl ao
r-ow th-r-t-iy ow-r-del  ow-r-tcl
tcl-th-r-iy  th-r-iy uw
f-ao tel-t-uw
l-eh l-ah
ax ow
f-ay s-t-iy

2Half-syllable units were derived from word pronunciations, where each word was partitioned into syllables
automatically. Each syllable was divided at the middle of the nucleus.

Since the definition of the syllable is poorly specified, any list of candidate syllables probably has some
linguistic inconsistencies.
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A.3 Numbers Pronunciations (caenonical syllable based)

‘ Canonical Syllable Pronunciations® ‘
oh ow
zero z-ih r-ow
one w-ah-n
two t-uw
three th-r-iy
four frao-r
five fray-v
six s-ih-k-s
seven s-eh v-en
eight ey-t
nine n-ay-n
ten t-eh-n
eleven ix l-eh v-en
twelve t-w-eh-1-v
thirteen th-er t-iy-n
fourteen f-ao-r t-iy-n
fifteen f-ih-f t-iy-n
sixteen s-ih-k-s t-iy-n
seventeen s-eh v-en t-iy-n
eighteen ey t-iy-n
nineteen n-ay-n t-iy-n
twenty t-w-eh-n-t-iy
thirty th-er t-iy
forty frao-r t-iy
fifty f-ih-f t-iy
sixty s-ih-k-s t-iy
seventy s-eh v-en t-iy
eighty ey t-iy
ninety n-ay-n t-iy
hundred h-ah-n d-r-ax-d
[uh] ax
[um] ax-m

?Canonical pronunciation and syllabification in 1CSI56 phonetic orthography. Syllabification approxi-
mated from CELEX data.
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