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Chapter 1IntroductionShakespeare:Thou shalt be freeAs mountain winds: but then exactly doAll points of my commandTo the syllable.Come, follow.Automatic Speech Recognition:1Bell shall be freeas mountain winds: but then exactly twoall points of my commandto this global.COM, follow.This thesis is about putting the syllable back into automatic speech recognition.For human beings, speech recognition is natural, robust, and e�cient; speech is an in-tegral part of communication between people. Every day the human speech recognitionsystem performs feats of computation, �ltering out ambient environmental noise from thespeech signal, compensating and executing online adaptation for distortions due to speakereccentricities, and rendering the result into words and sentences using complex contextualsearches. Precisely how human beings perform speech recognition is not yet known. Al-though the physiological basis of hearing is slowly yielding to investigators, there is stillmuch that is a mystery.1An experienced dictation software user, Adam Janin (at ICSI), read this passage from Shakespeare'sThe Tempest to a commercial automatic speech recognition (ASR) package. The task is not entirely fair tothe ASR system. It had never been used to transcribe anything like Shakespeare before. The system is welltrained to this particular user, however, who employs it routinely in the course of his work.13



Feature Extraction Probability Estimation ten hundredDecoding

front end back endFigure 1.1: Diagram of the major parts of a typical automatic speech recognition process.Although language modeling is also a major part in ASR systems, it is not shown forsimplicity.Despite not completely understanding the neurophysiology of speech recognition, re-searchers have made substantial progress towards creating arti�cial methods of understand-ing speech, particularly over the last 30 years. Automatic speech recognition (ASR), how-ever, is only just beginning to function well enough to be useful to the mass-market con-sumer. Designing and building arti�cial means of recognizing speech has proven to bedi�cult due to issues of complexity and robustness. Factors such as variability in speech,di�erences in speakers, environmental noise, confusibility of words, e�ects of prosodics,coarticulation, and perplexity trouble human speech recognition far less than the best au-tomatic systems. Generally, a laboratory recognition system that performs well on arti�cialtest data will have considerable, unforeseen di�culties with real voice input after deploy-ment in the �eld{ although both situations are equally intelligible to humans. Successfulcommercial applications often require additional tuning, data collection and analyses after�eld deployment to adjust systems for the di�erences between laboratory test sets and ac-tual usage [188]. Ideally, this additional work should not be necessary.2 Although speechrecognition science has evolved greatly, there is still much improvement necessary beforerecognition by machines approaches the capabilities of human listeners.1.1 Incorporating the Syllable into Speech RecognitionFigure 1.1 is a diagram of a typical automatic speech recognition engine.3 A signal process-ing method �rst analyzes the spoken speech input. The process divides speech into regulartime-frames and for each frame generates an array of numerical features. A probabilityestimator then uses the resulting acoustic features to generate posterior probabilities foreach of the output categories, usually phones. The decoder, using dynamic programming,integrates the output of the probability estimation stage with additional information aboutthe task to yield words and sentences.Current speech recognition systems tend to employ signal processing and probabilityestimation techniques that focus on comparatively short sections of time. The use of smallsegments has the advantage of being able to encapsulate and distinguish minute changesin the speech signal. Long-time-span trends in the speech signal may be more di�cult2Robustness to unexpected characteristics of the speech signal is further discussed in Section 3.1.3Current speech recognition technology is discussed in Chapter 3.14



to identify explicitly and could be inappropriately weighted compared with other sourcesof speech information. Longer-time phenomena also a�ord fewer example patterns in acertain amount of training data for stochastic learning techniques. Since there is evidencethat human speech has structure visible only at longer time intervals, approaches thatconsider longer time-spans present promising research avenues. To examine how to improveautomatic speech recognition, the research described in this thesis looks to human speechperception for inspiration. In particular, the exploration focuses on the long-time-span unitknown as the syllable, and the incorporation of certain types of syllable-based informationinto more standard speech recognition technology.It is not known what sort of basic unit, or group of units, is used in human speechperception, but the syllable is one of a handful of strong contenders in a hotly-debatedcontroversy.4 Evidence from psycholinguistics and phonology suggests that syllable-level,long-time-span information (on the order of about 250 ms) may be crucial for speech un-derstanding by human beings, particularly under adverse conditions [75].For speech recognition by machines, information integrated over syllabic intervals mayexhibit more robustness to unexpected characteristics of speech signals, that is, propertiesthat are not represented well in the training information for the recognition system. Whilethis integration can lose short-term detail, the combination of a syllable-based system with aphoneme-based system may have advantages over the individual systems alone due to theircomplementary strengths and weaknesses.5 From an engineering point of view, a morenatural organization of word pronunciation models, based on the syllable, may help reduceredundant computation and storage of words. The syllable may also provide a means forreadily expressing long-time-span characteristics in the speech signal such as coarticulation,stress and other e�ects of prosody. In spite of the evident advantages, popular automaticspeech recognition systems for English do not usually include the syllable as an explicitrepresentational unit, though the concept of the syllable has played signi�cant roles in ASRfor other languages.6This thesis describes two threads of research into incorporating information based onsyllable-length time-spans into a recognition system for English. Illustrated in Figure 1.2,one thread explored using estimates of where syllables began (syllable onsets) as segmen-tation points; the other looked into improving the identi�cation of words using informationcalculated over entire syllable-length intervals. By using a longer time segment, the machinelearning algorithms in the recognition mechanism can potentially learn characteristics andrelationships integrated over larger time spans of speech. Each experimental series culmi-nated in combining the syllable-related information with a phoneme-based system to givean overall improvement, particularly with reverberant speech.The concept of combining multiple sources of recognition information may very looselyapproximate human perceptual processes. The experiments in this thesis that involvedcombining syllable-oriented and phoneme-based recognition are consistent with the ideathat human speech understanding involves combining multiple representations of speech4The role of the syllable in human speech perception is discussed more fully in Section 2.1.5Combining systems is discussed in detail in Chapter 6.6Chapter 2 discusses why typical ASR systems for English do not include an explicit representation ofthe syllable. 15
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5 & 6:Figure 1.2: Diagram of the major parts of the automatic speech recognition process withproposed syllable elements indicated.information, for example in the developing theories described in [74, 75, 78].1.2 Results OverviewThe goal of this thesis is to investigate the utility of syllable-level information in combi-nation with standard phoneme-based techniques for improving recognition accuracy androbustness to unexpected properties. The course of this study involved the development ofcomplete speech recognition systems for the Numbers corpus [30] incorporating long-time-span, syllable-oriented information.The Numbers corpus comprises utterances from speakers saying numbers from theiraddresses, telephone numbers and zip codes over telephone lines in a conversational, uncon-strained manner. Its relatively small size and its variety of acoustic qualities and speakersmake it ideal for this work.7 The Numbers task represents the problem of recognizing asmall vocabulary task in a speaker-independent fashion under adverse conditions. Such asituation might arise in an information kiosk near a street, or for a speech recognition appli-cation accessed via a cellular telephone. Accuracy and particularly robustness to unexpectedvariations in the speech signal are important factors in the usability of such applications bythe general public.The �rst series of experiments focused on using the beginnings of syllables (syllableonsets) as cues for segmenting speech at the syllable level. The experimental methodologynecessitated the design and implementation of a syllable-based decoder to incorporate syl-lable onset information. Pilot experiments (with correct onsets) showed that knowledge ofthe beginning points of syllables had the potential to improve performance by as much as38%. Using estimated syllabic onsets (from actual speech [184]) in a phoneme-based system7The Numbers corpus is discussed in more detail in Section 3.2.16



realized a 10% relative improvement in accuracy over the baseline system.8The second series of experiments focused on developing recognition systems using syllable-based recognition units and acoustic features computed over syllable-length intervals [80,105, 107].9 The analysis of the experimental results showed that while these systems didnot achieve a signi�cantly lower error rate than the phoneme-based system on the test data(several of the systems performed signi�cantly worse), in many instances they could suc-cessfully recognize an utterance that the baseline, phoneme-oriented system could not. Thesyllable-based systems had strengths and weaknesses that were somewhat complementaryto those of the phoneme-based system.The �nal series of experiments involved integrating the syllable-based systems with thephoneme-based system using combination strategies that merged two recognition systemsat one of three di�erent stages of the recognition process. Each of these strategies resultedin somewhat di�erent recognition performance, but in the best case (syllable-level combi-nation) these experiments achieved an approximately 20% relative improvement in worderror rate for clean speech and a roughly 40% relative improvement in word error rate forreverberant speech.10The experiments illustrated that, for the Numbers corpus, using syllable-based informa-tion in combination with traditional phone-based information enhanced the overall accuracyand robustness to reverberation of the ASR system. Thus, syllable-based information andcombination strategies emerge as viable areas for future ASR research, both individuallyand when used together.1.3 Thesis History and OutlineThis project originated as an e�ort to vectorize the speech decoding algorithm for a multiple-unit version of the SPERT vector microprocessor system [201], as suggested by ProfessorJohn Wawrzynek. Vectorization is most e�cient when an algorithm accesses contiguousmemory locations in succession; the introduction of pointers and conditionals impairs theachievement of maximum performance. Professor Steven Greenberg suggested that sylla-bles may have many advantageous organizational, computational and storage properties,in addition to being a fundamental unit of human speech recognition. Thus, to make thedecoding process easier to vectorize, I began investigating using syllables instead of wordsor phones as a basic organization unit for recognition. Professor Nelson Morgan suggestedthe focus on syllable-time-span units and features in speech recognition as a re�nement ofthe basic broad approach, and he also suggested the combination strategy. The results ofthe subsequent investigation are described in the chapters that follow. While I myself havenot returned to the question of vectorizing speech recognition algorithms, some of the workdescribed in this thesis has natural extensions to parallel and concurrent processing. Inparticular, combining multiple systems is inherently concurrent and Eric Fosler-Lussier's8These experiments with syllabic onsets are discussed in Chapter 4.9The development of these syllable-oriented systems is discussed in Chapter 5.10These results with combining systems are discussed in Chapter 6.17



two-level decoder implementation11 for combining multiple streams is highly parallel at theword level [54].The rest of this document begins in Chapter 2 with a discussion of syllables as theypertain to speech recognition both for humans and for machines, along with a summary ofpast and contemporary work along similar lines by other researchers. Chapter 3 contains ashort overview of the history and state of the art in speech recognition and includes techni-cal details about the ICSI system which serves as the platform for the experiments of thisthesis. Chapter 4 describes e�orts to use syllable onset information to reduce word errors ina phoneme-based recognition engine. This work was previously published in [210]. The nextchapter, Chapter 5, details the ideas, design and implementation of several speech recog-nition systems which incorporate syllable-related elements, and reports the performance ofeach. Chapter 6 relates the analysis of the di�erences and similarities in the experimen-tal systems and how a syllable-oriented speech recognition system was combined with aphoneme-based, comparatively short-time span system. The chapter details encouragingexperimental results with both clean and reverberant speech. Part of this work was pre-viously published in [209]. Chapter 7 contains a summary of this project, discusses theadvantages and disadvantages of the syllable-based system and draws some possible con-clusions from this work. In particular, it contains some re
ections on issues pertaining tothe extension of these ideas to large vocabulary tasks.

11Based on Sakoe's algorithm [171] as described in [159].18



Chapter 2The Role of Syllable-basedInformationSyllables have been described as thrusts of the chest muscles of respiration, peaksof sonority, pulses of sound energy, necessary units in the mental organizationand production of speech, a group of speech movements, and a basic unit ofspeech perception. [147]This chapter discusses the syllable as a possible basic unit of speech recognition, for whichthere is some empirical psychoacoustic support in the case of humans and some engineeringjusti�cation in the case of machines striving to imitate human abilities. For the purposes ofthe research described in this thesis, a \basic unit" of speech recognition is the intermediateform of speech information around which much of the recognition processing is organizedfor human beings or for machines. The general opinion of phoneticians and psycholinguistsis that there is indeed such a unit with relatively few distinct types.1 For this research abasic unit is ideally an output of acoustic-phonetic processing and an input to the lexicalprocessing stages. A signi�cant portion of the processing operates on this unit. A basic unitmust be small enough to express variety in the manifestation of speech without an explosionin the number of representations, yet be large enough to be computationally e�cient andpossess properties that allow it to function as an organizational unit for lexical access.Over the last 40 to 50 years, researchers have proposed many di�erent types of inter-mediate units. Some of the possibilities include sub-phoneme units, phones, phones withright or left context, biphones, diphones [178] and variations [36], dyads or transemes [44],avents [134, 136, 208], triphones [7, 175], demisyllables [60], syllables [59], whole words, andphrases.Current research in psychoacoustics and psycholinguistics suggests that the syllablemight be a basic unit of human speech perception. Researchers have hypothesized thatthe syllable, or a related long-time-span unit, may be the key to how humans process andintegrate information from the speech signal. From an engineering standpoint, the syllable1Frauenfelder reviews some of the current thinking about the interface between the acoustic-phoneticlevel and the lexical level in [55]. 19



may be an e�cient, useful intermediate speech unit that can potentially reduce redundantcomputation and storage in automatic speech recognition. Higher-level knowledge of spokenlanguage can be expressed fairly naturally and compactly in terms of syllables; yet syllablesare relatively short and have constrained characteristics. In spite of the potential bene�ts,the syllable is not often an explicitly represented concept in modern automatic speechrecognition (ASR) systems for English.There are many questions still unanswered about the role of syllables in human language,and many practical di�culties in using syllables as units of automatic speech recognition.This chapter discusses the role of the syllable in speech recognition, for both humans andmachines. Section 2.1 �rst reviews research literature about the syllable's role in humanspeech perception. Section 2.2 details the properties of syllables in conversational AmericanEnglish. The third section of this chapter discusses the history of the idea of using thesyllable as an intermediate speech unit in recognition by machines and its advantages anddisadvantages. This chapter concludes with a discussion of the relationship of this materialto the experiments described later in this thesis.2.1 Syllables in Human Speech RecognitionMuch research into automatic speech recognition by machines takes guidance from thehuman speech communication mechanism. Even though researchers do not necessarily aimto completely mimic the human process, understanding some measure of speech recognitionby humans is relevant for any study. How are syllables used by the human speech recognitionsystem? The answers to this question are quite controversial and strongly debated in thelinguistic and psychoacoustic communities.Continuing Kahn's analogy [101], studies aimed at deciphering the role of the syllable inhuman perception can be thought of as akin to measuring the movement of an airplane inturbulence and attempting to infer Newton's laws of motion and gravitation. Kahn blamesmuch of the controversy among linguists on the nature of the syllable on disagreement aboutwhich facts are most fundamental and require explanation �rst.The literature on the nature of the syllable in human speech is overwhelming in size.The exposition in this section is limited to a concise summary of current thinking aboutthe perception of syllables in human speech recognition as pertains to the area of automaticspeech recognition and the research described in this thesis. The focus is on perceptualstudies, rather than the study of speech generation or production, since the eventual aim isautomatic speech recognition by machines. The more abstract arguments in the linguisticresearch community are not covered.2.1.1 Syllable as Basic UnitOver the past few decades it has become accepted wisdom that the process of mappingbetween acoustic signals and sequences of perceived sounds in humans is complex; listenersdo not process speech in a linear fashion, one acoustic segment at a time like \beads on astring." Instead, acoustic information at one instant of time is relevant to several phonetic20



segments, and a single phonetic segment a�ects a broad region of acoustic information.Speech perception is therefore highly context-dependent. The research community also hascome to realize that recognizing a word is more involved than a simple mapping betweenacoustic-phonetic properties and an entry in the mental lexicon. It is more likely to be arather complex, non-linear process with many heterogeneous subprocesses [81]. That theperceptual sequence is not strictly bottom-to-top is supported by the observation that lis-teners use high-level context to resolve confusions. For example, Savin and Bever presentedwords such as \cat" and \hat," mixed with background noise su�cient to cause listeners,hearing these words without context, to mistake one for the other. When given the context\it is time to feed the," listeners reported hearing \cat," even if this word is incorrect [173].In a developing theory of speech perception, Greenberg proposes that the speech recognitionmechanism is a many-layered process with dozens of coarse representations that combinein a non-linear manner in order to e�ect the robust and e�cient speech recognition abilityof human beings [74].The community at large feels that no single perceptual unit (based on phonemes, syl-lables, or words) has proven to be the ideal basic unit for all auditory situations [144].Nevertheless, researchers generally hypothesize that a few representations dominate the or-ganizational units in the human speech perception system. The two major contenders forprincipal sublexical perceptual unit are the syllable and the phoneme. Although there isprobably no single unit that is the sole representation of sound in speech processes, thereis considerable evidence that the syllable is a major representative form, arguably moreso than the phoneme. It has been suggested that many prosodic properties such as pitch,accent and stress are most naturally expressed in terms of syllables. Some researchers hy-pothesize the syllable to be the primary unit of segmentation in speech and the basic unitof lexical access in the human brain.One point of evidence in favor of the syllable comes from the observation that syllablesare identi�ed more easily than phonemes by untrained, naive listeners. Rozin, Poritskyand Sotsky found that children with reading disabilities could be taught to read usingChinese characters [168]. They attributed their success to the mapping of the characters toa higher level than the phoneme, and suggested that the syllable be used to facilitate readinginstruction. Anecdotal evidence suggests that normal children are able to identify syllabicsegments at a younger age than phone segments. Mehler, Dommergues and Frauenfelderspeculate that phones are identi�able only after subjects learn to read and write withgraphemes (i.e., letters of the alphabet) which can then be related to phonemes [127]. Avariety of speech pathologies can be characterized more easily in terms of syllables thanwith phoneme-based expressions. Syllable-based explanations have been used in explainingthe misarticulations of children, hearing de�ciencies, and other anomalies [147].Many studies have tried to distinguish the roles of units such as syllables and phonemes inhuman speech recognition. Studies aimed at determining the basic unit of speech perceptionhave often produced inconclusive results; it is very di�cult to formulate experimental setupsthat isolate di�erent human perceptual factors. Because of the complexity and inseparabilityof the elements in the speech recognition process in humans, experimental data can besubject to di�ering interpretations. Also, conclusions are further impeded by the di�cultyof extrapolating from laboratory conditions to ordinary everyday speech. The experimental21



results and conclusions obtained by researchers are often 
atly contradictory. Rather thantaking any single experiment as de�nitive, this thesis sides with the view that the bodyof research regarding the syllable must be considered as a whole. The literature supportsthe syllable as a prominent component of the human speech perception system, given thisholistic view. Below are summaries of some of the more popular paradigms and resultsrelevant to the issue of automatic speech recognition and the work described in this thesis.2.1.2 Syllable Identi�cationOne of the more popular methods for studying the basic identi�cation units of speech inhumans is the \reaction time" experimental paradigm. This sort of experiment assumesa correlation between how quickly a human subject can recognize and respond to speechstimuli and how fundamental the recognized unit is to the perception process. These ex-periments may take many forms, but they tend to follow the framework of asking subjectsto react as quickly as they can to the perception of syllabic or phonetic targets in an ar-ti�cially crafted carrier utterance. Experimenters hope that the correlation between thechosen experimental variable and reaction time is elemental and simple to characterize.This methodology is di�cult to formulate in an unassailable manner that is general-izable to greater context. Critics assert that a variety of e�ects are not addressed in theinstantiations of this experimental paradigm. Some experiments use a very small set ofspeci�c syllables and phones. Others use sets of target syllables or phones that may not beequivalently perceived by humans owing to e�ects such as linguistic level or acoustic char-acteristics, which are independent of their relationship to the basic perceptual unit. Forexample, syllables of di�ering durations, or which have onsets with di�ering speeds of tran-sition, may obscure the experimental data if categorized similarly. There are also extensivecriticisms of the criticisms. The variance in experimental observations and the contradic-tions in conclusions brings to mind the old fable of blind men, each feeling a di�erent partof an elephant and attributing radically di�erent characteristics to the animal.Nonetheless, there is a considerable body of literature based on this paradigm in thesearch for the perceptual units of the human speech system. The experimental results can beroughly divided between those that �nd faster reaction times for syllables than phones andthose that �nd faster reaction times for phones than syllables. Massaro summarizes severalstudies that found subjects recognized syllables faster than phones [124]. Among these arethe works of Savin and Bever [173], who found subjects responded faster to targets thatwere complete syllables than to phones from a syllable, and of Warren [197], who reportedthat identi�cation times for monosyllabic words and nonsense syllables were shorter thanfor phone clusters which were in turn shorter than for individual phones. Warren alsoobserved that the majority of his subjects failed to recognize the /n/ phone in the word\and" when asked to identify /n/s in the context of a sentence. This suggested that themonosyllabic word \and" had a perceptual identity separate from its constituent phones.Several reaction-time studies in multiple languages are summarized in [180, 181, 182] whichindicate faster reaction times for syllables in French, Spanish and Portuguese, though Seguisuggests that the syllabic boundaries of English may be too ill-de�ned to extend the generalconclusion to English. 22



Frauenfelder summarizes a considerable body of literature pertaining to the \interfacebetween acoustic-phonetic and lexical processing," concentrating on reaction time experi-ments [55]. In Frauenfelder's summary, the opposing viewpoint of the phoneme triggeringfaster reaction times than the syllable is supported through experimental evidence by sev-eral studies. In their experiments, Norris and Cutler attempted to enforce full analysis oftargets by supplying stimuli that di�ered from the target only by one phone, for example\bat" and \bam." They claimed that the faster reaction times for syllables were merelyartifacts of the experimental design of others [143].What do these contradictory �ndings mean and what accounts for them? Kahn warnsnot to regard all facts as equally important and deserving of interpretation [101]. To gen-eralize about the nature of the syllable through a relatively small number of results from asingle experimental paradigm is a fundamentally unsafe methodology. The results of theseexperiments depend critically on the experimental procedure. The di�erence in reactiontimes for \faster" versus \slower" is often less than 150 ms, and removing the in
uenceof higher order thinking is acknowledged to be very di�cult. Therefore, any conclusionsand interpretations from the results of these reaction time experiments must be taken incontext, as a small part of a broader body of empirical results from diverse experimentalparadigms.Reaction time experiments and the theories developed around them tend to regardthe question of sublexical perceptual units as a choice between phoneme-based units andsyllable-based units. The view that there are multiple sublexical, basic units appears to beless popular among researchers investigating this issue. This multi-unit view, however, is themost likely to account for all the disparate experimental �ndings and it is the perspectiveunderlying this thesis.While reaction time experiments have been very popular and have generated con
ictingconclusions, other experimental paradigms have been used in studies that contribute to theoverall assessment of the syllable as a candidate basic identi�cation unit. These experimentsdepart from reaction time experiments and instead follow more of a \masking" model.Researchers manipulate the stimulus with some sort of interference, either through directobfuscation or through indirect means, and then assess the intelligibility of the resultingsignal by asking subjects to identify the targets they perceive.Psychoacoustic experiments where researchers replace phones or other short sectionsin stimulus utterances by noise or silence address the importance of the individual phoneand other segments of speech. In \silent-center" experiments, the nucleus of a syllableis replaced with silence with minimal e�ect on recognition accuracy. This is known as atype of auditory illusion called \phonemic restoration." Subjects often do not notice aphone is missing if the interval has been replaced with some sort of �ller, such as whitenoise or a cough, thus lending support to the idea that humans infer phonemes as parts ofsyllables after the syllable has been categorized.2 In [96], the authors designed a variationof the silent-center experiment where the two halves of a syllable, separated by silence,are provided by di�erent speakers, for example male and female. The results indicate thatsyllable onsets and o�sets, taken as pair, are su�cient to derive the vowel in a syllable and2For a summary, see [198]. 23



that continuity of speech formants3 is not necessary. With a related experimental paradigm,Furui's experiments with the identi�cation of Japanese syllables also indicated that vowelnuclei are not needed for accurate vowel-of-syllable perception [64]. He found that thesame initial part of the syllable contained crucial information for both vowel and consonantidenti�cation.Massaro's summary [124] also discusses the experiments of Cherry and Wiley, in whichby passing to subjects only the strongly voiced, high energy speech sounds, they were ableto degrade speech perception to very low intelligibility [25]. The speech was rendered moreintelligible, almost up to the level of the original, by adding a low level of white noise into thesilent gaps between the voiced speech sounds. Even though phonetic information was notadded, the insertion of noise made the speech more like normal speech in nature. Greenberginterprets their report as evidence that the addition of the noise restored a portion of themodulation spectrum of the original acoustic information, and that this patterning bears asimilarity to the syllabic temporal patterning of speech [77].Such studies indicate that human perceptual processes make considerable use of in-formation spanning larger time-units than the single phone, and that a particular phoneconstituent is relatively unimportant. Ganapathiraju et al. discuss an analysis of data fromhand-transcriptions of Switchboard data [76, 186] that showed that the deletion rate forsyllables was below 1% while the deletion rate for phones was 12% [67]. The authors tookthis as supporting evidence for the relative stability of the two types of recognition unit.Warren asserts that acoustic elements form \temporal compounds" and that the humanperceptual system can identify these compounds more readily than constituent sounds [199,200, 198]. Warren et al. found these temporal compounds to be longer than the typicalphone length through experiments with loud, clear, repeating vowel acoustic elements con-catenated together. They presented sequences of concatenated vowels to listeners and askedthe listeners to identify the order of the phones. The studies showed that if the individualvowel durations were about 200 ms, listeners accomplished the ordering task easily; howeverif the vowel durations were below about 125 ms then the ordering task was impossible. Sincethe average duration of a phone in speech is about 70 ms [79], this points to a larger tempo-ral e�ect than phoneme identi�cation. Further studies showed that while subjects could notreliably give the ordering of phones at below 125-ms levels, they could nevertheless easilydistinguish between di�ering sequences even when the durations of individual items were asshort as 10 ms. Additionally, the experimenters found that subjects perceived these streamsof concatenated vowel sounds in terms of syllables and words with consonants not actuallypresent in the acoustic signal. These �ndings indicated that the initial stage of speechperception is not phoneme recognition, and that resolution into sequences of constituentphones is not necessary for accurate speech recognition.Massaro [124] also notes that the speech synthesis community has found that usingconcatenated phones is ine�ectual for producing intelligible speech. In contrast, speechsynthesis achieved early success using units that were at least one-half syllable in length.For example, AcuVoice Inc., San Jose California, uses stored recordings of syllables in one3\Formant" refers to resonances of the vocal tract as evidenced by speech sounds. The term also refersto formant frequency. 24



of the more natural sounding text-to-speech systems [32]. Although some researchers usedthis observation as evidence of merging phonemic in
uences, Massaro interprets this asadditional support of the syllable as a basic perceptual unit.Although there is considerable unresolved controversy, experimental evidence weighs infavor of the syllable playing a substantial role in the identi�cation process in human speechperception.2.1.3 Syllable SegmentationSeparate from the issue of how well humans can recognize speech fragments is the questionof the fundamental time scale on which the recognition process operates. At one extreme,one could suppose that the auditory system processes acoustic information in real-time andthat sound information streams into the brain which performs immediate and continuousanalyses of the world without any segmentation. Or, one can imagine the brain with anenormous bu�er that takes in the information from the auditory system and stores it untilthe acoustic input is \�nished" and then transfers the whole pattern to the brain. Forhuman recognition to distinguish individual speech items, some kind of bu�er in the brainis assumed to hold the initial part of a pattern long enough for the token to \complete" andfor analysis and recognition to occur. There are several indications that this pattern bu�eris syllable-length in duration.O'Shaughnessy summarizes a number of perceptual experiments that implicate a syllabic-duration perceptual unit, in work that is closely related to reaction-time experiments [148].Among these are \shadowing" experiments (where subjects try to repeat what they hearas quickly as they can), in which delays by subjects are typically the length of a syllable orword. These results put the upper bound on the size of the processing bu�er at about thelength of a single syllable or word.In the 1970s, Massaro used recognition-masking experiments to determine the percep-tual unit of analysis in the human speech recognition system [123, 124, 125]. The generalparadigm in these experiments involved the presentation of pairs of arti�cially crafted stim-uli (tones or speech sounds) separated by a variable silent interval. The extent to whichthe second \masking" stimulus alters listeners' perception of the earlier target is knownas the \backward-masking e�ect." Massaro took the correlation between the human sub-jects' ability to recognize the initial stimulus and the amount of silence between the �rststimulus and the masking stimulus as an indication of the length of the perceptual unit. Ifthe masking stimulus is presented too close to the initial stimulus (i.e., within the percep-tual processing interval) and it can not be integrated, the masking stimulus interferes withthe storage and analysis of the initial stimulus image in preperceptual form. Analogoustemporal phenomenon are known to exist for human visual processes. One version of thisexperimental paradigm uses pure tones produced by an oscillator, which has the advantagethat the speech and language centers of the human brain are less involved. This can reducethe amount of indirect supposition about perceptual processes.In Massaro's studies, he found that subjects' recognition performance of the initialstimulus improved as the silent interval between the target and the masking stimulus was25



increased to 200-250 ms, after which performance reached a plateau. He concluded thatpreperceptual auditory storage and processing does not exceed 250 ms. From this Massaroconjectured that the perceptual unit must be the syllable, which has an average duration ofroughly 200-250 ms in conversational speech, though he notes that longer syllables probablybecome multiple perceptual units. It is important to note that Massaro de�ned the syllablein terms of duration. This di�ers from the de�nition that used by linguists in most of theirexperiments, which does not respect the temporal extent of a syllable. These �ndings areconsistent with the conclusions of both Todd and Warren. Todd mentions that humansare sensitive to time intervals of about 300 ms, intervals that match the upper limit of theduration of syllables fairly well [189].Massaro speculates that the e�ect of phonemic restoration, where noise can be imper-ceptibly substituted for a phone in a syllable, can be explained in terms of preperceptualauditory image storage. Since the human subjects believed they actually heard phones notpresent, this processing must occur well in advance of the conscious level. Massaro suggeststhat the inserted noise was probably grouped into the perceptual unit of the syllable duringpreperceptual storage. Since it did not disrupt the storage and analysis of the syllable, itwas incorporated into the classi�cation of the unit. On the basis of the remaining rele-vant acoustic features, subjects could infer the correct syllable, then inversely identify thephonemic constituents.Interrupted (or \gated") and alternating (or \ear switching") speech experiments havealso shown that the critical duration for intelligibility appears to be about the length ofa syllable. In the interrupted speech experiments, partly summarized in [124], half ofthe speech signal was eliminated by replacing intervals of speech with silence, where theresearchers varied the length of the intervals. These experiments showed somewhat varyinglengths for the duration of the perceptual unit, but all corresponded approximately to theduration of syllables rather than phones. In alternating speech experiments, the speechshifted from ear to ear of the subject through headphones. When the alternation was nearthe syllabic rate, the recognition abilities of the subjects were disrupted. Much faster ormuch slower alternation rates had less e�ect on speech perception by human subjects.Segui reports that subjects identify target sequences more easily if they are containedwithin the same syllable, rather than spread across syllables, supporting the idea thatthe perceptual mechanism segments the speech signal into syllable-like units [181]. In thework of Mehler et al. [127] and Cutler, Mehler, Norris and Segui [38], subjects were askedto identify a consonant-vowel (CV) or consonant-vowel-consonant (CVC) target in carrierwords with either CV or CVC structures as the �rst syllable (for example, in French,detecting /pa/ or /pal/ in \pa-lace" or \pal-mier"). French subjects identi�ed targets thatformed a complete syllable faster than targets spread across di�erent syllables, suggestingthat the syllable was indeed a unit of speech segmentation. English and French subjectsreceiving both English and French stimuli revealed that French subjects showed a syllablee�ect in both languages and English subjects showed a syllable e�ect in neither. Cutleret al. speculated that this could be because English contains a considerable amount ofambisyllabicity.44Ambisyllabicity, the sharing of a single phone segment between two separate syllables, is discussedfurther in Section 2.3.3. 26



Miller and Eimas [130] showed more evidence of the e�ect of duration on recognition;they demonstrated experimentally that the identi�cation of phonetic targets is dependenton the length of the carrier syllable, not just on the phone itself. The work described in[153] also showed that contextual e�ects such as duration a�ected the perception of stimuliand the identi�cation of the initial sound, indicating that long-time span information onthe order of syllable-length intervals in
uences perception, even for non-speech stimuli (withspeech-like qualities).These experiments, taken as a whole, suggest that the syllable-length interval, aside fromthe actual speech content contained within, plays a crucial role in human speech perception.2.1.4 Syllables in Lexical AccessAt higher levels of human speech processing, the formulation of sound experiments that testthe role of processing elements becomes increasingly complex. It is very di�cult to drawconclusions from such indirect evidence and to separate the many contributing functions.This section discusses lexical access, i.e., how smaller units are mapped to words and sen-tences for ASR. Since the work in this thesis does not directly address this problem, only afew representative experiments are presented.Reaction time experiments have been used as support for the hypothesis that the syllableis the primary unit of lexical access. Segui summarizes studies investigating this idea anduses his experiments in French [180, 181], partly discussed above, as support. In thesestudies the subjects appeared to identify the �rst syllable of an isolated polysyllabic wordbefore the lexical access occurred.In the studies of Warren et al., described earlier, subjects presented with streams ofconcatenated vowels recognized these in terms of syllables and words, perceiving illusoryconsonants as required to organize the sounds [199, 200, 198]. The syllables recognized werealways legal syllables in English, the subjects' native tongue, though the syllables takentogether were not necessarily legal words. Warren infers that humans have an internal\syllabary" (a set of acceptable speech syllables) and use this for lexical access.Anecdotal evidence suggests that humans recall words as a sequence of syllable-levelpatterns rather than by individual phones. Ladefoged [113] mentions that in the historyof writing, many languages have emerged in which there is one symbol per syllable, as inJapanese. From an intuitive standpoint, `tip of the tongue' phenomena, where humanspartially recall words by their syllable structure even though the phonemic constituentsthemselves are not retained, and word substitution slips, in which the number of syllablesin the word is preserved, also imply a syllabic basis for lexical access. Ladefoged talks aboutthe speci�c patterns that occur in slips of the tongue; a syllable initial consonant exchangeswith a syllable initial consonant, or a syllable �nal consonant exchanges with a syllable �nalconsonant. Such syllable-oriented observations lend further weight to the conjecture thatthe syllable is a basic unit of lexical access in human speech perception.27



2.1.5 SummaryThis section discusses evidence for the syllable as a basic unit of human speech percep-tion. There is considerable disagreement among researchers as to whether the syllable orthe phoneme is more elemental to the speech recognition process. This disagreement hasbeen fueled by con
icting results in reaction time experiments, which have supported bothpositions. Other experimental results from di�erent methodologies provide additional sup-port for the syllable as a basic unit for the identi�cation, segmentation and lexical accessof speech, without entirely superseding the phoneme. The viewpoint of this thesis is thatboth units, the syllable and the phoneme, play basic, coordinated roles in the phenomenonof human speech recognition.2.2 Syllables in American EnglishSyllable A unit of speech for which there is no satisfactory de�nition. [113]There is no common boundary at which the syllables join, but each is separateand distinct from the rest. [2]2.2.1 De�nition of SyllableDespite a lengthy discussion of the role of syllables in human speech recognition, a rig-orous de�nition of the syllable has yet to be presented owing to the lack of an adequatespeci�cation. Engineers, however, need a functioning description in order to implementspeech recognition systems. Syllables are notoriously di�cult to de�ne precisely, especiallyin American English, although human beings appear to have an intuitive understanding ofthem. It is agreed that, in loose terms, a syllable is constructed about a nucleus that isusually the most intense component, and generally the sole obligatory constituent. Mostsyllables begin with an onset which typically consists of a single consonant, but may containtwo or three consonants. Many syllables end with a coda of a single consonant, but codascan also comprise two or three consonants.De�nitions striving for more technical accuracy are problematic. Every de�nition seemsto have exceptions and caveats or is unsatisfying for practical implementation. For example,consider the following two popular de�nitions: 1) A syllable is a vowel between optionalconsonant clusters. This, the most popularly understood rule, has many exceptions, sincea syllable does not necessarily contain a vowel. A syllable can instead have a \syllabicconsonant" that functions as the nucleus of the syllable, for example, the /l/ in \noodle"or the /s/ in the onomatopoeia \psst." 2) Syllables correspond to peaks of sonority. Sonor-ity is roughly analogous to the energy contour. Peaks of sonority are therefore analogousto regions of greater sound energy and are thought to correspond to the nuclei of sylla-bles. This de�nition allows consonants to take the place of syllable nuclei [147], but thesonority-based speci�cation is vague in some cases and can lead to confusions. For exam-ple, the unmistakably monosyllabic word \spa" is considered by some to have two peaks ofsonority [113]. 28



Mechanically segmenting speech into syllables is also di�cult. The \maximum onsetprinciple," de�nes the onsets of syllables (the initial consonant clusters) to be as longas possible within the context of the word. For example, the word \estate" would bepronounced as \e-state," according to this rule. The /s/, however, often sounds as if it isshared between syllables. Speakers can pronounce the word as \es-tate," if the �rst syllableis stressed, an exception to the maximum onset principle. Treiman and Zukowski note thatfor the word \estate" the maximum onset principle con
icts with the sonority de�nition,that the word \state" does not exhibit a rise in sonority from the onset to the nucleus [192].For the experiments in this thesis, segmentation of phonemic transcriptions follows thecomplex hierarchical set of rules in [101], which may not be perfect in every instance, butcan be consistently applied.The list of exceptions to postulated rules continues inde�nitely. There is a large num-ber of almost-complete technical de�nitions of \syllable," and phonetic segmentation algo-rithms. This is largely due to the continuing debate about the exact nature of the syllableand its role in human speech recognition. Ladefoged [113] and Ohde and Sharf [147] furtherdiscuss the vagaries of human syllabi�cation and the shortcomings of various attempts atde�ning syllables.People intuitively understand the concept of the syllable and can usually identify thegross syllabic characteristics in a word, such as how many syllables there are and theapproximate locations of their boundaries. But listeners cannot precisely describe howthey accomplish this feat. Even for words such as \meal" where the number of syllablesis uncertain, non-experts can discuss, without technical detail, the ambiguous nature ofthe number of syllables of this word, merely by sounding the word out and using primitivequantitative arguments. In contrast to the phoneme, the human concept of the syllableseems to be universally understood, even by untrained and naive listeners.As a technical term, the word \syllable" is highly over-used (\overloaded," in program-mers parlance). Linguists, phoneticians, engineers and other researchers use the word \syl-lable" and can intend very di�erent meanings. From an abstract point of view, a syllablenecessarily contains a group of phones and has some acoustic manifestation. A syllable canbe discussed in terms of the properties of its constituent sounds, or in terms of its productionby a speaker. From a perceptual point of view, a person can believe he hears a syllable thatwas actually omitted, for example in the case of a rapid speaker deleting the end of wordsor whole function words such as \a," \of," \to" and \the." The listener, unless allowed tolisten very carefully and/or view spectrograms, perceives syllables in mirage form, wherethe canonical acoustic cues normally associated with the syllables are not present in thespeech. Listeners can use these illusory syllables for lexical and semantic access.5 Theseobservations suggest that the syllable exists as a perceptual concept apart from a purelylinguistic de�nition. As alluded to during the discussion of the importance of syllabic tem-5The perception of these illusory syllables does not happen as easily or frequently as with the perceptionof unexpressed phonemes. In the word transcriptions of the 4-hour phonetically transcribed subset of theSwitchboard Transcription Project [76], the most frequently deleted words (which also were monosyllabic)were \a," \of," \to" and \the." Speci�cally, \a" was deleted in 2.1% of its total occurrences, \of" was deleted1.3% of the time, \to" was deleted 1% of the time and \the" was deleted in 0.5% of its total instances. Thesepercentages are considerably smaller than those reported for phone deletion in [78]. Further discussion ofillusory syllables can be found in [52, 53]. 29



poral structure, some syllables that are linguistically de�ned as single units fall outside thenorm for syllabic duration. These should, perhaps, be thought of as two or more syllablesfrom the durational point of view, for example, the monosyllabic word \scrounged." Forpractical purposes, engineers de�ne syllables di�erently again with their own criteria andrules, often denoting a unit that has only some vague resemblance to syllables as humanbeings intuitively understand them.In this background and overview, the word \syllable" is used in many di�erent ways.Deviations from the canonical, linguistic view are noted in the text. For the purposes ofthe experiments in this thesis, the syllable was de�ned precisely from a purely functional,engineering point of view, though inspired by the syllable from the more abstract acousticaland perceptual standpoint. In these experiments, syllable unit targets in the recognitiontask, Numbers,6 were de�ned using the half-syllable units listed in Appendix A.2. Thede�nition used is not perfect, but it is at least consistent. The creation of the Numberssyllabary is described in detail in Chapter 5. These experiments also used the syllable-lengthinterval, which is de�ned for the experiments in this thesis as a roughly 200-ms span ofspeech, irrespective of actual speech content. Chapter 5 contains more detailed descriptionsof the application of this interval in connection with the modulation spectrogram featureanalysis method and the neural network context window.2.2.2 Number of SyllablesThe lack of a de�nition for the syllable renders problematic any attempt to de�ne a set ofunique syllables in the English language. Related to the issue of de�ning the essence of asyllable is de�ning the boundary for syllabi�cation. The de�nition of a syllable boundaryis as obscure as the de�nition of the syllable itself [192]. Any derived list of syllableswould then be subject to the same caveats, which could account for the disparity in thestatistics cited below for the number of unique syllables in English. Researchers mostly takea linguistically-oriented approach. Nevertheless, the estimates are roughly within the sameorder of magnitude.Aside from the various estimates and de�nitions, it is clear that there are many uniquesyllables used in human language. One estimate implies that spoken American English re-quires 10,000 syllables for complete coverage [167]. From data intended for speech synthesis,O`Shaughnessy [148] derives 4,400 as the number of syllables su�cient to describe virtuallyall American English words and mentions that the most frequent 1,370 syllables are used93% of the time. He also notes that complete coverage of American English would requireperhaps 20,000 syllables.The number of syllables is much smaller than the number of words, but much largerthan the number of phonemes. The Oxford English Dictionary has 616,500 words, includingvariants, combinations and obsolete words. O'Shaughnessy mentions that modern AmericanEnglish has over 300,000 words, though only 50,000 can be considered to be commonly used.Clearly, syllables numerically represent a large compression over whole word units. On theother hand the number of unique syllables is considerably more than the 40-80 phonemes6The Numbers corpus is de�ned in Section 3.2. 30



typically assigned to American English speech. Representationally, using phonemes requiresmany fewer unique symbols. Thus, in the experiments in Chapters 5 and 6, the number ofsyllable units is much greater than the number of context-independent phones used.Although this is not an issue for restricted, small vocabulary tasks (such as the Numberstask used for the experiments described later in this thesis), there are concerns about thescalability of syllables to large vocabulary, conversational speech tasks. Historically, thenumber of unique syllables, and the possible complexity of syllable structures have been citedas arguments against using the syllable as a basic unit of automatic speech recognition. Thisparticular argument, however, has somewhat less weight today in view of the widespread useof polyphone units in speech synthesis and speech recognition. Large vocabulary automaticspeech recognition systems primarily use triphones (a phone with a unique pair of left andright adjoining phones), which are approximately as numerous as syllables. Some speechrecognition systems are using quadphones and quinphones as well, with a commensurateincrease in the number of units. Triphone-based systems typically have several thousandmodels, for example Cambridge University's HTK system for Wall Street Journal [205] andDragon's system for Switchboard [151]. Young says a large vocabulary cross-word triphonesystem will typically require about 60,000 triphones [211]. Thus, the number of uniquetriphones is of the same order of magnitude as the number of di�erent syllables. Theexact number in a system depends on the implementation. Researchers can use techniquessimilar to those for reducing the number of triphones used in speech recognition systemsfor streamlining syllabaries, the collection of syllables used in a recognition task.The number of di�erent recognition units is a concern for researchers, whether the unitsare triphones or syllables, because of the need for an adequate quantity of training datafor each unit. The next section examines the number and kind of syllables needed forrecognizing large vocabulary conversational speech.2.2.3 Syllables in Conversational SpeechStatistics gathered on words used in conversations can help characterize the usage of sylla-bles in human speech [75] and more clearly outline the scalability issues. The study reportedin this section used the Switchboard corpus [186, 70] word transcriptions, taken as repre-sentative samples of naturally spoken speech. A good deal of valuable information aboutconversational speech can be obtained through the careful examination of a large corpussuch as this, as in the �ndings of the Switchboard Transcription Project [76].The Switchboard corpus is a large database of spontaneous telephone conversationsbetween two people, unfamiliar to each other, on a variety of topics (such as summervacations, professional dress codes, the international political situation, credit cards, etc.).Collected at Texas Instruments speci�cally for the purpose of furthering speech recognitionresearch, the corpus includes about 2,430 conversations comprising 140 hours of speech.Court reporters word-transcribed these conversations, which comprise about 2 million wordsof text, spoken by over 500 speakers of both sexes and from every major dialect of AmericanEnglish. The word transcriptions include a small number of word errors and also contain avariety of transcription notations. Since only a small portion of the Switchboard corpus hasbeen phonetically hand-transcribed, the word transcriptions formed the basis of the syllable31
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N percentage of vocabulary percentage of corpus1 22.39% 81.04%2 39.76% 14.30%3 24.26% 3.50%4 9.91% 0.96%5 3.21% 0.18%6 0.40% 0.021%7 0.057% 0.0013%8 0.0052% 0.000037%Table 2.1: Frequency of words with N syllables in the Switchboard vocabulary and corpus.structure type percentage of corpusCVV 21.19%CVC 19.75%CVVC 9.99%CV 9.51%VC 9.14%VV 6.98%CVCC 3.99%VCC 3.85%Table 2.2: Frequency of the eight most frequent syllable (consonant-vowel) structures in theSwitchboard corpus.about 4% of the total words used in these conversations. Nouns were more likely to bepolysyllabic than other grammar classes in both the Switchboard study and in the study byFrench et al. It can be concluded from these data that conversational English is in actualitymore simply constructed than is commonly believed. Syllable boundaries were very oftenalso word boundaries, therefore if syllable boundaries can be accurately detected then thisgives an approach to word segmentation of the acoustic signal.Another common belief is that English conversation requires the mastery of a greatvariety of syllable structure types (i.e., the pattern of distinct consonant, \C," and vowel,\V," constituents). \Scrounged," for example, is described as a single CCCVVCCC syllablein the Celex database, the longest single syllable. Of the 42 di�erent syllable structures thatoccur in Switchboard, the eight relatively simple structures in Table 2.2 account for 84%of the syllables used in the corpus. Although the study by French et al. found somewhatdi�erent percentages, they also found that a handful of rather simple syllable structuretypes were used over 80% of the time.77It is not surprising that the French et al. study arrived at di�erent percentages for this case since theyused a di�erent phone set and di�ering phonological conventions from those of the Celex data. For example,34



This thesis is concerned only with American English; however, others are studying theuse of syllables in conversational speech in other languages. Kirchho� found similar obser-vations for German with respect to the number of syllables in each word in conversationsand the types of syllable structures used [110]. For Japanese, Arai and Greenberg foundthat syllables have more temporal characteristics in common with English than is popu-larly believed; they also reported that distributions of syllable structures in Japanese bearconsiderable similarity to those in English [1]. Greenberg, Hollenback and Ellis gatheredadditional phonological details, statistics and studies of syllable durations in conversationalspeech as represented by Switchboard [79].2.2.4 SummaryAlthough American English has a large number of unique syllables and considerable poten-tial for convoluted construction and complex syllabic structures, everyday speech is fairlysimple. Conversational speech exhibits regularities in structure that can possibly be ex-ploited for speech recognition. Most conversational speech can be expressed in a relativelysmall number of syllables, compared to the total number of syllables in American English,and these syllables tend to have clear, easily de�ned structures. These observations sup-port the proposition that syllables could be used to improve accuracy in automatic speechrecognition, even for large vocabulary tasks.2.3 Syllables in Automatic Speech RecognitionAutomatic speech recognition (ASR) systems typically employ phoneme- or sub-phoneme-based hidden Markov models (HMMs) concatenated into words and sentences. Althoughphoneme-based models are most popular, researchers in ASR have used a wide spectrumof units with varying levels of success, ranging from multi-word phrases to articulatoryfeatures and including such units as multi-syllabic groups (stressed-unstressed pairs) andsyllable parts (onsets, nuclei and codas). The use of syllables and syllable-based long-time-span units in speech recognition o�ers many bene�ts, but there are also disadvantages anddi�culties in implementation. The summary below describes the history of research usingsyllables and syllable-like units in ASR for English and includes discussion of similar workfor other languages as relevant to this thesis.2.3.1 Speech Units in ASRA \phoneme" is an abstract conceptualization that is de�ned to encompass those \dis-tinctions or contrasts that are recognized by speakers of the language as `making di�erentwords' and acknowledged by linguists as systematically functional" [28]. For example, thedistinction in linguistic meaning between the word \cat" and the word \pat" comes fromthe French et al. study de�ned syllables to have at most one vowel, while the Celex database containedsyllables with two vowels in the nucleus of a single syllable. The French et al. study probably representedseveral di�erent types of Celex syllable structures as having the same syllable structure.35



the di�erence between the /k/ and /p/ phonemes. Its function in distinguishing betweendi�erent words is one of the many reasons why phonemes have been a convenient basis forthe lowest level of speech decoding in recognition systems.The manifestations of phonemes can vary considerably with context. Di�erent sounds(phones) that are actually alternative acoustic representations of a single phoneme aregrouped together and referred to as the \allophones," or conditioned variants, of a par-ticular phoneme. Allophones are said to result from phonological conditioning, that is,language-speci�c rules of pronunciation. The general e�ect is called \allophonic variation."In continuous speech, the formation of a series of phones is achieved by the movement ofthe speech articulators.8 Mechanical and neural limits on articulator motion can cause aspread of in
uence between neighboring phones. Known as \coarticulation," this results invariations from canonical phone expressions for the phonemic constituents of words. Al-lophones and coarticulation present challenges to machines attempting to classify speechsounds, which is addressed by the use of stochastic methods such as HMMs. Phone iden-ti�cation and segmentation, however, can be hard tasks even for experienced phoneticians.For example, transcribers can disagree when classifying the stationary segments of vowelsin the manual phonetic labeling of speech data [77]. Although such experts can classifyconsonants fairly consistently, they will often disagree about vowel identity. Inter-labeleragreement for the Switchboard Transcription project was about 75-80% [78]. Through theinclusion of additional, relevant context, units larger than the phone may e�ciently accountfor phonetic variations within a larger representational structure.Early speech recognition systems took the approach of modeling whole word units andthere is some evidence that this approach still performs best; every word and the acoustic-phonetic dynamics contained within can be carefully characterized. The interaction betweenphonemes can be extensively modeled within the context of the word. In modern largevocabulary tasks (with lexicons of 20,000 to 100,000 words), however, using whole-wordunits becomes di�cult to implement and impractical. There is often only a small amountof training data for infrequent words, which also tend to be the longer words. Further,it is di�cult to re-target such a recognizer for a new vocabulary; it requires completeretraining and re-tuning. Whole phrases (groups of words) have been modeled as well,but this strategy quickly becomes even more impractical on a large scale than words. Incontrast, units smaller than words can be recombined to form new words, previously out-of-vocabulary, without retraining. While sub-word units are not a complete answer to theproblem of insu�cient training examples for some words, they have some advantages overwhole-word models.The syllable may be a useful compromise between the phoneme and the word. Alterna-tively, the syllable can be used in combination with words and phonemes to compensate forsome of their disadvantages. Greenberg suggests that coarticulation and other non-lineare�ects of concatenating speech sounds are largely con�ned within a syllable [74]. Fujimurapoints out that coarticulation e�ects across syllable boundaries can be more easily de�nedthose across phone boundaries within a syllable [59]. Moreover, as speakers omit phonesand otherwise vary the pronunciation of words, the temporal characteristics of the originalsyllable structure are preserved in many cases, even though the phoneme sequence may8Articulators include the vocal folds, soft palate or velum, tongue, teeth, lips, uvula and jaw.36



have been substantially altered. Compared to whole words, sub-word units like syllablesmay present computational and storage advantages, particularly for large vocabulary tasks.Another intermediate speech unit that has enjoyed some popularity is the \demisylla-ble," a term introduced by Fujimura in 1976 [60, 61]. A demisyllable is de�ned as essentiallyhalf of a syllable that has been divided after the CV transition. The exact point of division,and additional speci�cations, depend on a speci�c de�nition and implementation. It is es-timated that there are 2,000 to 3,000 unique demisyllables in American English [97, 167].Demisyllables have a numerical advantage over syllables, since many syllables can share thesame demisyllables, but properties that belong to the syllable as a whole may not be ex-pressed as coherently. The work described in Chapters 5 and 6 use \half-syllables," relatedin spirit to the demisyllable.Researchers have encapsulated contextual information by using subcategorizations ofthe phoneme such as the context-dependent phone, which is a phone with some left and/orright phonetic context included. For example, instead of a context-independent phone /ae/,a context-dependent phone might be /(b)-ae-(t)/. The use of triphones, quadphones orquinphones is currently popular. It can be argued that context-dependent phone models canprovide the same representational power as syllable-based units, particularly demisyllables.Syllable-level units, however, incorporate knowledge that can reduce the number of possibleconsonant-vowel combinations needed; as noted previously a large vocabulary cross-wordtriphone system might have as many as 60,000 triphones. A syllable-level unit may alsobe more suitable for modeling coarticulation e�ects that extend beyond the typical phone.Supposing human speech is organized around the syllable, the phonotactics9 of context-dependent phone models may not re
ect the underlying structure as well as syllable-basedmodels. The \half-syllable" unit de�ned for experiments in this thesis encompasses a largercontiguous section of speech than a context-dependent phone and therefore can potentiallyincorporate properties from longer-time spans.The next two sections address the question of the advantages and disadvantages of usingsyllables in ASR.2.3.2 Syllables { Key for ASR?For the concatenative methodology of current automatic speech recognition, the ideal unitis large enough to incorporate the majority of phonological e�ects, yet have relatively sta-ble, well-de�ned boundaries. If the syllable is indeed a basic perceptual unit for humans,then using this information in ASR can perhaps improve recognition accuracy. Fujimuraproposed the syllable (in the form of a speci�c de�nition) as a unit of automatic speechrecognition in 1975 [59]. In his paper, Fujimura described the advantages of syllables forASR, which appear to still be relevant for current ASR tasks. Fujimura has more recentlyproposed theories of prosodic structure interpreted as a series of syllables and boundarieswith attached magnitude values (the C/D model) [62, 63] and has had success using asyllable-based unit for speech synthesis. The usefulness of the syllable in speech synthesissystems implies that syllabic units sound more like natural speech to the human ear and are9Phonotactics refers to the way sounds combine with other sounds in a language. For example, thecombination \nglib" can not be a syllable, according to the phonotactic rules of English [46].37



easier to understand than other alternative units under the same concatenative paradigm.This suggests that the syllable possesses qualities that are conducive to perception andshould be explored for automatic speech recognition. The strength of the syllable lies inthe potential for greater accuracy through more accurate modeling of speech and for moreengineering-oriented gains such as in execution speed and memory usage.Recognition accuracy may be enhanced by the explicit representation of syllable e�ects.As discussed earlier in this chapter, the stability of the syllabic unit as a whole appears to begreater than that of the constituent phones [78]. Further, the coarticulation e�ects betweenphones within the same syllable are believed to be governed by rules that are distinct fromthose acting between phones of di�erent syllables [59]. The syllable, then, may be a goodencapsulation device. Simple phonological rules using syllables may easily represent longterm structure.Church makes an argument for the use of syllabic structure and stress as an interme-diate level of representation between the phonetic description and the lexicon in machineparsing of phone sequences [26]. While allophonic variation has usually been thought of asproblematic for recognition, in Church's proposal it is seen as a source of cues to improverecognition performance. Church points out that, theoretically, information regarding thelocation of syllables and stress can be derived from the distribution of allophones. Churchgives the example of the aspiration of a voiceless stop in a stressed, word-initial position, anexample earlier noted by Fujimura [59], Kenstowicz and Kisseberth [103] and Kahn [101].Aspiration is an allophonic variation on the pronunciation of a phoneme pertaining to theamount of air released when the phone is produced. Because of its syllable-initial position,the /p/ in \pie" is the aspirated version of that phoneme; a larger pu� of air is releasedthan in the nonaspirated version that occurs in the word \spy" [46]. Another example isthat /t/ is aspirated if it is at the beginning of a syllable, as in \ten." A preceding /s/,however, as in \stem" displaces the voiceless stop from the beginning of the syllable, so the/t/ is not aspirated. Identifying instances of those variations that occur only in syllableinitial and syllable �nal structures can help segment sequences of phones into syllables.Recognition systems can use this information to constrain the search for the correct lex-ical match. Church notes that most speech models rely on invariant features and thereforehave no facility for bene�ting from the information contained in allophonic variation andphonotactics. An intermediate level of representation, such as syllables, may present a wayof utilizing such parsing clues. Syllable boundaries can be useful in providing hints as towhere speech segments lie. Isolated word recognition has historically been more accuratethan continuous speech recognition, and part of this is due to the greater ease in determiningspeech-silence segmentations than the more general coarticulated sound unit segmentationsfor continuous speech. In later case, the acoustic signal shows no clear boundaries betweenwords. Syllable boundaries do have some acoustic manifestation, through allophonic vari-ation, and may provide valuable, though approximate, pointers to the location of wordboundaries.Syllabic level properties of speech, such as energy contours and peaks [74], and funda-mental frequency [114] are not often used in speech recognition, but may contain valuableinformation. Syllables can be used to incorporate prosody (the rhythmic and tonal quali-ties of speech) and other suprasegmental features. Suprasegmental features, which generally38



span several phone segments, include stress, duration, tone and intonation [113]. Each ofthese can provide clues that may improve decoding accuracy.Speech recognition systems do not commonly focus on long-term speech structure (i.e.,over about 200 ms) even though considerable evidence has accumulated that indicates sucha framework exists. Using the syllable and syllable-based units can facilitate the learningof long-term structure by statistical mechanisms. Long-time span analysis of speech canenhance speech recognition accuracy in addition to the role that the syllable plays as a basicperceptual unit of human speech recognition.Using syllables may also a�ect the implementation of speech recognition systems. Sylla-bles may enable systems to reduce the amount of memory used or reduce the execution timeneeded without sacri�cing accuracy rates. The search space of syllables may have usefulproperties for algorithms; in comparison to words, di�erent syllables relate to each other ina fairly well-understood and constrained manner. Thus, the syllable search space is moreeasily de�ned and possibly has reduced complexity through the reduction of redundantcomputation.Many current decoding strategies use some sort of clustering, or tree-structuring of pro-nunciation models to reduce redundant computation. For example, the beginning portionsof words often share common phone sequences. Lexicons are often represented by treesso that processing on these initial portions is not repeated. Also, word lattice generation,described in more detail in Section 3.4, has become more popular in recent years, spurringthe need to produce lattices of moderate size. The syllable is a compelling size and a naturalunit for the representation of lexicons that e�ciently unites the common portions of words,perhaps in combination with a lexical tree. For the same reason, the syllable can also be amore e�cient representation for lattices; many words can be represented with the same setof syllables.The use of the syllable, as opposed to the word, as an organizational unit may also allowmore e�cient utilization of parallel and concurrent machines. These architectures o�er mas-sive computational and storage resources [3] that have been largely untapped by the speechdecoding problem. The search space and representation of syllables (trees and directedgraphs, for example) may be more easily structured for parallel or concurrent machinesthan sequential word models. Similar arguments apply to vector processing methodologies.2.3.3 Syllables { Morass of confusion?Along with the many advantages to using syllables in speech recognition, there are alsofactors that confound the incorporation of syllables into ASR. There is a tradeo� and abalance to be found between bene�ts from the use of the syllable and added complicationsand complexity. This consideration underlies the hypothesis of this thesis. Do the advan-tages outweigh the disadvantages for a given speech recognition methodology? Althoughthe issues involved are complex and contentious to some degree, simplifying engineeringassumptions can allow the successful use of syllable information as will be illustrated by thepositive experimental results described in Chapters 4, 5 and 6.The primary problem with using syllables in ASR lies in the lack of a de�nition for the39



syllable and its boundaries. In particular, syllables (and therefore demisyllables and othersyllable-based units) are not always clearly de�ned in American English.10 The most oftencited causes are syllable reduction, stress-timing, and ambisyllabicity. There is also ongoingargument as to whether a syllable's boundary is properly located within the intervocalicsegment (between the consonants of a syllable) or in the consonant clusters.Syllable reduction occurs when polysyllabic words are simpli�ed. For instance, VCV orCVCV may be converted to CV words by the elimination of the initial syllable, or the vowelin it. Examples given by Ohde and Sharf include words like \away" and \believe," whichbecome \way" and \blieve" [147]. The vowel in the �rst syllable, which also is the syllablewith weaker stress, is eliminated. The reduction of unstressed syllables is a characteristicof the normal rhythm of English [28].Stressed syllables tend to be longer and more intense. Linguists often describe Amer-ican English as a \stress-timed" language [28]. Traditionally, languages characterized as\stressed-timed" have unstressed syllables that are greatly reduced in duration comparedto stressed syllables; in these languages stressed syllables tend to occur with an even tempo.This contrasts with the term \syllable-timed," which has traditionally referred to languagesin which every syllable has approximately equal duration. Japanese is usually given as theclassic example of a syllable-timed language. Arai and Greenberg, however, have observedthat for conversational Japanese, the durations of syllables varied almost as much as forEnglish [1, 78].Linguists believe that stress timing causes the unstressed syllables between stressedsyllables to have varying, unequal durations [28]. Lately, Arai and Greenberg have foundthat for conversational speech, stress-timing in English may manifest as a large range ofsyllable durations rather than as a strictly alternating pattern [76]. Statistically, Englishtends to have a slightly wider range of syllable durations than Japanese. The e�ects ofstress-timing could make syllabi�cation in ordinary speech di�cult, because the durationof unstressed syllables in American English shrinks dynamically compared to the stressedsyllables. Fujimura, in [63], discusses the problem of �nding \phonetically hidden" syllablesand suggests heuristics for divining their locations.Syllable boundaries are di�cult to determine in many cases due to ambiguous structure,which is commonplace in American English words. Linguists disagree on how many syllablescompose words such as \meal," \seal," \real," and so on [113]. One form of ambiguousstructure, ambisyllabicity, where one segment belongs to two syllables, also makes syllabicsegmentation di�cult in American English. Words such as \nesting" have unclear syllableboundaries. With the pronunciation /n-eh-s-t-iy-ng/ (in ICSI56 orthography), the wordcan be produced as /n-eh-s-t/ /iy-ng/, /n-eh-s/ /t-iy-ng/, /n-eh/ /s-t-iy-ng/, or with anambisyllabic /t/, as in /n-eh-s-t/ /t-iy-ng/. Moreover, the semantic meaning of a stringof phones can a�ect the perception of the syllabi�cation. One example of such an e�ect isthe naturally spoken phrase /h-ih-d-n-ey-m-z/. If the listener thinks the words are \hiddenaims," it translates to 3 syllables. If the listener instead thinks the phrase is \hid names,"only 2 syllables are perceived [113].10Syllables are not alone in su�ering from a lack of de�nition. For instance, phone identities and boundariescan be equally or even more di�cult to distinguish. 40



As an added complexity, a phone sequence can be syllabi�ed di�erently depending onthe speaker's condition, for example, as when the speech is particularly fast or slow. Oneproblem that occurs in the experiments discussed in Chapter 4 is that connected speechsyllabi�es very di�erently from the same words spoken in isolation. Syllable boundariescan move across word boundaries. For example, the words \�ve eight" can be pronouncedby faster speakers as /f ay/ /v ey t/ where the /v/-release resyllabi�es to the \eight." Inthis case the syllabic onset can be associated with either the /v/-release or the /ey/. Theseambiguities make it di�cult to resolve the syllable boundary in an automatic fashion.As examined previously, the de�nition of the syllable is amorphous and ill-de�ned. Forimplementation purposes, however, the engineer must have a concrete and clear speci�cationof each model. The engineer must make arbitrary decisions about how to characterize asyllable and these decisions may not always be defensible from every linguistic point ofview. The resulting \syllable" de�nitions deviate from what is acceptable to the averagephonetician.Syllabi�cation is an open research topic. Several methods and techniques, each empha-sizing a di�erent aspect of the problem, have been developed in several di�erent contexts.Automatic syllable parsers are available for making syllabic segmentations of speci�ed pho-netic sequences. Hammond uses Optimality Theory to explain syllable parsing in Englishand French [82]. A parser from Fisher [51], used for the experiments in this thesis, is basedon an implementation of the hierarchical rules presented by Kahn [101]. Other e�ortsinclude [39], in which the authors use a mainstay of neural network training, error-back-propagation, to learn the syllabi�cation of Dutch. All automatic syllabi�cation methodshave some shortcomings, yet an ASR system based on syllables is highly dependent on theirresults.Despite these concerns, automatic speech recognition systems can use syllable-basedinformation to improve recognition accuracy. ASR systems have achieved considerablesuccess despite the di�cultly of ideal phonetic identi�cation and segmentation. This successhints that perfect syllable identi�cation and boundaries may not be necessary. Most wordsare fairly straightforward to syllabify [113]. For other words, a clearly de�ned, consistentlyapplied process can produce usable syllabi�cations that correctly assign most of the salientproperties of each syllable. Although linguists might argue with the theoretical validityof such syllables, the de�nition is e�ective for engineering applications, as will be seenexperimentally in Chapters 4, 5 and 6. The speci�cation captured enough of the featuresof syllables to permit positive e�ects. Addressing the problems described in this sectionshould further improve and expand recognition performance.2.3.4 Other Work with Syllable-like Units in ASRDespite these di�culties, the possible bene�ts of syllables have periodically motivated re-searchers to experiment with them over the last three decades. Although most speechrecognition research has focused on the established phoneme-based paradigm, the syllableand other long-time-span units have appeared from time to time in the literature, an earlyexample being the Hearsay system where the syllable was one of the levels of representation[117, 48]. In this section, a sampling of the areas pursued in syllable-based ASR research is41



surveyed.The conceptual ancestors of certain aspects of the approach described in Chapter 4are the works by Hunt, Lennig and Mermelstein in the late 1970's and the SYLK projectby Green, Kew and Miller in the early 1990's. Hunt et al. performed a pilot experimentin which they incorporated syllables into the recognition of a small vocabulary AmericanEnglish task by �rst attempting to segment the input speech signal into syllabic intervalsusing what the authors called the \loudness" contour of the waveform [92, 91]. This syllable-based system attempted to estimate syllable boundaries, then formed recognized syllablesequences into words and sentences. In this system, Mermelstein's automatic segmentationsystem assessed syllable boundaries from a loudness function computed over the entirepower spectrum [129].11 They concluded that this approach showed some promise andwas worthy of further research. Waibel [196] also investigated the reliable estimation ofsyllable boundaries. Waibel's algorithm, which de�ned a syllable's onset to be the beginningof the vowel nucleus, performed comparably to similar algorithms, including the one byMermelstein. His algorithm also ensured that boundaries identi�ed by his process wouldbe commensurate with abstract linguistic considerations. Waibel mentions that all thealgorithms then known fall short of the ability of humans to syllabify speech, a conclusionthat is still true today. In the SYLK project [73, 72], researchers chose the syllable as the\explanation unit" to address the issue of allophonic variation. Green, Kew and Millerfocused their work on locating syllable onsets (de�ned from a phonological point of view)where their symbol methodology contained 20 distinct onsets.Segmenting continuous speech by focusing on syllabic nuclei was discussed in the early1980s by De Mori and Giordano [42]. For German, which bears a close relationship to En-glish, Reichl and Ruske [162] approached the identi�cation of syllable nuclei through neuralnetworks. Ruske, Plannerer and Shultz [169, 154] have experimented with demisyllable-based speech recognition systems for German. In [154, 155], systems �rst segmented thespeech signal into syllables and then used parts of syllables for the recognition process.Recently, Schiel (then at ICSI) modeled German syllables from the Verbmobil projectwith multi-state hidden Markov models [174]. He found encouraging success when he usedphoneme-based HMMs in tandem with syllable-based HMMs for commonly occurring wordsand allowed the decoder to pick which of the two to use for the �nal hypothesis.In 1986, Gauvain reported experiments with syllable-based recognition of isolated wordsin French [68]. While Gauvain found that the change increased the overall word error rate, healso found that syllable representations of words reduced the storage required by his systemto one-sixth of that required for whole words. Gauvain's further analysis revealed that thesyllable-based system and the whole-word based system made substantially di�erent errors.For American English, Rosenberg, Rabiner, Wilpon and Kahn [167] experimented withdemisyllables. Although the approach used in this work is similar in spirit to the workreported in Chapter 5, it di�ers substantially in implementation: the Rosenberg systemfocused on isolated words and used dynamic time warping to match the input acousticfeatures to templates. The thesis work to be described later focused on continuous speech11For the experiments with syllable onsets described in Chapter 4, the onsets were estimated from 9critical-band-like regions, which supplied spectral features for a neural network.42



and used neural networks to classify the units and HMMs to form words and sentences.Recently, Hu, Schalkwyk, Barnard and Cole used syllable-like units as the basic units oftheir recognition system [89]. In their segment-based system, the larger units proved to beless sensitive to segmentation accuracy. Hauenstein (then at ICSI) experimented with neuralnetworks trained for whole syllable classi�cation [83, 84]. While his syllable-based systemunderperformed a more conventional phone classi�er based on word error rate, Hauensteinfound that the syllable classi�er-based system performed better for cross-database isolatedword recognition tasks. This result suggests that the syllable-based system learned somecharacteristics of syllables that were more transferable to a new corpus than those of phones.In essence, the syllable system may have had better capabilities for robust generalization.Jones, Downey and Mason [99] reported positive results in recognizing syllable targetscompared with monophone targets, though they did not report word recognition results.In the spirit of dealing with allophonic and lexical variation, Kirchho� addressed theissue of acoustic variability by using phonetic features for recognition, and allowing thefeatures to overlap within the context of a syllable [108, 109]. De Mori and Galler imple-mented a method of using syllable phonotactics (rules governing how syllables combine witheach other) to create new word pronunciations, thus generating lexical variations for a wordautomatically [41]. They chose the syllable as the unit for this process because phones canoften be completely deleted in a lexical variant while some form of the relevant syllable isoften still detected if the word is intelligible. These authors noted that high accuracy withlarge vocabulary ASR can be achieved only by using many di�erent knowledge sources.The syllable model has attributes that can assist with the combination and integration ofdi�erent sources of knowledge.Researchers have used syllables in conjunction with prosody towards improving the ac-curacy of ASR. Prosody, as mentioned previously, refers to the tonal and rhythmic qualitiesof speech. Prosodic attributes, such as duration, amplitude and F0 contour (pitch), spanwell past the boundaries of phones. Also known as suprasegmentals, these properties are notcommonly used in automatic speech recognition, though there is considerable evidence thatsuch information helps humans recognize speech. Stress is a primary function of prosody.Lea, Medress and Skinner [114] used prosodic features to break up sentences into phrases,locate stressed syllables, and classify the phonetic constituents all based on the principlethat phonetic segments were more easily identi�ed when contained in stressed syllables.Jones and Woodland [98] used the strength and stress of a syllable as additional constraintsin a large vocabulary continuous speech recognizer to obtain a signi�cant word error rateimprovement.Although not a focus of this thesis, keyword spotting can employ syllable-based repre-sentations towards improving garbage-modeling and reducing the implementation time forchanging applications, particularly in large-vocabulary spotting tasks. \Garbage modeling"refers to the generic modeling of non-keywords and other sounds. This can be done in avariety of ways, including using averages of phone probability estimates [18] and explicitmodeling of extraneous sounds with fully connected models. In a syllable-based word-spotter, the keywords are represented as concatenations of syllables and garbage modelscan be represented as di�erent concatenations. This means that training the syllable mod-43



els builds the keyword models and the garbage models at the same time. Altering the taskand changing the list of keywords does not require the syllable models to be retrained, onlythe words are rede�ned. A syllable-based keyword spotting system is reported in [112].Syllables or syllable-based features have also been used to improve garbage-modeling inword-spotting tasks in Spanish [121].Some speech recognition researchers who work with languages other than AmericanEnglish have moved more quickly to embrace the use of syllables and parts of syllables,particularly in languages that are more clearly syllable-based and less stress-timed. Spe-ci�c examples of speech recognizers with syllables or syllable parts include those for Chi-nese [119, 116], German [154, 162], Hungarian [195], Japanese [126], and Spanish [16]. Theseprojects reported encouraging levels of success with methods that may be applicable to therecognition of English.The 1997 Johns Hopkins ASR Summer Workshop [67] also explored the idea of usingsyllables in automatic speech recognition. Syllable models of varying complexity for themost frequent words were integrated with more conventional phone models for the remainingwords. The project achieved only modest gains in accuracy, but the workshop participantsconcluded that the syllable approach showed promise.2.3.5 A Few Words About HyphenationThere is often the misconception that syllabi�cation and hyphenation are very similar,when in fact the two operate on substantially di�erent criteria. Hyphenation, the splittingof words for typographical e�ciency, is governed by morpheme boundaries in a di�erent waythan syllables; the hyphenation of a word can di�er considerably from the syllabi�cationof the word. For example the word \booking" is hyphenated as \book-ing," respectingthe morpheme boundary between the parts \book" and \-ing," but the word is usuallysyllabi�ed as \boo-king" or \boo[k]ing," re
ecting an ambisyllabic /k/. The algorithm forhyphenation initially developed by Liang [118] and used in TeX, usually produces goodresults and is widely accepted as state-of-the-art. Nevertheless, automatic hyphenationremains an active area of research. Although hyphenation is a separate avenue of researchfrom syllabi�cation, the research communities can interchange useful ideas and inspiration.2.3.6 SummaryBecause the syllable may have a primary role in human speech recognition, researchers havesuggested the use of the syllable as a basic processing unit for automatic speech recogni-tion for machines. The syllable may optimize trade-o�s between the word-level modelingof longer-time span coarticulation and �ner detail at the level of the phoneme. It may alsocorrespond naturally to speech properties like stress, energy and pitch. The syllable unitmay confer other bene�ts for ASR as an organizational unit; syllables may help reduce re-dundant computation and storage in speech decoding. Syllables have been used successfullyin speech recognizers for other languages, and although there are obstacles to overcome indeveloping American English syllable-based speech recognition, some researchers have al-ready reported positive and encouraging results using syllables in pilot experiments. By44



using carefully applied engineering-motivated de�nitions of syllables, systems can capitalizeon syllable-based information without becoming mired too deeply into unresolved problems.2.4 ConclusionsAlthough some of the discussion has concentrated on advancing the syllable as a basicunit of speech recognition at the expense of the phoneme, the intent is not to suggest thatphonemes are dispensable. The evidence of alphabetic writing systems, the existence ofrhyme and alliteration in poetry, phonemic spoonerisms, and historical changes in languagethat can be described most easily using phonemic terms are testimony to the importance,at some level, of the phoneme [173]. One possibility for integrating phones and syllables inspeech is to regard them both as expressed attributes or features of the syllable-length timeinterval to which they belong [78].12The importance of the syllable in human speech perception is still vigorously contested.Some researchers believe that the phoneme is su�cient to describe the human speech per-ception process. No matter what resolution eventually prevails, the fact that a debate hasraged for so long indicates in itself that long-time-span units, such as syllables and syllable-sized units, have some kind of in
uence in human speech recognition. The above studiessuggest that the syllable or a similar long-time-span component may be a basic unit ofspeech perception and that the syllabic-length interval may be a temporal unit for speechrecognition. Consequently, researchers have investigated and continue to explore using theconcept of the syllable in speech recognition by machines.American English has considerable potential for convoluted construction and complexsyllabic structures, but everyday, conversational speech is fairly simple. These patterns areamenable to current stochastic techniques for automatic speech recognition. The exper-iments in this thesis work were concerned with relatively simple syllable structure typesand a small number of distinct syllables in the syllabary. Chapter 7 discusses possible ex-tensions and the issues involved in incorporating more complex syllable types and using alarger syllabary.This chapter discussed the motivation and background behind the focus on syllable-based information in this thesis. While there are persuasive arguments for the explicitincorporation of syllable-based elements into speech recognition, there are many potentialproblems that could confound the e�ective use of such information. Whether the advantagesoutweigh the disadvantages can be explored most directly through experiments. The workdescribed in Chapters 4, 5 and 6 provides some empirical support for the advantages ofusing syllable-based information.12This supposition is discussed further in the syllable-level combining experiment described in Section 6.4.45



Chapter 3Automatic Speech RecognitionSpeech recognition has arrived in the commercial, publicly accessible marketplace. In thepast decade researchers have made great advances; there are a number of popular ASR-basedproducts. The ultimate goal of robust, continuous, large-vocabulary speech recognition,usable by the general public, however, is still a number of years away. There are manyunresolved problems and unanswered questions.1In this thesis the syllable is used as a facilitator for understanding the problem of speechrecognition and an avenue to viable approaches for answering some of these questions.A discussion of the strengths and weaknesses of the state of the art will establish thecontext for the possible contributions of syllable-based methods to the advancement ofspeech recognition. The �eld of speech recognition is very broad, however, so the overviewin the �rst section of this chapter will be comparatively brief and cover only details relevantto the report of experiments in this thesis. As background for the work to be discussedin Chapters 4, 5 and 6, Sections 3.2 and 3.3 in this chapter give a detailed summaryof the Numbers task and ICSI's speech recognition system, which serves as the platformfor all the experiments discussed in this thesis. One set of experiments focuses on anapproach to constraining hypothesis creation in speech decoding, so Section 3.4 in thischapter gives a summary of current thinking in speech decoding. Another set of experimentsconcentrates on several methods of combining syllable-level information with a baseline,phoneme-oriented speech recognition system. Section 3.5 gives a brief discussion aboutvarious combination methods.3.1 The State of the ArtAt the time of writing, speech recognition systems in the marketplace are just beginning tobe usable by general users and to gain mass acceptance.2 Naive users employ limited-tasksystems with success. For example, the AT&T Universal Card customer service system1It has been observed that true speech recognition has been estimated as \5-10 years away" since the1950s.2The list of commercial products in this chapter is by no means exhaustive. New products and servicesare being introduced continuously. A recent survey can be found in [158].46



accepts spoken continuous digits (credit card numbers) over the telephone. Less severelylimited tasks require the user to have some training in the use of the system and a fairly cleanacoustic environment. Wild�re, a telecommunications assistant service, purports to allowa user to speak naturally using a limited vocabulary and a constrained range of constructsto instruct the system in dealing with phone calls and phone messages. In these command-and-control systems the user must conform to the format of the system's interface. Olderdictation applications (e.g., Dragon Dictate) usually required the user to pause betweeneach word and to train the system{ as well as the speaker{ for maximum performance.Both Dragon and its competitor IBM recently released products for the recognition ofcontinuous speech. Speakers still need to wear close-talking microphones and to train withthe system individually. As the complexity of speech recognition applications increases,more sophistication and training on the part of the user is required.In spite of large gaps in the understanding of human speech perception and technolog-ical obstacles, researchers in speech recognition technology have made particularly rapidadvances in the last decade.3 As the state of the art in speech recognition advances, appli-cations for speech recognition rapidly increase in scope.The published Defense Advanced Research Project Agency (DARPA) benchmarks forevaluating speech recognition performance have progressed considerably in size and di�culty4since 1971, when the evaluation task consisted of a 1000-word vocabulary task spoken byonly a handful of di�erent speakers [111]. Resource Management, a 1000-word vocabu-lary task used extensively in the 1980s, included read speech from hundreds of di�erentspeakers of many di�erent U.S. dialects [156]. In 1993, the evaluation task was speechread by speakers using a 20,000-word vocabulary (North American Business News) [141].At the same time, a 26,000-word vocabulary, spontaneous, human-to-human conversationalspeech corpus called Switchboard was developed [186, 70]. In 1997, Broadcast News, speechtaken from television and radio news programs [71] with the attendant variety of interferingbackground conditions, became the latest DARPA Continuous Speech Recognition (CSR)evaluation challenge. Researchers have also been tackling other corpora with much largervocabularies (64,000 { 100,000 words). They are also working towards improving the exe-cution of these systems to near real-time performance.Despite recent advances, unconstrained speech recognition usable by naive users inless than ideal acoustic environments is still very challenging. Cole et al. list one of theunattained goals of speech recognition as robustness at all levels, including robustness tobackground or channel noise, unfamiliar words, accents, di�erences in users and unantici-3Comerford et al. attribute recent advances more to improvements in hardware price/performance, ratherthan to breakthroughs in speech research [32].4One aspect of \di�culty" is quanti�ed as perplexity, which is usually measured asP = 2� 1NP log2(p);where N is the total number of words in the test set, and p is the probability of the observed transition ascalculated from the training data [94], which roughly corresponds to the average number of branches at anydecision point in a process. Speech researchers generally approximate perplexity according to vocabularysize; one rule of thumb is that the di�culty of a recognition task increases with the logarithm of the size ofthe vocabulary. As noted in [32], however, if a large vocabulary task has few possible branches, accuracycan be rather good, but a small vocabulary task with many possible branches can be di�cult.47



SD Baseline 1.5%SI Baseline 3.0%Channel 12.0%Transducer 10.0%Speaking Rate 15.0%Language Model 70.0%Noise 30.0%Dialect 20.0%Non-Native Speaker 45.0%Noise + Non-nativeness 85.0%Combining All E�ects 98.0%Table 3.1: Word error rates showing abrupt degradation in recognition accuracy due tointroduction of various e�ects [65].pated input [31]. They de�ne robust speech recognition as \...minimal, graceful degradationin performance due to changes in input conditions caused by di�erent microphones, roomacoustics, background or channel noise, di�erent speakers, or other small (insofar as humanlisteners are concerned) systematic changes in the acoustic signal." Laboratory systemsthat perform well in constrained conditions show a tendency to experience sudden, rel-atively large decreases in accuracy. For instance, a laboratory system described by [65]achieved a 3% word-error rate for the Resource Management task in ideal conditions. Afteradding in a variety of acoustic variations common in realistic �eld conditions, such as chan-nel di�erences, changes in speaking rate, changes in dialect, noise, accents from non-nativespeakers and a poor language model, the error rate increased to 98%, as shown in Table 3.1.Yet, human beings cope well under the same conditions, with little or no degradation inrecognition. Many of the problems encountered in the �eld can be resolved using additionaldata collection, training and analysis [188]. The labor involved, however, is substantial andideally such post-deployment e�ort should not be necessary.The size of these applications and the increasingly intricate algorithms they require forrobust performance present a complexity-management problem for the engineering of speechrecognition software. Researchers would like to add additional sources of knowledge or doextra processing to address the challenges of open problems in speech recognition. Never-theless, a practical speech recognition application must �t in available, a�ordable machinesand be able to process utterances in near real-time for user comfort and acceptability.Using the syllable as a tool of organization and understanding can help approach thesefundamental issues for speech recognition for machines. In Chapters 4, 5 and 6 this thesisdescribes syllable-oriented attempts to address these issues through e�orts to improve speechrecognition accuracy and robustness for numbers spoken naturally over the telephone.48



zero oh ten uhone eleven hundred umtwo twelve twentythree thirteen thirtyfour fourteen forty�ve �fteen �ftysix sixteen sixtyseven seventeen seventyeight eighteen eightynine nineteen ninetyTable 3.2: The list of vocabulary words in subset of Numbers used for experiments.3.2 The Task: NumbersFor the speech recognition experiments discussed in this thesis, it was necessary to select acorpus that was neither too large (which would have introduced impractical developmentcycle times) nor too small (which might not be representative of actual, conversationalspeech). The Numbers corpus is su�ciently varied that a number of the e�ects of naturallyspoken speech are in evidence. These include factors such as di�erences in speakers, varia-tions in speaking rate, and reduced syllables. The samples also show e�ects from channeland environmental interference, for instance babies crying in the background. The Numberstask is fairly small yet non-trivial, so �ndings with this corpus are likely to be extensible toless constrained tasks.Researchers at Oregon Graduate Institute (Center for Spoken Language Understanding,or \CSLU") collected the Numbers corpus as part of a larger assemblage of data for thepurpose of providing challenging corpora for speech recognition research [30]. This corpuscontains continuous, natural speech from many di�erent people in response to promptsfrom an automated census system over telephone lines (digitized at 8 kHz). The Num-bers utterances were cut from longer speech waveforms of people reciting their addresses,telephone numbers, zip codes or other miscellaneous items. OGI labelers phonetically hand-transcribed about half of the complete Numbers corpus.A subset of the Numbers corpus was chosen for the experiments in this thesis.5 The\core subset" contains only utterances with accompanying phonetic hand-transcriptions.The set is further limited to utterances in which the words at each end of the waveform arestill intelligible (rather than being largely clipped), and which also contain only words thatcould strictly be called \numbers." These criteria eliminated utterances such as \Sears oneday sale." Utterances where words on the boundary of the waveform was only partiallyrecorded were also subtracted, for example when \seven" was represented by just \s-." Thecomplete vocabulary of the core subset is 32 words, as listed in Table 3.2.A sample utterance from the corpus is \eighteen thirty one." Since the utterances were5The core subset was de�ned with Michael Shire (at ICSI).49



excised from longer recordings, acoustic information from speech commenced immediatelyand broke o� sharply. In order to allow for the start-up time in the recognition process, eachwave�le was padded with 100 ms of arti�cially-created silence on both ends. The core subsetcontains about two hours of training data (3500 utterances, about 700,000 frames) and 40minutes each of development test set (1,206 utterances, total of 4,673 words, about 230,000frames) and evaluation test set (1,227 utterances, total of 4,757 words, about 230,000 frames)data. Any parameter tuning for the training and recognition systems in the experiments inthis thesis involved only the training data, of which 10% is used as the cross-validation set.3.2.1 ReverberationSome of the experiments used arti�cially reverberated versions of the development and eval-uation test sets as representative samples of one speci�c form of distortion. Reverberationmanifests in sound propagating through a room due to the re
ectivity of the walls andother solid objects. It also gives human listeners an impression of a room's size and generalattributes. Human listeners prefer some reverberation when listening to music in concerthalls. In statistical terms, reverberation is characterized as a transient, nonstationary, fairlyslow response of sound in rooms.6Reverberation can degrade speech intelligibility by masking direct sounds with re
ectedenergy. When such environmental e�ects are not represented in the training data, they canincrease the word error rates of speech recognition systems by an order of magnitude or more.Kingsbury et al. produced mildly reverberant speech for these experiments in connectionwith other research [80, 106, 107, 105]. The original speech from the Numbers databasewas digitally convolved with a real room impulse response using a reverberation time of 0.5s and a direct-to-reverberant energy ratio of 0 db [107].7 Arti�cially reverberated speechdi�ers from actual reverberant speech in two signi�cant ways: 1) Speakers compensate forperceived interference by modifying vocal e�ort. Since the reverberation was added afterthe speech was recorded, this e�ect is not re
ected in the reverberant speech used here.2) The impulse response used re
ects a particular room model with a single source andmicrophone location. Recordings from actual rooms almost certainly will vary.3.2.2 Human Recognition PerformanceAn informal speech understanding experiment with two human subjects (conducted in con-junction with Brian Kingsbury's thesis [105]) on 200 sentences of the Numbers developmenttest set showed that humans can understand both the clean and the reverberant Numbersutterances with near perfect accuracy. The subjects had an average word error rate of0.3% on both the clean and reverberant portions, in sharp contrast to the capabilities ofautomatic speech recognition systems.6More details regarding the nature of room reverberation can be found in [132]. A statistical characteri-zation of reverberation in rooms can be found in [191].7The room impulse response used was part of a collection by Jim West and Gary Elko, from Bell Labs,and Carlos Avendano, now at the University of California, Davis.50
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Figure 3.1: ICSI's speech recognition system. (Dan Jurafsky and Nikki Mirghafori)3.3 The ICSI Speech Recognition SystemA typical, current speech recognition system applies statistical pattern recognition tech-niques, �rst applied to this problem by Baker [11] and Jelinek, Bahl and Mercer [95]. Thesystem �rst processes raw acoustic data into features by an analysis technique that charac-terizes the short-term spectral envelope (e.g., mel-frequency cepstral analysis [40],8 or PLPanalysis [85]9).A probability estimation technique, such as multivariate Gaussian mixtures [160, 90]or arti�cial neural networks [20], further processes these features. Standard 1990s ASRtechnology, as described in [17], usually refers to systems with hidden Markov models andmultiple Gaussian mixtures. A classic example is the SPHINX system [115]. Young de-scribes a fairly typical, current HMM-based system in [211]. The combination of HMMswith neural networks is commonly referred to as the \hybrid" approach. All statisticalapproaches typically involve extensive model training on large databases.Figure 3.1 [100] is an illustration of the speech recognition system in primary use at theInternational Computer Science Institute (ICSI)10 and is used as the baseline system for theexperiments in this thesis. Although similar in form to the speech recognition systems ingeneral use in the research community, the ICSI system has two less-common aspects:(1) acoustic probabilities are estimated by a neural network instead of by mixtures ofGaussians and (2) the system uses context-independent phones instead of triphones. Thesedi�erences can be loosely characterized by noting that the ICSI system uses a comparatively8Mel-frequency cepstral coe�cients (MFCCs) are calculated by warping the speech signal spectrum toapproximate the spatial-frequency scaling characteristic of human hearing. The process takes the logarithmof the warped spectrum and uses an inverse Fourier transform to generate features.9PLP analysis estimates the auditory spectrum using several concepts from psychophysics and an auto-regressive all-pole model. PLP is described in more detail later in this chapter.10A much more complete description of the theory and mechanics underlying this type of recognitionengine can be found in the book Connectionist Speech Recognition{ a Hybrid Approach [20] or in [133].51



large number of neural network parameters to estimate the density function for each ofrelatively few sound categories. The more common approach in the research communityuses mixtures of Gaussians, estimators that use comparatively few parameters to estimatedensity functions for each of a relatively large number of sound categories. Systems that usemixtures of Gaussians usually have many times the number of sound categories as neuralnetwork-based systems. As a result, Gaussian-based systems typically have many moreparameters in total.3.3.1 Feature Extraction: RASTA-PLPThe ICSI system �rst analyzes sound waveforms with an acoustic processing technique,represented in Figure 3.1 as the \Auditory Front End," or the \ear" of the speech recognitionsystem. The process segments the acoustic waveform input into overlapping \frames,"which are 25 ms long with a 10-ms overlap for the experiments in Chapters 4, 5 and 6.The work reported in this thesis used RASTA-PLP features [86], roband features [184]and modulation spectrogram features [80, 105, 107]. Roband features are not intended forphonetic determination, unlike RASTA-PLP and modulation spectrogram features. Robandfeatures are described in more detail in Section 4.1.2 and modulation spectrogram featuresare described in more detail in Section 5.1. All three features sets use principles from humanspeech perception to improve the representation of the speech signal.RASTA-PLP11 was derived from an older feature extraction method, Perceptual LinearPredictive (PLP) analysis [85]. PLP estimates the auditory spectrum using engineeringapproximations to the psychophysics of hearing. The process maps critical-band powerspectra into a perceptually-based loudness domain. Features are generated using an au-toregressive all-pole model. The results are converted into cepstral coe�cients. Hermanskystates that PLP is more consistent with some of the important properties of human hearingthan conventional linear predictive (LP) analysis. Additional properties of human hearingare incorporated in RASTA-PLP.The temporal characteristics of environmental noise or channel frequency response oftendi�er from those of speech. This observation prompted Hermansky and Morgan to developthe RASTA-PLP speech processing method [135, 131, 86]. RASTA stands for relativespectra, a class of representations based on �lter methods designed to exploit the di�erencesbetween the temporal qualities of environmental noise or channel frequency response andthose of speech.The RASTA technique suppresses the components of the input spectral trajectories thatchange more slowly or more quickly than the statistically observed behavior of speech [86].This has its foundation in human auditory perception, where researchers have observedthat humans are sensitive to changes in an input in relative rather than absolute values.For instance, humans appear to be fairly insensitive to slowly changing background noise.Procedurally, Hermansky and Morgan altered the PLP speech analysis method: instead ofthe usual short-term critical-band spectrum in PLP speech analysis, RASTA-PLP has aspectral estimate where the temporal trajectory of each frequency channel is band-passed11Also referred to as \log-RASTA-PLP" or simply \RASTA."52



�ltered with a sharp spectral zero at the zero frequency. This suppresses constant or slowlyvarying components in the input speech signal. Of further note is that RASTA uses severalcontiguous frames in its analysis, amounting to integrating information over about 150 ms.Thus, RASTA processing has more reliance on previous context than \vanilla" PLP.One result of this processing is that transitions between speech segments are emphasized.That is, the RASTA analysis technique is less sensitive to slowly varying components. Thebandpass �ltering has the e�ect of passing modulations between 1 and 12 Hz. Experimentsindicate that the RASTA-PLP processing method produces roughly the same word errorrate as PLP alone on \clean" speech and signi�cantly improves accuracy with speech in thepresence of spectral interference (e.g., changed channel characteristics).The RASTA-PLP feature analysis method transforms each window of the sampled wave-form into a numerical representation, as a vectors of numbers. For the experiments describedin Chapters 4, 5, and 6, \delta" features, which represent an approximation to the instan-taneous rate of change of each feature, complemented the vectors of features produced bythese feature extraction methods. Historical experience at ICSI has found that eighth-orderRASTA-PLP is suitable for kind of recognition task described in this thesis. With energyand delta features, eighth-order RASTA-PLP, gives a total of 18 features per frame.3.3.2 Probability Estimation: Neural NetworkEquation 3.1 expresses the speech recognition process in mathematical terms. For a se-quence of acoustic vectors Y = y1; y2; � � � ; yT , where T is the number of individual observa-tions (frames), and the series of actual words in an utterance is W = w1; w2; � � � ; wn, thespeech recognition process produces the most probable word sequence Ŵ . Bayes' rule isused to decompose the desired probability into factors that are computable by the decodingprocess. Ŵ = argmaxW P (W jY) = argmaxW P (W )P (YjW )P (Y) (3.1)P (W ) is the a priori probability of the word sequence W , regardless of the acoustic input,and P (YjW ) is the probability of observing the vector of acoustic features, Y, given thatthe word sequence W occurs.To evaluate this equation and �nd the most likely sequence of words, the feature vectorsgenerated by the front end are transferred to a phone probability estimator as depicted inFigure 3.1. The ICSI system and variants used in these experiments use a fully-connected,feedforward, multilayer perception with one hidden layer. The neural network uses theinput features, plus additional context from 8 to 16 surrounding frames of features, toestimate the probability that the input corresponds to each of the de�ned categories. Thenetwork outputs represent estimates of posterior probabilities from which data likelihoodsare calculated via Bayes' Rule (i.e., dividing by prior probabilities). Experience at ICSIhas shown that 8 surrounding frames (i.e., a total context of 9 frames) performs well fortypical recognition tasks, as in those described in this thesis. Using 16 surrounding frames(a total of 17 frames) can be useful for speech where the acoustic data is smeared overa longer time-span than 9 frames. The neural network was trained using simple, onlineerror-back-propagation and softmax normalization. For the experiments in this thesis, the53



neural networks typically had a hidden layer size of 400 units. To prevent overtraining,a technique known as early stopping was used. This technique reserves about 10% of thetraining data, referred to in this thesis as the cross validation set, for checking the progressof the procedure. Early stopping periodically assesses and maintains the generalizationabilities of the neural network by testing on the cross validation set to decide when tostop training. With this technique the neural networks typically trained for seven or eightepochs (iterations through the training data) using a post-threshold, adaptive exponentialdecay learning rate. That is, the learning rate is held constant until the performance onthe cross-validation set no longer improves. Then the learning rate is divided by two foreach succeeding epoch until the performance on the cross-validation set again no longerimproves. The cross validation subset also serves as a testbed for empirically determiningvarious system parameters in these experiments.3.3.3 Recognition Unit: PhonemesThe neural network converts feature vectors into estimates for the posterior probabilityof each phone, which are input into the decoding stage of the recognition system. Thephoneme-based recognition units used in these experiments are fairly conventional, consist-ing of 56 context-independent phones based on the TIMIT phone set. This set is fairlycomplete for English. The \ICSI56" set of phones, listed in Appendix A.1, is composedmostly of phonetically representative exemplars of phonemes, with the addition of phoneswith acoustic distinctions such as stop closures, 
aps and reduced vowels. The inclusionof these distinctive phones was historically found to promote the discriminative abilities ofthe arti�cial neural networks.The baseline system was initially trained from the original phonetic labels taken fromthe manually-produced transcriptions. The labelers [30] who phonetically transcribed theNumbers task used a superset of the ICSI56 phone set. To derive phonetic targets fortraining the speech recognition system the original phonetic labels were mapped into theICSI56 set. Since the ICSI56 set is a more limited group of phones, certain phonetic variationdetails in the original labelings were discarded. Some of these, such as aspiration, mighthave been useful for syllabi�cation.3.3.4 LexiconDan Gildea (of ICSI) examined the hand-labeled, phonetic transcriptions of the trainingset and generated multiple pronunciations for each of the Numbers words, which coveredapproximately 90% of the pronunciation variations actually occurring in the training set.Scripts written by Eric Fosler-Lussier (also of ICSI) converted these pronunciations intoa working lexicon. The mapped labels and the derived lexicon were used directly in theexperiments in Chapter 4, since these were believed to have a close relationship to the actualacoustic manifestation of syllable features such as onsets.For the experiments and analysis in Chapters 5 and 6, one iteration of forced alignmentfurther re�ned and matched these labels and the derived lexicon to the learning capabilitiesof the neural net, using the baseline system with 400 hidden units. The forced-alignment54



process is discussed later in this chapter. A one-time automatic adjustment of the lexiconrevised word pronunciations and phone durations.12 This eliminated a number of the hand-derived pronunciations as unused. The lexicon matched the corresponding neural networkand training labels and vice versa. The resulting system exhibited a signi�cant performanceimprovement over the original system.3.3.5 DecoderThe probabilities from the neural network for each frame are input to a \Decoder," depictedin Figure 3.1. The decoder generates words and sentences by �nding the maximum likeli-hood path through the probabilities, constrained by the pronunciation models. The ICSIsystem employs Viterbi decoding (a variant of dynamic programming) and, in some cases,stack decoding (a variant of the A* algorithm) to �nd the best path through the sequenceof probabilities and thus the most likely words and sentences. The decoder uses a lexicon ofhidden Markov models to enumerate the di�erent pronunciations of the words and attacha priori probabilities to each version in the vocabulary. It also uses a language model thatdescribes the way the words potentially �t together in a utterance. Decoding algorithmsare discussed in more detail later in this chapter.The ICSI system usually uses one of two decoders; a Viterbi decoder, y0 (pronounced\why not") [88], and a start-synchronous stack decoder, called noway [164, 163, 165]. Thetwo decoders in general give comparable results, though they can have slight variations inthe resulting sentence hypotheses. These dissimilarities are largely due to di�erences in thepruning strategies and choice of parameters. A set of hidden Markov models representsmultiple pronunciations for each word. The state-to-state transition probabilities wereuntrained for these experiments and remained at a uniform 1=T where T is the number oftransitions out of a particular state.An N -gram language model provides the probability that some word, wj , follows somesequence of words wi through wi+N�1. The language model used for the experimentsdescribed in this thesis was a simple bigram model (i.e., N = 2). Bigram probabilities (theprobability that a certain word follows another word) can be calculated from the trainingset by counting the number of occurrences of each pair. \Backo�" methods estimate theprobabilities for bigrams that do not occur in the training set [27].Decoders generally use an empirically-determined value called a \language model" or\acoustic model" scaling factor to weight the in
uence of the language model over theacoustic information. A multiplicative value is applied to the log probabilities of soundclasses or N -gram models. Typically, system builders use the language model scaling factorto balance the proportion of word insertion errors to word deletion errors. The relationshipbetween the contribution made by of acoustic information and the language information isnot well understood, but recognition system performance can be somewhat sensitive to thevalue of this parameter.12The lexicon of this recognition system could have been adjusted with every iteration. Pilot studies,however, suggested that additional changes to the lexicon would yield minimal further improvement andserve only to obscure the experimental procedure. 55



Some of the experiments in this thesis used forced alignment (also called forced Viterbi).This procedure provides the correct word string to the Viterbi decoder, y0, which uses thestring to render and constrain the mostly likely path to the supplied words, given someacoustic input. It generates a new set of time-aligned labels for the utterance that can beused as targets in a subsequent neural network training. Using multiple, iterative appli-cations of this procedure with optimization updates to a lexicon is sometimes called \em-bedded training." Researchers generally use this technique to automatically label acousticinput �les when word transcriptions, but not phonetic transcriptions, are available. Evenwhen phonetic transcriptions are available, the forced alignment technique, particularly inconjunction with lexicon updating, can help optimize the learning capabilities of the systemby realigning phonetic segment labels. The resulting relabeling can help the neural networklearn the distinction between the labeled patterns more e�ectively. Iteratively applied, thismethod converges to a training set labeling that the recognition system identi�es most accu-rately. Since the labels are shifted automatically, however, the new labels may not entirelyagree with the acoustic evidence in a way that is obvious to a human researcher.3.3.6 EvaluationTo evaluate the performance of a speech recognition system, the most commonly acceptedmeasure is word error rate. Speci�cally, word scoring for these experiments used a dynamicprogramming algorithm that computed the minimum number of substitutions, insertionsand deletions between the reference (correct) string and the output of the speech recognitionsystem. While universally applicable, simple word scoring does not fully examine di�erencesbetween one system and another, so some of the experimental systems in this thesis wereevaluated by additional criteria besides word-error rate, in order to provide some insightinto how accuracy might be improved. These are described in more detail in Chapters 5and 6.3.4 Speech DecodingSpeech decoding is the process of �nding the most probable sequence of words given asequence of probabilities based on acoustic representations and other knowledge sources,also governed by Equation 3.1. For decoding, the sequence of observation vectors Y isde�ned to be the vector of acoustically-based probabilities. For the systems used in thisthesis, arti�cial neural networks generated these probabilities from acoustic observationvectors.Practical concerns often constrain the quest for algorithms and heuristics that producethe highest possible recognition accuracy. These factors con
ict with one another, a�ect-ing the allocation of both human and computer resources, and requiring tradeo�s. Manydi�erent algorithms exist, each with varying implementation details, parameters, inputs,outputs, target tasks and performance.Template matching, or \dynamic time warping," (DTW) is a decoding method that wassuccessfully employed for small vocabularies in the 1960s through the mid 1980s. Dynamic56
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0.5Figure 3.2: An example of a typical HMM, for the word \ten." The phone /eh/ has aminimum duration of two states.programming matched acoustic data directly to templates of whole words [172, 43]. Sincethe templates modeled the entire word in detail, the storage cost of these templates andthe computational cost of the search are impractical for large vocabularies. Researchersattempted to use sub-word models, but found that coarticulatory variations became moresigni�cant with smaller units and more di�cult to model under DTW. Rosenberg, Rabiner,Wilpon and Kahn concluded that whole word prototypes provide superior results to modelsbased on demisyllables, but acknowledged that storage and computation limitations madethe sub-word units attractive [167].Stochastic methods were initially explored in the 1970s and achieved wide acceptancein the 1980s as a way to represent coarticulation and other variations in speech. Principalamong these methods is the stochastic, �nite-state automaton known as the hidden Markovmodel (HMM). Today, researchers typically concentrate on HMM-based, stochastic modelmethods. HMMs provide more facility for incorporating coarticulatory e�ects into sub-wordmodels than do comparable templates used in dynamic time warping. The HMM [157, 11,95] and its variants for decoding with more general sub-word units have proven successful forprobabilistically representing speech for large vocabularies with sub-word units, while stillkeeping the decoding process computationally tractable. In HMMs, words are representedas a sequence of sub-word units (usually based on phonemes), thus representing a reductionin the computational and storage costs over whole-word models.Figure 3.2 shows a representative HMM for the word \ten." Each circle represents astate and is typically associated with a phone, or a part of a phone; this state is the \hidden"part of the HMM. In the production view of the HMM, the model generates observables(i.e., feature vectors) as it progresses from one hidden state to the next. Decoding speechreverses the process. Decoders use the observables to hypothesize the hidden state of theHMM. The model includes probabilities of transition, both back to the same state and on toother states, that govern the likelihood of particular paths. If the sub-word unit is too smalland the categories are not carefully de�ned, this method may poorly model coarticulatorye�ects within a word. While HMMs have limitations and associated problems with modelingspeech, it is not the purpose of this thesis to explore this issue or HMM alternatives.Several HMM decoding algorithms are currently popular.13 The algorithms chie
y focus13Deller's book, Discrete-Time Processing of Speech Signals [43] contains a review of HMMs and decoding.57



on selecting the most likely HMM sequence given a set of acoustic information vectors. Thealgorithms may also be combined to capitalize on each method's strengths.These decoding algorithms include:� Decoding with maximum likelihood probabilities [12] [43]: This algorithm involves thecalculation of the total probability that a particular model produces a given observa-tion sequence (i.e., a set of acoustic-feature vectors). This requires the summation ofthe e�ect of any and all paths through the particular model, usually via the forwardalgorithm.� Decoding with an approximation to the maximum likelihood: This less optimal, butcomputationally more tractable approach, uses the likelihood value of the single beststate sequence through any HMM that produces the given observation sequence as anapproximation to the total probability of the model. This may not produce the samepath as decoding with true maximum likelihoods. The two standard algorithms forcomputing the best state path are:1. Dynamic programming [172, 10, 138]: Also called Viterbi decoding,14 the algo-rithm is characterized by a \breadth-�rst" search strategy, where all relevantpaths are extended simultaneously for each time step.2. Stack decoding [93, 102, 150, 170]: Often used in combination with a Viterbicriterion, stack decoding15 is characterized by a \depth-�rst" search strategy. Asingle hypothesis is extended until search directives dictate that it is no longer themost likely solution. Then the decoder chooses a new hypothesis to be extendedand the process repeats.The above search algorithms are provably optimal only for complete searches which areusually extremely slow and memory intensive in practice. Implementation details are oftenthe key di�erence between a usable decoder and an impractical one. For example, oneimportant technique used to improve execution time is the use of a tree-structured lexiconor network [145]. Combining the shared pre�xes of the words in a lexicon reduces redundantcomputation and memory usage without sacri�cing accuracy.Suboptimal variations are used to elicit the maximum performance for a reasonableamount of computing resources. \Suboptimal" heuristics are so named because they cannot be guaranteed to lead to the best solution. Often it can be proven that these heuristicswill de�nitely miss the best available solution under certain pathological conditions. De-spite this disadvantage, suboptimal methods usually use a small fraction of the computingresources of optimal algorithms and deliver high accuracy for a large percentage of situa-tions. Researchers �nd this property a compelling reason to develop and use suboptimalmethods.Various techniques for recovering from the search errors resulting from suboptimal al-gorithms have received considerable attention. Popular techniques include:Comerford et al. give a short overview of HMMs in [32].14\Viterbi decoding" is a term from the digital communications �eld.15Also known as A� in the arti�cial intelligence �eld, and related to the Fano algorithm in digital com-munications. It is interesting to see how similar algorithms emerge from di�erent �elds.58



� Multiple passes, including backwards processing [4]: By varying the way the systemperforms decoding during each pass, researchers hope to compensate in the sum ofall passes for de�ciencies in individual passes. Progressive search techniques [137], inparticular, start with crude but cheap decoding techniques and use more re�ned andcomputationally intensive decoding schemes for later passes.� N -best lists of sentences [177, 176]: By generatingN of the most likely word sequencesrather than just the single most likely one, the correct answer is more likely to appearsomewhere in the resulting output set. Systems can then use subsequent processingto re-rank the various hypotheses.� Word graphs and lattices [146, 139, 140]: A word graph is de�ned to be a directedacyclic graph where each edge corresponds to a word with a score and each node is apoint in time. There is less agreement on the de�nition of a word lattice. Some authorsuse the word lattice in a manner consistent with a word graph. Others suggest thatword lattices contain only word-order information and allow the possibility of temporaloverlaps, or even gaps, between words. In this thesis, the terms \word lattice" and\word graph" are synonymous and both refer to the directed acyclic graph. Similar toN -best lists, graphs and lattices contain more information than just the best sequence.Systems use postprocessing, perhaps incorporating additional kinds of information, torescore the information in the graphs and lattices.� Combinations and variants of the above: One example of this is the work of Soongand Huang, who used a forward search with a Viterbi criterion, then a backwardsearch with a stack decoding scheme to produce an N -best list [185]. Researchershave combined various techniques and methods in order to capitalize on as manyadvantages as possible.In addition to these basic algorithms, system engineers use many heuristics singly orin combination to improve search performance, trading accuracy for speed or memory us-age. New strategies, variations and combinations of existing techniques appear frequently.Pruning heuristics can improve the computation times, but have the potential of introduc-ing search errors, where the decoder discards the correct answer due to the direction takenby the pruning strategy. Practical decoders make extensive use of pruning. The art in thedesign and implementation of decoders is in quickly discarding as much of the search spaceas possible without losing the correct answer.Examples of current popular pruning heuristics include:� Beam search [122] [43] (sometimes with multiple beams): \Beams" limit the extentof the search space considered during Viterbi decoding so that the decoder expendssearch e�ort in a narrow region where the most probable hypothesis is likely to reside.� Fast match [9, 8]: Typically used with stack decoding, fast match helps select thenext candidates for adding to the current hypothesis by looking ahead in the acousticprobability stream and performing quick, coarse phonetic matches.59



� State- or phone-level pruning, such as deactivation pruning [164]: The decoder com-pletely deactivates phones (i.e., assigns a probability of zero) that appear to havecomparatively low probability. These phones and their corresponding words are notconsidered during the decoding process, improving execution speed.ASR systems apply higher-level knowledge at various levels and in a variety of forms.The experiments described in Chapters 4, 5 and 6 used a bigram language model to describethe probabilistic word structure of the Numbers utterances. N -gram models [10, 43] are apopular method of adding language constraints into the decoding process. Bigram (N = 2)or trigram (N = 3) models are common. Other researchers have been studying a variety oflong-span language models and di�erent ways to incorporate more knowledge-based sourcesof information.Clearly, there has been great e�ort expended in speech decoder design and implemen-tation. Many decoders for current tasks (e.g., for 64,000-word vocabularies) perform recog-nition in close to real-time on consumer personal computers. Yet there is still much toimprove in machine speech recognition. As researchers discover more about the nature ofhuman speech recognition and incorporate new processing techniques and sources of speechinformation, the demand on computing resources by decoders will continue to increase.The work described in this thesis required a pool of several decoders, since each hadunique capabilities. The four di�erent decoders used were:� A simple, small-vocabulary, special-purpose decoder with an explicit syllabic level(Chapter 4).� The y0 decoder [88], a general purpose, Viterbi decoder with forced alignment capa-bilities (Chapters 5 and 6). y0 uses beam search to limit the number of simultaneoushypotheses.� The noway decoder [164, 163, 165] (Chapters 5 and 6) . noway is a start-synchronousstack decoder using a Viterbi criterion. noway incorporates phone deactivation prun-ing and limits the creation of new hypotheses with beam-search-like techniques. Thenoway decoder has the added capability of producing word lattices.� The lattice decoder lattice2nbest [166] which uses a noway-like stack decodingalgorithm. This decoder determines the best sequence of words from a word lattice(Chapter 6).3.5 Combination of Multiple StreamsThe combination of information from multiple sources is an attractive approach to the prob-lem of speech recognition. Merging information has the potential to exceed the summedperformance of the individual parts. The Hearsay system [48] of the 1970s and early 1980sattempted to combine information from di�erent knowledge sources to �rst make a hy-pothesis and then correct it. More recent, anecdotal evidence suggests that combininginformation at the feature extraction level from even slightly di�erent analysis methods60



can lead to increased recognition performance. Chapters 4 and 6 describe the explorationof combining two speech recognition systems, one oriented towards the phoneme, and theother incorporating syllable-based information. While the phoneme-based system is well es-tablished and highly optimized, the more recently developed syllable-based systems are lessoptimized. By combining the two, the advantage of the maturity of the phoneme-based canpotentially be enhanced by the innovation of the syllable-based system for a more accurateoverall result.The combination of multiple sources of information can occur in a free-form manner atarbitrary levels in the recognition process. The experiments in Chapters 4 and 6 concentrateon merging streams of information from two recognition systems at the frame, syllable andwhole-utterance level. The pattern recognition community has proposed quite a few algo-rithms for combining classi�ers, particularly for handwriting recognition. Since the focus ofthis thesis is not on the science of combining classi�ers, but rather on the combination ofspeci�c speech recognition systems, the literature overview here will be brief and will onlydiscuss the combination algorithms relevant to the work described in this thesis.A speech recognition system normally uses a single form of feature analysis and a singledecoding method to generate phonetic probability estimates. As noted by Ho, Hull andSrihari, a perfect form of feature analysis or method of decoding is di�cult to de�ne forproblems with a large number of classes and noisy inputs. Classi�ers using di�erent featureanalyses and di�erent decoding paradigms can result in di�erent errors, even if each separateclassi�er achieves about the same overall percentage error. The crux of the combinationproblem, then, is to determine the ideal combination algorithm to take advantage of eachclassi�er's strengths (\classi�er correlation") [87].There are two fundamental approaches to combining the outputs of more than oneclassi�er: (1) merge the outputs of each single classi�er acting in parallel over some input,in a uniform way to produce a global output that represents a group consensus, or (2) chosefor each target one the classi�ers in a group, acting in parallel, to represent the whole. Theseare called, respectively, \classi�er fusion" and \dynamic classi�er selection" [206]. Woods,Kegelmeyer and Bowyer approached the problem of combining multiple classi�ers by usinga dynamic classi�er selection algorithm with a local accuracy criterion. That is, when theclassi�ers di�ered in their outputs, the algorithm assessed local accuracy estimates of eachof the classi�ers from the \nearby" examples in the training data in order to determinewhich classi�er to use for the �nal output. In preliminary experiments with the Numberstask, the computation of local accuracy appeared to be a poor estimate of the reliability ofthe classi�er, particularly when the test case was not represented in the training set (e.g.,in the presence of noise).Other classifying techniques include the simple majority vote. Preliminary experimentswith the Numbers data supported the intuition that when each classi�er's accuracy wasfairly high, voting eliminated a signi�cant number of errors. When the individual classi�erseach had a large error rate, however (for example, with the addition of reverberation), thevoting method did not signi�cantly improve the overall error rate. This was due to thelarge variance in recognition answers when the input was noisy.There are also methods based on con�dence measures. Unfortunately, it is di�cult to61



de�ne a con�dence measure that is comparable between di�erent recognition paradigms.Similarly, other numerical scores such as distances and estimates of posterior probabilitiesare di�cult to use directly because of the basic incompatibility of the assumptions in thedata to be combined [87].Aside from the question of how to combine classi�ers is the question of which classi�ersto include in the merging. If estimates of classi�er performance were exact, no such choiceswould be necessary. Estimates of accuracy are 
awed, however, especially for unexpectedinputs, so the choice of classi�ers to be combined must be carefully considered. Experimentalevidence from Woods et al. further illustrates this point. They found that certain subsetsof four classi�ers outperformed a combination of all �ve classi�ers [206].In the �eld of automatic speech recognition, the decoding stage adds an additionallevel of complexity in the combination process. As a result of the dynamic programming indecoders, there is only an indirect relationship between probability estimation and improvedaccuracy. Common approaches to combining multiple sources of information include N -bestlist rescoring and word-lattice rescoring.For the work in Chapter 4, the combining took the form of constraining the decod-ing process of one system with the output of another. The combination methods usedin Chapter 6 are based on the linear combination of the log probability outputs of eachrecognition system, a standard classi�er fusion technique. These proved to be more suc-cessful than attempts at classi�er selection. Chapter 6 further describes investigations ofdi�ering frameworks for combination where the granularity of the combination unit wassystematically varied from the whole sentence to the phone/frame level.For combining at the frame level (i.e., at the output of the neural network), simply mul-tiplying the corresponding probabilities for each frame was e�ective. The result can then bepassed into the decoding process as usual. A method recently reported by Bourlard, Dupontand Ris provided an avenue for experimenting with combining systems at the syllable level.Bourlard et al. experimented with what they term HMM-recombination [19], a variant ofthe HMM decomposition technique [193, 194, 66] more commonly used to statistically de-compose noise and speech (independent sources of sound information). Dupont, Bourlardand Ris [45] have begun investigating combining speech information from several streams,each representing a di�erent time-scale (e.g., phones and syllables) with some asynchronypermitted between recombination points. Potential advantages listed by Dupont et al. in-cluded better robustness to noise. The work presented in Chapter 6 used their techniqueto combine hypotheses at the syllable level during decoding. The combination procedureat the utterance level used N -best rescoring to determine the best utterance overall. Eachmethod had distinct advantages and disadvantages for implementation and optimization.These issues are discussed further later in this thesis.3.6 SummaryWhile some speech recognition applications are currently enjoying some measure of com-mercial success, accurate and robust speech recognition, particularly for naturally spoken,conversational speech, is still a considerable challenge for ASR systems.62



The Numbers corpus is a small vocabulary, naturally spoken speech database idealfor these exploratory studies. For evaluation purposes, the Numbers corpus provides amanageable but nontrivial recognition task. An arti�cially reverberated version of the testset was used to model one kind of adverse environmental condition. Humans can recognizeboth the clean and the arti�cially reverberated test set with very few errors. Machines, onthe other hand, usually produce dramatically more errors than humans [120]. Thus, thereis considerable room for improvement in ASR. The work reported in Chapters 4, 5 and 6used the ICSI speech recognition system (a hybrid neural network/hidden Markov modelparadigm) as a starting point.The experiments in this thesis involve manipulating the decoding stage of the speechrecognition process, either by introducing syllable onsets or by combining two streamsof recognition output. There are many possible combination methods. The experimentsdescribed in later chapters focus on linear combinations of probabilities at the frame-,syllable- and utterance-level. Each of these combination strategies has distinct advantagesand disadvantages.The rest of this thesis focuses on using the decoding and combining techniques outlinedin this chapter to incorporate syllable-based information into speech recognition.

63



Chapter 4Integrating Syllabic OnsetsAccurate estimation of the beginnings of spoken syllables can reduce the number of vi-able utterance hypotheses and thus improve automatic speech recognition performance. Inthe work described in this chapter, we1 explored the integration of syllable onsets into thespeech recognition process via a specially-designed decoder. The �rst set of experimentsused arti�cial onsets derived from advance knowledge of correct syllable boundaries. Theresults of these trials showed that onset information could be useful in improving recogni-tion accuracy. The second set of experiments used onsets estimated directly from acousticinformation. This added information produced a reduction (10% relative) in the word-errorrate for the Numbers task. The latter experiment also suggested additional study of coor-dinating acoustic and lexical representations of speech. From this arose the inspiration forthe work described in Chapters 5 and 6.This chapter begins with a review of the background and previous work with syllableboundaries. Section 4.2 describes the special purpose decoder used for these experiments.The recognition system is further outlined in Section 4.3. Section 4.4 reports the results ofthe experiments with syllable onsets.4.1 Detecting Syllable BoundariesApproaching the question of speech recognition from the syllabic level, rather than from thephonetic level, may confer several bene�ts, as discussed in detail in Chapter 2. Statistical,structural regularities suggest that the boundaries of syllables may be more precisely de�nedthan that of phonetic segments in both speech waveforms and spectrograms. This e�ectis particularly visible during conversational speech. Research by Cutler, Butter�eld andNorris indicated that humans perceive word-initial clusters of phones as integral units [37].Statistics gathered by Greenberg show that syllabic onsets are expressed in canonical formfar more frequently than the rest of the syllable. The syllabic onset exhibits more stabilitythan either the nucleus or the coda [78]. Figure 4.1 shows roughly regular patterns at1The study detailed in this chapter was the result of collaboration between Michael Shire and myself,with additional input by Steven Greenberg and Nelson Morgan. We described parts of this work during apresentation at the International Conference on Acoustics, Speech and Signal Processing, 1997 [210].64
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Figure 4.1: Spectrogram of the utterance \seven seven oh four �ve" with syllabic onsetsmarked as vertical lines [184].the syllabic level in a representative example spectrogram with the beginnings of syllableonsets marked. Attempting to detect syllable boundaries and nuclei is not a new idea. Theapproach reported in this chapter di�ers from previous work in that these experiments areperceptually-oriented and focus on the recognition of spontaneous, naturally spoken speech.4.1.1 Syllable Nuclei and Boundaries in Speech RecognitionResearchers have documented studies focused on detecting syllabic properties such as bound-aries and nuclei in speech research literature since 1975, as described in Chapter 2. Thetwo most closely related projects are discussed in further detail below.In the mid-1970s, Mermelstein described a method for the automatic segmentation ofspeech into syllabic units using a loudness criteria [129]. Hunt, Lennig and Mermelsteinincorporated this method into a speech recognition system [92, 91]. As mentioned in Chap-ter 2, Mermelstein calculated their loudness function over the entire power spectrum. Intheir recognition experiments they used a single speaker for both training and testing thesystem. The test set comprised the same word sequences as the training set, re-recorded bythe speaker. They concluded from their experiments that a syllable segmentation systemprovides su�ciently encouraging results as to warrant further investigation.In the experimental work described in this chapter, the focus is on syllable onsets ratherthan on boundaries because of the perceptual evidence that syllabic onset structures are bet-ter preserved in spontaneous conversational speech than syllabic coda structures. Syllabiconsets were estimated from distributions of energy in 9 separate bands. The recognitionsystem used in these experiments was tested in a speaker-independent manner; speakersand utterances from the training set did not appear in the test set. These experiments havealso had the bene�t of more experience with stochastic methods and decoding strategieswhich has become available since the time of the experiments reported by Hunt et al.65
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Figure 4.3: Example of onset features derived for the utterance \seven seven oh four �ve."The vertical lines denote syllable onsets as derived from hand-transcribed phone labels.[184]The temporal �lter (a high-pass �lter analogous to a Gaussian derivative) was tuned forenhancing changes in energy on the order of 150 ms. The �lter smoothes and di�erentiatesthe waveform along the temporal axis. The (Gaussian) channel �lter performs a smoothingfunction across the channels, providing weight to regions of the spectrogram where adjacentchannels are changing in coordinated fashion.2 Half-wave recti�cation preserves the positivechanges in energy, thus emphasizing the syllable onsets.Large values in this representation correspond to positive-going energy regions wherehypothesized syllable onset characteristics occur. The channel outputs are subsequently av-eraged over a region spanning 9 critical bands, the result of which is referred to as \roband"features, illustrated in Figure 4.3.The process produced updates of these features every 10 ms. The resulting vectorswere concatenated with eighth-order RASTA-PLP [86]3 features computed over a 25-msframe every 10 ms. This combination formed the input to a neural network for estimat-ing the locations of syllabic onsets. For the given acoustic patterns described above, atrained, single-hidden-layer, fully-connected, feedforward multilayer perceptron with 400hidden units estimated the probability that a given frame was a syllable onset. For thepurposes of training, a series of 5 frames represented the syllable onset (as derived fromautomatic segmentation of phonetic hand-transcriptions), where the initial frame corre-sponded to the actual beginning of the syllable.A simple numeric threshold applied to the probability estimates generated by the neuralnet determines the identi�cation of any given frame as a syllabic onset. The choice ofthe threshold value primarily optimized correct identi�cation of onsets and secondarilyminimized insertions, on the cross-validation set. This procedure correctly detected 94%2More details concerning the �lter speci�cations of this system can be found in [184].3RASTA-PLP is described in more detail in Section 3.3.1.67



of the onsets computed from phonetically transcribed data (within the 5-frame tolerancewindow de�ned for training). The procedure also mistakenly inserted syllabic onsets wherethere were none (false positives) in 15% of the frames outside the tolerance window of anyonset. A syllable-based decoder uses these onset decisions as frames corresponding to thebeginnings of syllables.4.2 Speech Decoder With Additional Syllabic LevelThis study involved the design and implementation of a special-purpose speech decoder,suitable for small vocabulary tasks. Its most notable departure from standard decoders isthat it incorporates an intermediate, syllabic level of abstraction between the level of thephone and the level of the word or sentence.4This decoder processes phonetic probabilities from a neural network using a conventionalViterbi algorithm with hidden Markov models. Using a bigram syllable grammar, thedecoding process creates a syllable graph (a derivative of the word graph described inSection 3.4) from the phonetic information. Trials without a syllable grammar showed thatthe grammar plays an important role in the e�cient pruning of hypotheses. Each arc in thegraph represents a single syllable hypothesis, to which the decoder assigns a likelihood value.The endpoints of the arc indicate the beginning and ending times of the syllable hypothesis.The next stage, the program's stack decoder, uses this syllable graph as input along witha bigram word grammar. The stack decoder5 determines the most likely sequence of wordsgiven the syllable graph. This procedure is a type of multiple-pass decoding method and isconceptually similar to the two-level dynamic programming algorithm [171]. The additionalcomplexity of the decoder design permits the explicit representation of the relationship ofphones to syllables and syllables to words. The algorithm's representation of the syllableas an intermediate stage in the design allows easier expansion and experimentation at thesyllabic level. Syllable onset information appears as an additional input at the level of thesyllable graph, as illustrated in Figure 4.4.To validate the design and implementation of the special-purpose decoder, we comparedthe performance of the recognition system with this decoder to the performance of thesame system except with y0 and noway performing the decoding function. Without theintroduction of syllable onset information, the special purpose decoder produces word-errorrates on the Numbers corpus roughly comparable to the more established decoders available,given similar input.4.3 Recognition SystemThe recognition system for these experiments was derived from the ICSI hybrid HMM/MLPsystem, described in Section 3.3, with extensions for incorporating syllable onsets. Thebaseline system used the following elements:4Future work that was planned for this decoder was eventually subsumed into other directions which didnot require the use of this specially-designed decoder.5Stack decoding is also discussed in Section 3.4. 68
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10 15 20 25 45403530 Time (Frames)0 5Figure 4.5: Illustration of where the decoder hypothesized the beginning of syllable modelsin the �rst set of pilot experiments (at vertical, dashed lines only).such as word-transition penalty and language model scaling factor, were independently de-rived from a series of experiments with the cross-validation subset. Any parameter tuningthat was needed involved only this cross-validation subset of the training set. The experi-mental results below are reported for the Numbers development test set.4.4.1 With Previously Determined Syllabic OnsetsAn initial set of experiments (a pilot study) using onset information derived from advanceknowledge7 of the true word-transcriptions of the test utterances helped to ascertain thepotential value of incorporating syllabic onsets into decoding.The lexicon for this set of experiments included 32 single-pronunciation words, compris-ing 30 di�erent syllables. These pronunciations were derived from the Carnegie Mellon Uni-versity (CMU) dictionary [202] and syllabi�ed according to standard dictionary principles.In general, the pronunciations re
ected orthodox pronunciations of the words. For example,the word \twenty" was de�ned (in ICSI56 phone orthography, listed in Appendix A.1) as \tw eh n t iy" even though the word is often pronounced in actual speech without the middle\t," as in \t w eh nx iy." An embedded training process calculated context-dependentphonetic durations from the training data.A forced-alignment procedure8 with the lexicon described above generated phone align-ment labels based on word transcriptions, which were provided for all the utterances in thetest set. An automatic process inferred syllable boundaries from the phone labelings us-ing the syllabi�ed lexicon. Due to this top-down process, the resulting syllable boundariescorresponded to a word-level idealization of the utterance. Arti�cial syllabic onsets with aduration of one 25-ms frame were then derived from these forced-alignment labels.During recognition the decoder hypothesizes a syllable model only when its beginningframe is identi�ed as an onset frame by advance information, as depicted in Figure 4.5.In these experiments, the decoder contained no restriction on the end-of-syllable-modellocation. It was therefore possible for one model to overrun later-indicated onsets. Thedecoder had access to only syllabic onset information from the test set and not to any other7That is to say, this was a \cheating" experiment.8Section 3.3 discusses the advantages and disadvantages of forced alignment.70



System Word Error Rateno onset information 10.8%with known syllable onset times, Total frames/onset = 1 6.7%Table 4.1: Performance results (word error rates) for decoding using a single-pronunciationlexicon, with and without arti�cial syllabic onsets derived from forced alignment. Representsideal conditions.prior knowledge from the test set, such as phonetic information. Therefore, changes in therecognized output can be associated directly with the onsets provided.If the dynamic programming decoding procedure and the speech input were ideal, andif the available phonetic information were su�cient to resolve ambiguities, the additionof arti�cially derived syllabic boundary information would, in theory, provide little or noimprovement in recognition performance. In principle, the decoding process assumes thatmodels can begin at any frame, including the ones speci�ed as syllabic onsets. In thisexperiment, however, the incorporation of the arti�cially-derived syllable segmentation in-formation reduced the word error rate from 10.8% to 6.7% (Table 4.1), a substantial relativereduction of 38%. When the system's phone probability estimator, in conjunction with thedecoder, hypothesized incorrect word sequences as the most likely recognized phones, thesesequences often had syllable onsets that did not match the beginnings of syllables in thecorrect utterance. Supplying syllabic onsets compensated for this kind of error by allowingthe recognition system to discard misaligned hypothesis. The decoder is able to override thephones erroneously recognized as most likely, resulting in greater word accuracy. The largereduction in word error observed suggests that correct syllabic boundary information cansigni�cantly improve speech recognition performance when incorporated into the decodingprocess. This may be due to the syllable onset information providing a separate dimen-sion of knowledge about the speech signal from the phonetic information. If the estimationof syllable onsets from acoustic information can be performed accurately enough, this pi-lot experiment shows that the syllable onsets can overcome shortcomings in the phoneticestimates to produce a signi�cant reduction in error rate.A second series of experiments focused on assessing the precision required for syllableonset estimates to be of signi�cant bene�t in decoding. Multiple 25-ms frames, with a 10-msstep between the beginnings of adjacent frames, were associated with each onset, insteadof just one frame. The decoder hypothesized the beginning of syllable models at any of theexpanded onset frames, as shown in Figure 4.6. As the window of frames for each onsetwidened from 5 to 13 frames, the word error rate increased, as shown in Table 4.2. In the lastexperiment each onset encompassed up to 13 frames where syllables could be hypothesizedand the word-error rate was still 21% better (10.8% versus 8.5%) than without the onsetinformation. This suggests that some erroneous word sequences recognized by the systemhad corresponding syllable onsets that were more than 13 frames from the actual onsets ofthe utterance. Providing the onset information, even with 13-frame precision, allowed thedecoder to discard these misaligned hypotheses. Thus, syllabic onset information of even71
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5 10 15 20 25 45403530 Time (Frames)0Figure 4.6: Illustration of where the decoder hypothesized the beginning of syllable modelsin second set of pilot experiments (at vertical, dashed lines plus a �xed interval to the leftand right of the onset).Number of Frames Centered on Each Onset Error RateTotal frames/onset = 5 7.3%Total frames/onset = 9 7.8%Total frames/onset = 13 8.5%Table 4.2: Performance results (word error rates) for single-pronunciation decoding, usingsyllable hypotheses that were allowed to begin within several frames of arti�cial onsetsderived from forced alignment.limited precision can be bene�cial in decoding in speech recognition systems. Fairly broadhints as to the location of syllable boundaries were su�cient to overcome faulty phoneticrecognition and improve recognition accuracy in many utterances. These results indicatethat syllable onset information, if reasonably accurate, has high value, separate from thatof phonetic information.4.4.2 With Acoustically Determined Syllabic OnsetsSince speech recognition systems do not usually have access to true syllabic timing infor-mation, systems must infer syllable boundaries from other sources. In the next series ofexperiments, the decoding process was constrained by acoustically-derived syllable onsetestimates from the procedure outlined in Section 4.1.2. The trials described below did notincorporate any advance information from the test utterances.The subset of the Numbers corpus used for these experiments was phonetically tran-scribed at OGI [30]. Dan Ellis' (at ICSI) adaptation [47] of Bill Fisher's (NIST) syllabi�ca-tion program tsylb2 [51] automatically generated syllable boundaries for the training datafrom the phonological interpretations of the phonetic transcriptions. The neural networktraining procedure in Section 4.1.2 used these onsets. These syllable boundaries do not nec-essarily respect word boundaries, unlike the syllabi�cations used in the pilot experiments.The neural network was trained on targets derived directly from the phonetic hand-72
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System Error Ratewith data-derived lexicon, no onset information 9.1%with data-derived lexicon, with onsets derived from threshold 8.2%Table 4.3: Word-error rates for multiple-pronunciation (data-derived) decoding, with andwithout acoustically-derived onsets.described in Section 4.1.2. In the illustration in Figure 4.7, the lightly �lled rectangularbox represents the threshold. If the value of the neural network's onset-detection output isgreater than the threshold for a frame, then the decoder considers the frame to contain anonset. The decoding algorithm begins syllabic models at frames containing hypothesizedonsets. The decoder also starts syllabic models in the 5 frames before a frame identi�ed asan estimated syllable onset. That is, if the onset-detection neural network indicates an onsetat frame number 17 via the threshold criterion, then the syllable-based decoder hypothesizessyllable models as beginning at frames 17, 16, 15, 14, 13 or 12. This reduced the number ofpotential starting frames for syllabic models by 58% in the Numbers development test set.When the decoder incorporated acoustically-derived syllabic onset estimates into thedecoding process, the recognition performance improved slightly. The word-error rate de-creased by 10%, from 9.1% to 8.2%, as shown in Table 4.3. Since this improvement wasproduced by the addition of only syllable onset estimates, this result indicates there is po-tential performance bene�t to be gained from this method. The syllable onset informationmay better encapsulate certain properties of the speech signal than phonetic probabilities.4.5 DiscussionThe process of constraining decoding with syllable onsets can be interpreted from the view-point of hypothesized syllabic interval units. The syllable onset estimates are hints asto where hypothesized syllable intervals begin. Decoding of phonetic information is thenrestricted to �tting syllable models into plausible intervals between syllable onsets. Thedecoding process can be thought of attaching the syllable onset hints and the most likelyphonetic realizations as features to hypothesized syllabic intervals. This interpretive model,based on the framework of the syllable, is consistent with the discussion of the humanspeech perceptual process in [78]. This model will be discussed again in the context of thework with combining recognition systems at the syllable level in Section 6.4. The syllableinterval interpretation provides an instructive connective fabric between these experimentsand those of Chapters 5 and 6.Resyllabi�cation PhenomenaThe experiments described in Section 4.4.2 illuminated certain limitations in the recognitionsystem used for this study that necessarily impacted its performance. One such limitation74



in the experimental paradigm used was the mismatch between the acoustic-phonetic andphonological representations of the syllable forms employed for word recognition. Thesyllabic segmentation method depended largely on acoustic-phonetic criteria, where theinput was streams of phones composing a multi-word utterance. The syllabi�cation ofthe lexical items used for decoding came from the phone sequence of a word in isolation.Thus, this method did not account for cross-word e�ects in the lexicon used for decoding.An instance where this distinction was of particular signi�cance in word sequences wasone in which the syllable coda of the �rst word was consonantal and the onset of thefollowing word was vocalic, as in \�ve eight." The phonological representation of such asequence would be /f ay v/ /ey t/, while the phonetic realization was more typically /fay/ /v ey t/, where the /v/ resyllabi�ed to the /ey t/ syllable. Such \re-syllabi�cation"phenomena are not easily accommodated within the syllabic representational frameworkused in the decoder in a generalizable fashion. One possible solution, which increases thecomplexity of the decoding considerably, is to use multiword clustering, as described in [50].By modeling multiple words in sequence together, alternate syllable segmentations can bemodeled. Re-syllabi�cation, however, can happen in a large number of word combinations,so the multiword set may become very large.Extension to Larger Vocabulary TasksSubsequent to the main body of work in this chapter, a strategy was de�ned that allowedthe incorporation of onset information into the input to standard decoders. This eliminatedthe need for a special-purpose decoder9 and allowed for easier extension to larger vocabularytasks. The dominant decoding technologies at ICSI, y0 and noway, both de�ne lexiconsvia HMM states and accept input from neural networks in the form of one probability valueper neural network output per frame. By taking an \outer product" of the phonetic neuralnetwork output and the onset estimation neural network output, and marking states at thebeginnings of syllables in the lexicon as special, this modi�ed input can be used with y0 ornoway to perform recognition constrained by onset estimates.The method essentially adds phone probabilities conditioned on whether the phone isalso a syllabic onset or not to the original set of phone probabilities. This can also bethought of as altering the �rst state of each syllable in the HMM. Functionally, the strategyuses a phonetic neural network output stream double the original in size. Instead of 56phones per frame, the scheme uses 112. Outputs 0-55 are the original phonetic values andoutputs 56-111 represent the same 56 phonetic values, gated by whether the onset-detectionneural network considers the frame as containing a syllabic onset or not. The lexiconrepresentation needs modi�cation only in that the initial state of the phone at the beginningof a syllable is converted from a regular phone output to a phone output conditioned onsyllabic position. Thus, during recognition the decoder implicitly synchronizes the syllabiconsets in the lexicon with onsets indicated in the modi�ed neural network output streamwithout modifying the internal code of the decoder.This scheme has the potential of a�ecting the decoder's pruning and other optimiza-tion strategies because the decoder performs recognition in a manner for which it was not9The method was developed with Philip Faerber (then at ICSI).75



intended. Pruning parameters and other user-de�ned arguments can be used to mitigatethe e�ect. While a special purpose, syllable-based decoder has advantages for ongoing,highly experimental work, this manipulation of the decoding input which allows the use ofa standard decoder can facilitate the limited use of syllable onset information into largevocabulary tasks. The two methods are functionally equivalent, but the second involvesconsiderably lower implementation e�ort since existing decoders can be used unmodi�ed.Preliminary trials with this scheme showed that for the Numbers test set the error rate wasnot negatively impacted. The HMM-recombination work in Section 6.4 used a similar, butmore elaborate paradigm.We shared this strategy with Cook and Robinson, who incorporated syllable boundaryinformation into an experimental version of their ABBOT recognition system [34] for theDARPA Hub-4 Broadcast News task [71]. Their system included a trigram language modeland a 65,000-word vocabulary. Using a very similar methodology to detect syllable onsetsand the aforementioned scheme for incorporating onsets into their system, Cook and Robin-son found their error rate improved from 31.5% to 28.8%, a 8.6% relative reduction in worderror rate [33].4.6 SummaryDetecting syllable boundaries and nuclei has the potential to improve recognition accuracyby helping to accurately segment speech signals. Estimates of syllable onsets were usedas constraints in a special-purpose decoder that explicitly represented the syllable as anintermediate stage between phones and words.Pilot studies with \cheating" information indicated that considerable potential improve-ment could be achieved by accurate syllable-level segmentation. With the arti�cial bound-aries in the cheating experiment, the system showed a 38% relative improvement over thebaseline system. The pilot study also showed that the system required only modest precisionfrom the onset detection mechanism to produce signi�cant improvements in performance.Further experiments used acoustic segmentation estimates derived from a signal pro-cessing method based on general principles of auditory analysis (\non-cheating"). Theword-error rate was reduced by 10% for the boundary information derived from the acous-tic segmentation method. We assisted Cook and Robinson in implementing these ideas fortheir large vocabulary system and they also found a roughly 10% improvement through theuse of syllable onsets.4.7 ConclusionsIncorporation of syllabic onset information has the potential to signi�cantly increase theaccuracy of word-level recognition. The onset information has been used in these exper-iments to hypothesize syllable-length intervals in the speech signal. Phones were thenused for decoding on a syllable-by-syllable basis. These results with the small Numbersdatabase indicate the potential utility of incorporating syllable boundary information in76



future speech recognition systems. Although the improvement seen with the Numbers testset was slightly too small to be statistically signi�cant at the 0.05 level,10 experiments byCook and Robinson showed a similar result with a larger test set for a di�erent task whichwas indeed statistically signi�cant. Furthermore, the results by Cook and Robinson used alarge vocabulary, demonstrating the extensibility of these ideas.

10Signi�cance testing used normal approximations to binomial distributions and used a Z-score to testwhether the two distributions were signi�cantly di�erent.77



Chapter 5Incorporating Syllable TimeScalesThe work with syllable onsets, described in Chapter 4, indicated that syllable-based infor-mation has the potential to provide meaningful improvements to speech recognition technol-ogy. This suggested that the incorporation of additional pieces of syllable-based informationmay be helpful as well. This chapter describes the development of an experimental speechrecognition system that incorporates syllable-timed information at three di�erent stages ofthe recognition process: at the feature extraction level, at the input to the neural networkand in the statistical representation of the pronunciation models. In this system, selectedelements of the baseline system setup were replaced by new, syllable-based elements, with afocus on the long-time span properties of speech (on the order of the length of the syllable,i.e., about 200 ms). The development of three additional systems, each incorporating somesubset of these syllable-based elements, provided additional context for analysis and com-parison. Each of the four experimental systems represents one of the possible combinationsof a feature analysis method (RASTA-PLP or modulation spectrogram) and a recognitionunit (phone or half-syllable). This chapter and the one following concentrate primarily uponthe system with the maximum number of syllable-based elements, and use the other threesystems for understanding more completely the e�ects of introducing syllable-based infor-mation. For simplicity, the system with the maximum number of syllable-based elementsis referred to as the \focus" experimental system. Word error rate results showed that themore syllable-oriented experimental systems underperformed the baseline in many cases.All of the experimental systems, however, were still fairly good recognizers, as judged fromthe Numbers test sets.Examination of the recognition outputs showed that the errors made by each systemdi�ered considerably from the errors made by the baseline system, particularly in the caseof the focus experimental system. This suggested that combining the focus system with thebaseline system may be advantageous, as discussed and demonstrated in Chapter 6. Thefollowing chapters recount investigations into how longer time intervals can a�ect speechrecognition performance through combination with a mature, phoneme-based system.This chapter describes the development of the baseline and the experimental, syllable-78



based systems in detail. This exposition begins with a brief review of the background of themodulation spectrogram features [80, 107, 105]. Next, Section 5.2 describes the syllable-based training and recognition targets and lexicon. The system components and individualrecognition performance results for the focus experimental system and each of the otherexperimental systems are reported for the Numbers task, for both clean and reverberantversions of the test sets in Sections 5.3 and 5.4. The chapter ends with a brief summaryand conclusions.5.1 Feature Extraction: Modulation SpectrogramAs described in Chapter 3, the baseline phoneme-oriented system for these experimentsprocessed raw acoustic input with RASTA-PLP features. Two of the experimental systemsdeveloped, including the focus system, used modulation spectrogram features to incorpo-rated syllable-timing at the feature extraction level. The modulation spectrogram featuressupplanted the RASTA-PLP features used in the baseline recognition system.This section summarizes the work of Greenberg, Kingsbury and Morgan [80, 105, 107] onthe modulation spectrogram features, as used for the work described in this thesis. Green-berg began looking towards the modulation spectrum as a means for explaining the e�ectsof many sources of acoustic variation in speech, such as speaker di�erences and adverseenvironmental conditions. A stable representation of speech that encapsulates the most im-portant features of speech can be an invaluable tool for the investigation of pronunciationvariability.Current speech recognition applications reduce the problems of reverberation1 and en-vironmental noise by gathering speech input with close-talking microphones. Ultimately,however, ideal speech applications should be accessible without the need to speak directlyinto a microphone. In this case, the problem of recognizing reverberant speech must behandled. Currently, as discussed in Section 3.2, speech recognition systems with high ac-curacy rates for clean speech make many more errors in the presence of moderate to highreverberation. Human subjects, when asked to transcribe the words in moderately rever-berant speech, achieve a performance level that is vastly better than the best automaticspeech recognizer, as illustrated with Numbers in Section 3.2 and in [106].Kingsbury implemented and re�ned the original modulation spectrogram proposal andfocused his attention on improving the accuracy of speech recognition systems in the caseof reverberant speech2 and in the presence of additive noise. Greenberg and Kingsburyobserved that many unexpected variations in speech, such as speaker di�erences, and dis-tortions, such as moderate levels of background noise and reverberation, that have littlee�ect on the intelligibility of speech for humans, can dramatically a�ect the most popu-lar speech representation, based on either the narrowband or wideband spectrogram. Themodulation spectrogram appears to more stably represent speech by reducing the presenceof parts of the speech signal that are not important in determining phonetic identity.1Chapter 3 also discusses reverberation.2Avendano, Tibrewala and Hermansky discuss another approach to improving recognition accuracy forreverberant speech [5]. 79



Normalize by
long-term avg.

F
IR

 fi
lte

r 
ba

nk
C

rit
ic

al
-b

an
d

lowpass

lowpass

long-term avg.
Normalize by

cutoff = 20 Hz

cutoff = 20 Hz

80X

80X 3

3

3

3

N
or

m
al

iz
e 

to
 +

/-
1

N
or

m
al

iz
e 

to
 +

/-
1

lowpass
cutoff = 8 Hz

bandpass
2 - 8 Hz

Figure 5.1: Modulation spectrogram feature extraction method [104].The primary hypothesis behind the modulation spectrogram is that phonetic informa-tion is encoded in the speech signal as relatively slow changes in the spectral structure ofspeech.3 Such a hypothesis matches the timing properties of the articulators and auditorycortical neuron activity [80]. The modulation spectrogram represents the speech signal asa distribution of slow modulations, from 0 to 8 Hz with a peak at 4 Hz, across time andfrequency. The 4-Hz sensitivity corresponds roughly to syllabic frequencies. This serves as amatched �lter that passes only signals that share the same modulation properties as speech.The features are computed in critical-band-wide channels in order to expand the represen-tation of the low-frequency, high-energy portions of speech and match the characteristics ofthe human auditory system. The modulation spectrogram incorporates a simple automaticgain control and emphasizes spectro-temporal peaks. The speci�c signal processing detailsrequired to produce the modulation spectrogram features are described in [80, 105, 107]and illustrated in Figure 5.1. These steps improve the relative stability of these features incomparison to the conventional spectrogram. The signal processing results in 15 featuresplus 15 delta features for a total of 30 features per frame.As a result of the signal processing steps involved, the modulation spectrogram losessome of the �ne details of speech that are evident in the conventional narrowband or wide-band spectrogram, such as harmonic structure and onsets. The coarse picture of the distri-bution of energy, however, provided by the modulation spectrogram seems to have greaterstability in the presence of noise and reverberation than does the narrowband or widebandspectrogram. Greenberg et al. demonstrated that syllable durations coincide with energy3RASTA-PLP also restricts the signal to low frequency modulations, but the �lter characteristic is lessextreme than in the modulation spectrogram case. 80



Features Clean W. E. R. Reverb W. E. R.PLP 6.4% 37.6%RASTA 6.4% 26.0%modulation spectrogram 8.5% 27.3%RASTA combined with PLP 5.7% 26.9%RASTA combined with modu-lation spectrogram 5.5% 20.1%Table 5.1: Partial list of performance results (word error rate) from original experimentswith modulation spectrogram features [107].distribution in the modulation spectrum [79] for conversational American English. Arai andGreenberg showed a similar pattern for Japanese [1]. Kingsbury and Morgan speculatedthat the performance improvement with reverberation provided by the modulation spec-trogram features could be attributed to a more robust representation of syllabic segmentsleading to fewer deletions [106]. Modulation spectrogram features seem to emphasize thehigh-energy portions of the speech signal usually associated with syllabic nuclei. Kingsburyet al. pointed out again in [107] that most of the energy that appears in displays of the mod-ulation spectrogram falls between onsets, and the observed energy appears to correspondroughly with syllabic nuclei.The performance of a recognition system based on modulation spectrogram featuresis compared to the performance of systems based on other feature analysis methods inTable 5.1, reproduced from [107]. Kingsbury et al. produced these experiments with anANN/HMM hybrid system similar to the paradigm used for this thesis work (i.e., both arebased on the ICSI system). Their systems had somewhat di�erent parameters, but used thesame Numbers task for evaluation. In the experimental trials reported by Greenberg andKingsbury [80], they found that the modulation spectrogram features performed slightlyworse than a more conventional front-end method, PLP, for clean speech, but better forreverberant speech, by a statistically signi�cant margin, as shown in Table 5.1. While themodulation spectrogram by itself did not outperform RASTA-PLP, a simple, frame-levelcombination of the modulation spectrogram system with the RASTA-PLP system producedstatistically signi�cant improvements on reverberant speech and a range of additive noiseconditions. In this simple approach, the scaled phone likelihoods from the pair of MLPs weremultiplied as they were output from the neural network. The same combination procedureapplied to PLP and RASTA-PLP did not produce a similar improvement. Kingsbury etal. speculated that the improvement was due to the modulation spectrogram featurescomplementing the RASTA-PLP features; the modulation spectrogram emphasized syllabicnuclei while the RASTA-PLP analysis emphasized the onsets of speech sounds. This simpleapproach shows that combining di�erent features with disparate properties is a promisingparadigm. The same frame-level combination approach is analyzed more thoroughly later,in Chapter 6.Kingsbury et al. has continued to develop the modulation spectrogram beyond the81



version used for the work in this thesis; the details about his continuing work can be foundin his Ph.D. thesis [105]. It was necessary to choose a version of the modulation spectrogramfeatures for this thesis work, however, and it was not practical to continuously update thework with revised features. The older version of the modulation spectrogram features, usedin this thesis, contains many of the major features of the current work of Greenberg andKingsbury.5.2 Recognition Unit: SyllablesIn some of the experimental systems described in this chapter, the recognition units wereoriented towards the syllable by using syllable-based units as an alternative to phone unitsas training targets (the output of the neural network) and in the de�nition of word pro-nunciations (statistical representations of pronunciation models). The syllable-based unitstypically spanned one to four distinct, consecutive phones in the Numbers experiments andtherefore tended to cover a larger contiguous length of the speech input then was typicalfor individual phones.Each syllable was represented with 2 distinct states.4 The syllables were divided inthe middle of each syllable's nucleus. The halves are referred to in this thesis as \half-syllables." These units are not called \demisyllables" as de�ned by Fujimura [60, 61],though conceptually they are similar, in order to avoid the additional context and meaningcarried by the term \demisyllable" in the research literature. Typically, demisyllables areformed from syllables divided just after the initial CV transition, not in the middle of thenucleus as with these half-syllables.Half-syllables have as boundaries the syllable features most likely to be easily identi�ed:syllable beginnings (or endings) and the syllable nucleus. Since there are many more sylla-bles than there are phonemes in English, this scheme allowed parts of syllables to be sharedbetween syllables, for example, the beginnings of \-ty" and \-teen" for some pronunciations.This reduced the total number of recognition units over using whole syllables.Each syllable could have been represented with more than 2 states, each with indepen-dently derived probability densities, as in the pilot study by Schiel [174].5 The half-syllableunit appeared to be a reasonable starting point for the investigations in this thesis. The2-state framework minimally re
ects the heterogeneous structure of the syllable; syllableonsets are generally preserved and but syllable codas are often deleted [78]. The boundarybetween the 2 states is initialized to be the nucleus, which usually maintains its vocalicnature through transformations.Representing each half-syllable as a single unit is functionally similar to the representa-tion of phones with a single unit in the baseline systems and su�cient for these experiments;these units are easily mappable into the ICSI frame-based HMM/MLP system without cre-ating an explosion in the number of states. In the ICSI system, where each 25-ms frameis assigned a phonetically classi�cation, a sequence of frames attributed to the same phonecan be either multiple, separate instantiations each with short duration or a single instan-4My thanks to Steve Greenberg for this suggestion.5Florien Schiel's syllable-oriented work is discussed brie
y in Chapter 2.82



tiation with a long duration. Usually, but not always, the use of word models resolves thisuncertainty. Representing each syllable with only a single probability density state couldsimilarly lead to confusion as to whether the neural network was indicating repeated shortoutputs or one long output, for example in the utterance \one one one," but without read-ily available means to distinguish between the two cases. Using a minimum of 2 states persyllable is one convenient avenue for avoiding this problem and also remains consistent withthe observations of syllabic structure noted above.In this thesis the set of syllables includes only those occurring in the Numbers cor-pus, a tiny fraction of the syllables occurring in the English language. Fisher's automaticsyllabi�er tsylb [51] (via a Tcl/Tk interface created by Dan Ellis (at ICSI)) partitionedthe pronunciations in the lexicon. The process uses pronunciations de�ned in terms of theICSI56 phone set, to produce a set of corresponding syllables. Another automatic processpartitioned the resulting syllables into \halves," where the procedure took the \middle"of the syllable to be the durational middle of the nucleus, usually a vowel. The targetlabels were then either the �rst half or the second half of a syllable. Multiple instantia-tions of the same half-syllable represented minimum durations for each unit, just as in thephoneme-based system.Multiple iterations (max of 3) of forced alignment matched the created labels to thetrained system. The best iteration was, as usual, selected according to the systems' perfor-mance on the clean version of the cross-validation set. After the forced alignment process,the boundary between the two halves of a syllable may no longer be strictly the middle ofthe nucleus due to compounded shifts during the automatic labeling process. The place-ment of this boundary, however, represents the best location according to the usual globallikelihood criterion.5.3 Recognition SystemThis section describes the speci�c parameters of the automatic speech recognition systemsused for these experiments. Chapter 3 reviews the general system description. The fol-lowing description outlines the baseline system, the focus experimental system and thethree supplemental systems more speci�cally. As mentioned previously, the system withthe largest number of syllable-relevant attributes is the focus of this chapter and the next(hence the \focus" system). The other variant systems provide context and contrast to pro-mote more thorough understanding. Each of these systems di�ered from the next only in asmall way. With two di�erent feature analysis methods, (i.e. RASTA-PLP and modulationspectrogram), and two di�erent recognition units, (i.e. context-independent phones andhalf-syllables), there were four unique systems that were di�erent from the baseline system,for a grand total of �ve systems:� RASTA-PLP feature analysis with phonetic recognition units, 9 frames (nominally105 ms) of neural network input context, the baseline system.� RASTA-PLP feature analysis with phonetic recognition units, 17 frames (nominally185 ms) of neural network input context.83



� RASTA-PLP feature analysis with half-syllable recognition units, 17 frames of neuralnetwork input context.� modulation spectrogram analysis with phonetic recognition units, 17 frames of neuralnetwork input context.� modulation spectrogram analysis with half-syllable recognition units, 17 frames ofneural network input context, the focus system.The baseline system was patterned after the established systems at ICSI, used for bothsmall and large vocabulary speech recognition tasks. This system di�ered from the secondsystem in the list only in that the baseline system used a 9-frame context window. Each ofthe experimental systems used a 17-frame neural network context window, in keeping withthe emphasis on long-time span approaches. A 17-frame span of speech is more likely tocontain sizeable parts of syllables than a 9-frame segment.With these systems, these experiments explored two test conditions, namely clean speechand speech with arti�cially added reverberation.6 Since the object is to develop a generalspeech recognition system, not one tuned speci�cally toward the reverberant speech cate-gory, decisions about the recognition system components used only error rates representingclean speech performance, not data collected with the reverberant sets.5.3.1 Experimental ProcedureThe baseline system, the focus system and each supplemental experimental system variantwere very similar and used the following elements:� A 400 hidden-unit, fully-connected, single hidden-layer neural network, for frame-levelprobability estimation.� A Viterbi decoder, y0 [88]. Some experiments also used noway [164, 163, 165],a stack decoder using a Viterbi criterion, for its lattice generation capability, andlattice2nbest [166], for its N -best list generation function.� A backo� bigram grammar7 derived from the training set.� A multiple pronunciation lexicon represented as a set of HMMs, with simple minimumduration modeling.A set of optimization trials with the cross-validation set empirically determined thelanguage model scaling factor (i.e., a weighting that adjusts the relative in
uence of thelanguage model and the acoustics).8In addition, each system had one or more of the following:6Reverberation and the creation of the reverberant test sets are discussed further in Chapter 3.7The grammar is described in Section 3.2.8Language model scaling factors are empirically determined values that weight the in
uence of the lan-guage model over the acoustic information during decoding. This is discussed more fully in Chapter 3.84



� RASTA-PLP features, 25-ms frame size, calculated every 10 ms. Includes 8 features,8 delta features, 1 energy feature and 1 delta energy feature.� Modulation spectrogram features, calculated every 10 ms. Includes 15 features, 15delta features.� 9 or 17 frames of MLP context.� Phone recognition units (56 total, 31 active).� Half-syllable recognition units (124 total, all active).The two standard techniques for stochastically optimizing speech recognition systems,forced alignment and embedded training that includes updating the system lexicon, areappropriate for optimizing each of the experimental systems discussed in this chapter. Eachof the recognition systems involved in these experiments underwent an initial training andthen a maximum of three iterations of forced alignment without lexicon updating. As before,with the phone units, this served to closely match the recognition capabilities of the systemwith its training labels given a �xed lexicon. Recognition trials with the cross-validationset indicated the system from the best performing iteration; the selected system in eachcase was used for the rest of the performance �gures in this chapter and the analysis andcombining work in Chapter 6.For each system, pilot studies tested the idea of optimizing the lexicon after the initialtraining. In these early trials, the hidden Markov models were updated once, in order tomore closely match the lexicon to the learning abilities of the neural network. This indepen-dent optimization of the experimental system lexicons proved to have negligible e�ect on theaccuracy of the resulting systems. Additionally, the resulting systems were less amenablefor combination, due to mismatches in training and lexicon formulation between systems.In the interests of simplifying the experimental procedure, the lexicon-adaptation was dis-carded. The experiments reported used only systems without this particular optimization.Because the work in this thesis involved combining like hypotheses, over-optimization ofindividual lexicons was undesirable. This led to the selection of the best experimental sys-tems without lexicon adjustment for the comparison and analysis work later in this chapterand in Chapter 6.5.3.2 The Impact of Enlarging Hidden LayersBecause the systems varied in the number of input features and in the number of outputs,but not in the number of hidden units, the number of parameters in each system also varied.The baseline system had 77,600 neural network weights and the focus system, the largest ofthe experimental variants, had 253,600 parameters, as shown in Table 5.2. The table alsoshows the number of parameters associated with each of the other experimental systems.Keeping the number of hidden units the same (at 400) in every system reduced the numberof variables a�ecting the training behavior and helped to keep the abilities of the hiddenlayer roughly the same between systems. If the largest of the variants, which had 510 inputunits (30 modulation spectrum features per frame over 17 frames) and 124 output units85



System Description Total Numberof ParametersRASTA + phones, 9 frames **baseline** 77,600RASTA + phones, 17 frames 135,200RASTA + half-syllables, 17 frames 172,000modulation spectrogram + phones, 17 frames 216,800modulation spectrogram + half-syllables,17 frames **focus** 253,600Table 5.2: Number of parameters for each of the baseline and experimental systems. Eachhad either 18 RASTA-PLP features or 30 modulation spectrogram features per frame.(124 half-syllable units), were equalized in the number of parameters with the baseline byreducing the size of the hidden layer, it would have had only 137 hidden units. From earlytrials, indicated in Table 5.3, this appeared to be too few for this amount of data.The role of the hidden layer in a neural network is to e�ect a nonlinear transformationon input data towards maximizing a discrimination measure [14]. This can be informallythought of as carving the input space with hyperplanes. The number of hidden units isrelated to the granularity of the pieces of the input space compartmentalized by thesehyperplanes. The larger the number of hidden units, the �ner the granularity. Empirically,researchers have observed that improvements in discrimination due to increasing the hiddenlayer size eventually asymptote. One interpretation of this e�ect is that the granularityeventually reaches an optimum for the given discrimination task. Adding complexity to thenonlinear mapping function does not necessarily translate to improved discrimination.How much does a simple increase in the number of parameters a�ect recognition re-sults? Experiments with several systems that di�ered only in the number of hidden unitsused, addressed this issue. No other properties in these systems were altered. Each usedRASTA-PLP input with delta features, 17 frames of context and phone recognition units.Each underwent up to 3 iterations of forced alignment, in addition to the initial training,to optimize the training labels, but the lexicon was not modi�ed. The best of the itera-tions for each system was chosen based on the system's performance on the clean version ofthe cross-validation part of the training set. These development set experimental results,listed in Table 5.3, indicated that because the training set was fairly small and highly con-strained, increasing the number of parameters did not signi�cantly a�ect the performanceof the system on the clean version of the test set once the system contained about 100,000parameters. The word error rate remained close to 6.5%, the asymptote, for systems with400 hidden units or larger. This suggested that a simple increase in the number of parame-ters would make only a minor contribution to improving recognition performance for cleanspeech. Apparently, the complexity of the nonlinear mapping represented by the hiddenlayer reached an optimum level for the given input. For the main body of these experiments,400 units was used as the size of the hidden layer.As the number of hidden units increases, Table 5.3 shows a modest reduction in worderror rate for the reverberant version of the development test set, from 27.6% to 24.3% going86



Hidden Layer Size Total Numberof Parameters Clean W.E.R. Reverb W.E.R.100 33,800 9.4% 31.7%200 67,600 7.7% 27.6%400 135,200 6.5% 27.6%600 202,800 6.7% 26.8%800 270,400 6.4% 26.0%1000 338,000 6.4% 24.3%2000 676,000 6.3% 26.0%Table 5.3: Performance results (word error rates) for both the clean and the reverberantversions of the Numbers development set. Each system used about 17 frames of neuralnetwork input context and di�ered only in the size of the hidden layer.System Description Total Numberof Parameters Word Error RateRASTA-PLP (original) 94,672 6.4%RASTA-PLP (doubled in size) 189,344 5.9%modulation spectrogram (original) 99,056 8.5%modulation spectrogram (doubled in size) 198,112 8.2%Table 5.4: Performance results (word error rates) showing the e�ect of doubling the numberof parameters by increasing the number of hidden units, from 488 to 976 (RASTA-PLP)and from 328 to 656 (modulation spectrogram) [107].from a hidden layer size of 400 to 1000 units. Increased complexity in the mapping providedby the hidden layer of the neural network produced some bene�t. This is not unreasonablein view of the added variation introduced by the arti�cial reverberation. A trial with 2000hidden units showed that the downward trend in the word error rate does not continueinde�nitely. Reverberant speech is used as an exemplar of realistically distorted speech inorder to test the robustness of the system. Since the object is not to customize the speechrecognition system for reverberant speech, the system parameter decisions account only forperformance on the clean version of the speech data. The word error rate scores for rever-berant speech are provided in Table 5.3 for comparison purposes with other experimentalsystems with similar numbers of parameters.Kingsbury et al. report similar e�ects when the number of parameters in their systemswere doubled on the same task [107]. Although the systems in the paper by Kingsbury etal. use the same ICSI methodology, their systems had 9 frames of neural network inputcontext instead of 17 frames. The results of Kingsbury et al. with doubling the number ofhidden units in the neural network from 488 to 976 (with RASTA-PLP features) and from87



328 to 656 (with modulation spectrogram features) are shown in Table 5.4, reprinted from[107]. The performance results with double the number of hidden units are not statisticallydi�erent from the original system.As has been observed in the past by others, the technique of merely adding more parame-ters eventually produces diminishing returns and requires more complex training algorithms.For practical purposes, this method reaches a limit with respect to how much performanceimprovement can be attained and considerably increases the amount of time required fortraining and recognition. A better organization of data, however, has the potential to useadditional parameters more e�ectively.5.4 Recognition System PerformanceThis section describes the recognition results of each system individually on both the cleanand the reverberant versions of the development and evaluation test sets. Each systemwas evaluated under each condition at the sentence, word, syllable and frame level. Thefollowing sections show the performance results.To evaluate the performance of each of the systems, it is necessary to have a notionof the \right answer" or \ground truth." That is, some reasonable assignment of possibleanswers to questions that can be considered to be correct by some consistent and, hopefully,meaningful interpretation. As discussed by Chase [24], what the \right" answer is for theoutput of a recognizer or a stage of a recognizer can depend on many factors and canvary across levels of analysis. For each of the analyses discussed below, the notion of the\truth" for the relevant scoring method is discussed. Consistent application of a reasonableassignment of truth can yield a performance description that furthers the understanding ofsyllable-based recognition systems.Word error rate has been and continues to be the dominant assessment criterion forASR systems. This scoring method or an analogous procedure is universally applicableand allows comparisons between diverse applications; all speech recognition tasks consist ofwords or analogous tokens. The algorithm is generally simple and easily applied. Basic wordscoring, however, has a number of conceptual shortcomings that limit its diagnostic value.For example, word error rate calculations treat all words equally, but this may not producethe most useful assessment in practice. Some word classes, such as nouns and verbs, areoften more important for understanding than such classes as articles. Thus, this measureis of limited utility for assessing re�nements that address more accurate understanding ofspeech. With the Numbers task, however, all of the vocabulary words are nouns that referto numerical values. Deleting any single word a�ects the correct decoding of the utterancemeaning so the word error rate measure is probably a fair metric of evaluation.The word error rate score is typically calculated using dynamic programming to deter-mine the minimum number of insertions, deletions and substitutions required to reconcilea recognized string with a given correct string of words. The algorithm has been stan-dardized; the scores reported here use the sclite [142] scoring utility and the ICSI-localwordscore [161] utility. Both are consistent with the NIST standard. The simple dy-namic programming method of scoring has the disadvantage of not applying higher-level88



knowledge or time-alignment information. The algorithm blindly �nds insertions, deletionsand substitutions without regard for the phonetic content or the temporal alignment ofthe errors.9 For example, the scoring algorithm can theoretically �nd a large number ofinsertions between one word and the next, even though this situation is unlikely or is notconsistent with the time alignments of the correctly recognized words.These same scoring utilities can compute syllable error rates. In this case, canonicalsyllables are the basis for performance assessment, not the syllabary used in the recogni-tion experiments. The syllable level generates a slightly �ner granularity of analysis. Forexample, in the case of comparing \forty" to \fourteen," a syllable-level analysis accountsfor the similarity in the �rst syllable and the di�erence in the second. Each word hasa single canonical, (\dictionary") pronunciation composed of canonically de�ned syllables(Appendix A.3). After �rst replacing each word by its canonical syllable-based pronun-ciation, the same scoring algorithm as for words (sclite and wordscore) calculated asyllable error rate for each system.Using canonical syllables instead of the syllables in the recognition syllabary avoidsthe di�culty of dealing with mismatches between the syllables in the reference string andthe recognized string where the corresponding words are actually the same. For example,if the word was \seven," and the reference string contained the syllables /s-eh/ /v-ih-n/and the recognized string contained the syllables /s-eh/ /v-ix-n/, and both are acceptablepronunciations of \seven," the syllable string should be marked as correct. The syllabledeletion e�ect in spoken speech can skew the accuracy scoring, but complete syllable deletionis very infrequent; usually the syllable onset, at the very least, is preserved [78]. In theseexperiments, syllable error rates varied moderately from word error rates, but, in general,word error rate is a good predictor of syllable error rate and vice versa.It was possible to use a simpler procedure to compute frame-level error scores sinceevery frame has a label and has been assigned phonetic probability estimates by the neuralnetwork. A \correct frame" is de�ned as one where the maximum-valued output of theneural network matches the label assigned to that frame. In this case multiple, successiveframes can have the same phonetic assignment, but they are considered to be separateinstances for the purposes of statistics gathering. Alternatively, the analysis method couldconsider segments of varying lengths of the same recognition unit as one instance. For thepurposes of this thesis, however, and for the combination methods explored, the frame-level procedure was su�cient. In this case, no dynamic programming is necessary, a simpleone-to-one comparison yielded the performance score. This avoids the additional e�ectof the decoding procedure and removes any time alignment problems between di�erenttokens, but does introduce a strong dependence on correct labels. The procedure takesthe labels generated by the fully trained baseline system using forced alignment to bethe \correct" labels of the test set. When the experimental systems incorporate forcedalignment, the ground truth labels become somewhat mismatched, so the frame-level errorrate reported may be slightly in
ated. In most cases, however, the best systems selectedwere the ones without additional forced alignment, so the \ground truth" labels are adequatefor evaluation.9Lin Chase suggests some solutions to these issues [23, 24].89



Frame-level Syllable-level Word-level Utterance-levelNumber of Tokens 230,000 5703 4673 1206Table 5.5: Number of recognition tokens at each level for the Numbers development testset. The number of frames is approximate, since this can change depending on the featureextraction method and context window size.The scoring utilities also provide an utterance-level score, where an utterance is correctonly if the recognized words exactly match the reference string. The programs calculatethe utterance level error scores by matching recognized sequences of words with the cor-rect sequence. Alternatively, the utterance-level error scores can be calculated using thesequences of syllables. For Numbers, since the vocabulary is highly constrained, these twomethods yield the same result; however, for large vocabulary tasks, the methods may gener-ate disparate numbers. At such a large granularity of analysis, detailed e�ects are lost. Theanalyses in Chapter 6 showed, however, that considering the outputs of recognition systemsat the level of the entire utterance still has some utility, particularly for the combination ofsystems.5.4.1 Clean Speech\Clean" speech in the case of Numbers is a misnomer; the original acoustic data werecollected over the telephone, so the acoustic signal includes a variety of line and backgroundnoises. For example, one utterance has the sound of a wailing baby in the background. Forthe purposes of this thesis, \clean" refers to this relatively pristine version of the recordedspeech.Table 5.6 shows the word error rates of each of the selected �ve systems on the originaltask's development test set. The total number of recognition tokens in each category isshown in Table 5.5. In addition, Table 5.6 also shows frame error rates, syllable errorrates and whole-utterance error rates. The error rates between each column are stronglycorrelated and are reported to provide context for the comparisons in the next chapter. Fordirect comparison with the experimental results in Chapter 6, Table 5.7 shows word errorrate scores on the evaluation test set. Tuning of any parameters thus far was performedusing only the cross-validation portion of the training set, not the development test set.The evaluation test set was reserved, according to usual practices, until all system designdecisions were �xed and was not used for empirical determination of any parameters.As can be seen from Table 5.6, the baseline word error rate for the clean speech versionof the Numbers development test set was 6.8%. The experimental system variants had worderror rates ranging from 6.9% to 10.6%. The word error rates show that the experimentalsystem variants incorporating modulation spectrogram features and/or the half-syllableunit, including the focus system, clearly performed worse than the more established formsusing only RASTA-PLP and phoneme-based recognition units, though all the recognition90



System Description Frame-level Syllable-level Word-level Utterance-levelRASTA + phones, 9 frames**baseline** 14.9% 6.6% 6.8% 20.1%RASTA + phones, 17 frames 15.7% 6.5% 6.9% 19.7%RASTA + half-syllables,17 frames 23.9% y 8.2% 8.3% 23.1%modulation spectrogram +phones, 17 frames 20.1% 8.6% 9.2% 26.1%modulation spectrogram +half-syllable, 17 frames**focus** 28.3% y 10.1% 10.6% 27.9%Table 5.6: Performance results (error rates) for the baseline and experimental systems onthe complete, clean Numbers development test set. Frame-level error scores labeled with ay are not directly comparable to the other values in the same column, due to a di�erencein recognition unit.systems achieved a reasonably high level of accuracy. At a word error rate of 10.6%, thefocus system was the least accurate.The in
uence of the decoding (dynamic programming) step in recognition accuracy canbe seen in that the frame-error scores in Table 5.6 are categorically larger than the syllable-or word-level error scores. The process of constructing words and sentences from phonessmoothes the errors that occur at the phone level. The syllable-level scores are essentiallythe same as the word level scores, an indication that with Numbers, there is a strongcorrelation between correct syllable recognition and correct word recognition. Since theNumbers vocabulary is highly restricted, this is not surprising. A large vocabulary taskmay produce a somewhat di�erent relationship. The larger error values at the utterancelevel indicate that word and syllable errors are not concentrated in particular sentences,but are rather dispersed. That is, the word errors are not the result of a few very di�cultsentences.A more detailed consideration of Table 5.6 reveals that the �rst and second rows areroughly the same at each level. This means that the baseline system and the experimentalvariant most similar to the baseline produced approximately the same performance. There-fore, extending the length of the neural network window did not a�ect overall word errorrate for clean Numbers speech.The RASTA-PLP system with half-syllable recognition units achieved a comparable per-formance to the modulation spectrogram system with phoneme-based units when measuredat the syllable or word level. Using half-syllables as the recognition unit had approximatelythe same degradation in performance as using the modulation spectrogram. Combining themodulation spectrogram with half-syllable units caused signi�cant further degradation in91



System Description Word Error RateRASTA + phones, 9 frames **baseline** 6.7%RASTA + phones, 17 frames 6.6%RASTA + half-syllables, 17 frames 8.1%modulation spectrogram + phones, 17 frames 8.6%modulation spectrogram + half-syllables,17 frames **focus** 10.0%Table 5.7: Performance results (word error rates) for each system for the complete, cleanNumbers evaluation test set.performance.Since the RASTA-PLP system with half-syllable recognition units had a higher frameerror rate, perhaps the half-syllable units were more easily confused by the neural network.Examination of the half-syllable units showed that a number of the automatically createdunits have confusable characteristics. The multiple pronunciation lexicon partially com-pensated for some confusions. The lexicon included variants that are very similar, oftendi�ering only in the identity of the vocalic segment. Therefore, di�ering frame-level es-timates could map to the same, correct word. Since there are 124 half-syllable units asopposed to the 31 phone units, there were fewer training patterns for each half-syllable unitthan for each phone unit. The half-syllable unit also spans a longer contiguous segment ofspeech and therefore maybe subject to increased variability in training patterns comparedto the shorter phones, making training more di�cult.Coarser units and features led to somewhat lower accuracy rates on clean speech bythemselves. Frame-level evaluations suggest that using the modulation spectrogram fea-tures led to a lower frame-level accuracy than using RASTA-PLP features, possibly due toincreased confusions of blurred featural details.The performance results from the reserved evaluation set, Table 5.7, re
ect the sameword-level performance characteristics observed with the development set. This independentvalidation using the evaluation set is repeated throughout this series of experiments.The focus system had multiple sources of long-time span smearing, so it is reasonableto expect that the focus system has the worst error rate. The comparison here may notbe entirely fair, since the lexicon and phonetic labels used as a starting point for trainingwere optimized for the baseline, a well-established system. It is possible that additionaloptimization of the experimental systems may help close the gap in error rates. As men-tioned previously, the ultimate goal of combining systems limits the utility of individuallyoptimizing the experimental systems. In the next chapter, experiments will determine iflong-time span information can help in combination with �ner grain features and units.92



System Description Frame-level Syllable-level Word-level Utterance-levelRASTA + phones, 9 frames**baseline** 43.7% 28.6% 29.3% 65.5%RASTA + phones, 17 frames 39.9% 25.5% 25.6% 60.8%RASTA + half-syllables,17 frames 47.8% y 31.3% 30.5% 66.6%modulation spectrogram +phones, 17 frames 38.8% 27.0% 26.6% 60.2%modulation spectrogram +half-syllables, 17 frames**focus** 45.7% y 30.0% 30.1% 65.0%Table 5.8: Performance results (error rates) of each system for the complete, reverberantversion of the Numbers development test set. Frame-level error scores labeled with a y arenot directly comparable to the other values in the column, due to a di�erence in recognitionunit.5.4.2 Reverberant SpeechThe tables in this section show the error rates of each of the systems on the Numbersdevelopment test set where the speech was arti�cially made reverberant with a 0.5-secondreverberation time.10 The number of recognition tokens in each category is the same as inTable 5.5.The relationships between the columns of Table 5.8 re
ect those observed with the cleanspeech case. As was found by Kingsbury et al. [107], the modulation spectrogram systemwith phoneme-based recognition units performed almost as well as a comparable RASTA-PLP system, also with phoneme-based recognition units. Both resulted in a word errorrate of around 26%. Using a larger input window to the neural network longer acousticcontext) always seemed to help. All other systems showed some amount of degradationin performance compared to the best system, with the focus system once again producingthe worst error rate of 30.1%. The di�erence in accuracy from the best to worst system,however, is within 5% absolute. Error rates at several stages of consideration for eachsystem are given in Table 5.8 for the development test set.Word error rates are given in Table 5.9 for the reserved evaluation test set, again tovalidate the word-level trends observed in the development set.10Reverberation and the creation of the reverberant test set is discussed in more detail in Chapter 3.93



System Description Word Error RateRASTA + phones, 9 frames **baseline** 28.0%RASTA + phones, 17 frames 25.1%RASTA + half-syllables, 17 frames 30.9%modulation spectrogram + phones, 17 frames 25.8%modulation spectrogram + half-syllables,17 frames **focus** 30.1%Table 5.9: Performance results (word error rates) of each system for the complete, rever-berant version of the Numbers evaluation test set.5.5 SummaryThese experiments explored the e�ects of substituting syllable-based processing elementsinto the established baseline speech recognition system. A series of experiments with afocus experimental system and three supplemental systems using the Numbers databaseshowed that a wider context window (17 frames vs. 9 frames) had no e�ect on cleanspeech, but improved speech recognition accuracy moderately for reverberant speech. Usingmodulation spectrogram instead of RASTA-PLP features resulted in signi�cant degradationin the clean speech case and did not help in the reverberant speech case.11 Using half-syllabletargets caused signi�cant degradation in both clean and reverberant speech. The individualperformance of the focus system was the worst overall for both test sets.5.6 ConclusionsIt is not surprising that the baseline and the experimental system most similar to thebaseline should outperform the other experimental systems for clean speech. The baselinesystem was a mature system, the result of optimization and improvement e�orts over severalyears. A comparable e�ort for the focus system and each of the three supplemental systemvariants was not possible; independently optimizing the syllable-oriented systems couldpotentially confound the combination experiments, as discussed in the next chapter. Someof the combination methods required the two constituent systems to have closely coordinatedrecognition behavior. While syllable-based elements did not seem to help much, the syllable-oriented systems were still reasonably accurate; the di�erence between the best and theworst performance was less than 5%, absolute. Chapter 6 discusses how the coarser, syllable-oriented focus system can be combined with the �ner-grain phone-oriented baseline systemto produce a lower error rate overall.11Kingsbury has recently re�ned the features further; they now produce an improvement for the reverber-ant case. Future work will incorporate this revision.94



Chapter 6Combining SystemsThe results described in Chapter 5 showed that substituting syllable-based elements into thebaseline system could increase word-error relative to the phoneme-based system, though theresulting systems were still fairly accurate. Studying the recognition outputs revealed thatsyllable-oriented systems tended to make di�erent errors, complementary to the phoneme-oriented baseline. The introduction of syllable-based information promoted a divergence inerror patterns. This e�ect was most marked with the focus system, the system variant thatincorporated syllable-based time-span elements at the feature extraction level, in the contextwindow of the neural network and at the recognition unit level. The focus and baselinesystems both had reasonably good performance and a low degree of error correlation. Theseobservations suggested that a combination of the two systems may produce a system moreaccurate than either of the constituents alone if a suitable combination method could befound.This chapter �rst describes the error analysis method used and discusses one case studyin detail{ the analysis of word errors. Section 6.2 discusses the combination methods used forintegrating the outputs of the experimental systems with the baseline system at three stagesof the recognition process. The following three sections discuss the analysis and combiningresults at each of the stages: at the frame level (at the output of the neural network), atthe syllable level, and at the whole-utterance level. The analysis of the experimental resultspointed out the di�erent strengths and weaknesses of the focus and the baseline systems. Inall cases combining systems improved the overall recognition performance moderately forclean speech, and more substantially for reverberant speech. The chapter concludes with asummary and discussion of the results.6.1 AnalysisThis chapter focuses not on individual performance, but rather on �nding complementaryattributes of experimental systems that can be used to improve speech recognition perfor-mance through a combination scheme. For this objective, comparative error analysis canquantify some of the di�erences in behavior between systems.95



6.1.1 Background and MethodsAs discussed in Chapter 5, there are many ways to assess speech recognition performance,and to analyze and compare di�erent recognition systems. Although word error rate isthe most universally applied criterion, it has its limitations. It does not convey a completepicture of performance and is not enlightening for comparing two systems with similar errorrates. A simple word error rate metric does not reveal deviations in behavioral propertiesfrom the baseline system. More speci�c analysis and comparison methods that can exposethe di�erences in performance characteristics among systems are more helpful. At each levelof consideration (i.e., frame, syllable and whole-utterance) there are many possible analysismethods. The primary tool used in this chapter is a coarse error analysis method thathas roughly analogous procedures at each level. By using similar procedures, trends thatappear across recognition stages can be made more apparent. At some stages, additionalevaluation was helpful, as discussed in the later sections of this chapter.The work of Farrell, Ramachandran and Mannone on combining systems in the contextof speaker veri�cation [49] inspired the error analysis method described in this chapter. Intheir paper, Farrell et al. evaluated four commonly-used models for the speaker veri�cationtask and three ways to combine the four scores. They calculated the error correlation amongmodel outputs and used this measure to select models for their combination experiments.Their experimental trials supported their hypotheses about the best combination pair, basedon the error correlation information.Speech recognition has outputs that are considerably more complex than those of speakerveri�cation. Typically the speaker veri�cation task has only \accept" and \reject" outputsfor a given input, possibly along with an estimate of con�dence. Therefore, some adaptationof the above general idea is necessary. The adopted analysis method compares the baselinespeech recognition system with the focus system and with the other variants, one pairingat a time. For each pair, the method considers only those outputs for which at least oneof the systems makes an error, since outputs that are correctly identi�ed by both systemsdo not bear on the error analysis. The analysis procedure uses a simple characterization oferrors that does not distinguish degrees of error. Hence, for each output, only four possibleoutcomes are measured in the analysis:1. The baseline system was correct and the experimental systemvariant was wrong. (\Baseline Only Correct")2. The baseline system was wrong and the experimental systemvariant was correct. (\Variant Only Correct")3. Both systems were wrong and reported the same erroneous value.(\Identical-Incorrect")4. Both systems were wrong, but reported di�erent erroneousvalues. (\Di�erent-Incorrect")The goal of this analysis procedure is to represent, as simply as possible, the coarsedi�erences in system behavior that can a�ect combination strategies. Word error rate is96



not su�ciently informative for this. The error analysis procedure outlined above containsconsiderably more information than word error rate; nonetheless it is only one way todescribe these details. The possibility that some types of errors are more egregious thanothers is ignored in favor of simplifying the analysis as much as possible. For example,mistaking \four" for \forty" might be regarded as less of an error than mistaking \four" for\hundred," but both errors are equivalent in this analysis.Of these four di�erent categories of comparison results, the category that contributesthe least straightforwardly toward a better combined error rate is (3) Identical-Incorrecterrors. It is very tricky for combination algorithms to correct errors of this type. Mostcombination schemes enhance accuracy by balancing the outputs of di�erent systems againsteach other. If the di�erent systems both agree on the best answer and that answer is wrong,designing an algorithm that can both detect and correct the error is a much more formidableproblem. One possible method is to use local accuracy estimates [206] or measures ofcon�dence [204] for both systems. The reliability of such methods, however, can degradewhen the recognition system encounters speech that is markedly divergent from the trainingsamples.In these experiments, the di�erences between systems are distilled down to the propor-tion of exactly alike errors in the respective recognition outputs. For ease of discussion, thispercentage value is referred to as the \Identical-Incorrect" measure; these percentages arehighlighted in boldface type in the relevant tables of this chapter. The system pairs withthe greatest potential for increased accuracy through simple combination methods are likelyto have good individual performance and a small number of Identical-Incorrect errors. Thismeasure is one way to characterize the behavioral di�erences between systems as it a�ectscombination strategies. It can indicate, in a coarse way, how \di�erent" a system variantis from the baseline.At the frame-level, each system generates an output for each 25-ms frame of input.This one-to-one correspondence makes the comparison between systems simpler. Two ofthe experimental recognition systems, however, have output values based on half-syllableswhich can not be compared directly (at the frame level) to the phoneme-oriented baselinesystem.In analysis at the syllable or word level, recognized values can potentially encompassvariable-length, unaligned sections of speech. In this case the analysis procedure �rst com-pares the output word or syllable strings to the correct reference string and then compareseach of the identi�ed errors on a one-to-one basis. For example, imagine that for the ut-terance \one two three four �ve," System 1 recognized \one oh six nine �ve" and System 2reported \two six oh �ve," as illustrated below:one two three four �ve (correct string)System 1:System 2: one| ohtwo sixsix nineoh �ve�ve [cor][del] [sub][cor] [sub][sub] [sub][sub] [cor][cor]The scoring programs �rst generate an assessment of the recognition output using dynamic97



programming. These programs output words correct ([cor]), deleted ([del]), inserted ([ins])and substituted ([sub]). The System 1 error evaluation generated by the scoring wouldbe \[cor] [sub] [sub] [sub] [cor]" and System 2 would have \[del] [cor] [sub] [sub] [cor]," asillustrated above. After discarding words that were correctly recognized by both systems,the analysis procedure then considers the di�erences between the words corresponding to\[cor] [sub] [sub] [sub]" and the words corresponding to \[del] [cor] [sub] [sub]," marked byboxes in the example. The procedure compares the recognized strings \one oh six nine"and \[del] two six oh" by pairs of words. For exposition purposes, each pairing of wordsbetween the recognized strings, �ltered in this way, is referred to as an \error token." Inthe example, there are four such error tokens, outlined by boxes.Using dynamic programming to match the recognized word strings with the correct se-quence avoids the problem of comparing two streams of words in which correctly recognizedwords are o�set temporally, a situation that should not a�ect the error analysis. Each sys-tem included some independent training so it is reasonable for the beginning and end timesof the recognized words to shift from system to system. Not using the exact temporal valuesfor the beginning and end points of each word exposes the possibility that, due to the va-garies of the scoring algorithm, two words are compared that do not actually share the sameacoustic segment. This simple analysis method, however, proves useful for revealing somegeneral trends, despite this potential drawback. For the frame-level and whole-utterance-level analyses there is no time-alignment discrepancy problem between compared recognitionoutputs. The trends at these two levels validate the similar trends observed at the syllableand word level.The error analysis described should be viewed as providing comparative informationabout two systems, rather than predictive data about the combining process. The simpleanalysis method does not account for speci�c combination strategies so it can not be usedto derive concrete performance expectations. Also, as mentioned previously, the methoddoes not incorporate the magnitude of error, which can be a factor in the behavior of thecombination method. This analysis is useful for distilling comparison information into asmall number of values that can be used to guide experiments in combination. The analysischarts show generalized characterizations; large discrepancies in values between recognitionsystems are meaningful.The charts can be used to design new combination strategies that capitalize on thetrends displayed. For example, if a chart shows that between two systems, at least one isalways right (that is, there are no instances where both are wrong), the system designershould consider concentrating on recognizer selection combination schemes. Such strategiesare typically based on con�dence values and assessments of the relative correctness betweentwo systems. On the other hand, if the chart shows that two systems always recognizethe same tokens erroneously (that is, there are no instances where one system recognizesthe token correctly and the other does not), then the system designer would be betterrewarded by using a combination method that melds recognition results and ameliorateswrong answers. The chart coarsely summarizes the potential for improvement throughcombination, if selection and fusion between two recognizers could be performed perfectly.98



Clean ReverberantVariant (paired with Baseline) Numberof ErrorTokens Percentage ofTotal Tokens Numberof ErrorTokens Percentage ofTotal TokensRASTA + phones,17 frames 422 8.8% 1,646 33.4%RASTA + half-syllables,17 frames 527 11.0% 1,898 38.4%modulation spectrogram +phones, 17 frames 578 12.0% 1,965 39.2%modulation spectrogram +half-syllables, 17 frames**focus** 652 13.6% 2,125 42.6%Table 6.1: Number of tokens contributing to the error analysis along with the percentage oftotal tokens that these error analysis words represented in the clean and reverberant speechversions of the Numbers development test set.6.1.2 A Case StudyData generated by this procedure at the word level are shown in Tables 6.1, 6.2, and 6.3.These tables illustrate the error analysis method in more detail. Table 6.1 shows how manyword tokens the analysis used and what fraction of the total number of word tokens theseerror tokens represented. As expected, a much larger number of word tokens contributedto the error analysis under reverberant conditions than under clean conditions. Also, eachcomparison between an experimental system and the baseline resulted in a di�erent numberof word error tokens. Nevertheless, the number of error tokens generated by each pairing isroughly similar, particularly for reverberant speech.Table 6.2 displays the distribution of error tokens between the four error categories forthe clean version of the Numbers development test set. The percentages corresponding tothe Identical-Incorrect measure outlined previously are shown in boldface type. The word-level exhibits several trends that are also re
ected in the frame-, syllable- and utterance-levelanalyses. These are examined in detail below:Clean Speech: Relative AccuraciesThe �rst two analysis columns in Table 6.2 illustrate the relative accuracy of each systemindividually by showing how often one system was correct and the other in error. Thisinformation is most relevant for recognizer combination by selection methods. In any pairingthe baseline tended to be more correct than the experimental variant system. This re
ectsthe relatively lower word error rate of the baseline compared to the word error rates of theexperimental variants. The variant in each pairing was correct where the baseline was in99



Variant (paired with Baseline) BaselineOnlyCorrect VariantOnlyCorrect Identical-Incorrect(count) Di�erent-IncorrectRASTA + phones,17 frames 23.9% 22.7% 43.6% (184) 9.7%RASTA + half-syllables,17 frames 39.1% 26.0% 24.9% (131) 10.1%modulation spectrogram +phones, 17 frames 44.5% 25.1% 21.5% (124) 9.0%modulation spectrogram +half-syllables, 17 frames**focus** 50.8% 23.5% 14.1% (92) 11.7%Table 6.2: Distribution of error tokens across the four analysis categories in the clean speechversion of the Numbers development test set. The actual number of error tokens is shownin parentheses for the Identical-Incorrect column.error for about a quarter of the error tokens.The similar values in the top row of the �rst two columns correspond to the comparableaccuracy levels of the two systems. The considerable disparity in the values of the sametwo columns in the bottom row demonstrates the superior accuracy of the baseline systemover the focus system. The similarity in values for these �rst two columns between rows 2and 3 suggests that the use of the half-syllable unit results in a degradation comparable tothe use of the modulation spectrogram features. The degradation increases when the twoare used together, as in the focus system.Clean Speech: Relative Di�erencesThe last two analysis columns provide crude information about the errors made when bothsystems recognize the input incorrectly. Such information is useful for recognizer fusionstrategies.The data show that when the baseline and the experimental variant were both wrong,the focus system (i.e., the system with the most syllable-based elements) was the leastcorrelated with the baseline. The Identical-Incorrect value between the baseline and thefocus system (14.1%) was smaller than in any other pairing. That is, the percentage oftokens where both the baseline system and the focus system recognized the same erroneousvalues was smaller than the corresponding percentage in any of the other pairs.Syllable-based elements helped produce more complementary behavior. The large pro-portion of Identical-Incorrect errors and the relatively small number of Di�erent-Incorrecterrors in the top row suggests that the behavior of the two systems is similar{ the two sys-tems in the �rst pairing tended to make the same errors. In contrast, the relatively smaller100



Variant (paired with Baseline) BaselineOnlyCorrect VariantOnlyCorrect Identical-Incorrect(count) Di�erent-IncorrectRASTA + phones,17 frames 16.8% 27.3% 38.9% (640) 17.0%RASTA + half-syllables,17 frames 27.8% 24.8% 25.7% (488) 21.7%modulation spectrogram +phones, 17 frames 30.3% 36.6% 13.6% (267) 19.5%modulation spectrogram +half-syllables, 17 frames**focus** 35.5% 33.6% 11.0% (234) 19.9%Table 6.3: Distribution of error tokens across the four analysis categories in the reverberantspeech version of the Numbers development test set. The actual number of error tokens isshown in parentheses for the Identical-Incorrect column.number of Identical-Incorrect errors for the comparison of the baseline with the focus sys-tem suggests that these two systems acted di�erently. Again, the similar values shown inrows 2 and 3 of these two columns suggest that the half-syllable unit and the modulationspectrogram unit had comparable in
uence on the recognition process. The use of the twoin tandem, in the focus system, created a larger e�ect. This suggests that the half-syllableunit a�ects recognition in a distinct, complementary manner when compared to the signalprocessing features.Reverberant Speech: Relative AccuraciesThe reverberant version of this analysis shows many of the same trends.In the �rst two columns of Table 6.3, the baseline was found to be more often in errorthan two of the variant systems: the RASTA-PLP system with phoneme-based units anda 17-frame input window (row 1), and the modulation spectrogram system with phoneme-based units and 17-frame input window (row 3). In other baseline/variant comparisons,the baseline was more correct, though the gap between the values in these columns isconsiderably reduced compared to the clean case. This suggests that using the 17-frameinput window was an advantage for recognizing reverberant speech, along with using themodulation spectrographic features.Reverberant Speech: Relative Di�erencesExamining the last two columns in Table 6.3 shows that the modulation spectrogram alonehad a considerable e�ect in causing errors to diverge between systems. Moving from cleanto reverberant conditions widened the di�erence between the information provided by the101



modulation spectrogram and that derived from RASTA-PLP. Using the half-syllable unitshad a smaller, but still noticeable e�ect. As with clean speech, when both systems were inerror, the focus system (the most syllable-oriented of the variants) was the least correlatedwith the baseline, as re
ected in the 11.0% Identical-Incorrect measure.TrendsSubsequent sections of this chapter continue this analysis and comparison of recognitionsystems more brie
y at the frame, syllable and at the whole utterance level. Some com-monalities appear at every level in the systems tested:� The total number of error tokens is much greater for reverberant speech than for cleanspeech.� Systems with RASTA-PLP features and phone recognition units are more often correctthan the other experimental variants for clean Numbers speech.� Systems with syllable-based features and recognition units perform less poorly relativeto the baseline on reverberant speech than on clean speech.� The 17-frame context window for the neural network improved the recognition ofreverberant Numbers speech.� The use of the modulation spectrogram and the half-syllable units minimizes thenumber of Identical-Incorrect errors.As mentioned previously, informal inspection of recognition outputs suggested a concen-tration on combining the baseline system with the modulation spectrogram system includinghalf-syllable units. The more detailed error analysis described above supports this decisionby demonstrating that this pairing minimized the number of word errors in which bothsystems made the same error (the Identical-Incorrect measure). The analysis sections ofthe rest of this chapter more brie
y describe results that re
ect trends similar to thoseobserved at the word-level. These �ndings support the hypothesis that there are bene�tsin combining the baseline system with syllable-based systems.6.2 Combining: Background and MethodsMany researchers have espoused the idea that the human speech perception system inte-grates information over several levels. Greenberg suggests that human speech recognitionrelies on temporal dynamics in coarse spectral patterns [74]. For e�cient communication,human beings rely on the use of multiple, redundant, coarse patterns to obtain the ro-bustness to noise and other nonlinguistic sources of variability [75]. The human brain mayemploy a rather sparse representation that exhibits most of the temporal dynamics of thespeech signal. Todd incorporates the temporal, or rhythmic nature of auditory processingvia what he refers to as dynamic spatio-temporal receptive �elds [189, 190]. Todd and Lee102



also discuss the combination of simultaneous information into some sort of multimodal,multi-scale sensory representation in the human brain. Todd postulates the existence ofneurons that combine primary inputs into higher level features, possibly via a cascade ofsecondary receptive �elds that process information from primary units. Although the com-bining methods described in this thesis bear only a passing similarity to the physiologically-motivated perspectives of Greenberg and of Todd, such perspectives from human auditoryprocessing support the basic idea of combining multiple sources of information for recogni-tion.Inspection of the word recognition outputs of the baseline system and the focus systemsuggested that if a recognizer could dynamically select the best system for each inputthen a higher performance could be attained overall. This \dynamic recognizer selection"requires some sort of numerical evaluation of the relative accuracy of the systems for agiven input. As discussed in Section 3.5, such evaluation is currently regarded as di�cult.Some obvious methods include using con�dence measures based on likelihoods, posteriors orlattice densities, for example. But some preliminary trials along these lines for the Numberscorpus were not successful in choosing the better outputs based on simple calculations.Other methods, not addressed here, might involve training neural networks to perform theselection (e.g., mixtures of experts).The dual to recognizer selection is \recognizer fusion," the merging of the outputs ofmultiple systems. Combining the outputs of multiple neural networks is an open researchtopic that this thesis does not fully address. Included among the many possible techniquesis the neural network boosting algorithm AdaBoost [57]1 and parallel consensual neuralnetworks [13]. Because ASR includes a crucial decoding step subsequent to the patternclassi�cation stage, there is an added level of complexity when considering the combina-tion of neural network outputs. Combining methods for multiple recognition streams arediscussed more generally in Section 3.5.In this chapter the combining method is a simple multiplication of probabilities, that is,an unweighted linear combination of log probabilities (e�ectively an average). Greenbergand Kingsbury �rst demonstrated the value of this method for a phone-based recognizeremploying modulation spectrogram features combined at the frame level with a RASTA-PLP system [80]. The combining experiments summarized below replicate the original�ndings, and extend the strategy to larger granularity combinations with the focus system(such as at the syllable and whole-utterance level).Combining two recognition systems increases the total number of parameters involved.This complicates the comparison between the combined system and the performance ofthe individual, constituent systems. Nevertheless, as mentioned in Section 5.3.1, merelyincreasing the number of parameters beyond the default 400 hidden units of the baselinesystem did not increase the system's accuracy for the clean version of Numbers. Even for thereverberant speech test set, enlarging the size of the hidden layer of the neural network onlymoderately improved performance. The combined systems described in this chapter did notexceed the parameter count of the 1000-hidden-unit neural network system in Table 5.3.Therefore, the further performance improvements in the combined systems must result from1Schwenk has implemented a version of AdaBoost for the Numbers corpus [179].103



the additional structuring of the parameters.Combining multiple recognition streams exhibited performance advantages over the in-dividual constituent systems at each of the three stages of decoding. Each level, however,(i.e. at the frame, syllable and whole-utterance levels) has separate interpretations andimplementation properties. The remainder of this chapter describes in detail these issuesand the results of the analysis and combination.6.3 The Phoneme/Frame LevelThis section considers the combination of recognition output streams at the frame level,that is, at the output of the neural network before the decoding process. Since frame levelintegration entails combining similar outputs in a one-to-one manner, dissimilar outputunits can not be directly combined. The subsequent decoding essentially uses probabilityestimates from each stream in a lockstep manner. For example, in each time frame, theprobability of an /ah/ from System 1 is combined with the probability of an /ah/ fromSystem 2 and nothing else. This constraint ensures that both streams are decoded to be inthe same HMM state at the same time. Because the focus system uses di�erent HMM states(half-syllables) than the baseline (phones), this pairing can not be combined at the framelevel. For this reason, the variant system used for combining with the baseline was thesystem with modulation spectrographic features and phone recognition units. The framelevel is relatively advantageous in that it may be easier to isolate short-time trends, suchas patterns in phone identi�cation. Since this analysis re
ects information prior to thedecoding stage, however, these �ndings can be somewhat decoupled from the �nal worderror rate.6.3.1 AnalysisThis section reports on the analysis of the raw neural network outputs in each system.As mentioned in Section 3.3.3, a forced alignment process used the baseline system (400hidden units, phone recognition units, 9 frames of neural network context) to generate\correct" frame-level phone labels for the development test set, given knowledge of the trueword transcriptions. These analyses used this labeling as the \ground truth," as discussedpreviously in Section 5.4. Because the experimental variants included systems which werefurther optimized using forced alignment, comparing the frame-level output of these systemswith the baseline may overstate the number of mismatches.2 These analyses compare onlysystems with the same recognition unit; it is not clear how to compare systems with di�erenttargets, i.e., a phoneme-based system and one based on the half-syllable model. Even withthese caveats, the analyses below are in keeping with the general trends observed; thebaseline and the system variants had roughly similar percentage accuracies, but tended tomake di�erent errors.Modulation spectrographic features may help systems recognize certain sounds moreaccurately than RASTA-PLP. Evaluating the frame-correct values according to training2The issue of forced alignment is discussed in more detail in Section 5.4.104



Clean ReverberantVariant (paired with Baseline) Number ofErrorFrames Percentageof TotalFrames Number ofErrorFrames Percentageof TotalFramesRASTA + phones,17 frames 47,286 22.9% 105,988 51.2%modulation spectrogram+ phones, 17 frames 56,073 29.9% 114,375 54.9%Table 6.4: Number of frames which contributed to the error analysis and the percentageof total frames these error analysis frames represented in the clean and reverberant speechversions of the Numbers development test set.target type produced inconclusive results; the modulation spectrogram system did not pro-duce clear patterns of performing well on some sorts of targets and poorly on others. Acomparison of the two variants that di�ered only in their input features{ RASTA-PLP ormodulation spectrogram{ while keeping the phoneme-based targets and 17-frame contextwindow the same, showed that the modulation spectrogram system consistently underper-formed the RASTA-PLP system for clean speech. At best, the modulation spectrogramsystem equaled the performance of the RASTA-PLP system for some targets. For rever-berant speech, however, the modulation spectrogram system signi�cantly outperformed theRASTA-PLP system for 13 out of the 31 phones used. Inspection of the values revealedno obvious pattern among these 13. The Numbers task may be too limited to illuminatephonetic trends.The error correlation analysis method helped characterize the di�erences between sys-tems. In a procedure analogous to the word-based analysis described above, the phoneme-based variant systems were paired with the baseline (having the same recognition unit type).Frames where both systems generated the correct value were discarded. This left frameswhere one system was correct and the other was not, or where both systems were incorrect.Table 6.4 shows the number of frames, out of approximately 210,000 in the developmentset, remaining after this pruning process for both the clean and the reverberant versions ofthe Numbers development test set.Tables 6.5 and 6.6 show the percentage of the error frames in each of the 4 categoriesde�ned above for the clean and the reverberant versions of the development test set. Manyof the trends observed in the word-level case study (Section 6.1) appear in this frame-levelversion.For the clean case the baseline was again correct more often than the experimental vari-ants. For reverberant speech, the situation was reversed and the variant systems were moreoften correct, indicating that under reverberant conditions the modulation spectrogramand the wide neural network input window were bene�cial to recognition performance. TheIdentical-Incorrect columns of Tables 6.5 and 6.6, highlighted in boldface, show that the105



Variant (paired with Baseline) BaselineOnlyCorrect VariantOnlyCorrect Identical-Incorrect(count) Di�erent-IncorrectRASTA + phones,17 frames 34.6% 31.3% 20.9% (9,883) 13.3%modulation spectrogram+ phones, 17 frames 44.8% 25.3% 14.8% (8,299) 15.2%Table 6.5: Distribution of error frames across the four analysis categories in the cleanversion of the Numbers development test set. The actual number of error tokens is shownin parentheses for the Identical-Incorrect column.Variant (paired with Baseline) BaselineOnlyCorrect VariantOnlyCorrect Identical-Incorrect(count) Di�erent-IncorrectRASTA + phones,17 frames 14.7% 22.2% 38.2% (40,487) 24.9%modulation spectrogram+ phones, 17 frames 20.8% 29.4% 19.1% (21,846) 34.9%Table 6.6: Distribution of error frames across the four analysis categories in the reverberantversion of the Numbers development test set. The actual number of error tokens is shownin parentheses for the Identical-Incorrect column.modulation spectrogram features produced a divergence in the recognition behavior. Thefeatures apparently introduced a variation in the errors produced by the neural networks,especially with reverberant speech, causing a decrease in the correlation between errorscommitted by each system.The results of these analyses show that the system variants achieved a fairly good overallpercentage correct at the frame level, but were correct for a somewhat di�erent set of framesfrom the baseline system, more notably in the presence of reverberation. These analysessupport the general conclusion that combining the systems at the frame level may capitalizeon the individual system strengths while diluting weaknesses, resulting in an improved errorrate overall.6.3.2 CombiningThe combining method for merging two recognition systems at the frame level involvedmultiplying the probabilities as output from each system's neural network. The y0 decoder[88] (no modi�cation necessary), used these probabilities as input and produced words and106
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Figure 6.1: Combination of systems at the frame level.sentences, as illustrated in Figure 6.1. The only change made to the decoder parameterswas that the language model scaling factor3 was doubled. The logarithms of the acousticprobabilities were, on average, twice the magnitude that they had been in the original,independent systems.As noted earlier, since the combining method multiplied output probabilities on a one-to-one basis, only systems with matching outputs could be combined with this simple method.Therefore only systems using phoneme-oriented units could be combined with the baselinesystem. Since this precluded a combination with the focus system, the modulation spectro-gram system with phone units was used for these experiments, being the closest to the focussystem while still meeting the matching-output requirement. This system incorporated themost syllable-based information given the constraints on choice of recognition unit. Erroranalysis with this system, detailed in the previous section, supported this choice by showingthat it produced the smallest proportion of identically-incorrect errors with the baseline.The resulting error rates for this combination, on both clean and reverberant Numbers testsets, are listed in Tables 6.7 and 6.8, along with the error rates of the systems individually.The simple combining of the systems at the frame level resulted in a signi�cant decreasein word error rate, 13.4% relative for clean speech and 36.8% for reverberant speech. These3Language model scaling factors are empirically determined values that weight the in
uence of the lan-guage model over the acoustic information during decoding (and is discussed more fully in Chapter 3). Trialswith the cross-validation set that doubled the language model scaling factor for the baseline alone showedno appreciable di�erence in performance. 107



Baseline Variant Condition W. E. R.Baseline W. E. R.Variant W. E. R.CombinedRASTA +phones, modulationspectrogram + clean 6.8% 9.2% 5.9%9 frames**baseline** phones,17 frames reverb 29.3% 26.6% 19.4%Table 6.7: Performance results (word error rate) scores of each system independently andafter combining, at the frame level on clean and reverberant versions of the Numbers de-velopment test set.
Baseline Variant Condition W. E. R.Baseline W. E. R.Variant W. E. R.CombinedRASTA +phones, modulationspectrogram + clean 6.7% 8.6% 5.8%9 frames**baseline** phones,17 frames reverb 28.0% 25.8% 17.7%Table 6.8: Performance results (word error rate) scores of each system independently andafter combining, at the frame level on clean and reverberant versions of the Numbers eval-uation test set. 108



�ndings are consistent with those previously reported [107]. They are also consistent withthe suggestions of the frame level analyses and comparisons. Although the method enforcesa lockstep synchronization between the two recognition systems and prevents the use of thefocus system in this experiment, the results show that much improvement can be gainedwith a relatively simple combining scheme, and with minimal changes to existing systems.6.3.3 DiscussionThe frame-level analysis examines the abilities of the baseline and variant systems to clas-sify individual frames. The scores showed that the experimental variants were more accu-rate than the baseline for reverberant speech. Since reverberation tends to smear spectro-temporal information in time, it was reasonable to expect that the integration of informationover a longer time window could be helpful. The introduction of modulation spectrogramfeatures produced not only greater frame-level accuracy for reverberant speech, but alsomore complementary patterns of recognition behavior, a boon for combining strategies.The frame-level combination can be thought of as two independent perceptual systemsinterfacing at the level of the phone, with no other intermediate structure, to producewords and sentences. The speech was essentially statically segmented into 25-ms frames;then each system used di�erent criteria to associate phones with each interval. A subse-quent process then simply accepted these hypotheses with equal weighting and formulateda uni�ed recognition output. The baseline system, with RASTA-PLP features, emphasizedphonetic segment transitions and integrated this information over 9-frame neural networkwindows. The modulation spectrogram system emphasized the energy over syllable-timedintervals, integrated over 17-frame neural network windows. The segment onsets appar-ently supplied information that was somewhat orthogonal to the syllable-length analysis,resulting in higher accuracy overall when combined.6.4 The Syllable LevelThis section considers combining recognition system output streams at the syllable level.The error rate calculations are in terms of canonically de�ned syllables, not the syllablesin the task's syllabary; this was done for ease of scoring, as discussed in Section 5.4. Theanalyses and comparisons are based on canonical syllables as well, and indicate that syllableerror rates are closely related to word error rates and exhibit very similar trends.Combining at the syllable level allowed the decoder to use information from each ofthe streams in a more desynchronized manner. In the version of the HMM recombinationstrategy [45] implemented at ICSI,4 the decoding could use a phone probability from onestream and a half-syllable (from the syllabary) probability from the second stream subjectonly to the constraint that the two streams have common syllable beginning and end points.While this removed the limitation experienced with frame-level combinations of requiringthat the two systems have the same output unit, matching phones with their correspondinghalf-syllables does require that pronunciations in the two streams be the same at the syllable4With Nikki Mirghafori. 109



Clean ReverberantVariant (paired with Baseline) Numberof ErrorTokens Percentage ofTotal Tokens Numberof ErrorTokens Percentage ofTotal TokensRASTA + phones,17 frames 496 8.5% 2,016 32.9%RASTA + half-syllables,17 frames 636 10.7% 2,392 38.1%modulation spectrogram +phones, 17 frames 674 11.5% 2,438 39.0%modulation spectrogram +half-syllables, 17 frames**focus** 771 13.0% 2,627 41.7%Table 6.9: Number of tokens which contributed to the error analysis and the percentage oftotal tokens these error analysis syllables represented in the clean and reverberant speechversion of the development test set of Numbers.level. The focus system �ts within these constraints, so the combination experiments in thissection involve merging the baseline with the focus system.6.4.1 AnalysisThe analysis procedure �rst decomposes recognized words into their canonical (i.e., dic-tionary) syllable components with a single pronunciation per word. The list of canonicalsyllabic pronunciations used in these analyses is provided in Appendix A.3. These di�erfrom the recognition system lexicon's syllabary; for example, the word \twenty" is analyzedas the syllables /t-w-eh-n/ /t-iy/ (ICSI56 orthography), rather than as one of the word's10 pronunciation alternatives in the Numbers' lexicon.As described in Section 5.4, the canonical pronunciations were chosen for two reasons:1) This method smoothed over the recognition of di�erent syllables that correspond to thesame word; for these experiments, recognizers should not be penalized for recognizing di�er-ent syllables if the output is word-consistent. 2) Human listeners probably perceive speechin terms more similar to canonical lexical units than to syllabary units. Moreover, they donot generally perceive small variations in syllables in conversational speech, if the word iscorrectly understood. For example, it was found by transcribers in the Switchboard Tran-scription Project [76] that the word \problem" was often pronounced in a reduced manner,\proem," though the word was initially perceived, before careful examination of the spec-trogram, as the fully expressed, two-syllable word. While whole syllables can occasionallybe deleted, as discussed previously, the rate of complete deletion is very small compared tothe deletion rate of phones [78]. 110



Variant (paired with Baseline) BaselineOnlyCorrect VariantOnlyCorrect Identical-Incorrect(count) Di�erent-IncorrectRASTA + phones,17 frames 23.8% 25.2% 42.7% (212) 8.3%RASTA + half-syllables,17 frames 40.6% 26.6% 23.3% (148) 9.6%modulation spectrogram +phones, 17 frames 43.9% 26.9% 20.5% (138) 8.8%modulation spectrogram +half-syllables, 17 frames**focus** 51.0% 25.3% 13.4% (103) 10.4%Table 6.10: Distribution of syllable error tokens across the four analysis categories in theclean speech version of the Numbers development test set. The actual number of errortokens is shown in parentheses for the Identical-Incorrect column.The analysis process, analogous to the one described for words, computed the errorcorrelation between systems in terms of syllables. The procedure compared the focus systemand each of the supplemental systems to the performance of the baseline system. Table 6.9shows the total number of syllable error tokens used in the analysis. Tokens identi�edcorrectly by both systems in a pairing were eliminated.The comparisons re
ect those in the word-level case study, examined in detail in Sec-tion 6.1. The syllable analysis level exhibits very similar trends.Table 6.10 shows that the systems with modulation spectrogram features or half-syllablerecognition units were less correct than the baseline by a considerable margin. When bothsystems of a pair were wrong, the errors were more likely to be of the Identical-Incorrectvariety than its complement (Di�erent-Incorrect). The focus system, with both modulationspectrogram features and syllable-based recognition units, had the lowest proportion ofIdentical-Incorrect errors.With reverberant speech, illustrated in Table 6.11, the modulation spectrogram and thehalf-syllable unit had the e�ect of narrowing the gap between the number of error tokensidenti�ed correctly only by the baseline system and the number identi�ed correctly only bythe variant. Further, when the two systems both produced erroneous outputs, the focussystem again had the lowest Identical-Incorrect value. These analyses further motivatedcombining the systems.6.4.2 CombiningCombining at the syllable level entails merging the probabilities of di�erent hypotheses atthe end of each syllable, a process illustrated in Figure 6.3. The desired functionality is to111



Variant (paired with Baseline) BaselineOnlyCorrect VariantOnlyCorrect Identical-Incorrect(count) Di�erent-IncorrectRASTA + phones,17 frames 19.1% 27.7% 37.0% (746) 16.2%RASTA + half-syllables,17 frames 31.8% 25.3% 22.5% (538) 20.4%modulation spectrogram +phones, 17 frames 33.1% 36.7% 12.6% (307) 17.6%modulation spectrogram +half-syllables, 17 frames**focus** 37.9% 34.8% 9.7% (255) 17.5%Table 6.11: Distribution of syllable error tokens across the four analysis categories in thereverberant speech version of the development test set of Numbers. The actual number oferror tokens is shown in parentheses for the Identical-Incorrect column.have two independent speech recognition processes that interact only at the endpoints ofsyllables. At these combination points, hypothesis scores for each path are integrated beforethe recognition processes continue with their individual computations. In the exampleshown in the upper portion of Figure 6.2, two recognition processes are depicted, eachrecognizing the word \ten." At the end of the syllable the paths meet and combine valuesbefore separating again for the next syllable. Between combination points the recognitionbehavior of the systems can diverge and desynchronize.This combination method uses the HMM-recombination algorithm of Bourlard andDupont [19]. The background of this method is discussed in Section 3.5. To use stan-dard decoders without modifying them, Bourlard and Dupont combined HMM models in amany-to-many mapping before the model was input into the decoder.As mentioned previously, the HMM-recombination scheme was reimplemented at ICSIfor the y0 [88] decoder. As illustrated for a simple example in Figure 6.2, the HMM-recombination scheme expands two parallel HMMs (an atypical form) into a single HMMwith a conventional description. For these experiments, the amount of desynchronizationbetween the states of the two parallel models was limited by stipulating that the currentstates of the two streams must share a phone constituent. For the case in which onestream involved a phoneme-based HMM and the other was syllable-based, this amounts torequiring that the syllable of the current syllable-based HMM state contain the phone ofcurrent phoneme-based HMM state. The decoder can use the /t/ of the phoneme-basedstream only at the same time that the decoder uses the /t-eh/ of the syllable-based stream(Figure 6.2). The decoder, however, can use the /eh/ of the phoneme-based stream atthe same time as either the /t-eh/ or the /eh-n/ of the syllable-based stream. The HMMstates of the new, expanded HMM represent all of the permissible temporal synchronizationconditions between the phoneme-based stream and the syllable-based stream. This HMM-112
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n:eh−nFigure 6.2: A simple example of an HMM recombination implementation for the word\ten," with desynchronization allowed only within half-syllables.recombination scheme also creates a single probability stream from the dual probabilitysteams of the individual neural networks. The corresponding probabilities are multiplied togenerate new values for these expanded states. Word models are formed by concatenatingthese syllable-sized expanded HMMs. With complex syllables, minimum duration modelsimplemented with repeated states and multiple pronunciations, the full word-length HMMscomprised hundreds of probabilities and thousands of states.Arcs at the bottom of the lower model in Figure 6.2 show that states can be skipped,re
ecting the di�erent ways the two streams can proceed in parallel. Thus, as the decodingprogresses from one frame to the next, the phoneme-based stream can proceed from /t/ to/eh/ and the syllable-based stream can proceed from /t-eh/ to /eh-n/ or stay with /t-eh/.As illustrated in Figure 6.2, the two streams meet only at the beginnings and ends of eachsyllable HMM. This has the e�ect that probabilities for the same sentence hypothesis fromthe two di�erent systems are linearly combined at the end of each syllable, an enforcedsynchronization point.Bourlard and Dupont combined a phonetic stream with a syllabic stream, where a singlemodel described all syllables. In the work described in this thesis, there is a separate, uniquemodel for each syllable. HMM-recombination was used to integrate the baseline system withthe focus system, i.e., the system incorporating the most syllable-based information. Erroranalysis, detailed in the previous section, had showed that this pairing had the lowest errorcorrelation values.The word error rates for the combined system, tested on the Numbers task, are listedin Tables 6.12 and 6.13. This combination method produced a considerable improvementin accuracy over the performance of each constituent system alone, amounting to a 23.9%relative gain for clean speech and a 40.3% relative improvement for reverberant speech. The113
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Baseline Variant Condition W. E. R.Baseline W. E. R.Variant W. E. R.CombinedRASTA +phones, modulationspectrogram + clean 6.8% 10.6% 5.4%9 frames**baseline** half-syllables,17 frames**focus** reverb 29.3% 30.1% 17.6%Table 6.12: Performance results (word error rate) scores of each system independently andafter combining, at the syllable level on clean and reverberant versions of the developmenttest set.Baseline Variant Condition W. E. R.Baseline W. E. R.Variant W. E. R.CombinedRASTA +phones, modulationspectrogram + clean 6.7% 10.0% 5.1%9 frames**baseline** half-syllables,17 frames**focus** reverb 28.0% 30.1% 16.7%Table 6.13: Performance results (word error rate) scores of each system independently andafter combining, at the syllable level on clean and reverberant versions of the evaluationtest set.complexity of the combination-method implementation, however, was much larger than withthe frame-level method.6.4.3 DiscussionThe syllable-level error analysis compared systems based on recognized syllables. For cleanspeech, the introduction of syllable-based elements produced a degradation in accuracy butan increased divergence in errors compared to the baseline. The divergence in errors wasmore pronounced with reverberant speech. Also evident for reverberant speech, the long-time span neural network context window provided greater accuracy than the baseline forthe variants with phoneme-based output units.The combination strategy, HMM-recombination, can be likened to two separate percep-tual processes interfacing at the level of the syllable. As in the discussion of Section 4.5,the combination process can be interpreted as dynamically hypothesizing syllable-lengthintervals in the speech stream and attaching to them information from the two separateperceptual processes. The phone hypotheses from the baseline, and the half-syllable hy-115



potheses from the focus system become features of the underlying syllable-length interval.Greenberg uses such a model to explain pronunciation variation [78].The resulting improvement in word-error rate is probably due to the successful com-bination of the complementary aspects of the two recognition systems. This combinationstrategy produced the lowest error rates of the all methods examined.6.5 The Utterance LevelThis section considers recognition system output streams at the whole-utterance level, theunit used for analysis and combining.5 Because a recognized string of words can have bothcorrectly and incorrectly recognized words, analyses at the whole utterance level can masktrends involving smaller speech units. An entire utterance may often be too large a unitfor combining methods in general, though it is manageable for the Numbers corpus. Inpractical applications with large vocabularies and long input utterances, one might imaginecombining recognition system output streams at the phrase level.By combining at the utterance level, the combined streams can become completelydesynchronized between the beginning and the end of the speech input. In the extreme, onestream can produce completely di�erent syllables or phones from another stream for thesame acoustic input. If the word strings are the same, this combining method considers theoutputs from two di�erent streams to be the same answer regardless of the internal temporalalignment of word boundaries or recognized phones and syllables. Combining enforcessynchronicity only at the start and termination of the utterance. Thus, the recognitionsystems can be completely di�erent and separately optimized.6.5.1 AnalysisThe error analysis method can also be used at the whole-utterance level. Table 6.14 showsthe number of sentences that contribute to the error analysis. As previously, the sentencesthat both systems in each pair recognized 100% accurately have been removed.The trends observed with the detailed case study at the word-level are also evident inthe utterance level analysis.For clean speech, Table 6.15 shows the percentage of sentence errors where only onesystem in a pairing recognized the utterance with 100% accuracy. The table also shows thepercentage of sentence errors where both systems made errors in recognizing utterances.As in the other analyses, the systems with modulation spectrogram or half-syllable unitelements produced more errors than the baseline. When both systems produced erroneousoutput, these systems tended to produce errors di�erent from the baseline; these recognizerpairings produced lower proportions of Identical-Incorrect errors. The focus system, with5Parts of the study involving combining hypotheses at the whole-utterance level, as detailed in this section,were the result of a collaboration between Brian Kingsbury and myself, with advice from Nelson Morgan andSteven Greenberg. This work was brie
y presented at the International Conference on Acoustics, Speechand Signal Processing, 1998 [209]. 116



Clean ReverberantVariant (paired with Baseline) Numberof ErrorSents Percentage ofTotal Sents Numberof ErrorSents Percentage ofTotal SentsRASTA + phones,17 frames 286 23.7% 863 71.6%RASTA + half-syllables,17 frames 360 29.9% 920 76.3%modulation spectrogram +phones, 17 frames 378 32.1% 936 77.6%modulation spectrogram +half-syllables, 17 frames**focus** 419 34.7% 976 80.9%Table 6.14: Number of sentences which contributed to the error analysis and the percentageof total sentences these error analysis utterances represented in the clean and reverberantspeech versions of the Numbers development test set.both modulation spectrogram information and half-syllable units, had the lowest proportionof Identical-Incorrect tokens.As mentioned previously, using such large units for comparison can mask more detailedtrends. Table 6.16 shows further analysis of the sentences where systems produced erro-neous, but di�ering outputs; in this case, the experimental system variants tended to bemore correct than the baseline.For reverberant speech, Tables 6.17 and 6.18 give the analogous error analysis cate-gory values. As before, the reported �gures represent the percentage of sentences whereone or both systems in a pairing made errors in recognizing the utterance. As observedwith the other analyses, the gap between the Baseline-Only-Correct percentages and theVariant-Only-Correct percentages was reduced compared to the clean speech case for thesystems with modulation spectrogram and/or half-syllable unit elements. When both sys-tems produced erroneous output, these systems exhibited lower error correlation values (asmaller Identical-Incorrect percentage). They also exhibited a tendency to produce di�erenterrors rather than the same erroneous sentence. The focus system, with both modulationspectrographic features and half-syllable recognition units, again had the lowest numberof Identical-Incorrect tokens. Further evaluation of the sentences where systems producederroneous, but di�ering outputs showed that the variant systems with the half-syllable unitwere more correct than the baseline.In Chapter 5, analyses showed that sentence error was roughly correlated with word er-ror rate. One might hypothesize that the systems with the larger error rates would tend toperform less well uniformly across sentence inputs. The analyses above show that for someof the sentences the variants were more correct than the baseline. An early pilot experiment117



Variant (paired with Baseline) BaselineOnlyCorrect VariantOnlyCorrect Identical-Incorrect(count) Di�erent-IncorrectRASTA + phones,17 frames 15.4% 17.1% 43.4% (124) 15.4%RASTA + half-syllables,17 frames 32.8% 22.5% 20.0% (72) 24.7%modulation spectrogram +phones, 17 frames 37.5% 18.6% 19.4% (73) 24.5%modulation spectrogram +half-syllables, 17 frames**focus** 42.2% 19.8% 10.0% (42) 27.9%Table 6.15: Distribution of error sentences across four analysis categories in the clean speechversion of the Numbers development test set. The actual number of error tokens is shownin parentheses for the Identical-Incorrect column.Variant (paired with Baseline) BaselineMoreCorrect VariantMoreCorrect BothEquallyWrongRASTA + phones,17 frames 26.1% 31.9% 42.0%RASTA + half-syllables,17 frames 19.1% 31.5% 49.4%modulation spectrogram +phones, 17 frames 23.2% 37.9% 38.9%modulation spectrogram +half-syllables, 17 frames**focus** 17.2% 38.5% 44.4%Table 6.16: The percentage of sentences where one system was more correct than the otheror where both systems were equally wrong for the Di�erent-Incorrect sentences on the cleanspeech version of the Numbers development test set.118



Variant (paired with Baseline) BaselineOnlyCorrect VariantOnlyCorrect Identical-Incorrect(count) Di�erent-IncorrectRASTA + phones,17 frames 8.5% 15.1% 33.2% (287) 43.5%RASTA + half-syllables,17 frames 14.1% 12.7% 17.1% (157) 58.1%modulation spectrogram +phones, 17 frames 15.6% 22.4% 8.8% (82) 53.2%modulation spectrogram +half-syllables, 17 frames**focus** 19.1% 19.7% 5.8% (57) 55.4%Table 6.17: Distribution of error sentences across the four analysis categories in the rever-berant speech version of the Numbers development test set. The actual number of errortokens is shown in parentheses for the Identical-Incorrect column.Variant (paired with Baseline) BaselineMoreCorrect VariantMoreCorrect BothEquallyWrongRASTA + phones,17 frames 37.9% 24.3% 37.9%RASTA + half-syllables,17 frames 25.8% 33.1% 41.1%modulation spectrogram +phones, 17 frames 33.3% 29.3% 37.3%modulation spectrogram +half-syllables, 17 frames**focus** 28.1% 32.0% 39.9%Table 6.18: The percentage of sentences where one system was more correct than the otheror where both systems were equally wrong for the Di�erent-Incorrect sentences on thereverberant speech version of the Numbers development test set.119



Variant(paired with Baseline) Variant BetterThan Baselinesents (words) VariantW.E.R. onSubset BaselineW.E.R. onSubset W.E.R.AfterCombiningRASTA + phones,17 frames 67 (269) 8.6% 37.2% 5.2%RASTA + half-syllables,17 frames 98 (366) 5.2% 36.3% 4.4%modulation spectrogram +phones, 17 frames 94 (392) 6.9% 36.0% 4.4%modulation spectrogram +half-syllables, 17 frames**focus** 103 (406) 5.9% 35.2% 4.3%Table 6.19: On some sentences the experimental variant systems performed better thanthe baseline system, with the clean version of the Numbers development test set (1,206sentences, 4,673 words). The number of words in these subsets of sentences, selected by anoracle, is shown in parentheses.examining the idea of combining systems at the utterance level involved a \cheating" proce-dure for estimating an approximate upper bound on the accuracy achievable by combiningthe best output from two systems. This cheating procedure does not yield an actual upperbound for the combining procedure described in the next section, because the combiningprocedure uses more hypotheses per utterance.In this cheating experiment the combined sentence output was created by taking the bestscoring sentence from either of the systems in each pair, with knowledge of the true answers.Table 6.19 shows the number of sentences where the experimental system performed betterthan the baseline system. The table also gives word error rates for each system on this subsetof sentences. These percentages illustrate that on a signi�cant number of sentences theexperimental systems achieve substantially greater accuracy despite a higher overall errorrate. The table also shows that the system with the syllable-based elements (modulationspectrogram features and half-syllable recognition units) produced the largest number ofbetter-than-baseline sentences. The RASTA-PLP system with half-syllable units was therunner-up. As seen in Table 6.20, with reverberant speech the system with modulationspectrogram features and phoneme-based units produced the largest number of better-than-baseline sentences. The focus system, with modulation spectrogram features andhalf-syllable recognition units, was not far behind.These analyses and pilot experiments indicate that a careful combination of the outputsof two systems may a�ord considerable reduction in word error rate, to a level better thaneither of the constituent systems separately.120



Variant(paired with Baseline) Variant BetterThan Baselinesents (words) VariantW.E.R. onSubset BaselineW.E.R. onSubset W.E.R.AfterCombiningRASTA + phones,17 frames 274 (1,123) 18.8% 51.9% 21.3%RASTA + half-syllables,17 frames 251 (968) 19.0% 53.3% 22.2%modulation spectrogram +phones, 17 frames 377 (1,593) 15.2% 48.1% 18.0%modulation spectrogram +half-syllables, 17 frames**focus** 345 (1,393) 15.8% 50.6% 18.9%Table 6.20: On some sentences the experimental variant systems performed better than thebaseline system, with the reverberant version of the Numbers development test set (1,206sentences, 4,673 words). The number of words in these subsets of sentences, selected by anoracle, is shown in parentheses.6.5.2 CombiningThe combining procedure at the utterance level added the log likelihoods of the samesentence hypotheses from each of two systems at the end of the decoding process. Thisscheme was implemented using a sequence of three di�erent decoders, y0 [88] for its forcedalignment capability, noway [164, 163, 165] for its lattice generation function, and lat-tice2nbest [166] for its lattice decoding ability.6 A number of interfacing scripts glued theprograms together, enabling state desynchronization to occur over the entire utterance.The decoding sequence used can produce a somewhat di�erent behavior from y0. Thepruning of hypotheses is managed �rst by noway, then by lattice2nbest with a strictupper limit on the number of distinct hypotheses. Because of the dissimilar properties of thedecoding process, these word error rates are not strictly comparable with other error ratesreported thus far using only y0, though they do represent the best performance achievedwith this approach.The utterance combination procedure, illustrated in Figure 6.4, involved generating upto 150 best hypotheses from each system (i.e., the baseline system and the focus system).First, noway was used to produce a lattice from each system, which was passed to lat-tice2nbest to obtain the N -best hypotheses. The combining procedure merged the twohypothesis lists and rescored each utterance with forced alignment (via y0) using bothrecognition systems. Rescoring was necessary because the sets of utterances from the twosystems were often di�erent. The procedure added corresponding pairs of scores for eachutterance in the merged N -best list and reordered the list of utterances according to this6Related decoding technology is discussed in more detail in Section 3.4.121
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Baseline Variant Condition W. E. R.Baseline W. E. R.Variant W. E. R.CombinedRASTA +phones, modulationspectrogram + clean 6.8% 10.6% 5.6%9 frames**baseline** half-syllables,17 frames**focus** reverb 29.3% 30.1% 20.0%Table 6.21: Performance results (word error rate) scores of each system independentlyand after combining, at the utterance level on clean and reverberant versions of Numbersdevelopment test set.
Baseline Variant Condition W. E. R.Baseline W. E. R.Variant W. E. R.CombinedRASTA +phones, modulationspectrogram + clean 6.7% 10.0% 5.5%9 frames**baseline** half-syllables,17 frames**focus** reverb 28.0% 30.1% 19.6%Table 6.22: Performance results (word error rate) scores of each system independentlyand after combining, at the utterance level on clean and reverberant versions of Numbersevaluation test set. 123



Test Baseline Frame-Level Syllable-Level Utterance-LevelCondition phones phones+phones phones+half-syllables phones+half-syllablesclean 6.7% 5.8% 5.1% 5.5%reverb 28.0% 17.7% 16.7% 19.6%Table 6.23: Performance results (word error rates) of baseline and combined systems forclean and reverberant versions of the Numbers evaluation test set.6.6 SummaryIn these experiments combining reasonably good recognition systems with low error cor-relation led to an improvement in recognition accuracy. The results are summarized inTable 6.23. The merging of the baseline system with the focus system at the syllable-levelproduced a 24% improvement in word error rate in the clean version (from 6.7% to 5.1%)and a 40% improvement in the reverberant case (from 28.0% to 16.7%). Combining thesesystems at other levels than the syllable-level also produced large increases in accuracy.The analyses in this chapter indicate that these improvements are attributable to inte-grating the di�erences in recognition behavior between the baseline system and the focussystem. The systems with syllable-based elements tended to make di�erent errors from thephoneme-based baseline system. Counting the number of errors where a system variantand the baseline system recognized the same value yielded an error correlation measure,referred to as \Identical-Incorrect." This represents one method of coarsely quantifyingthe \sameness" of the errors between the two systems. This measure certainly does notre
ect the full spectrum of behavioral di�erences between two systems. Its value lies insummarizing a considerable amount of information relevant to combination strategies ina few values. Tables 6.24 and 6.25 show the results of calculating this Identical-Incorrectvalue for the baseline system paired with the focus system as well as with each of the threesupplemental variants for both clean and reverberant versions of the Numbers developmenttest set. The percentages in these tables represent the fraction of total error tokens thatfall under the Identical-Incorrect category. The columns corresponding to Tables 6.24 and6.25 are highlighted in the main body of this chapter in boldface.In each column from syllable level to utterance level, the tables show that the focussystem has the smallest number of Identical-Incorrect errors.7 These �gures support theobservation that the behavior of the focus system is largely complementary to that of thebaseline system. Incorporating syllable-based elements appeared to promote divergencein recognition behavior and help create systems that can be combined towards an overallimprovement in accuracy.7For frame-level combination, the systems were constrained to be based on phoneme-oriented units only.124



Variant (paired with Baseline) Frame-Level Syllable-Level Word-Level Utterance-LevelRASTA + phones,17 frames 20.9% 42.7% 43.6% 43.4%RASTA + half-syllables,17 frames N/A 23.3% 24.9% 20.0%modulation spectrogram +phones, 17 frames 14.8% 20.5% 21.5% 19.4%modulation spectrogram +half-syllables, 17 frames**focus** N/A 13.4% 14.1% 10.0%Table 6.24: The Identical-Incorrect values, as a percentage of total error analysis tokens,for each of the system variants paired with the baseline, at each of four stages. Reportedfor the clean speech version of the Numbers development test set.Variant (paired with Baseline) Frame-Level Syllable-Level Word-Level Utterance-LevelRASTA + phones,17 frames 38.2% 37.0% 38.9% 33.2%RASTA + half-syllables,17 frames N/A 22.5% 24.9% 17.1%modulation spectrogram +phones, 17 frames 18.6% 12.6% 13.6% 8.8%modulation spectrogram +half-syllables, 17 frames**focus** N/A 9.7% 11.0% 5.8%Table 6.25: The Identical-Incorrect values, as a percentage of total error analysis tokens,for each of the system variants paired with the baseline, at each of four stages. Reportedfor the reverberant speech version of the Numbers development test set.125



6.7 ConclusionCombining experimental, syllable-based systems with the baseline system improved therecognition accuracy of Numbers over that of the individual systems alone, as can be seenin Table 6.23. These combined results are signi�cantly improved over the baseline at the0.05 signi�cance level.8 Analyses and comparisons of the systems individually and in pairssuggests that this bene�t is due to the di�erences in recognition characteristics betweenthe systems. When the error correlation between two systems is low, as quanti�ed by theIdentical-Incorrect measure, the systems appeared to complement each other, mitigatingweaknesses and enhancing strengths.The addition of syllable-based information helped to create systems with both reason-able recognition performance and disparate error characteristics by emphasizing di�erentproperties of the acoustic signal. The modulation spectrogram features, developed by Kings-bury and Greenberg, promoted divergence in errors. The half-syllable unit also added tothe dissimilarity between systems, but not as much as did the features. A lower Identical-Incorrect value resulted between the baseline and the experimental alternatives with moresyllable-based elements, shown in Tables 6.24 and 6.25. The focus system, with both mod-ulation spectrogram features and the half-syllable recognition unit, was the most consistentacross analysis levels in having the smallest proportion of errors identical to the baseline.Combining this system with the baseline at the syllable level produced the overall besterror rate for both clean and reverberant versions of the Numbers test sets. The improve-ment is also slightly greater than with the frame-level combination, a statistically signi�cante�ect (p < 0:05) for reverberant speech, with development test set data. With the reverber-ant version of the evaluation test set, the positive e�ect is not signi�cant. The improvementobserved with reverberant speech with this combining method is signi�cantly larger thanthat for utterance-level combining. The major di�erence between this strategy and thatat the shorter frame or longer utterance level was the added, heterogeneous structure pro-duced by synchronization at the ends of syllables, which could vary considerably in length.The frame-level and utterance-level combination methods had more homogeneous, �xedinterval synchronization properties. The error-rates for the frame-level combination schemewere almost as low as for the syllable-level, however, as shown in Table 6.23. The frame-level combination scheme had an implementation that was considerably simpler than thesyllable-level approach.Combining strategies that involve a common beginning for each syllable, such as com-bining at the frame and syllable level, allow for the possibility of using syllable onset infor-mation from Chapter 4 during the combining process. From the implementation point ofview, the frame-level combination method can integrate this information most directly. Atthe syllable level, syllable onset information is less readily merged into the HMM recom-bination strategy9 used. Incorporating syllable onsets would double the already enormousHMM models and neural network activation �les required by the syllable-level combinationimplementation. For combining at the utterance level, where the two streams can become8Signi�cance testing used normal approximations to binomial distributions and used a Z-score to testwhether the two distributions were signi�cantly di�erent.9HMM recombination is described in more general terms in Section 3.5.126



completely desynchronized, the syllable onset information must be incorporated into the twoconstituent recognition systems before the combining stage. Although not pursued here,using syllable onset information can make a further improvement in the overall accuracy ofthese systems.This chapter explored combining the baseline system with the focus system at threelevels: frames, syllables, and whole utterances. Combination methods varied from the verysimple (frame level), to the somewhat more involved (syllable level), to the complex (utter-ance level). Each of the di�erent combining levels has separate advantages and disadvan-tages, yet combining at any of the levels showed signi�cant improvement over using a singlesystem by itself. This suggests a possibly useful, more general hypothesis for combiningsystems, not limited to syllable-based investigations: given multiple recognition systems,each with reasonably good performance and low error correlation characteristics, mergingthe probabilities at some level can improve speech recognition performance over that of theindividual, constituent systems.
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Chapter 7Discussion and ConclusionMany of the basic brain mechanisms underlying human speech processing are still poorlyunderstood. There is some evidence, however, that speech perception incorporates informa-tion related to the temporal properties of syllables. This observation suggested a strategyfor automatic speech recognition, that of combining syllable-based information with a well-established phoneme-based speech recognizer. Combination and merging paradigms arenot new; research along similar lines has been pursued at least since the early 1970s. Thework described in this thesis has attempted to capitalize on the most recent research ad-vances by using feature analysis methods newly developed by colleagues at ICSI and bypursuing combination strategies at several separate stages in the recognition process forgreater overall performance. These experiments demonstrate the potential for improvingspeech recognition accuracy using systems and procedures that incorporate syllable-basedinformation. These methods were e�ective for a modest-sized pilot task; work remains todevelop e�cient versions of these techniques for large vocabulary versions.This chapter begins with a summary of the thesis. Section 7.2 discusses the implicationsof these results in detail and Section 7.3 lists the contributions made by this thesis toautomatic speech recognition. Section 7.4 explains the future possibilities for this work,including the issue of large vocabulary tasks. The thesis concludes with some generalre
ections on the �eld of automatic speech recognition and its relation to this work.7.1 SummaryThis thesis began with a discussion of the role of the syllable in the identi�cation andsegmentation of speech. A short review described some of the syllable's function in lexicalaccess in human perceptual systems. A literature search revealed that the syllabic propertiesof speech are highly controversial with, as yet, no de�nitive consensus. A study of syllableusage in conversational speech showed that a representative sample of casual speech (ofconsiderable size) was relatively simple to describe with syllables and that the syllablemay be an e�ective representational and organizational unit. This led to reconsideringthe syllable for automatic speech recognition systems, which revealed both advantages anddisadvantages for ASR. 128



System Error Rateno onset information (baseline) 9.1%onset used with threshold 8.2%Table 7.1: Performance results (word error rates) with and without acoustically-derivedonsets.The exposition continued with a discussion of the background of the ICSI speech recog-nition system and the Numbers task, the basis for all the experiments in this thesis.Experiments incorporating syllable-based information into speech recognition beganwith integrating acoustically estimated syllabic onsets into a speech recognition system.The chosen methodology involved the design and implementation of a decoder with a sepa-rate syllabic level. \Cheating" experiments (using arti�cial onsets) showed that hints aboutthe syllable segmentation of the speech input could substantially decrease the overall worderror rate of the speech recognition system, even if the onsets were determined with only amodest degree of accuracy. Acoustically-estimated (non-cheating) onsets, based on acousticfeatures developed by Shire and Greenberg [184], were incorporated into the speech recog-nition system resulting in a 10% relative improvement in accuracy with clean speech (OGINumbers), as shown in Table 7.1. A method for incorporating onsets without the use of aspecial decoder was later developed and shared with colleagues who applied these ideas toBroadcast News, a large vocabulary corpus, and achieved a similar improvement in accuracy[33].These experiments indicated the potential of using syllable-based information at otherlevels. Investigating this involved the development of a focus experimental system withsyllable-based, long-time-span elements at the levels of feature analysis, neural networkoutput and recognition unit. The experiments also involved the development of three sup-plemental system variants, each with a di�erent subset of syllable-based processing elements.The supplemental systems provided contrast and additional context for comparisons andanalyses. The substitution of features or recognition units based on syllable-length, longtime spans into the baseline system caused recognition performance to degrade moderatelyfor clean speech and did not improve accuracy for reverberant speech. Using a longer con-text window helped improve recognition performance to some degree for the reverberantversion of the Numbers corpus.Inspection of the recognition output suggested that the experimental variants madedi�erent errors from the phone-oriented baseline system. That is, the variants producedrecognition results with a low degree of error correlation with the baseline system, as as-certained by the error analysis described in Chapter 5. Pairing the baseline with the focussystem, which incorporated the largest number of syllable-based elements, turned out toproduce the lowest proportion of Identical-Incorrect errors (a measure of error correlation)over several levels of analysis, as shown in Table 7.2. The combining experiments involvedmerging systems at three stages of the decoding process: at the frame level (i.e., using theneural network outputs), at the syllable level and at the whole-utterance level. Combin-129



Variant(paired with Baseline) Frame-Level Syllable-Level Word-Level Utterance-LevelRASTA + phones,17 frames 38.2% 37.0% 38.9% 33.2%RASTA + half-syllables,17 frames N/A 22.5% 24.9% 17.1%modulation spectrogram +phones, 17 frames 18.6% 12.6% 13.6% 8.8%modulation spectrogram +half-syllables, 17 frames**focus** N/A 9.7% 11.0% 5.8%Table 7.2: The proportion of Identical-Incorrect errors, as a percentage of total error analysistokens, for each of the system variants paired with the baseline, at each of four stages.Reported for the reverberant version of the Numbers development test set.Test Baseline Frame-Level Syllable-Level Utterance-LevelCondition phones phones+phones phones+half-syllables phones+half-syllablesclean 6.7% 5.8% 5.1% 5.5%reverb 28.0% 17.7% 16.7% 19.6%Table 7.3: Performance results (word error rates) of Baseline and combined systems.ing the baseline system with the appropriate syllable-based system at any of these levelsproduced signi�cant reductions in error rates (shown in Table 7.3) of up to 24% relativereduction for clean speech1 and 40% relative reduction for reverberant speech. This sug-gested that the approach was e�ective at improving the accuracy and robustness of thespeech recognition system, especially with respect to reverberation in the speech signal.7.2 DiscussionThe research in this thesis was conducted along two major themes: 1) using syllable-basedinformation in ASR and 2) using combination methods to incorporate additional informa-tion into a well-established, phoneme-based speech recognition system. The end result wasan increase in recognition accuracy, beyond that achieved by the constituent systems singly.Attaining this research goal required that these two major points be developed in tandem.Experiments that considered only one of these two themes did not display the advantages1A di�erent baseline was used in the syllable onset experiments than in the combining of syllable-basedsystems experiments. 130



observed by integrating both. Studies with the Numbers corpus showed that the perfor-mance of the individual syllable-based systems represented a degradation compared to thebaseline, while combining systems that were similar and that did not use much syllable in-formation exhibited little of the marked improvements obtained by the best combinations.7.2.1 Implications for Syllables in ASRResearchers have generally assumed that there is a single basic unit of speech recognition.The arguments are often phrased in terms of \the syllable is right and the phoneme iswrong" or vice versa. These experiments and exploratory studies found that using syllable-based, long-time span information design elements in speech recognition elicited a kind ofbehavior di�erent from phoneme-based, short-time span based systems. The longer-timespan elements, however, caused a degradation in the representation of �ne detail, probablydue to the smearing of information over a longer time span. Hence, the best methodologywas a combination of both systems. This simultaneously capitalized on long-time-spanintegration and short-time-span detail. The best result was obtained by the combination atthe syllable-level. In terms of the literature discussion in Chapter 2, it appears that bothsyllables and phonemes are important units for automatic speech recognition.Each of the recognition paradigms expressed in these experiments can be interpreted interms of a dynamic association between particular units and hypothesized speech intervals.In the experiments with syllabic onsets, the speech interval was the length of a syllableand the associated units were phones and syllable onsets. Similarly, combining systemsat the syllable-level can be interpreted as �rst hypothesizing syllable-length segments inthe speech signal, then attaching phone and half-syllable units to these intervals. At theframe and utterance level, the experimental setup established the speech intervals a priorias the 25-ms frame and whole utterance, respectively. The experimental data gathered sofar suggest that the dynamic segmentation of the speech signal at the syllabic level o�ersthe greatest potential for signi�cant gains in ASR performance.Chapter 2 also related a number of advantages and disadvantages of using syllablesin speech recognition. These experiments have touched upon a portion of the advantagescited in favor of syllables in ASR, namely those using syllable segmentation information andintegrating speech information over syllable-length intervals. However, this thesis does notaddress several other syllable-related factors for ASR, such as the issue of using syllablesto incorporate prosody. The systems developed also do not explore the potential savings instorage and execution time by sharing syllables, or of the potential improvement in searche�ciency by exploiting the regular structure of syllables. The positive results reported inthis thesis may be taken to indicate the latent bene�t in incorporating additional propertiesof syllables.In the experiments in this thesis, incorporating syllables has led to improvements in ac-curacy despite certain realized complications and other potential problems. The ambiguousnature of syllable boundaries is probably the most important factor limiting improvementdue to using syllable onsets. However, Cook and Robinson were able to use the same syl-lable onset scheme to a similar, positive e�ect in a large vocabulary task, thus showingthat the bene�ts are consistent and the method is scalable [34]. The ambiguity of syllable131



boundaries did not directly a�ect the recognition performance of the systems with syllable-based elements at the signal processing, neural network context window and recognitionunit level since these systems did not enforce rigorous temporal boundaries. Consistent,albeit phonologically approximate, syllabi�cation of the words was su�cient for these ex-periments. Therefore, it may be possible to obtain improvements for other recognitiontasks by using syllable-based information even without a perfect de�nition of the syllableor syllable boundary, and without waiting for the controversy surrounding the syllable tobe resolved.7.2.2 Implications for Combination in ASRIncreasing the number of parameters available to a recognition system without adding struc-ture produced diminishing returns. The combination of syllable information with phoneinformation enabled the more e�ective use of additional recognition system parameters.Long-time-span based information, most notably the modulation spectrogram features ofKingsbury and Greenberg, was key to developing a recognition system that produced sig-ni�cant improvements when combined with the baseline. The modulation spectrogramand half-syllable unit representations provided recognition results with errors di�erent fromthose of the phone-based system.Error analysis and the Identical-Incorrect metric broadly characterized the potential forimprovement through combinations of multiple recognition systems. Table 7.2 shows theproportion of Identical-Incorrect errors committed by both the baseline and the experimen-tal system variants. The number of such errors was lowest for the focus system, which hadthe most syllable-based design aspects. This suggests a paradigm of �rst developing sys-tems that have reasonably good performance and low error correlations with one another,and then combining their outputs. This strategy may be particularly e�ective in improvingrobustness to surprises in the test set (i.e., where the test set has characteristics di�erentfrom the training set).Comparative error analysis is applicable in more general pattern classi�cation tasksas well. Similar analyses can help coarsely quantify the di�erences in behavior betweenclassi�ers into a few meaningful numbers and thereby highlight possibilities for improvingaccuracy. The distribution of errors in the analysis categories can suggest the most promis-ing combination strategy. For example, if a comparison between two systems showed thatthey produced entirely complementary errors (i.e., they never got the same word wrong),the desired combination strategy would be quite di�erent than if the two systems alwaysrecognized the same words incorrectly, but recognized them in a disparate fashion.7.3 Thesis ContributionsHumans can understand utterances from the Numbers corpus with near perfect accuracy inboth clean and moderately reverberant conditions. Clearly, there is much work remainingin improving automatic speech recognition for even this simple task.This thesis contributes to the advancement of computer science by presenting a viable132



method for improving speech recognition by machines. The ASR community seems to begenerally inclined against using the syllable for English due to unresolved linguistic issuesand the considerable success of the phone. The experiments discussed show that improve-ments are possible using certain aspects of the syllable even in the absence of completeanswers to the linguistic questions. The results of this work also contribute to the mount-ing evidence that combination methods have signi�cant potential for improving speechrecognition.This research has incorporated several ideas derived from, or consistent with, theories ofhuman speech perception, including the use of syllable onsets and syllable-length intervalsand the combination of coarse processing elements. The experimental results underline theusefulness of clues from human audition for the interpretive understanding and developmentof automatic processing.On a personal note, my work has been to develop, re�ne and extend the concepts andsuggestions originally shared with me by Professors Morgan and Greenberg. I like to thinkthat many of the ideas expressed in this thesis came from synergistic collaboration withmy professors and my colleagues, rather than a one-way transferral. A major portion ofmy time was devoted to developing the infrastructure for experiments to demonstrate thatsyllable-based information can improve recognition accuracy. Speech recognition research isconducted largely through experiments; much of my e�ort has been invested in performinga large number of di�erent trials. In this work I have greatly bene�ted from the atmosphereof mutual cooperation in ICSI's Realization Group; there is a great tradition of sharingideas and implementations. Therefore, it may be instructive to attempt to list my speci�ccontributions concretely.In the beginning, I created the �rst scripts for the initial gathering of data about theuse of syllables in conversational speech, before the study was later extended and expandedby others. For the work with syllable onsets, I designed and implemented a special purposedecoder, conducted numerous trials with incorporating Michael Shire's (ICSI) syllable onsetsand designed alternatives to the special decoder for our distant colleagues to use. For thework with syllable-oriented recognition, I implemented the half-syllable unit representationand trained the syllable-based recognition systems. I conducted numerous experiments withthese systems individually and in combination to examine their behavior. I derived andimplemented error analysis techniques from the work of other researchers. Brian Kingsburyand Nikki Mirghafori (both of ICSI) helped with the implementation of the more successfulcombination methods, and Brian also contributed to running some of the later experiments.This work entailed the implementation of considerable supporting software for incor-porating syllable onsets, syllable-based recognition, combining at three di�erent levels andautomatic error analysis. These items can be used by others to pursue additional avenuesin syllable-based recognition, or to analyze and combine two arbitrary systems. Some ofthis material is already being integrated into the research projects of colleagues at ICSI.7.4 Future ExtensionsInevitably, there are parts of the story that remain incomplete.133



7.4.1 Further OptimizationAs mentioned in Chapter 5, the recognition systems that incorporate syllable-based elementshave not been optimized as fully as the mature phoneme-based system. Experimentalmethods and time constraints limited the individual re�nement of the systems. Furtheroptimization possibilities include:Using Improved FeaturesA revised version of the modulation spectrogram features is under development by Kings-bury and Greenberg [105]. The latest version of the features outperforms the older versionused in this thesis, particularly for the reverberant test case. Using the re�ned version ofthe modulation spectrogram features may help to reduce the absolute error rate for thecombined systems.Using Improved Recognition UnitsThe half-syllable unit is a reasonable and e�ective starting point for representing syllablesin speech recognition, but further study may reveal a more appropriate unit, such as wholesyllables, or smaller parts of syllables, as have been used by others.2 Further work alongthese lines may improve the performance of the syllable-based systems and therefore of thecombined systems overall.Selecting And Improving a Single Combination StrategyExploring combination strategies at di�erent levels with the same systems has limited thedegree to which the individual systems could be optimized. The latitude available for im-proving individual systems within a combination expands as the time between combinationpoints increases. At the frame-level, re�nements are restricted to those that do not causemismatched phone recognition behavior. For direct comparison of error rates, the frame-level constraint limited the design of the system for combining at higher levels.Selecting a single level of combination would allow extra optimization appropriate at thatlevel. If the combination is to be performed at the frame level, system improvements wouldbe limited to the areas of feature extraction and neural network architecture and training.The improvements should not alter the form of the output probabilities. The syllablelevel does not require common units since some amount of desynchronization between therecognition outputs of the two systems can be absorbed during the combination process.This means that training labels and recognition units can be independently optimized, solong as the recognition process can still synchronize at the endpoints of syllables. At thewhole utterance level, the combining method imposes no optimization constraints. Eachsystem can be optimized in an independent fashion since the recognition systems interact2More information on previous use of di�erent kinds of syllable-based information is described in Chap-ter 2. 134



only at the endpoints of an utterance. However, performance results on reverberant testsexhibited the least improvement of the three methods.7.4.2 Scaling to Larger Vocabulary TasksNumbers is a practical and useful corpus for this experimental research, but it possesses arather small lexicon, comprising only 32 words. The results derived from this small corpusmay still extend to larger vocabulary tasks because of the general acoustic character of thecorpus. Scaling up to larger tasks will entail addressing the following issues:Dynamic Syllabi�cation for Syllables OnsetsThe extensibility of incorporating syllable-onsets is indicated by the work of colleagues witha 65,000-word vocabulary task [33]. Nonetheless, there are unanswered questions relatingto the application of syllable-onsets to larger vocabularies. The pilot studies using onsetsderived from knowledge of the correct answers (the \cheating" experiments) indicated alarger potential for improvement than has been realized. A likely impediment is the inade-quacy of the current de�nition for syllable onset and the way it is currently incorporated onthe basis of isolated words. Context-dependent syllable models may be useful in addressingthis issue.Syllable-level Combination with Large VocabulariesFor experiments with combining di�erent systems, the best overall error rate was found withcombinations at the syllable level. The particular method of combining at the syllable-level(HMM-recombination), however, requires additional implementation issues to be resolved.Even for the Numbers task, a combination of only two systems with limited desynchroniza-tion between streams required hundreds of probabilities per frame and word HMMs withthousands of states.A method that avoids the creation of massive HMMs would ease the computationalresource problem. Eric Fosler-Lussier (of ICSI) has been working on a two-level Viterbidecoder [54]. The two-level decoding algorithm [171, 159] was historically set aside in favor ofthe more e�cient single-pass Viterbi decoding algorithm. The two-level approach, however,is more amenable to combination schemes. The likelihood for each word is calculated forevery possible time alignment. Thus, combining scores from two systems at the ends ofwords is straightforward. Combination can be implemented without resorting to HMMswith thousands of states or other complex means, keeping the demand on computationalresources at moderate levels. Combining at the ends of syllables within words would requirean additional level of processing, because phone probability information would �rst have tobe decoded into syllables, before the syllables could be decoded into words.The method of combining recognition systems at the frame-level is fully extensible tolarger tasks since the procedure merges probabilities at the phone/frame level. The errorrates found by combining at the frame level were similar to the best error rates found atthe syllable level and required much less implementation e�ort.135



Combining at the utterance level does not involve such a close integration of the decodingprocedure. Increasing the size of the vocabulary and the length of the utterances wouldrequire longer N -best lists to achieve good performance, and thereby lengthen the executiontime of the complex rescoring process. This problem could be mitigated by using phrasesor between-pause segments instead of entire utterances.Number of Unique Syllable UnitsLarge vocabularies will incur a greater number of distinct syllable-based targets. As thenumber of di�erent training targets increases, the number of training patterns for eachtarget decreases, potentially reducing the accuracy of the probability estimation process.As the size of the task syllabary increases, issues such as similar sounding syllables andresyllabi�cation phenomena arise. These may exert a much larger negative impact thanin Numbers. These problems, however, mirror those of context-dependent units such astriphones. Strategies similar to ones developed for those units can be used to handle theincreased complexity of a large number of syllables.E�ciency and modularity might solve some of the scaling problems of syllable-basedapproaches. For example, instead of one massive neural network, using several smallernetworks, perhaps arranged in a hierarchy of graduated generality, can perhaps be usedto manage the complexity. Fritsch suggested and implemented this strategy for context-dependent acoustic models [58].The Syllable-based Speech Processing Team of the 1997 LVCSR Workshop [67] devel-oped a means of dealing with the problem of augmenting a syllabary for a large vocabulary:they used syllable models for the more frequently occurring words and handled the re-mainder with standard phoneme-based models. The team reported some success with thismethod. Such a strategy addresses the need for accommodating unusual syllable types,such as \scrounged" and \strength." Exotic syllable types can be described most straight-forwardly in terms of phonemes.7.4.3 Further CombiningThis thesis described the use of syllabic information for ASR in two phases: the incorpora-tion of syllable-onset estimates and the combining of syllable-based systems with phoneme-based systems. One direction for future work is the further combination of these two typesof information. As mentioned previously, the syllable onset experiments can be related tothe combining experiments at the syllable-level through an interpretation based on syllable-length intervals. Both methods can be said to hypothesize syllable-length intervals in speechand attach various features to the segments. Using syllable-onset information to constraindecoding in the component recognition systems of a combination may show a larger im-provement than either method alone. Additional speech unit values could be attached tothe same hypothesized, syllable-length interval. This further permutation requires closelymatching the syllabary in each of the three constituent recognition systems. Since thisquestion depends on the speci�c de�nition of the syllable, further research is necessary.136



7.4.4 Parallel and Concurrent ComputingAs noted in the introductory chapter, this work arose out of studying the syllable with a viewto developing parallel decoding algorithms for a vector microprocessor. The syllable hasseveral properties that are desirable for vector computing: 1) Syllable-based models may beconducive to removing conditional branches during execution and 2) Syllable-based modelsare a natural organizational unit for reducing redundant computation and de�ning thesearch space. Although the work in this thesis does not explore parallel computing further,some of the conclusions of this work are applicable to concurrent processing. Namely,combining information from multiple streams is an obviously concurrent operation. EricFosler-Lussier's two-level decoder [54] may map neatly onto a multiple processor machine,since the probabilities of di�erent words (or syllables) are computed independently.As mentioned in Chapter 3, some recent advances in speech recognition technology havebeen attributed to general improvements in hardware performance [32]. If this is the case,using parallel and concurrent machines should be highly advantageous to speech recognitionresearch.7.5 Re
ections on the Future of ASR ResearchThe �eld of automatic speech recognition is entering a new stage of maturation. As aresult, the research paradigm used is undergoing certain transitions. Integrating separateknowledge sources and merging systems that run in parallel will probably play a moresubstantial role in future investigative directions.Not long ago, commercial ASR products were limited to fairly simple systems. Morecomplex systems (e.g., large vocabulary, continuous speech) systems were con�ned to re-search laboratories. At the same time, the state of the art was basic enough that everyresearcher could create a personal speech recognition engine from scratch. Since then, re-search systems have increased dramatically in complexity and size. Without evidence usingcompetitive systems, research results are often regarded as incomplete. Small researchgroups are currently encountering signi�cant di�culties in developing their own recognitionsystems that are competitive with the o�erings of larger, established players. Many smallgroups develop their systems with the help of HTK (Hidden Markov Model Tool Kit) [212],the CSLU Speech Toolkit [22], or STRUT (Speech Training and Recognition Uni�ed Tool)[15], which provide many of the processing elements needed.ASR has also grown into viable commercial products. As the market for speech recogni-tion applications enlarges, consumers will begin to drive the industry. The product featuresdesired by users, rather than basic science interests, will dictate the research agenda of manyorganizations [128]. For example, the commercial viability of using speech recognition forinformation retrieval has focused interest, and funding, on the aspects ASR appropriatefor this task. Customers will more strongly in
uence the direction of research than willacademia.A similar evolutionary process occurred in the �eld of microprocessor design. Not verylong ago, microprocessors had only tens of thousands of transistors and research groups137



commonly designed and fabricated special purpose chips for local interests. Today, micro-processors are a consumer commodity; directions in new chip designs are driven by marketforces. State of the art microprocessors are highly complex with millions of transistorsand are continuously increasing in complexity. Researchers in academia very rarely createcomplete microprocessors from scratch because of the massive expenditure in resources nec-essary to achieve competitive performance. Instead, they focus on speci�c angles, such aslow-power operation, and build simpli�ed prototypes. Complete chips are most often leftto large corporations to fully develop.In ASR, academic recognition systems can still compete with industrial systems. Univer-sity systems, such as Cambridge University's HTK and connectionist groups, and CarnegieMellon University's group, are still among the front runners in organized evaluations [35].Because state-of-the-art performance is considered critical, research directions have su�eredfrom a certain degree of inertia. Innovative new systems are usually couched in small pilotstudies which su�er in comparison to larger, more mature systems. Attempting radicaldepartures from the established mode has become increasingly di�cult [17]. There are ini-tiatives aimed at combating this trend: some research organizations attempt to contributeby attaching their work to existing, state-of-the-art systems. Boston University, for exam-ple, entered the 1997 ARPA Switchboard Evaluation in collaboration with an industrialpartner [149].Collaborative e�orts between research partners will �gure more prominently in the futureof automatic speech recognition. Joint e�orts can be integrated in many di�erent ways. Twocommon methods are illustrated in this thesis: 1) adding an auxiliary knowledge source tothe main recognition system (the syllable onset work) and 2) computing information inparallel and merging the results (the combining of systems work). These kinds of methodshave already given researchers an opportunity to take advantage of strengths and softenweaknesses within a 
exible structure. Integrating information from various sources isprobably the paradigm the human brain uses.Interfacing among parts in collaborative work is a di�cult engineering issue by itself,as shown by the e�orts of the Verbmobil engineers. The Verbmobil project in Germanyinvolved, at one point, 29 separate sites with 150 researchers and engineers [21]. The inte-gration of the e�orts was a large and time-consuming task, aside from the speech recognitionaspects. The syllable can play a part in smoothing many kinds of interactions because of itsfunction as a basic unit. The elemental role which the syllable is believed to play in manyseparate parts of the human auditory system can possibly be exploited to help with theseengineering concerns.This kind of collaborative research activity can be seen in the compiler community.Modern compilers have also become ponderously large, with many similar performanceevaluation issues as speech recognition software. The National Compiler Infrastructureproject attempts to address some of these problems: the project uses SUIF (Stanford Uni-versity Intermediate Format) as a platform for supporting collaboration between compilerresearchers [187]. SUIF aims towards a modular architecture that is easily extensible andmaintainable. Some ASR research groups have already taken steps towards similar frame-works for speech recognition (for example, the public domain speech recognition technologye�ort headed by Joe Picone [152]). 138



Of course, not every research interest can �t into a combination or interface model. Somedirections will necessitate the development of complete recognition systems from scratch.Extensive alliances also raise many logistical and political issues. Despite these drawbacks,collaboration through various forms of combining will probably become a more commonoccurrence in speech recognition research.7.6 ConclusionIn this thesis I have shown that incorporating syllables into an established automatic speechrecognition system can improve continuous speech recognition accuracy and robustnessfor a small vocabulary corpus. Syllable-oriented recognition extracted a di�erent aspectof the speech signal from the phoneme-oriented recognition which led to greater overallperformance when used together. Experiments with Numbers resulted in up to a 24%relative improvement for clean speech and up to a 40% relative gain for reverberant speech.The improvement in recognition accuracy in the combined systems is attributed to thein
uence of syllable-based information in creating systems with strengths and weaknessescomplementary to those of the baseline, phoneme-based system. In particular, modulationspectrogram features played a large role in creating systems with divergent errors. The useof the half-syllable unit further promoted the dissimilarity of errors, although to a lesserextent than the features. At each level of combination (frame, syllable and utterance),coarse error analyses showed that the system with the largest number of syllable-baseddesign elements was also the system with the lowest error correlation with the baselinesystem.The results of these experiments showed that the simplest method, frame-level combina-tion, achieved a large proportion of the maximum gain observed.3 Syllable-level combiningachieved a slightly higher accuracy, but required additional complexity. The syllable-leveland utterance-level combining methods admit considerably more possibilities for individu-alized optimization than does frame-level combination, because only similar outputs can becombined at the frame-level. Combining at the utterance level was the least e�ective fordegraded speech, but the combination of systems across all levels resulted in performanceimprovements over the baseline.Speech recognition has become a product in demand; there is considerable motivationto solve the problems that keep speech recognition applications from universal deployment.The work in this thesis uses the syllable unit and combination methods to take a small steptowards that goal.3Even the systems combined at the frame-level incorporated signal processing and neural network timespans that were roughly syllabic in length. 139



Appendix ARecognition UnitsThis appendix lists, in table format, the phone set, half-syllable set and canonical pronun-ciations used in the recognition systems discussed in this thesis.
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A.1 ICSI 56 Phoneme SetASR Phoneme Symbols1ICSI56set IPA Example ICSI56set IPA Examplepcl po (p closure) bcl bo (b closure)tcl to (t closure) dcl do (d closure)kcl ko (k closure) gcl go (g closure)p p pea b b beet t tea d d dayk k key g g gaych �tM choke dx D dirtyf f fish jh �d` joketh S thin v v votes s sound dh � thensh M shout z z zoom m moon zh ` azureem mj bottom n n noonng 8 sing en nj buttonnx ~D winner el lj bottlel l like r r rightw w wire y j yeshh h hay hv $ aheader � bird axr � butteriy i beet ih ) bitey e bait eh � betae � bat aa � fatherao = bought ah � butow o boat uh ? bookuw u boot ix + debitaw �w about ay �y biteoy =y boy ax � abouth# (silence)1Table derived from table for TIMIT, from Eric Fosler-Lussier, originally from Charles Wooters.
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A.2 Half-Syllable UnitsHalf-Syllable Units2First Halves Second Halvess-eh v-ih eh ih-n-tclt-iy v-ax iy-n ax-nn-ah n-tcl-t-iy eh-v iyt-ih v-ah ah-n-tcl ahf-ih ey ih-f-tcl ih-neh w-ah ey-tcl ax-n-tclth-er tcl-th-er er-tcl ah-ns-ah v-eh eh-n eh-v-nih d-iy ih ey-dcls-ih s-tcl-t-iy ih-kcl eyd-tcl-t-iy hh-ah eh-dcl-d ih-kcl-kd-r-eh hv-ah ih-dcl-d ih-dcl-td-r-ih d-er er-dcl-d ah-n-dcld-eh d-ih eh-dcl er-dcld-ow r-eh ow ih-dcltcl-t-w-ae t-w-eh eh-l-f ae-ltcl-t-w-ow tcl-t-w-ah ow-v ah-l-vtcl-t-w-eh n-ay eh-l-v ayn-iy n-dcl-d-iy ay-n ih-n-dclv-uh n-d-iy uh-n-dcl eh-n-tcln-ih ah er axz-ih tcl-t-w-ax ey-tcl-t ey-tth-ih r-iy ih-kcl-k-s ay-n-tcls-tcl-t-ih f-ow ow-r ay-tclt-eh tcl-t-eh ih-k ao-rr-ah z-iy ow-r-dcl ow-r-tclt-w-ah iy ao-tcl aor-ow th-r-t-iy ow-r-dcl ow-r-tcltcl-th-r-iy th-r-iy uwf-ao tcl-t-uwl-eh l-ahax owf-ay s-t-iy2Half-syllable units were derived from word pronunciations, where each word was partitioned into syllablesautomatically. Each syllable was divided at the middle of the nucleus.Since the de�nition of the syllable is poorly speci�ed, any list of candidate syllables probably has somelinguistic inconsistencies. 142



A.3 Numbers Pronunciations (canonical syllable based)Canonical Syllable Pronunciations3oh owzero z-ih r-owone w-ah-ntwo t-uwthree th-r-iyfour f-ao-r�ve f-ay-vsix s-ih-k-sseven s-eh v-eneight ey-tnine n-ay-nten t-eh-neleven ix l-eh v-entwelve t-w-eh-l-vthirteen th-er t-iy-nfourteen f-ao-r t-iy-n�fteen f-ih-f t-iy-nsixteen s-ih-k-s t-iy-nseventeen s-eh v-en t-iy-neighteen ey t-iy-nnineteen n-ay-n t-iy-ntwenty t-w-eh-n-t-iythirty th-er t-iyforty f-ao-r t-iy�fty f-ih-f t-iysixty s-ih-k-s t-iyseventy s-eh v-en t-iyeighty ey t-iyninety n-ay-n t-iyhundred h-ah-n d-r-ax-d[uh] ax[um] ax-m3Canonical pronunciation and syllabi�cation in ICSI56 phonetic orthography. Syllabi�cation approxi-mated from CELEX data. 143



Bibliography[1] Takayuki Arai and Steven Greenberg. The temporal properties of spoken Japanese aresimilar to those of English. In Eurospeech, Rhodes, Greece, September 1997. ESCA.[2] Aristotle. Categories. http://classics.mit.edu, 350 B.C.E. Translated by E. M. Edghill.[3] W. C. Athas and C. L. Seitz. Multicomputers: Message-passing concurrent computers.IEEE Computer, 21(8):9{24, August 1988.[4] Steve Austin, Richard Schwartz, and Paul Placeway. The forward-backward searchalgorithm. In ICASSP, volume 1, pages 697{700, Toronto, May 1991. IEEE.[5] Carlos Avendano, Sangita Tibrewala, and Hynek Hermansky. Multiresolution channelnormalization for ASR in reverberant environments. In Eurospeech, volume 3, pages1107{1110, Rhodes, Greece, September 1997. ESCA.[6] R. H. Baayen, R. Piepenbrock, and H. van Rijn. The CELEX lexical database. cdrom,1993.[7] L. Bahl, P. Cohen, A. Cole, F. Jelinek, B. Lewis, and R. Mercer. Further results onthe recognition of a continuously read natural corpus. In ICASSP, volume 3, pages872{875, Denver, Colorado, April 1980. IEEE.[8] L. Bahl, P. de Souza, P. Gopalakrishnan, D. Nahamoo, and M. Picheny. A fast matchfor continuous speech recognition using allophonic models. In ICASSP, volume 1,pages 17{20, San Francisco, California, March 1992. IEEE.[9] L. Bahl, P. Gopalakrishan, D. Kanevsky, and D. Nahamoo. Matrix fast match: Afast method for identifying a short list of candidate words for decoding. In ICASSP,volume 1, pages 345{348, Glasgow, Scotland, May 1989. IEEE.[10] L. Bahl, F. Jelinek, and R. Mercer. A maximum likelihood approach to continuousspeech recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,PAMI-5(2):179{190, March 1983.[11] James K. Baker. The DRAGON system- An overview. IEEE Transactions on Acous-tics, Speech, and Signal Processing, ASSP-23(1):24{29, February 1975.144



[12] L. E. Baum and J. A. Eagon. An inequality with applications to statistical estimationfor probabilistic functions of Markov processes and to a model for ecology. Bulletinof the American Mathematical Society, 73(3):360{363, May 1967.[13] Jon Atli Benediktsson, Johannes R. Sveinsson, Okan K. Ersoy, and Phillip H. Swain.Parallel consensual neural networks. IEEE Transactions on Neural Networks, 8(1):54{64, January 1997.[14] Christopher M. Bishop. Neural Networks for Pattern Recognition, chapter 6.6.1, pages226{228. Clarendon Press, New York, New York, 1995. Interpretation of hidden units.[15] Jean-Marc Boite. Speech training and recognition uni�ed tool, 1998. More informationcan be found at http://tcts.fpms.ac.be/speech/strut.html.[16] Antonio Bonafonte, Rafael Estany, and Eugenio Vives. Study of subword units forSpanish speech recognition. In Eurospeech, volume 3, pages 1607{1610,Madrid, Spain,September 1995. ESCA.[17] Herv�e Bourlard. Towards increasing speech recognition error rates. In Eurospeech,volume 2, pages 883{893, Madrid, Spain, September 1995. ESCA.[18] Herv�e Bourlard, Bart D'hoore, and Jean-Marc Boite. Optimizing recognition andrejection performance in wordspotting systems. In ICASSP, volume 1, pages 373{376, Adelaide, South Australia, April 1994. IEEE.[19] Herv�e Bourlard and St�ephane Dupont. A new ASR approach based on independentprocessing and recombination of partial frequency bands. In ICSLP, volume 1, pages426{429, Philadephia, Pennsylvania, October 1996.[20] Herv�e Bourlard and Nelson Morgan. Connectionist Speech Recognition- A HybridApproach. Kluwer Academic Press, 1994.[21] Thomas Bub, Wolfgang Wahlster, and Alex Waibel. Verbmobil: The combination ofdeep and shallow processing for spontaneous speech translation. In ICASSP, volume 1,pages 71{74, Munich, Germany, April 1997. IEEE.[22] CSLU speech toolkit, 1998. More information can be found athttp://cse.ogi.edu/CSLU/toolkit/toolkit.html.[23] Lin Lawrance Chase. Blame assignment for errors made by large vocabulary speechrecognizers. In Eurospeech, volume 3, pages 1563{1566, Rhodes, Greece, September1997. ESCA.[24] Lin Lawrance Chase. Error-Responsive Feedback Mechanisms for Speech Recognizers.PhD thesis, Carnegie Mellon University, The Robotics Institute, Pittsburgh, Penn-sylvania, April 1997.[25] Colin Cherry and Roger Wiley. Speech communication in very noisy environments.Nature, 214:1164, June 1967. 145



[26] Kenneth W. Church. Phonological parsing and lexical retrieval. In Uli H. Frauenfelderand Lorraine Komisarjevsky Tyler, editors, Spoken Word Recognition, Cognition Spe-cial Issues, chapter 3, pages 53{69. MIT Press, 1987.[27] Kenneth W. Church and William A. Gale. A comparison of the enhanced good-turing and deleted estimation methods for estimating probabilities of english bigrams.Computer Speech and Language, (5):19{54, 1991.[28] John Clark and Colin Yallop. Phonetics and Phonology, chapter 5, pages 124{127,287. Basil Blackwell, Ltd., Cambridge, Massachusetts, 1990.[29] George N. Clements and Samuel Jay Keyser. CV Phonology: A Generative Theoryof the Syllable. The MIT Press, Cambridge, Massachusetts, 1983.[30] R. A. Cole, M. Noel, T. Lander, and T. Durham. New telephone speech corpora atCSLU. In Eurospeech, volume 1, pages 821{824, September 1995.[31] Ron Cole, Lynette Hirschman, Les Atlas, Mary Beckman, Alan Biermann, MarciaBush, Mark Clements, Jordan Cohen, Oscar Garcia, Brian Hanson, Hynek Herman-sky, Steve Levinson, Kathy McKeown, Nelson Morgan, David G. Novick, Mari Osten-dorf, Sharon Oviatt, Patti Price, Harvey Silverman, Judy Spitz, Alex Waibel, Cli�ordWeinstein, Steve Zahorian, and Victor Zue. The challenge of spoken language sys-tems: Research directions for the nineties. IEEE Transactions on Speech and AudioProcessing, 3(1):1{21, January 1995.[32] Richard Comerford, John Makhoul, and Richard Schwartz. The voice of the computeris heard in the land and it listens too! IEEE Spectrum, 34(12):39{47, December 1997.[33] G. Cook and T. Robinson. Transcribing Broadcast News with the 1997 Abbot system.In ICASSP, Seattle, Washington, April 1998. IEEE.[34] G. D. Cook, D. J. Kershaw, J. D. M. Christie, and A. J. Robinson. Transcription ofBroadcast Television and Radio News: the 1996 Abbot system. In DARPA SpeechRecognition Workshop, West�elds Internatinal Conference Center, Chantilly, Virginia,February 1997. DARPA.[35] Coordinated by National Institute of Standards and Technology. ConversationalSpeech Recognition Workshop DARPA Hub-5e Evaluation, Baltimore, Maryland, May1997.[36] M. Cravero, R. Pieraccini, and F. Raineri. De�nition and evaluation of phoneticunits for speech recognition by hidden Markov models. In ICASSP, volume 3, pages2235{2238, Tokyo, Japan, April 1986. IEEE.[37] Anne Cutler, Sally Butter�eld, and John N. Williams. The perceptual integrity ofsyllabic onsets. Journal of Memory and Language, 26:406{418, 1987.[38] Anne Cutler, Jacques Mehler, Dennis Norris, and Juan Segui. The syllable's di�eringrole in the segmentation of French and English. Journal of Memory and Language,25:385{400, 1986. 146



[39] Walter Daeleman and Antal van den Bosch. Generalization performance of back-propagation learning on a syllabi�cation task. In M.F.J. Drossaers and A Nijholt,editors, Proceedings of TWLT3: Connectionism and Natural Language Processing,pages 27{37, University of Twente, 1992.[40] S. B. Davis and P. Mermelstein. Comparison of parametric representations for mono-syllabic word recognition in continuously spoken sentences. IEEE Transactions onAcoustics, Speech and Signal Processing, 28(4):357{366, August 1980.[41] Renato De Mori and Michael Galler. The use of syllable phonotactics for word hy-pothesization. In ICASSP, volume 2, pages 877{880, Atlanta, Georgia, May 1996.IEEE.[42] Renato De Mori and Giovanna Giordano. A parser for segmenting continuous speechinto pseudo-syllabic nuclei. In ICASSP, volume 3, pages 876{879, Denver, Colorado,April 1980. IEEE.[43] John R. Deller, Jr., John G. Proakis, and John H. L. Hansen. Discrete-Time Process-ing of Speech Signals. Macmillan Publishing Company, New York, 1993.[44] N. Rex Dixon and Harvey F. Silverman. The 1976 modular acoustic processor. IEEETransactions of Acoustics, Speech and Signal Processing, ASSP-25(5):367{379, Octo-ber 1977.[45] St�ephane Dupont, Herv�e Bourlard, and Christophe Ris. Using multiple time scales ina multi-stream speech recognition system. In Eurospeech, pages 3{6, Rhodes, Greece,October 1997.[46] Harold T. Edwards. Applied Phonetics: The Sounds of American English. SingularPublishing Group, Inc., San Diego, California, 1992.[47] Dan Ellis. syllify. Inhouse software at ICSI, 1996. Tcl/TK interface for Fisher'stsylb2 program.[48] Lee D. Erman and Victor R. Lesser. The Hearsay-II speech understanding system:A tutorial. In W. A. Lea, editor, Trends in Speech Recognition, chapter 16, pages361{381. Speech Science Publications, Apple Valley, MN, 1980. Reprinted in (Waibeland Lee, 1990).[49] Kevin R. Farrell, Ravi P. Ramachandran, and Richard J. Mammone. An analysis ofdata fusion methods for speaker veri�cation. In ICASSP, Seattle, Washington, April1998. IEEE.[50] Michael Finke and Alex Waibel. Flexible transcription alignment. In ASRU, pages34{40, Santa Barbara, CA, December 1997. IEEE.[51] Bill Fisher. tsylb2. Source code available through ftp from NIST, 1995.[52] Eric Fosler. Automatic learning of a model for word pronunciations: Status report.In Conversational Speech Recognition Workshop: DARPA Hub-5E Evaluation. NIST,May 13{15 1997. 147



[53] Eric Fosler. Evidence for syntactic and semantic repair e�ects in auditory processing.Linguistics 220 Class Project, May 1997.[54] Eric Fosler-Lussier. two-level decoder. Inhouse software at ICSI, 1998. Animplementation of the two-level decoding algorithm with the capability to combineintermediate scores.[55] Uli H. Frauenfelder. The interface between acoustic-phonetic and lexical processing.In M. E. H. Schouten, editor, The Auditory Processing of Speech{ From Sounds toWords, number 10 in Speech Research, pages 325{338. Mouton de Gruyter, New York,1992.[56] Norman R. French, Charles W. Carter, Jr., and Walter Koenig, Jr. The words andsounds of telephone conversations. The Bell System Technical Journal, IX:290{325,April 1930.[57] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.In Machine Learning: Proceedings of the Thirteenth International Conference, 1996.[58] J�urgen Fritsch. ACID/HNN: A framework for heirarchical connectionist acousticmodeling. In Sadaoki Furui, B.-H. Juang, and Wu Chou, editors, Proceedings of theIEEE Workshop on Automatic Speech Recognition and Understanding, pages 164{171,Santa Barbara, California, December 1997. IEEE.[59] Osamu Fujimura. Syllable as a unit of speech recognition. IEEE Transactions onAcoustics, Speech, and Signal Processing, ASSP-23(1):82{87, February 1975.[60] Osamu Fujimura. Syllables as concatenated demisyllables and a�xes. Journal of theAcoustical Society of America, 59(Suppl. 1):S55, Spring 1976.[61] Osamu Fujimura. Demisyllables as sets of features: comments on Clements's paper.In John Kingston and Mary E. Beckman, editors, Between the grammar and physicsof speech, number 1 in Papers in laboratory phonology, chapter 18, pages 334{340.Cambridge University Press, Cambridge, UK, 1990.[62] Osamu Fujimura. Syllable timing computation in the C/D model. In ICSLP, pages519{522, Yokohama, Japan, September 1994.[63] Osamu Fujimura. Prosodic organization of speech based on syllables: The C/Dmodel.In Proceedings of the XIIIth International Congress of Phonetic Sciences, volume 3,pages 10{17, Stockholm, Sweden, August 1995.[64] Sadaoki Furui. On the role of spectral transition for speech perception. Journal ofthe Acoustical Society of America, 80(4):1016{1025, October 1986.[65] Sadaoki Furui and Chin-Hui Lee. Robust speech recognition{ An overview. In Pro-ceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding,page 93, Snowbird, Utah, December 1995. IEEE.148



[66] M. J. F. Gales and S. Young. An improved approach to the hidden Markov model de-composition of speech and noise. In ICASSP, volume 1, pages 233{236, San Francisco,California, March 1992. IEEE.[67] Aravind Ganapathiraju, Vaibhava Goel, Joseph Picone, Andres Corrada, GeorgeDoddington, Katrin Kirchho�, Mark Ordowski, and Barbara Wheatley. Syllable{a promising recognition unit for LVCSR. In Proceedings of the IEEE Workshop onAutomatic Speech Recognition and Understanding, Santa Barbara, California, Decem-ber 1997. IEEE.[68] Jean-Luc Gauvain. A syllable-based isolated word recognition experiment. InICASSP, volume 1, pages 57{60, Tokyo, Japan, April 1986. IEEE.[69] Dan Gildea and Eric Fosler-Lussier. Numbers lexicon. Inhouse lexicon speci�cationfor the Numbers corpus., 1996.[70] John J. Godfrey, Edward C. Holliman, and Jane McDaniel. SWITCHBOARD: Tele-phone speech corpus for research and development. In ICASSP, volume 1, pages517{520, San Francisco, California, March 1992. IEEE.[71] David Gra�. The 1996 Broadcast News Speech and Language-Model Corpus. InDARPA Speech Recognition Workshop, West�elds International Conference Center,Chantilly, Virginia, February 1997. DARPA.[72] P. D. Green, L. A. Boucher, N. R. Kew, and A. J. H. Simons. The SYLK project�nal report. By private communication with P. Green, 1993.[73] P. D. Green, N. R. Kew, and D. A. Miller. Speech representations in the SYLKrecognition project. In M. P. Cooke, S. W. Beet, and M. D. Crawford, editors, VisualRepresentation of Speech Signals, chapter 26, pages 265{272. John Wiley, 1993.[74] Steven Greenberg. Understanding speech understanding: Towards a uni�ed theory ofspeech perception. In Workshop on the Auditory Basis of Speech Perception, pages1{8, Keele, United Kingdom, July 1996. ESCA.[75] Steven Greenberg. On the origins of speech intelligibility. In Proceedings of theESCA Workshop on Robust Speech Recognition for Unknown Communication Chan-nels, pages 23{32, Pont-a-Mousson, France, April 1997. ESCA.[76] Steven Greenberg. The Switchboard transcription project. In Frederick Jelinek, editor,1996 Large Vocabulary Continuous Speech Recognition Summer Research WorkshopTechnical Reports, number 24 in Research Notes, Baltimore, Maryland, April 1997.Center for Language and Speech Processing, Johns Hopkins University.[77] Steven Greenberg. Personal communication., 1998.[78] Steven Greenberg. Speaking in shorthand{ a syllable-centric perspective for under-standing pronunciation variation. In Proceedings of the ESCA Workshop on ModelingPronunciation Variation for Automatic Speech Recognition, Kekrade, Netherlands,May 1998. ESCA. 149



[79] Steven Greenberg, Joy Hollenback, and Dan Ellis. Insights into spoken languagegleaned from phonetic transcription of the Switchboard corpus. In ICSLP, volumeSupplement, pages S24{S27, Philadelphia, Pennsylvania, October 1996.[80] Steven Greenberg and Brian E. D. Kingsbury. The modulation spectrogram: Inpursuit of an invariant representation of speech. In ICASSP, volume 3, pages 1647{1650, Munich, Germany, April 1997. IEEE.[81] Fran�cois Grosjean and James Paul Gee. Prosodic structure and spoken word recog-nition. In Uli H. Frauenfelder and Lorraine Komisarjevsky Tyler, editors, SpokenWord Recognition, Cognition Special Issue, pages 135{155. MIT Press, Cambridge,Massachusetts, 1987.[82] Michael Hammond. Syllable parsing in English and French. Available throughhttp://aruba.ccit.arizona.edu/ hammond, May 1995.[83] Alfred Hauenstein. The syllable re-revisited. Technical Report TR-96-035, ICSI,August 1996.[84] Alfred Hauenstein. Using syllables in a hybrid HMM-ANN recognition system. InEurospeech, volume 3, pages 1203{1206, Rhodes, Greece, September 1997. ESCA.[85] Hynek Hermansky. Perceptual linear predictive (PLP) analysis of speech. Journal ofthe Acoustical Society of America, 87(4):1738{1752, April 1990.[86] Hynek Hermansky and Nelson Morgan. RASTA processing of speech. IEEE Trans-actions on Speech and Audio Processing, 2(4):578{589, October 1994.[87] Tin Kam Ho, Jonathan J. Hull, and Sargur N. Srihari. Decision combination inmultiple classi�er systems. IEEE Transactions on Pattern Analysis and MachineIntelligence, 16(1):66{75, January 1994.[88] Mike Hochberg. y0. Software package, WERNICKE distribution., August 1993.Viterbi decoder in use at ICSI.[89] Zhihong Hu, Johan Schalkwyk, Etienne Barnard, and Ronald Cole. Speech recog-nition using syllable-like units. In ICSLP, volume 2, pages 1117{1120, Philadephia,Pennsylvania, October 1996.[90] X. D. Huang and M. A. Jack. Semi-continuous hidden Markov models for speech sig-nals. Computer Speech and Language, 3(3):239{252, July 1989. Reprinted in (Waibeland Lee, 1990).[91] Melvyn J. Hunt, Matthew Lennig, and Paul Mermelstein. Use of dynamic program-ming in a syllable-based continuous speech recognition system. In David Sanko� andJoseph B. Kruskal, editors, Time Warps, String Edits, and Macromolecules: The The-ory and Practice of Sequence Comparison, chapter 5, pages 163{188. Addison-WesleyPublishing Company, Inc., Reading Massachusetts, 1983.150



[92] M.J. Hunt, M. Lennig, and P. Mermelstein. Experiments in syllable-based recognitionof continuous speech. In ICASSP, volume 3, pages 880{883, Denver, Colorado, April1980. IEEE.[93] F. Jelinek. Fast sequential decoding algorithm using a stack. IBM J. Res. Develop.,13:675{685, November 1969.[94] F. Jelinek. Self-organized language modeling for speech recognition. In Alex Waibeland Kai-Fu Lee, editors, Readings in Speech Recognition, chapter 8, pages 450{506.Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990.[95] F. Jelinek, L. R. Bahl, and R. L. Mercer. Design of a linguistic statistical decoderfor the recognition of continuous speech. IEEE Transactions on Information Theory,21:250{256, May 1975.[96] James J. Jenkins, Winifred Strange, and Salvatore Miranda. Vowel identi�cation inmixed-speaker silent-center syllables. Journal of the Acoustical Society of America,95(2):1030{1043, February 1994.[97] John T. Jensen. English Phonology, volume 99 of Series IV- Current Issues in Linguis-tic Theory, chapter 3, pages 47{76. John Benjamins Publishing Company, Philadel-phia, 1993.[98] M. Jones and P.C. Woodland. Modelling syllable characteristics to improve a largevocabulary continuous speech recogniser. In ICSLP, volume 4, pages 2171{2174,Yokohama, Japan, September 1994.[99] Rhys James Jones, Simon Downey, and John S. Mason. Continuous speech recog-nition using syllables. In EuroSpeech, volume 3, pages 1171{1174, Rhodes, Greece,September 1997. ESCA.[100] Dan Jurafsky and Nikki Mirghafori. ICSI speech recognition system. Inhouse docu-ment at ICSI, 1995.[101] Daniel Kahn. Syllable-based Generalizations in English Phonology. Outstanding Dis-sertations in Linguistics. Garland Publishing, New York, 1980.[102] P. Kenny, R. Hollan, V. Gupta, M Lennig, P Mermelstein, and D. O'Shaughnessy.A�-admissible heuristics for rapid lexical access. In ICASSP, volume 1, pages 689{692,Toronto, Canada, May 1991. IEEE.[103] Michael Kenstowicz and Charles Kisseberth. Generative Phonology. Harcourt BraceJovanovich, Orlando, 1979.[104] Brian E. D. Kingsbury. Personal communication, March 1998. Modulation spectro-gram processing diagram.[105] Brian E. D. Kingsbury. Perceptually-inspired signal processing strategies for robustspeech recognition in reverberant environments. PhD thesis, UC Berkeley, 1998. Tobe published. 151



[106] Brian E. D. Kingsbury and Nelson Morgan. Recognizing reverberant speech withRASTA-PLP. In ICASSP, volume 2, pages 1259{1262, Munich, Germany, April 1997.IEEE.[107] Brian E. D. Kingsbury, Nelson Morgan, and Steven Greenberg. Robust speech recog-nition using the modulation spectrogram. Speech Communication, 1998. In press.[108] Katrin Kirchho�. Phonologically structured HMMs for speech recognition. In Sec-ond Meeting of the ACL SIG in Computational Phonology, pages 45{49, Santa Cruz,California, June 1996. ACL.[109] Katrin Kirchho�. Syllable-level desynchronisation of phonetic features for speechrecognition. In ICSLP, volume 4, pages 2274{2276, Philadephia, Pennsylvania, Octo-ber 1996.[110] Katrin Kirchho�. Statistical analysis of the VERBMOBIL corpus. UnpublishedMemo, April 1997.[111] Dennis H. Klatt. Review of the ARPA speech understanding project. The Journalof the Acoustical Society of America, 62(6):1324{1366, December 1977. Reprinted in(Waibel and Lee, 1990).[112] H. Klemm, F. Class, and U. Kilian. Word- and phrase spotting with syllable-based garbage modelling. In Eurospeech, volume 3, pages 2157{2160, Madrid, Spain,September 1995. ESCA.[113] Peter Ladefoged. A Course in Phonetics. Harcourt Brace Jovanovich, New York,third edition, 1993.[114] Wayne A. Lea, Mark F. Medress, and Toby E. Skinner. A prosodically guided speechunderstanding strategy. IEEE Transactions on Acoustics, Speech, and Signal Process-ing, ASSP-23(1):30{38, February 1975.[115] Kai-Fu Lee, Hsiao-Wuen Hon, and Raj Reddy. A overview of the SPHINX speechrecognition system. IEEE Transactions on Acoustics, Speech and Signal Processing,38(1):35{45, January 1990.[116] Lin-Shan Lee. Voice dictation of Mandarin Chinese. IEEE Signal Processing Maga-zine, pages 63{100, July 1997.[117] Victor R. Lesser, Richard D. Fennell, Lee D. Erman, and D. Raj Reddy. Organizationof the Hearsay II speech understanding system. IEEE Transactions on Acoustics,Speech, and Signal Processing, ASSP-23(1):11{23, February 1975.[118] Franklin Mark Liang. Word Hy-phen-a-tion By Com-pu-ter. PhD thesis, StanfordUniversity, June 1983.[119] Sung-Chien Lin, Lee-Feng Chien, Keh-Jiann Chen, and Lin-Shan Lee. A syllable-based very-large-vocabulary voice retrieval system for Chinese databases with textualattributes. In Eurospeech, volume 1, pages 203{206, Madrid, Spain, September 1995.ESCA. 152



[120] Richard Lippmann. Speech perception by humans and machines. In Workshop on theAuditory Basis of Speech Perception, pages 309{316, Keele, United Kingdom, July1996. ESCA.[121] E. Lleida, J.B. Mari~no, J. Salavedra, and A. Bonafonte. Syllabic �llers for SpanishHMM keyword spotting. In ICSLP, volume 1, pages 5{8, Ban�, Alberta, Canada,October 1992.[122] B. T. Lowerre and D. R. Reddy. The HARPY speech understanding system. InW. A. Lea, editor, Trends in Speech Recognition. Prentice Hall, Englewood Cli�s,New Jersey, 1980.[123] Dominic W. Massaro. Preperceptual auditory images. Journal of Experimental Psy-chology, 85(3):411{417, 1970.[124] Dominic W. Massaro. Preperceptual images, processing time and perceptual units inauditory perception. Psychological Review, 79(2):124{145, 1972.[125] Dominic W. Massaro. Perceptual units in speech recognition. Journal of ExperimentalPsychology, 102(2):199{208, 1974.[126] Shoichi Matsunaga, Takeshi Matsumura, and Harald Singer. Continuous speech recog-nition using non-uniform unit based acoustic and language models. In Eurospeech,volume 3, pages 1619{1622, Madrid, Spain, September 1995. ESCA.[127] Jacques Mehler, Jean Yves Dommergues, and Uli Frauenfelder. The syllable's role inspeech segmentation. Journal of Verbal Learning and Verbal Behavior, 20:298{305,1981.[128] William S. Meisel. State of the art: Applications. In Proceedings of the IEEE Work-shop on Automatic Speech Recognition and Understanding, pages 29{44, Snowbird,Utah, December 1995. IEEE.[129] Paul Mermelstein. Automatic segmentation of speech into syllabic units. J. Acoust.Soc. Am, 58(4):880{883, October 1975.[130] Joanne L. Miller and Peter D. Eimas. Observations on speech perception, its de-velopment, and the search for a mechanism. In Judith C. Goodman and Howard C.Nusbaum, editors, The Development of Speech Perception:The Transition from SpeechSounds to Spoken Words, chapter 2, pages 37{55. The MIT Press, Cambridge, Mas-sachusetts, 1994.[131] N. Morgan, H. Hermansky, and H.G. Hirsch. Recognition of speech in additive andconvolutional noise based on RASTA spectral processing. In ICASSP, volume 1, pages83{86, Minneapolis, Minnesota, April 1993. IEEE.[132] Nelson Morgan. Room Acoustics Simulation with Discrete-Time Hardware. PhDthesis, UC Berkeley, 1980. 153



[133] Nelson Morgan and Herv�e Bourlard. Continuous speech recognition. IEEE SignalProcessing Magazine, 12(3):25{42, May 1995.[134] Nelson Morgan, Herv�e Bourlard, Steve Greenberg, and Hynek Hermansky. Stochasticperceptual auditory-event-based models for speech recognition. In ICSLP, pages 1943{1946, Yokohama, Japan, September 1994.[135] Nelson Morgan and Hynek Hermansky. RASTA extensions: Robustness to additiveand convolutional noise. In Proceedings of the Workshop on Speech Processing inAdverse Conditions, Cannes, France, November 1992.[136] Nelson Morgan, Su-Lin Wu, and Herv�e Bourlard. Digit recognition with stochasticperceptual speech models. In Eurospeech, Madrid, Spain, September 1995.[137] Hy Murveit, John Butzberger, Vassilios Digalakis, and Mitch Weintraub. Large-vocabulary dictation using SRI's DecipherTM speech recognition system: Progressivesearch techniques. In ICASSP, volume 2, pages 319{322, Minneapolis, Minnesota,April 1993. IEEE.[138] H. Ney. The use of a one-stage dynamic programming algorithm for connected wordrecognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-32(2):263{271, April 1984.[139] H. Ney and X. Aubert. A word graph algorithm for large vocabulary, continuousspeech recognition. In ICSLP, pages 1355{1358, Yokohama, Japan, September 1994.[140] H. Ney, R. Haeb-Umbach, B.-H. Tran, and M. Oerder. Improvements in beam searchfor 10,000-word continuous speech recognition. In ICASSP, volume 1, pages 9{12,San Francisco, California, March 1992. IEEE.[141] NIST. Continuous speech recognition corpus, September 1993. National Institute ofStandards and Technology Speech.[142] NIST. sclite version 1.3. Distributed by NIST, March 1996. Scores speech recogni-tion system output.[143] Dennis Norris and Anne Cutler. The relative accessibility of phonemes and syllables.Perception and Psychophysics, 43(6):541{550, 1988.[144] Lynne C. Nygaard and David B. Pisoni. Speech perception: New directions in researchand theory. In Joanne L. Miller and Peter D. Eimas, editors, Speech, Language andCommunication, volume 11 of Handbook of Perception and Cognition, chapter 3, pages63{96. Academic Press, San Diego, California, 2 edition, 1995.[145] J.J. Odell, V. Valtchev, P. C. Woodland, and S.J. Young. A one pass decoder designfor large vocabulary recognition. In Proceedings ARPA Human Language TechnologyWorkshop, pages 405{410. ARPA, Morgan Kaufmann, March 1994.[146] Martin Oerder and Hermann Ney. Word graphs: An e�cient interface betweencontinuous-speech recognition and language understanding. In ICASSP, volume 2,pages 119{122, Minneapolis, Minnesota, April 1993. IEEE.154



[147] Ralph N. Ohde and Donald J. Sharf. Phonetic Analysis of Normal and AbnormalSpeech. MacMillan Publishing Company, New York, 1992.[148] Douglas O'Shaughnessy. Speech Communication, chapter 5, pages 164{203. Addison-Wesley Publishing Company, Reading, Massachusetts, 1987.[149] Mari Ostendorf, R. Bates, J. Hancock, R. Iyer, A. Kannan, I. Shaik, and M. Siu. TheBoston University LVSCR benchmark system. In Conversational Speech RecognitionWorkshop DARPA Hub-5E Evaluation. NIST, May 1997.[150] Douglas B. Paul. Algorithms for an optimal A� search and linearizing the search inthe stack decoder. In ICASSP, volume 1, pages 693{696, Toronto, Canada, May 1991.IEEE.[151] Barbara Peskin, Larry Gillick, Natalie Liberman, Mike Newman, Paul van Mulbregt,and Steven Wegmann. Progress in recognizing conversational telephone speech. InICASSP, volume 3, pages 1811{1814, Munich, Germany, April 1997. IEEE.[152] Joe Picone. Public domain speech recognition technology. Personal communication.,1998. Newly established project.[153] D. B. Pisoni, T. D. Carrell, and S. J. Gans. Perception of the duration of rapidspectrum changes in speech and nonspeech signals. Perception and Psychophysics,34(4):314{322, 1983.[154] B. Plannerer and B. Ruske. Recognition of demisyllable based units using semicontin-uous hidden Markov models. In ICASSP, pages I581{I584, San Francisco, California,March 1992.[155] B. Plannerer and B. Ruske. A continuous speech recognition system using phonotacticconstraints. In Eurospeech, pages 859{862, Berlin, Germany, September 1993.[156] Patti Price, William M. Fisher, Jared Bernstein, and David S. Pallett. The DARPA1000-word Resource Management database for continuous speech recognition. InICASSP, volume 1, pages 651{654, New York, New York, April 1988. IEEE.[157] L. Rabiner. A tutorial on hidden Markov models and selected applications in speechrecognition. Proceedings of the IEEE, 77(2):257{286, February 1989.[158] L. Rabiner. Applications of speech recognition in the area of telecommunications. InASRU, pages 501{510, Santa Barbara, CA, December 1997. IEEE.[159] L. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition, chapter 7.3, pages395{400. Prentice Hall, Englewood Cli�s, New Jersey, 1993.[160] L. Rabiner, B.-H. Juang, S. Levinson, and M. Sondhi. Recognition of isolated digitsusing hidden Markov Models with continuous mixture densities. AT&T TechnicalJournal, 64(6):1211{1234, July-August 1985.[161] wordscore. Inhouse software at ICSI, February 1997. Scores speech recognitionsystem output. 155



[162] W. Reichl and G. Ruske. Syllable segmentation of continuous speech with arti�cialneural networks. In Eurospeech, pages 1771{1774, Berlin, Germany, September 1993.[163] Steve Renals and Mike Hochberg. Decoder technology for connectionist large vocab-ulary speech recognition. Technical Report CUED/F-INFENG/TR.186, CambridgeUniversity Engineering Department, September 1995.[164] Steve Renals and Mike Hochberg. E�cient search using posterior phone probabilityestimates. In ICASSP, volume 1, pages 596{603, Detroit, Michigan, May 1995. IEEE.[165] Steve Renals and Mike Hochberg. E�cient evaluation of the LVCSR search spaceusing the noway decoder. In ICASSP, volume 1, pages 149{152, Atlanta, Georgia,May 1996. IEEE.[166] Tony Robinson. lattice2nbest. Part of slib package, 1997.[167] Aaron E. Rosenberg, Lawrence R. Rabiner, Jay G. Wilpon, and Daniel Kahn.Demisyllable-based isolated word recognition system. IEEE Transactions on Acous-tics, Speech and Signal Processing, 31(3):713{726, June 1983.[168] Paul Rozin, Susan Poritsky, and Raina Sotsky. American children with reading prob-lems can easily learn to read English represented by Chinese characters. Science,171(3977):1264{1267, March 1971.[169] G. Ruske, B. Plannerer, and T. Schultz. Stochastic modeling of syllable-based units forcontinuous speech recognition. In ICSLP, pages 1503{1506, Ban�, Canada, October1992.[170] Stuart Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach, chapter3{4. Prentice Hall, Englewood Cli�s, NJ, 1994.[171] H. Sakoe. Two-level DP-matching{ a dynamic programming-based pattern matchingalgorithm for connected word recognition. IEEE Transactions on Acoustics, Speech,and Signal Processing, ASSP-27(6):588{595, December 1979.[172] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spokenword recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing,27(1):43{49, February 1978.[173] H. B. Savin and T. G. Bever. The nonperceptual reality of the phoneme. Journal ofVerbal Learning and Verbal Behavior, 9:295{302, 1970.[174] Florien Schiel. Verbmobil concurrent models. Private communication., 1997.[175] R. Schwartz, Y. Chow, S. Roucos, M. Krasner, and J. Makhoul. Improved hiddenMarkov modeling of phonemes for continuous speech recognition. In ICASSP, vol-ume 3, page 35.6, San Diego, California, March 1984. IEEE.[176] Richard Schwartz and Steve Austin. A comparison of several approximate algorithms.In ICSLP, volume 1, pages 701{704, Toronto, Canada, May 1991. IEEE.156



[177] Richard Schwartz and Yen-Lu Chow. The N -best algorithm: An e�cient and exactprocedure for �nding the N most likely sentence hypotheses. In ICASSP, volume 1,pages 81{83, Albuquerque, New Mexico, April 1990. IEEE.[178] Richard Schwartz, Jack Klovstad, John Makhoul, and John Sorensen. A preliminarydesign of a phonetic vocoder based on a diphone model. In ICASSP, volume 1, pages32{35, Denver, Colorado, April 1980. IEEE.[179] Holger Schwenk. Using boosting to improve a hybrid HMM/neural network speechrecognizer. Oral presentation at "Machines that Learn" workshop, Snowbird Utah.,April 1998.[180] J. Segui, U. Frauenfelder, and J. Mehler. Phoneme monitoring, syllable monitoringand lexical access. British Journal of Psychology, 72:471{477, 1981.[181] Juan Segui. The syllable: A basic perceptual unit in speech processing. In HermanBouma and Don G. Bouwhius, editors, Attention and Performance X: Control ofLanguage Processes, Proceedings of the Tenth International Sumposium on Attentionand Performance, pages 165{181, Hillsdale, New Jersey, 1984. Lawrence ErlbaumAssociates.[182] Juan Segui, Emmanuel Dupoux, and Jacques Mehler. The role of the syllable inspeech segmentation, phoneme identi�cation and lexical access. In Gerry Altmann,editor, Cognitive Models of Speech Processing, chapter 12, pages 263{280. MIT Press,1990.[183] William Shakespeare. The Tempest. Online version. From the Complete Works ofWilliam Shakespeare. http://the-tech.mit.edu/Shakespeare/works.html.[184] Michael L. Shire. Syllable onset detection from acoustics. Master's thesis, UC Berke-ley, 1997.[185] Frank K. Soong and Eng-Fong Huang. A tree-trellis based fast search for �nding theN best sentence hypotheses in continuous speech recognition. In ICASSP, volume 1,pages 705{708, Toronto, Canada, May 1991. IEEE.[186] Switchboard corpus: Recorded telephone conversations. Produced by NIST, spon-sored by DARPA, October 1992.[187] SUIF compiler system, 1998. More information can be found at http://www-suif.stanford.edu.[188] David L. Thomson. Ten case studies of the e�ect of �eld conditions on speech recog-nition errors. In ASRU, pages 511{518, Santa Barbara, CA, December 1997. IEEE.[189] Neil Todd. Towards a theory of the principal monaural pathway: Pitch, time andauditory grouping. In Willam Ainsworth and Steven Greenberg, editors, Workshopon the Auditory Basis of Speech Perception, pages 216{221, Keele University, UnitedKingdom, July 1996. ESCA. 157



[190] Neil Todd and Christopher Lee. A sensory-motor theory of speech perception: Impli-cations for learning, representation and recognition. In Steven Greenberg and WilliamAinsworth, editors, Listening to Speech: An Auditory Perspective. Oxford UniversityPress, 1998. To be published.[191] Mikio Tohyama. Response statistics of rooms. In Malcolm J. Crocker, editor, En-cyclopedia of Acoustics, volume 2, chapter 77, pages 913{923. John Wiley and Sons,Inc., New York, New York, 1997.[192] Rebecca Treiman and Andrea Zukowski. Toward an understanding of English syllab-i�cation. Journal of Memory and Language, 29(1):66{85, February 1990.[193] A. P. Varga and R. K. Moore. Hidden Markov model decomposition of speech andnoise. In ICASSP, volume 2, pages 845{848, Albuquerque, New Mexico, April 1990.IEEE.[194] A. P. Varga and R. K. Moore. Simultaneous recognition of concurrent speech signalsusing hidden Markov model decomposition. In Eurospeech, volume 3, pages 1175{1178, Genova, Italy, September 1991. ESCA.[195] Klara Vicsi and Attila Vig. Text independent neural network/rule based hybrid con-tinuous speech recognition. In Eurospeech, volume 3, pages 2201{2204, Madrid, Spain,September 1995. ESCA.[196] Alex Waibel. Prosody and Speech Recognition. Research Notes in Arti�cial Intelli-gence. Morgan Kaufmann Publishers, Inc., San Mateo, California, 1988.[197] Richard M. Warren. Identi�cation times for phonemic components of graded com-plexity for spelling of speech. Perception and Psychoacoustics, 9(4):345{349, 1971.[198] Richard M. Warren. Perceptual processing of speech and other perceptual patterns:Some similarities and di�erences. In Steven Greenberg and William Ainsworth, ed-itors, Listening to Speech: An Auditory Perspective. Oxford University Press, 1998.To appear.[199] Richard M. Warren, James A. Bashford, and Daniel A. Gardner. Tweaking the lex-icon: Organization of vowel sequences into words. Perception and Psychophysics,47(5):423{432, 1990.[200] Richard M. Warren, Eric W. Healy, and Magdalene H. Chalikia. The vowel-sequenceillusion: Intrasubject stability and intersubject agreement of syllabic forms. Journalof the Acoustical Society of America, 100(4):2452{2461, October 1996.[201] John Wawrzynek, Krste Asanovi�c, Brian E. D. Kingsbury, James Beck, David John-son, and Nelson Morgan. Spert-II: A vector microprocessor system. IEEE Computer,29(3):79{86, 1996.[202] Robert Weide. The Carnegie Mellon Pronouncing Dictionary v0.4. Carnegie MellonUniversity, 1996. 158



[203] Walter Weigel. Continuous speech recognition with vowel-context-independent hiddenMarkov models for demisyllables. In ICSLP, volume 2, pages 701{704, Kobe, Japan,November 1990.[204] Gethin Williams and Steve Renals. Con�dence measures for hybrid HMM/ANNspeech recognition. In Eurospeech, volume 4, pages 1955{1958, Rhodes, Greece, Oc-tober 1997. ESCA.[205] P. C. Woodland, C. J. Leggetter, J. J. Odell, V. Valtchev, and S. J. Young. Thedevelopment of the 1994 HTK large vocabulary speech recognition system. In SpokenLanguage Systems Technology Workshop, Austin, Texas, January 1995. ARPA.[206] Kevin Woods, W. Philip Kegelmeyer Jr., and Kevin Bowyer. Combination of multipleclassi�ers using local accuracy estimates. IEEE Transactions of Pattern Analysis andMachine Intelligence, 19(4):405{410, April 1997.[207] Charles Clayton Wooters. Lexical Modelling in a Speaker Independent Speech Under-standing System. PhD thesis, UC Berkeley, November 1993. ICSI Technical ReportTR-93-068.[208] Su-Lin Wu. Properties of stochastic perceptual auditory-event-based models for au-tomatic speech recognition. Master's thesis, UC Berkeley, May 1995. Also appears asICSI Technical Report TR-95-023.[209] Su-Lin Wu, Brian E. D. Kingsbury, Nelson Morgan, and Steven Greenberg. Incorpo-rating information from syllable-length time scales into automatic speech recognition.In ICASSP, Seattle, Washington, April 1998. IEEE.[210] Su-Lin Wu, Michael L. Shire, Steven Greenberg, and Nelson Morgan. Integratingsyllable boundary information into speech recognition. In ICASSP, volume 1, Munich,Germany, April 1997. IEEE.[211] Steve Young. Large vocabulary continuous speech recognition: A review. In Pro-ceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding,pages 3{28, Snowbird, Utah, December 1995. IEEE.[212] Steve Young, Julian Odell, Dave Ollason, Valtcho Valtchev, and Phil Woodland. TheHTK Book for HTK Version 2.1. Cambridge University, 1997.
159


