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Abstract. We show that the eigenspaces of the Dirac operator

H = α · (D − A(x)) + mβ at the threshold energies ±m are coincide

with the direct sum of the zero space and the kernel of the Weyl-Dirac

operator σ·(D−A(x)). Based on this result, we describe the asymptotic

limits of the eigenfunctions of the Dirac operator corresponding to these

threshold energies. Also, we discuss the set of vector potentials for

which the kernels of H ∓m are non-trivial, i.e. Ker(H ∓m) 6= {0}.
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1. Introduction

This note1 is concerned with eigenfunctions at the threshold ener-

gies of Dirac operators with positive mass. More precisely, the Dirac

operator which we shall deal with is of the form

H = H0 +Q = α ·D +mβ +Q(x), D =
1

i
∇x, x ∈ R3. (1.1)

Here α = (α1, α2, α3) is the triple of 4× 4 Dirac matrices

αj =

(
0 σj
σj 0

)
(j = 1, 2, 3)

with the 2× 2 zero matrix 0 and the triple of 2× 2 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and

β =

(
I2 0
0 −I2

)
.

The constant m is assumed to be positive.

Throughout this note we assume that Q(x) is a 4 × 4 Hermitian

matrix-valued function. In addition to this, we shall later need several

different assumptions on Q(x) under which the operator Q = Q(x)×
becomes relatively compact with respect to the operator H0. Under

these assumptions, the essential spectrum of the Dirac operator H is

given by the union of the intervals (−∞, −m] and [m, +∞):

σess(H) = (−∞, −m] ∪ [m, +∞).

This fact implies that the discrete spectrum of H is contained in the

spectral gap (−m, m):

σdis(H) ⊂ (−m, m).

In other words, discrete eigenvalues with finite multiplicity may exist

in the spectral gap.

By the threshold energies of H, we mean the values ±m, the edges

of the essential spectrum σess(H). These values are normally excluded

in scattering theory. However, they are of particular importance and

of interest from the physics point of view. See Pickl and Dürr [17] and

Pickl [16].

The aim of this note is to investigate asymptotic behaviors of (square-

integrable) eigenfunctions corresponding to the threshold energies ±m.

From the mathematical point of view, the values ±m are critical in

1This note is based on joint work with Professor Yoshimi Saitō, University of
Alabama at Birmingham, USA.
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the following sense: eigenfunctions corresponding to eigenvalues in the

spectral gap decrease rapidly at infinity; on the contrary, generalized

eigenfunctions corresponding to energies in the intervals (−∞, −m) ∪
(m, +∞) behave like plane waves at infinity, hence stay away from

zero. For this criticality, it is interesting and important, from the math-

ematical point of view as well, to examine the asymptotic behaviors of

eigenfunctions corresponding to the threshold energies ±m.

A closely related question to the aim mentioned above is the one

about the existence of Q’s which yield eigenfunctions of the operators

H at the threshold energies ±m. Our answers to this question are the

same as those which were given to the question about the existence

of magnetic fields giving rise to zero modes for Weyl-Dirac operators

σ · (D−A(x)): see Adam, Muratori and Nash [1], [2], [3], Balinsky and

Evans [4], [5], [6], and Elton [8]. Namely, there exist infinitely many Q’s

which yield eigenfunctions of the operators H at the threshold energies

±m, but the set of such Q’s is still rather sparse in a certain sense.

We should note that one can regard the operator (1.1) as a general-

ization of the Dirac operator of the form

α · (D − A(x)
)

+mβ + q(x)I4, (1.2)

where (q, A) is an electromagnetic potential, by taking Q(x) to be

−α ·A(x) + q(x)I4. To formulate the main results of the present note,

we shall need to deal with the operator (1.2) in the case where m = 0

and q(x) ≡ 0. In this case, the operator (1.2) becomes of the form

α · (D − A(x)
)

=

(
0 σ · (D − A(x))

σ · (D − A(x)) 0

)
.

In this way, the Weyl-Dirac operator

T = σ · (D − A(x)) (1.3)

mentioned above naturally appears in our setting.

Also, we should like to note that the operator (1.1) generalizes the

Dirac operator of the form

α ·D +m(x)β + q(x)I4, (1.4)

where m(x), considered to be a variable mass, converges to a positive

constant m∞ at infinity in an appropriate manner.

Spectral properties of the operator (1.4) have been extensively stud-

ied under various assumptions on m(x) and q(x) in recent years. See

Kalf and Yamada [13], Kalf, Okaji and Yamada [14], Schmidt and Ya-

mada [22], Pladdy [18] and Yamada [23].
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Notation.

By L2 = L2(R3), we mean the Hilbert space of square-integrable func-

tions on R3, and we introduce a Hilbert space L2 by L2 = [L2(R3)]4,

where the inner product is given by

(f, g)L2 =
4∑
j=1

(fj, gj)L2

for f = t(f1, f2, f3, f4) and g = t(g1, g2, g3, g4).

By L2,s(R3), we mean the weighted L2 space defined by

L2,s(R3) := {u | 〈x〉su ∈ L2(R3) }
with the inner product

(u, v)L2,s :=

∫

R3

〈x〉2su(x) v(x) dx,
where

〈x〉 =
√

1 + |x|2 .
We introduce the Hilbert space L2,s = [L2,s(R3)]4 with the inner prod-

uct

(f, g)L2,s =
4∑
j=1

(fj, gj)L2,s .

By H1(R3) we denote the Sobolev space of order 1, and by H1 we

mean the Hilbert space [H1(R3)]4. By S(R3), we mean the Schwartz

class of rapidly decreasing functions on R3, and we set S = [S(R3)]4.

When we mention the Weyl-Dirac operator T = σ · (D − A(x)) ,

we must handle two-vectors (two components spinors) which will be

denoted by ϕ, ψ, etc. Note that the Hilbert space for the Weyl-Dirac

operator is [L2(R3)]2.

2. Massless Dirac operators

In this section, we shall treat the Dirac operator (1.1) in the massless

case m = 0 under Assumption (Q) below. Namely, we shall consider

the operator

H = H0 +Q = α ·D +Q(x). (2.1)

We need discussions about the operator (2.1) in order to formulate the

main results of this note, which will be stated in section 3.
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Assumption (Q).

Each element qjk(x) (j, k = 1, · · · , 4) of Q(x) is a measurable function

satisfying

|qjk(x)| ≤ Cq〈x〉−ρ (ρ > 1) (2.2)

where Cq is a positive constant.

One should note that, under Assumption(Q), the Dirac operator

(2.1) is a self-adjoint operator in L2 with Dom(H) = H1. The self-

adjoint realization will be denoted by H again. With an abuse of

notation, we shall write Hf in the distributional sense for f ∈ S ′
whenever it makes sense.

DEFINITION. By a zero mode, we mean a function f ∈ Dom(H) which

satisfies

Hf = 0.

By a zero resonance, we mean a function f ∈ L2,−s \ L2, for some

s ∈ (0, 3/2], which satisfies Hf = 0 in the distributional sense.

It is evident that a zero mode of H is an eigenfunction of H corre-

sponding to the eigenvalue 0, i.e., a zero mode is an element of Ker(H),

the kernel of the self-adjoint operator H.

We now state results which will be needed in section 3.

Theorem 2.1. Suppose Assumption (Q) is satisfied. Let f be a zero

mode of the operator (2.1). Then for any ω ∈ S2

lim
r→+∞

r2f(rω) = − i

4π
(α · ω)

∫

R3

Q(y)f(y) dy, (2.3)

where the convergence is uniform with respect to ω ∈ S2.

In connection with the expression f(rω) in (2.3), it is worthy to note

that every zero mode is a continuous function. This fact was shown in

[20].

Theorem 2.2 below means that zero resonances do not exist under

the restrictions on ρ and s imposed in the theorem.

Theorem 2.2. Suppose Assumption (Q) is satisfied with ρ > 3/2. If f

belongs to L2,−s for some s with 0 < s ≤ min{3/2, ρ− 1} and satisfies

Hf = 0 in the distributional sense, then f ∈ H1.
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For the proofs of Theorems 2.1 and 2.2, see [19] and [20].

As can be easily understood from the discussions in the introduction,

the Dirac operator H = α ·D+Q(x) in (2.1) is a natural generalization

of the Weyl-Dirac operator T = σ · (D−A(x)) . Accodingly, we obtain

results on the Weyl-Dirac operator as corollaries to Theorems 2.1 and

2.2. To state these theorems, we have to make an assumption on the

vector potential A(x), in accordance with Assumption (Q).

Assumption (A1).

Each element Aj(x) (j = 1, 2, 3) of A(x) is a real-valued measurable

function satisfying

|Aj(x)| ≤ Ca〈x〉−ρ (ρ > 1) (2.4)

where Ca is a positive constant.

Assumption (A1) assures that T = σ · (D − A(x)) is a self-adjoint

operator in [L2(R3)]2 with domain [H1(R3)]2.

Theorem 2.3. Suppose Assumption (A1) is satisfied. Let ψ be a zero

mode of the Weyl-Dirac operator T = σ · (D − A(x)). Then for any

ω ∈ S2

lim
r→+∞

r2ψ(rω)

=
i

4π

∫

R3

{(
ω · A(y)

)
I2 + iσ · (ω × A(y)

)}
ψ(y) dy,

(2.5)

where the convergence is uniform with respect to ω ∈ S2.

Theorem 2.4. Suppose Assumption (A1) is satisfied with ρ > 3/2. If

ψ belongs to [L2,−s(R3)]2 for some s with 0 < s ≤ min{3/2, ρ− 1} and

satisfies Tψ = 0 in the distributional sense, then ψ ∈ [H1(R3)]2.

3. Dirac operators with positive mass

In this section, we shall restrict ourselves to the Dirac operators with

a vector potential

H = α · (D − A(x)
)

+mβ, (3.1)

where m > 0.

One of our main results characterizes eigenfunctions of the Dirac

operator H in (3.1) at the threshold eigenvalues ±m in terms of zero

modes of the Weyl-Dirac operator T in (1.3).
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Theorem 3.1. Suppose Assumption (A1) is satisfied. Then

(i) f ∈ Ker(H −m) ⇐⇒ ∃ψ ∈ Ker(T ) such that f =

(
ψ

0

)
;

(ii) f ∈ Ker(H +m) ⇐⇒ ∃ψ ∈ Ker(T ) such that f =

(
0

ψ

)
.

It is of some interest to point out that Theorem 3.1 implies that

eigenfunctions and eigenspaces corresponding to the threshold eigen-

values ±m are independent of m. Also we point out that Theorem 3.1

implies

Ker(H −m) = Ker(T )⊕ {0}, (3.2)

Ker(H +m) = {0} ⊕Ker(T ). (3.3)

It is immediate that Theorem 3.1, together with Theorem 2.3, yields

the following corollary.

Corollary 3.1. Suppose Assumption (A1) is verified. Let uψ(ω) be the

continuous function on S2 defined by (2.5).

(i) If f ∈ Ker(H − m), then f is continuous on R3 and satisfies

that for any ω ∈ S2

lim
r→+∞

r2f(rω) =

(
uψ(ω)

0

)
,

where the convergence is uniform with respect to ω ∈ S2.

(ii) If f ∈ Ker(H + m), then f is continuous on R3 and satisfies

that for any ω ∈ S2

lim
r→+∞

r2f(rω) =

(
0

uψ(ω)

)
,

where the convergence is uniform with respect to ω ∈ S2.

The conclusions of Theorem 3.1 are valid under weaker assumptions

than Assumption (A1). Indeed, we shall introduce two assumptions,

which are quite different from each other. The one (Assumption (A2)

below) needs continuity of the vector potentials, but it allows a slightly

slower decay at infinity. The other one (Assumption (A3) below) allows

the vector potentials with local singularities.
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Assumption (A2).

Each element Aj(x) is a real-valued continuous function satisfying

Aj(x) = o(|x|−1) (|x| → +∞). (3.4)

Assumption (A3).

Each element Aj(x) is a real-valued measurable function satisfying

Aj ∈ L3(R3). (3.5)

It is obvious that under Assumption (A2), −α ·A is a bounded self-

adjoint operator in L2, hence the Dirac operator (3.1) is a self-adjoint

operator in L2 with Dom(H) = H1.

As for the Dirac operator (3.1) under Assumption (A3), one can

show that α · (D−A(x)
)
+mβ is a relatively compact perturbation of

the operator α ·D+mβ. Therefore we find that the formal expression

(3.1) admits the self-adjoint realization in L2 with Dom(H) = H1.

Theorem 3.2. Suppose either of Assumption (A2) or Assumption

(A3) is satisfied. Then all the conclusions of Theorem 3.1 hold.

We should like to mention relevant works on the Weyl-Dirac operator

T by Balinsky and Evans, and Elton. In their work [5], Balinsky and

Evans showed sparseness of the set of vector potentials and derived an

estimate of the dimension of the subspace consisting of zero modes of

T under Assumption (A3). In a similar spirit to [5], Elton [8] investi-

gated, under Assumption (A2), the local structure of the set of vector

potentials which produce zero modes with multiplicity k ≥ 0.

Combining the results in [8] with Theorem 3.2 above, we get Theorem

3.3 below. To formulate the theorem, we need to introduce a Banach

space of vector potentials

A = { A |Aj(x) ∈ C0(R3,R), Aj(x) = o(|x|−1) as |x| → +∞ }
equipped with the norm

‖A‖ = sup
x∈R3

〈x〉|A(x)|.

Theorem 3.3. Suppose Assumption (A2) is satisfied. Let

Z±
k = { A ∈ A | dim (Ker(H ∓m)) = k }

for k = 0, 1, 2, · · · . Then
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(i) Z+
k = Z−

k for any k ;

(ii) Z±
0 is an open dense subset of A ;

(iii) for any k and any open subset Ω ⊂ R3, Ω 6= ∅,

[C∞0 (Ω)]3 ∩ Z±
k 6= ∅.

In a similar fashion, we combine the results in [5] with Theorem 3.2

above, and we get the following

Theorem 3.4. Suppose Assumption (A3) is satisfied. Then

(i) the sets
{
A ∈ [L3(R3)]3 | Ker(H ∓ m) = { 0 }}

contain open

dense subsets of [L3(R3)]3;

(ii) dim (Ker(H −m)) = dim (Ker(H +m)) ≤ c0

∫

R3

|A(x)|3 dx for

some constant c0.

The proofs of the theorems in this section will be found in our coming

paper [21].
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