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Preface

This book is an introduction to combinatorial mathematics, also known as com-
binatorics. The book focuses especially but not exclusively on the part of com-
binatorics that mathematicians refer to as “counting.” The book consists almost
entirely of problems. Some of the problems are designed to lead you to think
about a concept, others are designed to help you figure out a concept and state a
theorem about it, while still others ask you to prove the theorem. Other problems
give you a chance to use a theorem you have proved. From time to time there is
a discussion that pulls together some of the things you have learned or introduces
a new idea for you to work with. Many of the problems are designed to build
up your intuition for how combinatorial mathematics works. There are problems
that some people will solve quickly, and there are problems that will take days
of thought for everyone. Probably the best way to use this book is to work on a
problem until you feel you are not making progress and then go on to the next
one. Think about the problem you couldn’t get as you do other things. The next
chance you get, discuss the problem you are stymied on with other members of the

ix
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class. Often you will all feel you’ve hit dead ends, but when you begin comparing
notes and listening carefully to each other, you will see more than one approach
to the problem and be able to make some progress. In fact, after comparing notes
you may realize that there is more than one way to interpret the problem. In
this case your first step should be to think together about what the problem is
actually asking you to do. You may have learned in school that for every problem
you are given, there is a method that has already been taught to you, and you
are supposed to figure out which method applies and apply it. That is not the
case here. Based on some simplified examples, you will discover the method for
yourself. Later on, you may recognize a pattern that suggests you should try to
use this method again.

The point of learning from this book is that you are learning how to discover
ideas and methods for yourself, not that you are learning to apply methods that
someone else has told you about. The problems in this book are designed to lead
you to discover for yourself and prove for yourself the main ideas of combinatorial
mathematics. There is considerable evidence that this leads to deeper learning
and more understanding.

You will see that some of the problems are marked with bullets. Those are
the problems that I feel are essential to having an understanding of what comes
later, whether or not it is marked by a bullet. The problems with bullets are
the problems in which the main ideas of the book are developed. Your instructor
may leave out some of these problems because he or she plans not to cover future
problems that rely on them. Many problems, in fact entire sections, are not
marked in this way, because they use an important idea rather than developing
one. Some other special symbols are described in what follows; a summary appears



xi

Table 1: The meaning of the symbols to the left of problem numbers.

• essential
◦ motivational material
+ summary

especially interesting
∗ difficult
· essential for this or the next section

in Table 1.

Some problems are marked with open circles. This indicates that they are
designed to provide motivation for, or an introduction to, the important concepts,
motivation with which some students may already be familiar. You will also see
that some problems are marked with arrows. These point to problems that I think
are particularly interesting. Some of them are also difficult, but not all are. A few
problems that summarize ideas that have come before but aren’t really essential
are marked with a plus, and problems that are essential if you want to cover
the section they are in or, perhaps, the next section, are marked with a dot (a
small bullet). If a problem is relevant to a much later section in an essential way,
I’ve marked it with a dot and a parenthetical note that explains where it will be
essential. Finally, problems that seem unusually hard to me are marked with an
asterisk. Some I’ve marked as hard only because I think they are difficult in light
of what has come before, not because they are intrinsically difficult. In particular,
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some of the problems marked as hard will not seem so hard if you come back to
them after you have finished more of the problems.

If you are taking a course, your instructor will choose problems for you to work
on based on the prerequisites for and goals of the course. If you are reading the
book on your own, I recommend that you try all the problems in a section you
want to cover. Try to do the problems with bullets, but by all means don’t restrict
yourself to them. Often a bulleted problem makes more sense if you have done
some of the easier motivational problems that come before it. If, after you’ve tried
it, you want to skip over a problem without a bullet or circle, you should not miss
out on much by not doing that problem. Also, if you don’t find the problems in
a section with no bullets interesting, you can skip them, understanding that you
may be skipping an entire branch of combinatorial mathematics! And no matter
what, read the textual material that comes before, between, and immediately after
problems you are working on!

One of the downsides of how we learn math in high school is that many of us
come to believe that if we can’t solve a problem in ten or twenty minutes, then we
can’t solve it at all. There will be problems in this book that take hours of hard
thought. Many of these problems were first conceived and solved by professional
mathematicians, and they spent days or weeks on them. How can you be expected
to solve them at all then? You have a context in which to work, and even though
some of the problems are so open ended that you go into them without any idea
of the answer, the context and the leading examples that precede them give you
a structure to work with. That doesn’t mean you’ll get them right away, but you
will find a real sense of satisfaction when you see what you can figure out with
concentrated thought. Besides, you can get hints!
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Some of the questions will appear to be trick questions, especially when you
get the answer. They are not intended as trick questions at all. Instead they
are designed so that they don’t tell you the answer in advance. For example the
answer to a question that begins “How many...” might be “none.” Or there might
be just one example (or even no examples) for a problem that asks you to find all
examples of something. So when you read a question, unless it directly tells you
what the answer is and asks you to show it is true, don’t expect the wording of
the problem to suggest the answer. The book isn’t designed this way to be cruel.
Rather, there is evidence that the more open-ended a question is, the more deeply
you learn from working on it. If you do go on to do mathematics later in life, the
problems that come to you from the real world or from exploring a mathematical
topic are going to be open-ended problems because nobody will have done them
before. Thus working on open-ended problems now should help to prepare you to
do mathematics and apply mathematics in other areas later on.

You should try to write up answers to all the problems that you work on. If
you claim something is true, you should explain why it is true; that is you should
prove it. In some cases an idea is introduced before you have the tools to prove
it, or the proof of something will add nothing to your understanding. In such
problems there is a remark telling you not to bother with a proof. When you
write up a problem, remember that the instructor has to be able to “get” your
ideas and understand exactly what you are saying. Your instructor is going to
choose some of your solutions to read carefully and give you detailed feedback on.
When you get this feedback, you should think it over carefully and then write the
solution again! You may be asked not to have someone else read your solutions
to some of these problems until your instructor has. This is so that the instructor
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can offer help which is aimed at your needs. On other problems it is a good idea
to seek feedback from other students. One of the best ways of learning to write
clearly is to have someone point out to you where it is hard to figure out what
you mean. The crucial thing is to make it clear to your reader that you really
want to know where you may have left something out, made an unclear statement,
or failed to support a statement with a proof. It is often very helpful to choose
people who have not yet become an expert with the problems, as long as they
realize it will help you most for them to tell you about places in your solutions
they do not understand, even if they think it is their problem and not yours!

As you work on a problem, think about why you are doing what you are doing.
Is it helping you? If your current approach doesn’t feel right, try to see why. Is
this a problem you can decompose into simpler problems? Can you see a way to
make up a simple example, even a silly one, of what the problem is asking you to
do? If a problem is asking you to do something for every value of an integer n,
then what happens with simple values of n like 0, 1, and 2? Don’t worry about
making mistakes; it is often finding mistakes that leads mathematicians to their
best insights. Above all, don’t worry if you can’t do a problem. Some problems
are given as soon as there is one technique you’ve learned that might help do
that problem. Later on there may be other techniques that you can bring back to
that problem to try again. The notes have been designed this way on purpose. If
you happen to get a hard problem with the bare minimum of tools, you will have
accomplished much. As you go along, you will see your ideas appearing again
later in other problems. On the other hand, if you don’t get the problem the first
time through, it will be nagging at you as you work on other things, and when
you see the idea for an old problem in new work, you will know you are learning.
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There are quite a few concepts that are developed in this book. Since most of
the intellectual content is in the problems, it is natural that definitions of concepts
will often be within problems. When you come across an unfamiliar term in a
problem, it is likely it was defined earlier. Look it up in the index, and with luck
(hopefully no luck will really be needed!) you will be able to find the definition.

Above all, this book is dedicated to the principle that doing mathematics is
fun. As long as you know that some of the problems are going to require more
than one attempt before you hit on the main idea, you can relax and enjoy your
successes, knowing that as you work more and more problems and share more
and more ideas, problems that seemed intractable at first become a source of
satisfaction later on.

The development of this book is supported by the National Science Foun-
dation. An essential part of this support is an advisory board of faculty mem-
bers from a wide variety of institutions who have tried to help me understand
what would make the book helpful in their institutions. They are Karen Collins,
Wesleyan University, Marc Lipman, Indiana University/Purdue University, Fort
Wayne, Elizabeth MacMahon, Lafayette College, Fred McMorris, Illinois Institute
of Technology, Mark Miller, Marietta College, Rosa Orellana, Dartmouth College,
Vic Reiner, University of Minnesota, and Lou Shapiro, Howard University. The
overall design and most of the problems in the appendix on exponential generat-
ing functions are due to Professors Reiner and Shapiro. Any errors or confusing
writing in that appendix are due to me! I believe the board has managed both to
make the book more accessible and more interesting.
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Chapter 1

What is Combinatorics?

Combinatorial mathematics arises from studying how we can combine objects into
arrangements. For example, we might be combining sports teams into a tourna-
ment, samples of tires into plans to mount them on cars for testing, students into
classes to compare approaches to teaching a subject, or members of a tennis club
into pairs to play tennis. There are many questions one can ask about such ar-
rangements of objects. Here we will focus on questions about how many ways we
may combine the objects into arrangements of the desired type. These are called
counting problems. Sometimes, though, combinatorial mathematicians ask if an
arrangement is possible (if we have ten baseball teams, and each team has to play
each other team once, can we schedule all the games if we only have the fields
available at enough times for forty games?). Sometimes they ask if all the arrange-
ments we might be able to make have a certain desirable property (Do all ways
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2 CHAPTER 1. WHAT IS COMBINATORICS?

of testing 5 brands of tires on 5 different cars [with certain additional properties]
compare each brand with each other brand on at least one common car?). Count-
ing problems (and problems of the other sorts described) come up throughout
physics, biology, computer science, statistics, and many other subjects. However,
to demonstrate all these relationships, we would have to take detours into all these
subjects. While we will give some important applications, we will usually phrase
our discussions around everyday experience and mathematical experience so that
the student does not have to learn a new context before learning mathematics in
context!

1.1 About These Notes

These notes are based on the philosophy that you learn the most about a subject
when you are figuring it out directly for yourself, and learn the least when you
are trying to figure out what someone else is saying about it. On the other hand,
there is a subject called combinatorial mathematics, and that is what we are going
to be studying, so we will have to tell you some basic facts. What we are going
to try to do is to give you a chance to discover many of the interesting examples
that usually appear as textbook examples and discover the principles that appear
as textbook theorems. Your main activity will be solving problems designed to
lead you to discover the basic principles of combinatorial mathematics. Some of
the problems lead you through a new idea, some give you a chance to describe
what you have learned in a sequence of problems, and some are quite challenging.
When you find a problem challenging, don’t give up on it, but don’t let it stop
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you from going on with other problems. Frequently you will find an idea in a later
problem that you can take back to the one you skipped over or only partly finished
in order to finish it off. With that in mind, let’s get started. In the problems that
follow, you will see some problems marked on the left with various symbols. The
preface gives a full explanation of these symbols and discusses in greater detail
why the book is organized as it is! Table 1.1, which is repeated from the preface,
summarizes the meaning of the symbols.

Table 1.1: The meaning of the symbols to the left of problem numbers.

• essential
◦ motivational material
+ summary

especially interesting
∗ difficult
· essential for this or the next section

1.2 Basic Counting Principles

◦1. Five schools are going to send their baseball teams to a tournament, in which
each team must play each other team exactly once. How many games are
required?
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•2. Now some number n of schools are going to send their baseball teams to a
tournament, and each team must play each other team exactly once. Let us
think of the teams as numbered 1 through n.

(a) How many games does team 1 have to play in?

(b) How many games, other than the one with team 1, does team two have
to play in?

(c) How many games, other than those with the first i − 1 teams, does
team i have to play in?

(d) In terms of your answers to the previous parts of this problem, what is
the total number of games that must be played?

•3. One of the schools sending its team to the tournament has to send its players
from some distance, and so it is making sandwiches for team members to
eat along the way. There are three choices for the kind of bread and five
choices for the kind of filling. How many different kinds of sandwiches are
available?

+ 4. An ordered pair (a, b) consists of two things we call a and b. We say a is the
first member of the pair and b is the second member of the pair. If M is an
m-element set and N is an n-element set, how many ordered pairs are there
whose first member is in M and whose second member is in N? Does this
problem have anything to do with any of the previous problems?

◦5. Since a sandwich by itself is pretty boring, students from the school in
Problem 3 are offered a choice of a drink (from among five different kinds),
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a sandwich, and a fruit (from among four different kinds). In how many
ways may a student make a choice of the three items now?

•6. The coach of the team in Problem 3 knows of an ice cream parlor along the
way where she plans to stop to buy each team member a triple decker cone.
There are 12 different flavors of ice cream, and triple decker cones are made
in homemade waffle cones. Having chocolate ice cream as the bottom scoop
is different from having chocolate ice cream as the top scoop. How many
possible ice cream cones are going to be available to the team members?
How many cones with three different kinds of ice cream will be available?

•7. The idea of a function is ubiquitous in mathematics. A function f from a
set S to a set T is a relationship between the two sets that associates exactly
one member f(x) of T with each element x in S. We will come back to the
ideas of functions and relationships in more detail and from different points
of view from time to time. However, the quick review above should probably
let you answer these questions. If you have difficulty with them, it would
be a good idea to go now to Appendix A and work through Section A.1.1
which covers this definition in more detail. You might also want to study
Section A.1.3 to learn to visualize the properties of functions. We will take
up the topic of this section later in this chapter as well, but in less detail
than is in the appendix.

(a) Using f , g, . . . , to stand for the various functions, write down all
the different functions you can from the set {1, 2} to the set {a, b}.
For example, you might start with the function f given by f(1) = a,
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f(2) = b. How many functions are there from the set {1, 2} to the set
{a, b}?

(b) How many functions are there from the three element set {1, 2, 3} to
the two element set {a, b}?

(c) How many functions are there from the two element set {a, b} to the
three element set {1, 2, 3}?

(d) How many functions are there from a three element set to a 12 element
set?

(e) A function f is called one-to-one or an injection if whenever x is
different from y, f(x) is different from f(y). How many one-to-one
functions are there from a three element set to a 12 element set?

(f) Explain the relationship between this problem and Problem 6.

•8. A group of hungry team members in Problem 6 notices it would be cheaper
to buy three pints of ice cream for them to split than to buy a triple decker
cone for each of them, and that way they would get more ice cream. They
ask their coach if they can buy three pints of ice cream.

(a) In how many ways can they choose three pints of different flavors out
of the 12 flavors?

(b) In how many ways may they choose three pints if the flavors don’t have
to be different?



1.2. BASIC COUNTING PRINCIPLES 7

•9. Two sets are said to be disjoint if they have no elements in common. For
example, {1, 3, 12} and {6, 4, 8, 2} are disjoint, but {1, 3, 12} and {3, 5, 7}
are not. Three or more sets are said to be mutually disjoint if no two of
them have any elements in common. What can you say about the size of
the union of a finite number of finite (mutually) disjoint sets? Does this
have anything to do with any of the previous problems?

•10. Disjoint subsets are defined in Problem 9. What can you say about the size
of the union of m (mutually) disjoint sets, each of size n? Does this have
anything to do with any of the previous problems?

1.2.1 The sum and product principles

These problems contain among them the kernels of many of the fundamental
ideas of combinatorics. For example, with luck, you just stated the sum principle
(illustrated in Figure 1.1), and product principle (illustrated in Figure 1.2) in
Problems 9 and 10. These are two of the most basic principles of combinatorics.
These two counting principles are the basis on which we will develop many other
counting principles.

You may have noticed some standard mathematical words and phrases such
as set, ordered pair, function and so on creeping into the problems. One of our
goals in these notes is to show how most counting problems can be recognized as
counting all or some of the elements of a set of standard mathematical objects. For
example, Problem 4 is meant to suggest that the question we asked in Problem 3
was really a problem of counting all the ordered pairs consisting of a bread choice
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Figure 1.1: The union of these two disjoint sets has size 17.

Figure 1.2: The union of four disjoint sets of size five.

and a filling choice. We use A×B to stand for the set of all ordered pairs whose
first element is in A and whose second element is in B and we call A × B the
Cartesian product of A and B. Thus you can think of Problem 4 as asking you
for the size of the Cartesian product of M and N , that is, asking you to count the
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number of elements of this Cartesian product.
When a set S is a union of disjoint sets B1, B2, . . . , Bm we say that the sets

B1, B2, . . . , Bm are a partition of the set S. Thus a partition of S is a (special
kind of) set of sets. So that we don’t find ourselves getting confused between
the set S and the sets Bi into which we have divided it, we often call the sets
B1, B2, . . . , Bm the blocks of the partition. In this language, the sum principle
says that

if we have a partition of a finite set S, then the size of S

is the sum of the sizes of the blocks of the partition.

The product principle says that

if we have a partition of a finite set S into m blocks, each
of size n, then S has size mn.

You’ll notice that in our formal statement of the sum and product principle we
talked about a partition of a finite set. We could modify our language a bit to
cover infinite sizes, but whenever we talk about sizes of sets in what follows, we
will be working with finite sets. So as to avoid possible complications in the future,
let us agree that when we refer to the size of a set, we are implicitly assuming the
set is finite. There is another version of the product principle that applies directly
in problems like Problem 5 and Problem 6, where we were not just taking a union
of m disjoint sets of size n, but rather m disjoint sets of size n, each of which was
a union of m′ disjoint sets of size n′. This is an inconvenient way to have to think
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about a counting problem, so we may rephrase the product principle in terms of
a sequence of decisions:

•11. If we make a sequence of m choices for which

• there are k1 possible first choices, and

• for each way of making the first i−1 choices, there are ki ways to make
the ith choice,

then in how many ways may we make our sequence of choices? (You need
not prove your answer correct at this time.)

The counting principle you gave in Problem 11 is called the general product
principle. We will outline a proof of the general product principle from the original
product principle in Problem 80. Until then, let us simply accept it as another
counting principle. For now, notice how much easier it makes it to explain why
we multiplied the things we did in Problem 5 and Problem 6.

12. A tennis club has 2n members. We want to pair up the members by twos
for singles matches.

(a) In how many ways may we pair up all the members of the club? (Hint:
consider the cases of 2, 4, and 6 members.)

(b) Suppose that in addition to specifying who plays whom, for each pairing
we say who serves first. Now in how many ways may we specify our
pairs?
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+ 13. Let us now return to Problem 7 and justify—or perhaps finish—our answer
to the question about the number of functions from a three-element set to
a 12-element set.

(a) How can you justify your answer in Problem 7 to the question “How
many functions are there from a three element set (say [3] = {1, 2, 3})
to a twelve element set (say [12])? ”

(b) Based on the examples you’ve seen so far, make a conjecture about
how many functions there are from the set

[m] = {1, 2, 3, . . . ,m}

to [n] = {1, 2, 3, . . . , n} and prove it.

(c) A common notation for the set of all functions from a set M to a set
N is NM . Why is this a good notation?

+ 14. Now suppose we are thinking about a set S of functions f from [m] to some
set X. (For example, in Problem 6 we were thinking of the set of functions
from the three possible places for scoops in an ice-cream cone to 12 flavors
of ice cream.) Suppose there are k1 choices for f(1). (In Problem 6, k1 was
12, because there were 12 ways to choose the first scoop.) Suppose that for
each choice of f(1) there are k2 choices for f(2). (For example, in Problem
6 k2 was 12 if the second flavor could be the same as the first, but k2 was 11
if the flavors had to be different.) In general, suppose that for each choice
of f(1), f(2), . . . f(i − 1), there are ki choices for f(i). (For example, in
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Problem 6, if the flavors have to be different, then for each choice of f(1)
and f(2), there are 10 choices for f(3).)

What we have assumed so far about the functions in S may be summarized
as

• There are k1 choices for f(1).

• For each choice of f(1), f(2), . . . , f(i−1), there are ki choices for f(i).

How many functions are in the set S? Is there any practical difference
between the result of this problem and the general product principle?

The point of Problem 14 is that the general product principle can be stated
informally, as we did originally, or as a statement about counting sets of standard
concrete mathematical objects, namely functions.

15. A roller coaster car has n rows of seats, each of which has room for two
people. If n men and n women get into the car with a man and a woman in
each row, in how many ways may they choose their seats?

+ 16. How does the general product principle apply to Problem 6?

17. In how many ways can we pass out k distinct pieces of fruit to n children
(with no restriction on how many pieces of fruit a child may get)?

•18. How many subsets does a set S with n elements have?
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◦19. Assuming k ≤ n, in how many ways can we pass out k distinct pieces of
fruit to n children if each child may get at most one? What is the number
if k > n? Assume for both questions that we pass out all the fruit.

•20. Another name for a list, in a specific order, of k distinct things chosen from a
set S is a k-element permutation of S. We can also think of a k-element
permutation of S as a one-to-one function (or, in other words, injection)
from [k] = {1, 2, . . . , k} to S. How many k-element permutations does an n-
element set have? (For this problem it is natural to assume k ≤ n. However,
the question makes sense even if k > n.) What is the number of k-element
permutations of an n-element set if k > n?

There are a variety of different notations for the number of k-element permu-
tations of an n-element set. The one we shall use was introduced by Don Knuth;
namely nk, read “n to the k falling” or “n to the k down.” In Problem 20 you
may have shown that

nk = n(n− 1) · · · (n− k + 1) =
k∏

i=1

(n− i + 1). (1.1)

It is standard to call nk the k-th falling factorial power of n, which explains
why we use exponential notation. We call it a factorial power since nn = n(n −
1) · · · 1, which we call n-factorial and denote by n!. If you are unfamiliar with the
Pi notation, or product notation we introduced for products in Equation 1.1, it
works just like the Sigma notation works for summations.
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•21. Express nk as a quotient of factorials.

22. How should we define n0?

1.2.2 Functions and directed graphs

As another example of how standard mathematical language relates to counting
problems, Problem 7 explicitly asked you to relate the idea of counting functions
to the question of Problem 6. You have probably learned in algebra or calculus
how to draw graphs in the cartesian plane of functions from a set of numbers to a
set of numbers. You may recall how we can determine whether a graph is a graph
of a function by examining whether each vertical straight line crosses the graph
at most one time. You might also recall how we can determine whether such a
function is one-to-one by examining whether each horizontal straight line crosses
the graph at most one time. The functions we deal with will often involve objects
which are not numbers, and will often be functions from one finite set to another.
Thus graphs in the cartesian plane will often not be available to us for visualizing
functions.

However, there is another kind of graph called a directed graph or digraph that
is especially useful when dealing with functions between finite sets. We take up
this topic in more detail in Appendix A, particularly Section A.1.2 and Section
A.1.3. In Figure 1.3 we show several examples of digraphs of functions. If we have
a function f from a set S to a set T , we draw a line of dots or circles, called vertices
to represent the elements of S and another (usually parallel) line of vertices to
represent the elements of T . We then draw an arrow from the vertex for x to



1.2. BASIC COUNTING PRINCIPLES 15

Figure 1.3: What is a digraph of a function?
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(a)  The function given by f(x) = x   
on the domain {1,2,3,4,5}.

2

(c)  The function from the set {-2,-1,0,1,2}
 to the set {0,1,2,3,4} given by  f (x) = x  .2
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(b)  The function from the set {0,1,2,3,4,5,6,7} to the set of triples
of zeros and ones given by f(x) = the binary representation of x.
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c 2
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(d)  Not the digraph of a function.

(e) The function from {0, 1, 2, 3, 4, 5} 
to {0, 1, 2, 3, 4, 5} given by f (x) = x + 2 mod 6
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the vertex for y if f(x) = y. Sometimes, as in part (e) of the figure, if we have
a function from a set S to itself, we draw only one set of vertices representing
the elements of S, in which case we can have arrows both entering and leaving a
given vertex. As you see, the digraph can be more enlightening in this case if we
experiment with the function to find a nice placement of the vertices rather than
putting them in a row.

Notice that there is a simple test for whether a digraph whose vertices represent
the elements of the sets S and T is the digraph of a function from S to T . There
must be one and only one arrow leaving each vertex of the digraph representing
an element of S. The fact that there is one arrow means that f(x) is defined
for each x in S. The fact that there is only one arrow means that each x in S
is related to exactly one element of T . (Note that these remarks hold as well if
we have a function from S to S and draw only one set of vertices representing
the elements of S.) For further discussion of functions and digraphs see Sections
A.1.1 and A.1.2 of Appendix A.

◦23. Draw the digraph of the function from the set {Alice, Bob, Dawn, Bill} to
the set {A, B, C, D, E} given by

f(X) = the first letter of the name X.

•24. A function f : S → T is called an onto function or surjection if each element
of T is f(x) for some x ∈ S. Choose a set S and a set T so that you can
draw the digraph of a function from S to T that is one-to-one but not onto,
and draw the digraph of such a function.
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◦25. Choose a set S and a set T so that you can draw the digraph of a function
from S to T that is onto but not one-to-one, and draw the digraph of such
a function.

•26. Digraphs of functions help us visualize the ideas of one-to-one functions and
onto functions.

(a) What does the digraph of a one-to-one function (injection) from a finite
set X to a finite set Y look like? (Look for a test somewhat similar to
the one we described for when a digraph is the digraph of a function.)

(b) What does the digraph of an onto function look like?

(c) What does the digraph of a one-to-one and onto function from a finite
set S to a set T look like?

•27. The word permutation is actually used in two different ways in mathematics.
A permutation of a set S is a one-to-one function from S onto S. How
many permutations does an n-element set have?

Notice that there is a great deal of consistency between the use of the word
permutation in Problem 27 and the use in the Problem 20. If we have some way
a1, a2, . . . , an of listing our set S, then any other list b1, b2, . . . , bn gives us the
permutation of S whose rule is f(ai) = bi, and any permutation of S, say the one
given by g(ai) = ci gives us a list c1, c2, . . . , cn of S. Thus there is really very little
difference between the idea of a permutation of S and an n-element permutation
of S when n is the size of S.
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1.2.3 The bijection principle

Another name for a one-to-one and onto function is bijection. The digraphs
marked (a), (b), and (e) in Figure 1.3 are digraphs of bijections. The description
in Problem 26c of the digraph of a bijection from X to Y illustrates one of the
fundamental principles of combinatorial mathematics, the bijection principle:

Two sets have the same size if and only if there is a bijec-
tion between them.

It is surprising how this innocent sounding principle guides us into finding insight
into some otherwise very complicated proofs.

1.2.4 Counting subsets of a set

28. The binary representation of a number m is a list, or string, a1a2 . . . ak of
zeros and ones such that m = a12

k−1 + a22
k−2 + · · · + ak2

0. Describe a
bijection between the binary representations of the integers between 0 and
2n − 1 and the subsets of an n-element set. What does this tell you about
the number of subsets of the n-element set [n]?

Notice that the first question in Problem 8 asked you for the number of ways
to choose a three element subset from a 12 element subset. You may have seen a
notation like

(
n
k

)
, C(n, k), or nCk which stands for the number of ways to choose

a k-element subset from an n-element set. The number
(

n
k

)
is read as “n choose

k” and is called a binomial coefficient for reasons we will see later on. Another
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frequently used way to read the binomial coefficient notation is “the number of
combinations of n things taken k at a time.” We won’t use this way of reading
the notation. You are going to be asked to construct two bijections that relate
to these numbers and figure out what famous formula they prove. We are going
to think about subsets of the n-element set [n] = {1, 2, 3, . . . , n}. As an example,
the set of two-element subsets of [4] is

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

This example tells us that
(

4
2

)
= 6.

•29. Let C be the set of k-element subsets of [n] that contain the number n, and
let D be the set of k-element subsets of [n] that don’t contain n.

(a) Let C ′ be the set of (k − 1)-element subsets of [n − 1]. Describe a
bijection from C to C ′. (A verbal description is fine.)

(b) Let D′ be the set of k-element subsets of [n − 1] = {1, 2, . . . n − 1}.
Describe a bijection from D to D′. (A verbal description is fine.)

(c) Based on the two previous parts, express the sizes of C and D in terms
of binomial coefficients involving n− 1 instead of n.

(d) Apply the sum principle to C and D and obtain a formula that ex-

presses
(

n
k

)
in terms of two binomial coefficients involving n − 1. You

have just derived the Pascal Equation that is the basis for the famous
Pascal’s Triangle.
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1.2.5 Pascal’s Triangle

The Pascal Equation that you derived in Problem 29 gives us the triangle in
Figure 1.4. This figure has the number of k-element subsets of an n-element set
as the kth number over in the nth row (we call the top row the zeroth row and the
beginning entry of a row the zeroth number over). You’ll see that your formula

doesn’t say anything about
(

n
k

)
if k = 0 or k = n, but otherwise it says that each

entry is the sum of the two that are above it and just to the left or right.

Figure 1.4: Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

30. Just for practice, what is the next row of Pascal’s triangle?

31. Without writing out the rows completely, write out enough of Pascal’s tri-
angle to get a numerical answer for the first question in Problem 8.
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It is less common to see Pascal’s triangle as a right triangle, but it actually
makes your formula easier to interpret. In Pascal’s Right Triangle, the element in
row n and column k (with the convention that the first row is row zero and the

first column is column zero) is
(

n
k

)
. In this case your formula says each entry in

a row is the sum of the one above and the one above and to the left, except for
the leftmost and right most entries of a row, for which that doesn’t make sense.
Since the leftmost entry is

(
n
0

)
and the rightmost entry is

(
n
n

)
, these entries are

both one (to see why, ask yourself how many 0-element subsets and how many
n-element subsets an n-element set has), and your formula then tells how to fill
in the rest of the table.

Figure 1.5: Pascal’s Right Triangle

k = 0 1 2 3 4 5 6 7
n = 0 1

1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
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Seeing this right triangle leads us to ask whether there is some natural way
to extend the right triangle to a rectangle. If we did have a rectangular table of
binomial coefficients, counting the first row as row zero (i.e., n = 0) and the first

column as column zero (i.e., k = 0), the entries we don’t yet have are values of
(

n
k

)
for k > n. But how many k-element subsets does an n-element set have if k > n?
The answer, of course, is zero, so all the other entries we would fill in would be
zero, giving us the rectangular array in Figure 1.6. It is straightforward to check
that Pascal’s Equation now works for all the entries in the rectangle that have an
entry above them and an entry above and to the left.

Figure 1.6: Pascal’s Rectangle

k = 0 1 2 3 4 5 6 7
n = 0 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0
2 1 2 1 0 0 0 0 0
3 1 3 3 1 0 0 0 0
4 1 4 6 4 1 0 0 0
5 1 5 10 10 5 1 0 0
6 1 6 15 20 15 6 1 0
7 1 7 21 35 35 21 7 1

32. Because our definition told us that
(

n
k

)
is 0 when k > n, we got a rectangular

table of numbers that satisfies the Pascal Equation.
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(a) Is there any other way to define
(

n
k

)
when k > n in order to get a

rectangular table that agrees with Pascal’s Right Triangle for k ≤ n
and satisfies the Pascal Equation?

(b) Suppose we want to extend Pascal’s Rectangle to the left and define(
n
−k

)
for n ≥ 0 and k > 0 so that −k < 0. What should we put into

row n and column −k of Pascal’s Rectangle in order for the Pascal
Equation to hold true?

∗(c) What should we put into row −n (assume n is positive) and column
k or column −k in order for the Pascal Equation to continue to hold?
Do we have any freedom of choice?

33. There is yet another bijection that lets us prove that a set of size n has 2n

subsets. Namely, for each subset S of [n] = {1, 2, . . . , n}, define a function
(traditionally denoted by χS) as follows.1

χS(i) =
{

1 if i ∈ S
0 if i 6∈ S

The function χS is called the characteristic function of S. Notice that the
characteristic function is a function from [n] to {0, 1}.

(a) For practice, consider the function χ{1,3} for the subset {1, 3} of the set
{1, 2, 3, 4}. What are

i. χ{1,3}(1)?

1The symbol χ is the Greek letter chi that is pronounced Ki, with the i sounding like “eye.”
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ii. χ{1,3}(2)?

iii. χ{1,3}(3)?

iv. χ{1,3}(4)?

(b) We define a function f from the set of subsets of [n] = {1, 2, . . . , n} to
the set of functions from [n] to {0, 1} by f(S) = χS. Explain why f is
a bijection.

(c) Why does the fact that f is a bijection prove that [n] has 2n subsets?

In Problems 18, 28, and 33 you gave three proofs of the following theorem.

Theorem 1 The number of subsets of an n-element set is 2n.

The proofs in Problem 28 and 33 use essentially the same bijection, but they
interpret sequences of zeros and ones differently, and so end up being different
proofs. We will give yet another proof, using bijections similar to those we used
in proving the Pascal Equation, at the beginning of Chapter 2.

1.2.6 The quotient principle

•34. As we noted in Problem 29, the first question in Problem 8 asked us for the
number of three-element subsets of a twelve-element set. We were able to
use the Pascal Equation to get a numerical answer to that question. Had
we had twenty or thirty flavors of ice cream to choose from, using the Pascal
Equation to get our answer would have entailed a good bit more work. We
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have seen how the general product principle gives us an answer to Problem
6. Thus we might think that the number of ways to choose a three element
set from 12 elements is the number of ways to choose the first element times
the number of ways to choose the second element times the number of ways
to choose the third element, which is 12 ·11 ·10 = 1320. However, our result
in Problem 29 shows that this is wrong.

(a) What is it that is different between the number of ways to stack ice
cream in a triple decker cone with three different flavors of ice cream
and the number of ways to simply choose three different flavors of ice
cream?

(b) In particular, how many different triple decker cones use vanilla, choco-
late, and strawberry? (Of course any three distinct flavors could sub-
stitute for vanilla, chocolate and strawberry without changing the an-
swer.)

(c) Using your answer from part 34b, compute the number of ways to
choose three different flavors of ice cream (out of twelve flavors) from
the number of ways to choose a triple decker cone with three different
flavors (out of twelve flavors).

•35. Based on what you observed in Problem 34c, how many k-element subsets
does an n-element set have?

36. The formula you proved in Problem 35 is symmetric in k and n − k; that
is, it gives the same number for

(
n
k

)
as it gives for

(
n

n−k

)
. Whenever two
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quantities are counted by the same formula it is good for our insight to find
a bijection that demonstrates the two sets being counted have the same size.
In fact this is a guiding principle of research in combinatorial mathematics.
Find a bijection that proves that

(
n
k

)
equals

(
n

n−k

)
.

•37. In how many ways can we pass out k (identical) ping-pong balls to n children
if each child may get at most one?

•38. In how many ways may n people sit around a round table? (Assume that
when people are sitting around a round table, all that really matters is who is
to each person’s right. For example, if we can get one arrangement of people
around the table from another by having everyone get up and move to the
right one place and sit back down, then we get an equivalent arrangement of
people. Notice that you can get a list from a seating arrangement by marking
a place at the table, and then listing the people at the table, starting at that
place and moving around to the right.) There are at least two different ways
of doing this problem. Try to find them both.

We are now going to analyze the result of Problem 35 in more detail in order to
tease out another counting principle that we can use in a wide variety of situations.

In Table 1.2 we list all three-element permutations of the 5-element set {a, b, c, d, e}.
Each row consists of all 3-element permutations of some subset of {a, b, c, d, e}.
Because a given k-element subset can be listed as a k-element permutation in k!
ways, there are 3! = 6 permutations in each row. Because each 3-element per-
mutation appears exactly once in the table, each row is a block of a partition
of the set of 3-element permutations of {a, b, c, d, e}. Each block has size six.
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Table 1.2: The 3-element permutations of {a, b, c, d, e} organized by which 3-
element set they permute.

abc acb bac bca cab cba
abd adb bad bda dab dba
abe aeb bae bea eab eba
acd adc cad cda dac dca
ace aec cae cea eac eca
ade aed dae dea ead eda
bcd bdc cbd cdb dbc dcb
bce bec cbe ceb ebc ecb
bde bed dbe deb ebd edb
cde ced dce dec ecd edc

Each block consists of all 3-element permutations of some three element subset of
{a, b, c, d, e}. Since there are ten rows, we see that there are ten 3-element subsets
of {a, b, c, d, e}. An alternate way to see this is to observe that we partitioned
the set of all 60 three-element permutations of {a, b, c, d, e} into some number q
of blocks, each of size six. Thus by the product principle, q · 6 = 60, so q = 10.

•39. Rather than restricting ourselves to n = 5 and k = 3, we can partition the
set of all k-element permutations of an n-element set S up into blocks. We
do so by letting BK be the set (block) of all k-element permutations of K
for each k-element subset K of S. Thus as in our preceding example, each
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block consists of all permutations of some subset K of our n-element set.
For example, the permutations of {a, b, c} are listed in the first row of Table
1.2. In fact each row of that table is a block. The questions that follow are
about the corresponding partition of the set of k-element permutations of
S, where S and k are arbitrary.

(a) How many permutations are there in a block?

(b) Since S has n elements, what does Problem 20 tell you about the total
number of k-element permutations of S?

(c) Describe a bijection between the set of blocks of the partition and the
set of k-element subsets of S.

(d) What formula does this give you for the number
(

n
k

)
of k-element sub-

sets of an n-element set?

40. A basketball team has 12 players. However, only five players play at any
given time during a game.

(a) In how may ways may the coach choose the five players?

(b) To be more realistic, the five players playing a game normally consist
of two guards, two forwards, and one center. If there are five guards,
four forwards, and three centers on the team, in how many ways can
the coach choose two guards, two forwards, and one center?

(c) What if one of the centers is equally skilled at playing forward?
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•41. In Problem 38, describe a way to partition the n-element permutations of
the n people into blocks so that there is a bijection between the set of blocks
of the partition and the set of arrangements of the n people around a round
table. What method of solution for Problem 38 does this correspond to?

•42. In Problems 39d and 41, you have been using the product principle in a new
way. One of the ways in which we previously stated the product principle
was “If we partition a set into m blocks each of size n, then the set has size
m ·n.” In problems 39d and 41 we knew the size p of a set P of permutations
of a set, and we knew we had partitioned P into some unknown number of
blocks, each of a certain known size r. If we let q stand for the number of
blocks, what does the product principle tell us about p, q, and r? What do
we get when we solve for q?

The formula you found in Problem 42 is so useful that we are going to single
it out as another principle. The quotient principle says:

If we partition a set P of size p into q blocks, each of size
r, then q = p/r.

The quotient principle is really just a restatement of the product principle, but
thinking about it as a principle in its own right often leads us to find solutions
to problems. Notice that it does not always give us a formula for the number of
blocks of a partition; it only works when all the blocks have the same size. In
Chapter 6, we develop a way to solve problems with different block sizes in cases
where there is a good deal of symmetry in the problem. (The roundness of the
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table was a symmetry in the problem of people at a table; the fact that we can
order the sets in any order is the symmetry in the problem of counting k-element
subsets.)

In Section A.2 of Appendix A we introduce the idea of an equivalence relation,
see what equivalence relations have to do with partitions, and discuss the quotient
principle from that point of view. While that appendix is not required for what we
are doing here, if you want a more thorough discussion of the quotient principle,
this would be a good time to work through that appendix.

•43. In how many ways may we string n distinct beads on a necklace without a
clasp? (Perhaps we make the necklace by stringing the beads on a string,
and then carefully gluing the two ends of the string together so that the joint
can’t be seen. Assume someone can pick up the necklace, move it around in
space and put it back down, giving an apparently different way of stringing
the beads that is equivalent to the first.)

44. We first gave this problem as Problem 12a. Now we have several ways to
approach the problem. A tennis club has 2n members. We want to pair up
the members by twos for singles matches.

(a) In how many ways may we pair up all the members of the club? Give
at least two solutions different from the one you gave in Problem 12a.
(You may not have done Problem 12a. In that case, see if you can find
three solutions.)

(b) Suppose that in addition to specifying who plays whom, for each pairing
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we say who serves first. Now in how many ways may we specify our
pairs? Try to find as many solutions as you can.

·45. (This becomes especially relevant in Chapter 6, though it makes an impor-
tant point here.) In how many ways may we attach two identical red beads
and two identical blue beads to the corners of a square (with one bead per
corner) free to move around in (three-dimensional) space?

46. While the formula you proved in Problem 35 and Problem 39d is very useful,
it doesn’t give us a sense of how big the binomial coefficients are. We can
get a very rough idea, for example, of the size of

(
2n
n

)
by recognizing that

we can write (2n)n/n! as 2n
n
· 2n−1

n−1
· · · n+1

1
, and each quotient is at least 2,

so the product is at least 2n. If this were an accurate estimate, it would
mean the fraction of n-element subsets of a 2n-element set would be about
2n/22n = 1/2n, which becomes very small as n becomes large. However,
it is pretty clear the approximation will not be a very good one, because
some of the terms in that product are much larger than 2. In fact, if

(
2n
k

)
were the same for every k, then each would be the fraction 1

2n+1
of 22n.

This is much larger than the fraction 1
2n . But our intuition suggests that(

2n
n

)
is much larger than

(
2n
1

)
and is likely larger than

(
2n

n−1

)
so we can be

sure our approximation is a bad one. For estimates like this, James Stirling
developed a formula to approximate n! when n is large, namely n! is about(√

2πn
)
nn/en. In fact the ratio of n! to this expression approaches 1 as n
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becomes infinite.2 We write this as

n! ∼
√

2πn
nn

en
.

We read this notation as n! is asymptotic to
√

2πnnn

en . Use Stirling’s for-
mula to show that the fraction of subsets of size n in an 2n-element set is
approximately 1/

√
πn. This is a much bigger fraction than 1

2n !

1.3 Some Applications of Basic Counting Prin-

ciples

2Proving this takes more of a detour than is advisable here; however there is an elementary
proof which you can work through in the problems of the end of Section 1 of Chapter 1 of
Introductory Combinatorics by Kenneth P. Bogart, Harcourt Academic Press, (2000).
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1.3.1 Lattice paths and Catalan Numbers

◦47. In a part of a city, all streets run either north-south or east-west, and there
are no dead ends. Suppose we are standing on a street corner. In how many
ways may we walk to a corner that is four blocks north and six blocks east,
using as few blocks as possible?

·48. Problem 47 has a geometric interpretation in a coordinate plane. A lattice
path in the plane is a “curve” made up of line segments that either go from a
point (i, j) to the point (i+1, j) or from a point (i, j) to the point (i, j +1),
where i and j are integers. (Thus lattice paths always move either up or to
the right.) A lattice path from (0, 0) to (6, 4) is shown in Figure 1.7. The
length of the path is the number of such line segments.

Figure 1.7: A lattice path from (0, 0) to (6, 4).

x

y

(a) What is the length of a lattice path from (0, 0) to (m, n)?
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(b) How many lattice paths of that length are there from (0, 0) to (m, n)?

(c) How many lattice paths are there from (i, j) to (m, n), assuming i, j,
m, and n are integers?

·49. Another kind of geometric path in the plane is a diagonal lattice path. A
diagonal lattice path from (0, 0) to (6, 2) is shown in Figure 1.8. Such a path
is a path made up of line segments that go from a point (i, j) to (i+1, j +1)
(this is often called an upstep) or (i+1, j−1) (this is often called a downstep),
again where i and j are integers. (Thus diagonal lattice paths always move
towards the right but may move up or down.)

Figure 1.8: A diagonal lattice path from (0, 0) to (6, 2).

x

y

(a) Describe which points are connected to (0, 0) by diagonal lattice paths.

(b) What is the length of a diagonal lattice path from (0, 0) to (m, n)?

(c) Assuming that (m, n) is a point you can get to from (0, 0), how many
diagonal lattice paths are there from (0, 0) to (m,n)?
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◦50. A school play requires a ten dollar donation per person; the donation goes
into the student activity fund. Assume that each person who comes to the
play pays with a ten dollar bill or a twenty dollar bill. The teacher who
is collecting the money forgot to get change before the event. If there are
always at least as many people who have paid with a ten as a twenty as they
arrive the teacher won’t have to give anyone an IOU for change. Suppose
2n people come to the play, and exactly half of them pay with ten dollar
bills.

(a) Describe a bijection between the set of sequences of tens and twenties
people give the teacher and the set of lattice paths from (0, 0) to (n, n).

(b) Describe a bijection between the set of sequences of tens and twen-
ties that people give the teacher and the set of diagonal lattice paths
between (0, 0) and (2n, 0).

(c) In each of the previous parts, what is the geometric interpretation of a
sequence that does not require the teacher to give any IOUs?

·51. Notice that a lattice path from (0, 0) to (n, n) stays inside (or on the edges
of) the square whose sides are the x-axis, the y-axis, the line x = n and the
line y = n. In this problem we will compute the number of lattice paths
from (0,0) to (n, n) that stay inside (or on the edges of) the triangle whose
sides are the x-axis, the line x = n and the line y = x. Such lattice paths
are called Catalan paths. For example, in Figure 1.9 we show the grid of
points with integer coordinates for the triangle whose sides are the x-axis,
the line x = 4 and the line y = x.
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Figure 1.9: The Catalan paths from (0, 0) to (i, i) for i = 0, 1, 2, 3, 4. The number
of paths to the point (i, i) is shown just above that point.

1

1

2

5

14

(a) Explain why the number of lattice paths from (0, 0) to (n, n) that go
outside the triangle described previously is the number of lattice paths
from (0, 0) to (n, n) that either touch or cross the line y = x + 1.

(b) Find a bijection between lattice paths from (0, 0) to (n, n) that touch
(or cross) the line y = x + 1 and lattice paths from (−1, 1) to (n, n).

(c) Find a formula for the number of lattice paths from (0, 0) to (n, n) that
do not go above the line y = x. The number of such paths is called a
Catalan Number and is usually denoted by Cn.

52. Your formula for the Catalan Number can be expressed as a binomial co-
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efficient divided by an integer. Whenever we have a formula that calls for
division by an integer, an ideal combinatorial explanation of the formula is
one that uses the quotient principle. The purpose of this problem is to find
such an explanation using diagonal lattice paths.3 A diagonal lattice path
that never goes below the y-coordinate of its first point is called a Dyck Path.
We will call a Dyck Path from (0, 0) to (2n, 0) a (diagonal) Catalan Path
of length 2n. Thus the number of (diagonal) Catalan Paths of length 2n is
the Catalan Number Cn. We normally can decide from context whether the
phrase Catalan Path refers to a diagonal path, so we normally leave out the
word diagonal.

(a) If a Dyck Path has n steps (each an upstep or downstep), why do the
first k steps form a Dyck Path for each nonnegative k ≤ n?

(b) Thought of as a curve in the plane, a diagonal lattice path can have
many local maxima and minima, and can have several absolute maxima
and minima, that is, several highest points and several lowest points.
What is the y-coordinate of an absolute minimum point of a Dyck Path
starting at (0, 0)? Explain why a Dyck Path whose rightmost absolute
minimum point is its last point is a Catalan Path.

(c) Let D be the set of all diagonal lattice paths from (0, 0) to (2n, 0).
(Thus these paths can go below the x-axis.) Suppose we partition D by

3The result we will derive is called the Chung-Feller Theorem; this approach is based on a
paper of Wen-jin Woan “Uniform Partitions of Lattice Paths and Chung-Feller Generalizations,”
American Mathematical Monthly 58 June/July 2001, p556.
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letting Bi be the set of lattice paths in D that have i upsteps (perhaps
mixed with some downsteps) following the last absolute minimum. How
many blocks does this partition have? Give a succinct description of
the block B0.

(d) How many upsteps are in a Catalan Path?

∗(e) We are going to give a bijection between the set of Catalan Paths and
the block Bi for each i between 1 and n. For now, suppose the value of
i, while unknown, is fixed. We take a Catalan path and break it into
three pieces. The piece F (for “front”) consists of all steps before the
ith upstep in the Catalan path. The piece U (for “up”) consists of the
ith upstep. The piece B (for “back”) is the portion of the path that
follows the ith upstep. Thus we can think of the path as FUB. Show
that the function that takes FUB to BUF is a bijection from the set
of Catalan Paths onto the block Bi of the partition. (Notice that BUF
can go below the x axis.)

(f) Explain how you have just given another proof of the formula for the
Catalan Numbers.
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1.3.2 The Binomial Theorem

◦53. We know that (x + y)2 = x2 + 2xy + y2. Multiply both sides by (x + y) to
get a formula for (x + y)3 and repeat to get a formula for (x + y)4. Do you
see a pattern? If so, what is it? If not, repeat the process to get a formula
for (x + y)5 and look back at Figure 1.4 to see the pattern. Conjecture a
formula for (x + y)n.

•54. When we apply the distributive law n times to (x + y)n, we get a sum of
terms of the form xiyn−i for various values of the integer i.

(a) If it is clear to you that each term of the form xiyn−i that we get comes
from choosing an x from i of the (x + y) factors and a y from the
remaining n − i of the factors and multiplying these choices together,
then answer this part of the problem and skip the next part. Otherwise,
do the next part instead of this one. In how many ways can we choose
an x from i terms and a y from n− i terms?

(b) i. Expand the product (x1 + y1)(x2 + y2)(x3 + y3).

ii. What do you get when you substitute x for each xi and y for each
yi?

iii. Now imagine expanding

(x1 + y1)(x2 + y2) · · · (xn + yn).

Once you apply the commutative law to the individual terms you
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get, you will have a sum of terms of the form

xk1xk2 · · ·xki
· yj1yj2 · · · yjn−i

.

What is the set {k1, k2, . . . , ki} ∪ {j1, j2, . . . , jn−i}?
iv. In how many ways can you choose the set {k1, k2, . . . , ki}?
v. Once you have chosen this set, how many choices do you have for
{j1, j2, . . . , jn−i}?

vi. If you substitute x for each xi and y for each yi, how many terms
of the form xiyn−i will you have in the expanded product

(x1 + y1)(x2 + y2) · · · (xn + yn) = (x + y)n?

vii. How many terms of the form xn−iyi will you have?

(c) Explain how you have just proved your conjecture from Problem 53.
The theorem you have proved is called the Binomial Theorem.

55. What is
∑10

i=1

(
10
i

)
3i?

56. What is
(

n
0

)
−
(

n
1

)
+
(

n
2

)
− · · · ±

(
n
n

)
if n is an integer bigger than zero?

•57. Explain why
k∑

i=0

(
m

i

)(
n

k − i

)
=

(
m + n

k

)
.

Find two different explanations.
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58. From the symmetry of the binomial coefficients, it is not too hard to see
that when n is an odd number, the number of subsets of {1, 2, . . . , n} of odd
size equals the number of subsets of {1, 2, . . . , n} of even size. Is it true that
when n is even the number of subsets of {1, 2, . . . , n} of even size equals the
number of subsets of odd size? Why or why not?

59. What is
∑n

i=0 i
(

n
i

)
? (Hint: think about how you might use calculus.)

Notice how the proof you gave of the binomial theorem was a counting argu-
ment. It is interesting that an apparently algebraic theorem that tells us how to
expand a power of a binomial is proved by an argument that amounts to count-
ing the individual terms of the expansion. Part of the reason that combinatorial
mathematics turns out to be so useful is that counting arguments often underlie
important results of algebra. As the algebra becomes more sophisticated, so do
the families of objects we have to count, but nonetheless we can develop a great
deal of algebra on the basis of counting.
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1.3.3 The pigeonhole principle

◦60. American coins are all marked with the year in which they were made. How
many coins do you need to have in your hand to guarantee that on two (at
least) of them, the date has the same last digit? (When we say “to guarantee
that on two (at least) of them,...” we mean that you can find two with the
same last digit. You might be able to find three with that last digit, or you
might be able to find one pair with the last digit 1 and one pair with the
last digit 9, or any combination of equal last digits, as long as there is at
least one pair with the same last digit.)

There are many ways in which you might explain your answer to Problem 60.
For example, you can partition the coins according to the last digit of their date;
that is, you put all the coins with a given last digit in a block together, and put
no other coins in that block; repeating until all coins are in some block. Then
you have a partition of your set of coins. If no two coins have the same last digit,
then each block has exactly one coin. Since there are only ten digits, there are at
most ten blocks and so by the sum principle there are at most ten coins. In fact
with ten coins it is possible to have no two with the same last digit, but with 11
coins some block must have at least two coins in order for the sum of the sizes
of at most ten blocks to be 11. This is one explanation of why we need 11 coins
in Problem 60. This kind of situation arises often in combinatorial situations,
and so rather than always using the sum principle to explain our reasoning, we
enunciate another principle which we can think of as yet another variant of the
sum principle. The pigeonhole principle states that
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If we partition a set with more than n elements into n

parts, then at least one part has more than one element.

The pigeonhole principle gets its name from the idea of a grid of little boxes that
might be used, for example, to sort mail, or as mailboxes for a group of people
in an office. The boxes in such grids are sometimes called pigeonholes in analogy
with stacks of boxes used to house homing pigeons when homing pigeons were used
to carry messages. People will sometimes state the principle in a more colorful
way as “if we put more than n pigeons into n pigeonholes, then some pigeonhole
has more than one pigeon.”

61. Show that if we have a function from a set of size n to a set of size less than
n, then f is not one-to-one.

•62. Show that if S and T are finite sets of the same size, then a function f from
S to T is one-to-one if and only if it is onto.

·63. There is a generalized pigeonhole principle which says that if we partition a
set with more than kn elements into n blocks, then at least one block has
at least k + 1 elements. Prove the generalized pigeonhole principle.

64. All the powers of five end in a five, and all the powers of two are even. Show
that for some integer n, if you take the first n powers of a prime other than
two or five, one must have “01” as the last two digits.

·65. Show that in a set of six people, there is a set of at least three people who all
know each other, or a set of at least three people none of whom know each
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other. (We assume that if person 1 knows person 2, then person 2 knows
person 1.)

·66. Draw five circles labeled Al, Sue, Don, Pam, and Jo. Find a way to draw
red and green lines between people so that every pair of people is joined
by a line and there is neither a triangle consisting entirely of red lines or a
triangle consisting of green lines. What does Problem 65 tell you about the
possibility of doing this with six people’s names? What does this problem
say about the conclusion of Problem 65 holding when there are five people
in our set rather than six?

1.3.4 Ramsey Numbers

Problems 65 and 66 together show that six is the smallest number R with the
property that if we have R people in a room, then there is either a set of (at least)
three mutual acquaintances or a set of (at least) three mutual strangers. Another
way to say the same thing is to say that six is the smallest number so that no
matter how we connect six points in the plane (no three on a line) with red and
green lines, we can find either a red triangle or a green triangle. There is a name for
this property. The Ramsey Number R(m, n) is the smallest number R so that if
we have R people in a room, then there is a set of at least m mutual acquaintances
or at least n mutual strangers. There is also a geometric description of Ramsey
Numbers; it uses the idea of a complete graph on R vertices. A complete graph
on R vertices consists of R points in the plane, together with line segments (or
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curves) connecting each two of the R vertices.4 The points are called vertices and
the line segments are called edges. In Figure 1.10 we show three different ways to
draw a complete graph on four vertices. We use Kn to stand for a complete graph
on n vertices.

Figure 1.10: Three ways to draw a complete graph on four vertices

Our geometric description of R(3, 3) may be translated into the language of
graph theory (which is the subject that includes complete graphs) by saying
R(3, 3) is the smallest number R so that if we color the edges of a KR with
two colors, then we can find in our picture a K3 all of whose edges have the same
color. The graph theory description of R(m,n) is that R(m, n) is the smallest
number R so that if we color the edges of a KR with red and green, then we can
find in our picture either a Km all of whose edges are red or a Kn all of whose
edges are green. Because we could have said our colors in the opposite order,
we may conclude that R(m, n) = R(n, m). In particular R(n, n) is the smallest

4As you may have guessed, a complete graph is a special case of something called a graph.
The word graph will be defined in Section 2.3.1.
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number R such that if we color the edges of a KR with two colors, then our picture
contains a Kn all of whose edges have the same color.

◦67. Since R(3, 3) = 6, an uneducated guess might be that R(4, 4) = 8. Show
that this is not the case.

·68. Show that among ten people, there are either four mutual acquaintances or
three mutual strangers. What does this say about R(4, 3)?

·69. Show that among an odd number of people there is at least one person who
is an acquaintance of an even number of people and therefore also a stranger
to an even number of people.

·70. Find a way to color the edges of a K8 with red and green so that there is
no red K4 and no green K3.

·71. Find R(4, 3).

As of this writing, relatively few Ramsey Numbers are known. R(3, n) is known
for n < 10, R(4, 4) = 18, and R(5, 4) = R(4, 5) = 25.

1.4 Supplementary Chapter Problems

1. Remember that we can write n as a sum of n ones. How many plus signs do
we use? In how many ways may we write n as a sum of a list of k positive
numbers? Such a list is called a composition of n into k parts.
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2. In Problem 1 we defined a composition of n into k parts. What is the total
number of compositions of n (into any number of parts)?

·3. Write down a list of all 16 zero-one sequences of length four starting with
0000 in such a way that each entry differs from the previous one by changing
just one digit. This is called a Gray Code. That is, a Gray Code for 0-1
sequences of length n is a list of the sequences so that each entry differs from
the previous one in exactly one place. Can you describe how to get a Gray
Code for 0-1 sequences of length five from the one you found for sequences
of length 4? Can you describe how to prove that there is a Gray code for
sequences of length n?

4. Use the idea of a Gray Code from Problem 3 to prove bijectively that the
number of even-sized subsets of an n-element set equals the number of odd-
sized subsets of an n-element set.

5. A list of parentheses is said to be balanced if there are the same number of
left parentheses as right, and as we count from left to right we always find at
least as many left parentheses as right parentheses. For example, (((()()))())
is balanced and ((()) and (()()))(() are not. How many balanced lists of n
left and n right parentheses are there?

∗6. Suppose we plan to put six distinct computers in a network as shown in
Figure 1.11. The lines show which computers can communicate directly
with which others. Consider two ways of assigning computers to the nodes
of the network different if there are two computers that communicate directly
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in one assignment and that don’t communicate directly in the other. In how
many different ways can we assign computers to the network?

Figure 1.11: A computer network.

7. In a circular ice cream dish we are going to put four scoops of ice cream of
four distinct flavors chosen from among twelve flavors. Assuming we place
four scoops of the same size as if they were at the corners of a square, and
recognizing that moving the dish doesn’t change the way in which we have
put the ice cream into the dish, in how many ways may we choose the ice
cream and put it into the dish?

8. In as many ways as you can, show that
(

n
k

)(
n−k
m

)
=
(

n
m

)(
n−m

k

)
.

9. A tennis club has 4n members. To specify a doubles match, we choose two
teams of two people. In how many ways may we arrange the members into
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doubles matches so that each player is in one doubles match? In how many
ways may we do it if we specify in addition who serves first on each team?

10. A town has n streetlights running along the north side of Main Street. The
poles on which they are mounted need to be painted so that they do not
rust. In how many ways may they be painted with red, white, blue, and
green if an even number of them are to be painted green?

∗11. We have n identical ping-pong balls. In how many ways may we paint them
red, white, blue, and green?

∗12. We have n identical ping-pong balls. In how many ways may we paint them
red, white, blue, and green if we use green paint on an even number of them?



50 CHAPTER 1. WHAT IS COMBINATORICS?



Chapter 2

Applications of Induction and
Recursion in Combinatorics and
Graph Theory

2.1 Some Examples of Mathematical Induction

If you are unfamiliar with the Principle of Mathematical Induction, you should
read Appendix B (a portion of which is repeated here).

2.1.1 Mathematical induction

The principle of mathematical induction states that

51
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In order to prove a statement about an integer n, if we can

1. Prove the statement when n = b, for some fixed integer b, and

2. Show that the truth of the statement for n = k − 1 implies the
truth of the statement for n = k whenever k > b,

then we can conclude the statement is true for all integers n ≥ b.

As an example, let us give yet another proof that a set with n elements has 2n

subsets. This proof uses essentially the the same bijections we used in proving the
Pascal Equation. The statement we wish to prove is the statement that “A set of
size n has 2n subsets.”

Our statement is true when n = 0, because a set of size 0 is the empty
set and the empty set has 1 = 20 subsets. (This step of our proof is
called a base step.)

Now suppose that k > 0 and every set with k − 1 elements has 2k−1

subsets. Suppose S = {a1, a2, . . . ak} is a set with k elements. We
partition the subsets of S into two blocks. Block B1 consists of the
subsets that do not contain an and block B2 consists of the subsets
that do contain an. Each set in B1 is a subset of {a1, a2, . . . ak−1},
and each subset of {a1, a2, . . . ak−1} is in B1. Thus B1 is the set of
all subsets of {a1, a2, . . . ak−1}. Therefore by our assumption in the
first sentence of this paragraph, the size of B1 is 2k−1. Consider the
function from B2 to B1 which takes a subset of S including ak and



SOME EXAMPLES OF MATHEMATICAL INDUCTION 53

removes ak from it. This function is defined on B2, because every set
in B2 contains ak. This function is onto, because if T is a set in B1,
then T ∪ {ak} is a set in B2 which the function sends to T . This
function is one-to-one because if V and W are two different sets in B2,
then removing ak from them gives two different sets in B1. Thus we
have a bijection between B1 and B2, so B1 and B2 have the same size.
Therefore by the sum principle the size of B1 ∪B2 is 2k−1 +2k−1 = 2k.
Therefore S has 2k subsets. This shows that if a set of size k − 1 has
2k−1 subsets, then a set of size k has 2k subsets. Therefore by the
principle of mathematical induction, a set of size n has 2n subsets for
every nonnegative integer n.

The first sentence of the last paragraph is called the inductive hypothesis. In
an inductive proof we always make an inductive hypothesis as part of proving that
the truth of our statement when n = k − 1 implies the truth of our statement
when n = k. The last paragraph itself is called the inductive step of our proof.
In an inductive step we derive the statement for n = k from the statement for
n = k − 1, thus proving that the truth of our statement when n = k − 1 implies
the truth of our statement when n = k. The last sentence in the last paragraph
is called the inductive conclusion. All inductive proofs should have a base step,
an inductive hypothesis, an inductive step, and an inductive conclusion.

There are a couple details worth noticing. First, in this problem, our base
step was the case n = 0, or in other words, we had b = 0. However, in other
proofs, b could be any integer, positive, negative, or 0. Second, our proof that the
truth of our statement for n = k− 1 implies the truth of our statement for n = k
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required that k be at least 1, so that there would be an element ak we could take
away in order to describe our bijection. However, condition (2) of the principle
of mathematical induction only requires that we be able to prove the implication
for k > 0, so we were allowed to assume k > 0.

Strong Mathematical Induction

One way of looking at the principle of mathematical induction is that it tells us
that if we know the “first” case of a theorem and we can derive each other case of
the theorem from a smaller case, then the theorem is true in all cases. However,
the particular way in which we stated the theorem is rather restrictive in that
it requires us to derive each case from the immediately preceding case. This
restriction is not necessary, and removing it leads us to a more general statement
of the principal of mathematical induction which people often call the strong
principle of mathematical induction. It states:

In order to prove a statement about an integer n if we can

1. Prove our statement when n = b, and

2. Prove that the statements we get with n = b, n = b + 1, . . .n =
k − 1 imply the statement with n = k,

then our statement is true for all integers n ≥ b.

You will find some explicit examples of the use of the strong principle of mathe-
matical induction in Appendix B and will find some uses for it in this chapter.
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2.1.2 Binomial Coefficients and the Binomial Theorem

•72. When we studied the Pascal Equation and subsets in Chapter 1, it may
have appeared that there is no connection between the Pascal relation

(
n
k

)
=(

n−1
k−1

)
+
(

n−1
k

)
and the formula

(
n
k

)
= n!

k!(n−k)!
. Of course you probably realize

you can prove the Pascal relation by substituting the values the formula
gives you into the right-hand side of the equation and simplifying to give
you the left hand side. In fact, from the Pascal Relation and the facts that(

n
0

)
= 1 and

(
n
n

)
= 1, you can actually prove the formula for

(
n
k

)
by induction

on n. Do so.

73. Use the fact that (x + y)n = (x + y)(x + y)n−1 to give an inductive proof of
the binomial theorem.

74. Suppose that f is a function defined on the nonnegative integers such that
f(0) = 3 and f(n) = 2f(n − 1). Find a formula for f(n) and prove your
formula is correct.

+ 75. Prove the conjecture in Problem 13b for an arbitrary positive integer m
without appealing to the general product principle.

2.1.3 Inductive definition

You may have seen n! described by the two equations 0! = 1 and n! = n(n − 1)!
for n > 0. By the principle of mathematical induction we know that this pair of
equations defines n! for all nonnegative numbers n. For this reason we call such a
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definition an inductive definition. An inductive definition is sometimes called
a recursive definition. Often we can get very easy proofs of useful facts by using
inductive definitions.

76. An inductive definition of an for nonnegative n is given by a0 = 1 and
an = aan−1. (Notice the similarity to the inductive definition of n!.) We
remarked above that inductive definitions often give us easy proofs of useful
facts. Here we apply this inductive definition to prove two useful facts about
exponents that you have been using almost since you learned the meaning
of exponents.

(a) Use this definition to prove the rule of exponents am+n = aman for
nonnegative m and n.

(b) Use this definition to prove the rule of exponents amn = (am)n.

+ 77. Suppose that f is a function on the nonnegative integers such that f(0) = 0
and f(n) = n + f(n − 1). Prove that f(n) = n(n + 1)/2. Notice that this
gives a third proof that 1 + 2 + · · · + n = n(n + 1)/2, because this sum
satisfies the two conditions for f . (The sum has no terms and is thus 0
when n = 0.)

78. Give an inductive definition of the summation notation
∑n

i=1 ai. Use it and
the distributive law b(a + c) = ba + bc to prove the distributive law

b
n∑

i=1

ai =
n∑

i=1

bai.
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2.1.4 Proving the general product principle (Optional)

We stated the sum principle as

If we have a partition of a finite set S, then the size of S is the sum of
the sizes of the blocks of the partition.

In fact, the simplest form of the sum principle says that the size of the sum of two
disjoint (finite) sets is the sum of their sizes.

79. Prove the sum principle we stated for partitions of a set from the simplest
form of the sum principle.

We stated the partition form of the product principle as

If we have a partition of a finite set S into m blocks, each
of size n, then S has size mn.

In Problem 11 we gave a more general form of the product principle which can be
stated as

If we make a sequence of m choices for which

• there are k1 possible first choices, and

• for each way of making the first i − 1 choices, there are ki ways
to make the ith choice,
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then we may make our sequence of choices in k1 · k2 · · · · · km =
∏m

i=1 ki

ways.

In Problem 14 we stated the general product principle as follows.

Let S be a set of functions f from [n] to some set X.
Suppose that

• there are k1 choices for f(1), and

• for each choice of f(1), f(2), . . . f(i− 1), there are ki

choices for f(i).

Then the number of functions in the set S is k1k2 · · · kn.

You may use either way of stating the general product principle in the following
Problem.

+ 80. Prove the general form of the product principle from the partition form of
the product principle.

2.1.5 Double Induction and Ramsey Numbers

In Section 1.3.4 we gave two different descriptions of the Ramsey number R(m, n).
However, if you look carefully, you will see that we never showed that Ramsey
numbers actually exist; we merely described what they were and showed that
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R(3, 3) and R(3, 4) exist by computing them directly. As long as we can show
that there is some number R such that when there are R people together, there are
either m mutual acquaintances or n mutual strangers, this shows that the Ramsey
Number R(m, n) exists, because it is the smallest such R. Mathematical induction

allows us to show that one such R is
(

m+n−2
m−1

)
. The question is, what should we

induct on, m or n? In other words, do we use the fact that with
(

m+n−3
m−2

)
people

in a room there are at least m−1 mutual acquaintances or n mutual strangers, or
do we use the fact that with at least

(
m+n−3

n−2

)
people in a room there are at least

m mutual acquaintances or at least n− 1 mutual strangers? It turns out that we
use both. Thus we want to be able to simultaneously induct on m and n. One
way to do that is to use yet another variation on the principle of mathematical
induction, the Principle of Double Mathematical Induction. This principle (which
can be derived from one of our earlier ones) states that

In order to prove a statement about integers m and n, if
we can

1. Prove the statement when m = a and n = b, for fixed
integers a and b

2. Prove the statement when m = a and n > b and when
m > a and n = b (for the same fixed integers a and b),

3. Show that the truth of the statement for m = j and
n = k− 1 (with j ≥ a and k > j) and the truth of the
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statement for m = j − 1 and n = k (with j > a and
k ≥ b) imply the truth of the statement for m = j and
n = k,

then we can conclude the statement is true for all pairs of
integers m ≥ a and n ≥ b.

There is a strong version of double induction, and it is actually easier to state.
The principle of strong double mathematical induction says the following.

In order to prove a statement about integers m and n, if
we can

1. Prove the statement when m = a and n = b, for fixed
integers a and b

2. Show that the truth of the statement for values of m

and n with a + b ≤ m + n < k implies the truth of the
statement for m + n = k,

then we can conclude that the statement is true for all
pairs of integers m ≥ a and n ≥ b.
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·81. Prove that R(m,n) exists by proving that if there are
(

m+n−2
m−1

)
people in a

room, then there are either at least m mutual acquaintances or at least n
mutual strangers.

·82. Prove that R(m, n) ≤ R(m− 1, n) + R(m,n− 1).

·83. (a) What does the equation in Problem 82 tell us about R(4, 4)?

∗(b) Consider 17 people arranged in a circle such that each person is ac-
quainted with the first, second, fourth, and eighth person to the right
and the first, second, fourth, and eighth person to the left. Can you
find a set of four mutual acquaintances? Can you find a set of four
mutual strangers?

(c) What is R(4, 4)?

84. (Optional) Prove the inequality of Problem 81 by induction on m + n.

85. Use Stirling’s approximation (Problem 46) to convert the upper bound for
R(n, n) that you get from Problem 81 to a multiple of a power of an integer.

2.1.6 A bit of asymptotic combinatorics

Problem 85 gives us an upper bound on R(n, n). A very clever technique due
to Paul Erdös, called the “probabilistic method,” will give a lower bound. Since
both bounds are exponential in n, they show that R(n, n) grows exponentially
as n gets large. An analysis of what happens to a function of n as n gets large
is usually called an asymptotic analysis. The probabilistic method, at least in its
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simpler forms, can be expressed in terms of averages, so one does not need to
know the language of probability in order to understand it. We will apply it to
Ramsey numbers in the next problem. Combined with the result of Problem 85,
this problem will give us that

√
2

n
< R(n, n) < 22n−2, so that we know that the

Ramsey number R(n, n) grows exponentially with n.

86. Suppose we have two numbers n and m. We consider all possible ways to
color the edges of the complete graph Km with two colors, say red and blue.
For each coloring, we look at each n-element subset N of the vertex set M
of Km. Then N together with the edges of Km connecting vertices in N
forms a complete graph on n vertices. This graph, which we denote by KN ,
has its edges colored by the original coloring of the edges of Km.

(a) Why is it that, if there is no subset N ⊆ M so that all the edges of KN

are colored the same color for any coloring of the edges of Km, then
R(n, n) > m?

(b) To apply the probabilistic method, we are going to compute the av-
erage, over all colorings of Km, of the number of sets N ⊆ M with
|N | = n such that KN does have all its edges the same color. Explain
why it is that if the average is less than 1, then for some coloring there
is no set N such that KN has all its edges colored the same color. Why
does this mean that R(n, n) > m?

(c) We call a KN monochromatic for a coloring c of Km if the color c(e)
assigned to edge e is the same for every edge e of KN . Let us define
mono(c, N) to be 1 if N is monochromatic for c and to be 0 otherwise.
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Find a formula for the average number of monochromatic KNs over all
colorings of Km that involves a double sum first over all edge colorings
c of Km and then over all n-element subsets N ⊆ M of mono(c, N).

(d) Show that your formula for the average reduces to 2
(

m
n

)
· 2−(n

2)

(e) Explain why R(n, n) > m if
(

m
n

)
≤ 2(n

2)−1.

∗(f) Explain why R(n, n) >
n
√

n!2(n
2)−1.

(g) By using Stirling’s formula, show that if n is large enough, then R(n, n) >√
2n =

√
2

n
. (Here large enough means large enough for Stirling’s for-

mula to be reasonably accurate.)

2.2 Recurrence Relations

87. How is the number of subsets of an n-element set related to the number of
subsets of an (n− 1)-element set? Prove that you are correct.

88. Explain why it is that the number of bijections from an n-element set to an
n-element set is equal to n times the number of bijections from an (n− 1)-
element subset to an (n − 1)-element set. What does this have to do with
Problem 27?

We can summarize these observations as follows. If sn stands for the number of
subsets of an n-element set, then

sn = 2sn−1, (2.1)
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and if bn stands for the number of bijections from an n-element set to an n-element
set, then

bn = nbn−1. (2.2)

Equations 2.1 and 2.2 are examples of recurrence equations or recurrence relations.
A recurrence relation or simply a recurrence is an equation that expresses the
nth term of a sequence an in terms of values of ai for i < n. Thus Equations 2.1
and 2.2 are examples of recurrences.

2.2.1 Examples of recurrence relations

Other examples of recurrences are

an = an−1 + 7, (2.3)

an = 3an−1 + 2n, (2.4)

an = an−1 + 3an−2, and (2.5)

an = a1an−1 + a2an−2 + · · ·+ an−1a1. (2.6)

A solution to a recurrence relation is a sequence that satisfies the recurrence
relation. Thus a solution to Recurrence 2.1 is the sequence given by sn = 2n.
Note that sn = 17 · 2n and sn = −13 · 2n are also solutions to Recurrence 2.1.
What this shows is that a recurrence can have infinitely many solutions. In a given
problem, there is generally one solution that is of interest to us. For example, if we
are interested in the number of subsets of a set, then the solution to Recurrence 2.1
that we care about is sn = 2n. Notice this is the only solution we have mentioned
that satisfies s0 = 1.
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89. Show that there is only one solution to Recurrence 2.1 that satisfies s0 = 1.

90. A first-order recurrence relation is one which expresses an in terms of an−1

and other functions of n, but which does not include any of the terms ai for
i < n− 1 in the equation.

(a) Which of the recurrences 2.1 through 2.6 are first order recurrences?

(b) Show that there is one and only one sequence an that is defined for
every nonnegative integer n, satisfies a given first order recurrence,
and satisfies a0 = a for some fixed constant a.

Figure 2.1: The Towers of Hanoi Puzzle

91. The “Towers of Hanoi” puzzle has three rods rising from a rectangular base
with n rings of different sizes stacked in decreasing order of size on one rod.
A legal move consists of moving a ring from one rod to another so that it
does not land on top of a smaller ring. If mn is the number of moves required
to move all the rings from the initial rod to another rod that you choose,
give a recurrence for mn.
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92. We draw n mutually intersecting circles in the plane so that each one crosses
each other one exactly twice and no three intersect in the same point. (As
examples, think of Venn diagrams with two or three mutually intersecting
sets.) Find a recurrence for the number rn of regions into which the plane
is divided by n circles. (One circle divides the plane into two regions, the
inside and the outside.) Find the number of regions with n circles. For
what values of n can you draw a Venn diagram showing all the possible
intersections of n sets using circles to represent each of the sets?

2.2.2 Arithmetic Series (optional)

93. A child puts away two dollars from her allowance each week. If she starts
with twenty dollars, give a recurrence for the amount an of money she has
after n weeks and find out how much money she has at the end of n weeks.

94. A sequence that satisfies a recurrence of the form an = an−1 + c is called an
arithmetic progression. Find a formula in terms of the initial value a0 and
the common difference c for the term an in an arithmetic progression and
prove you are right.

95. A person who is earning $50,000 per year gets a raise of $3000 a year for n
years in a row. Find a recurrence for the amount an of money the person
earns over n + 1 years. What is the total amount of money that the person
earns over a period of n + 1 years? (In n + 1 years, there are n raises.)

96. An arithmetic series is a sequence sn equal to the sum of the terms a0
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through an of an arithmetic progression. Find a recurrence for the sum sn

of an arithmetic progression with initial value a0 and common difference c
(using the language of Problem 94). Find a formula for general term sn of
an arithmetic series.

2.2.3 First order linear recurrences

Recurrences such as those in Equations 2.1 through 2.5 are called linear recur-
rences, as are the recurrences of Problems 91 and 92. A linear recurrence is one
in which an is expressed as a sum of functions of n times values of (some of the
terms) ai for i < n plus (perhaps) another function (called the driving function)
of n. A linear equation is called homogeneous if the driving function is zero (or, in
other words, there is no driving function). It is called a constant coefficient linear
recurrence if the functions that are multiplied by the ai terms are all constants
(but the driving function need not be constant).

97. Classify the recurrences in Equations 2.1 through 2.5 and Problems 91 and
92 according to whether or not they are constant coefficient, and whether
or not they are homogeneous.

•98. As you can see from Problem 97 some interesting sequences satisfy first
order linear recurrences, including many that have constant coefficients, have
constant driving term, or are homogeneous. Find a formula in terms of b,
d, a0 and n for the general term an of a sequence that satisfies a constant
coefficient first order linear recurrence an = ban−1 + d and prove you are
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correct. If your formula involves a summation, try to replace the summation
by a more compact expression.

2.2.4 Geometric Series

A sequence that satisfies a recurrence of the form an = ban−1 is called a geometric
progression. Thus the sequence satisfying Equation 2.1, the recurrence for the
number of subsets of an n-element set, is an example of a geometric progression.
From your solution to Problem 98, a geometric progression has the form an = a0b

n.
In your solution to Problem 98 you may have had to deal with the sum of a
geometric progression in just slightly different notation, namely

∑n−1
i=0 dbi. A sum

of this form is called a (finite) geometric series.

99. Do this problem only if your final answer (so far) to Problem 98 contained
the sum

∑n−1
i=0 dbi.

(a) Expand (1−x)(1+x). Expand (1−x)(1+x+x2). Expand (1−x)(1+
x + x2 + x3).

(b) What do you expect (1− b)
∑n−1

i=0 dbi to be? What formula for
∑n−1

i=0 dbi

does this give you? Prove that you are correct.

In Problem 98 and perhaps 99 you proved an important theorem. While the
theorem does not have a name, the formula it states is called the sum of a finite
geometric series.
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Theorem 2 If b 6= 1 and an = ban−1 + d, then an = a0b
n + d

1− bn

1− b
. If b = 1,

then an = a0 + nd.

Corollary 1 If b 6= 1, then
n−1∑
i=0

bi =
1− bn

1− b
. If b = 1,

n−1∑
i=0

bi = n.

2.3 Graphs and Trees

2.3.1 Undirected graphs

In Section 1.3.4 we introduced the idea of a directed graph. Graphs consist of
vertices and edges. We describe vertices and edges in much the same way as we
describe points and lines in geometry: we don’t really say what vertices and edges
are, but we say what they do. We just don’t have a complicated axiom system
the way we do in geometry. A graph consists of a set V called a vertex set and a
set E called an edge set. Each member of V is called a vertex and each member of
E is called an edge. Associated with each edge are two (not necessarily different)
vertices called its endpoints. We draw pictures of graphs by drawing points to
represent the vertices and line segments (curved if we choose) whose endpoints are
at vertices to represent the edges. In Figure 2.2 we show three pictures of graphs.
Each grey circle in the figure represents a vertex; each line segment represents an
edge. You will note that we labelled the vertices; these labels are names we chose
to give the vertices. We can choose names or not as we please. The third graph
also shows that it is possible to have an edge that connects a vertex (like the one
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Figure 2.2: Three different graphs
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labelled y) to itself or it is possible to have two or more edges (like those between
vertices v and y) between two vertices. The degree of a vertex is the number of
times it appears as the endpoint of edges; thus the degree of y in the third graph
in the figure is four.

◦100. In the graph on the left in Figure 2.2, what is the degree of each vertex?

◦101. For each graph in Figure 2.2 is the number of vertices of odd degree even or
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odd?

·102. The sum of the degrees of the vertices of a (finite) graph is related in a
natural way to the number of edges.

(a) What is the relationship?

(b) Find a proof that what you say is correct that uses induction on the
number of edges.

(c) Find a proof that what you say is correct which uses induction on the
number of vertices.

(d) Find a proof that what you say is correct that does not use induction.

·103. What can you say about the number of vertices of odd degree in a graph?

2.3.2 Walks and paths in graphs

A walk in a graph is an alternating sequence v0e1v1 . . . eivi of vertices and edges
such that edge ei connects vertices vi−1 and vi. A graph is called connected if, for
any pair of vertices, there is a walk starting at one and ending at the other.

104. Which of the graphs in Figure 2.2 is connected?

◦105. A path in a graph is a walk with no repeated vertices. Find the longest path
you can in the third graph of Figure 2.2.
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◦106. A cycle in a graph is a walk (with at least one edge) whose first and last
vertex are equal but which has no other repeated vertices or edges. Which
graphs in Figure 2.2 have cycles? What is the largest number of edges in
a cycle in the second graph in Figure 2.2? What is the smallest number of
edges in a cycle in the third graph in Figure 2.2?

◦107. A connected graph with no cycles is called a tree. Which graphs, if any, in
Figure 2.2 are trees?

2.3.3 Counting vertices, edges, and paths in trees

·108. Draw some trees and on the basis of your examples, make a conjecture about
the relationship between the number of vertices and edges in a tree. Prove
your conjecture.

·109. What is the minimum number of vertices of degree one in a finite tree?
What is it if the number of vertices is bigger than one? Prove that you are
correct. See if you can find (and give) more than one proof.

·110. In a tree on any number of vertices, given two vertices, how many paths can
you find between them? Prove that you are correct.

111. How many trees are there on the vertex set {1, 2}? On the vertex set
{1, 2, 3}? When we label the vertices of our tree, we consider the tree which
has edges between vertices 1 and 2 and between vertices 2 and 3 different
from the tree that has edges between vertices 1 and 3 and between 2 and 3.
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Figure 2.3: The three labelled trees on three vertices
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See Figure 2.3. How many (labelled) trees are there on four vertices? How
many (labelled) trees are there with five vertices? You don’t have a lot of
data to guess from, but try to guess a formula for the number of labelled
trees with vertex set {1, 2, · · · , n}.

We are now going to introduce a method to prove the formula you guessed.
Given a tree with two or more vertices, labelled with positive integers, we define
a sequence b1, b2, . . . of integers inductively as follows: If the tree has two vertices,
the sequence consists of one entry, namely the label of the vertex with the larger
label. Otherwise, let a1 be the lowest numbered vertex of degree 1 in the tree.
Let b1 be the label of the unique vertex in the tree adjacent to a1 and write down
b1. For example, in the first graph in Figure 2.2, a1 is 1 and b1 is 2. Given a1

through ai−1, let ai be the lowest numbered vertex of degree 1 in the tree you
get by deleting a1 through ai−1 and let bi be the unique vertex in this new tree
adjacent to ai. For example, in the first graph in Figure 2.2, a2 = 2 and b2 = 3.
Then a3 = 5 and b3 = 4. We use b to stand for the sequence of bis we get in this
way. In the tree (the first graph) in Figure 2.2, the sequence b is 2344378. (If you
are unfamiliar with inductive (recursive) definition, you might want to write down
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some other labelled trees on eight vertices and construct the sequence of bis.)

112. (a) How long will the sequence of bis be if it is computed from a tree with
n vertices (labelled with 1 through n)?

(b) What can you say about the last member of the sequence of bis?

(c) Can you tell from the sequence of bis what a1 is?

(d) Find a bijection between labelled trees and something you can “count”
that will tell you how many labelled trees there are on n labelled ver-
tices.

The sequence b1, b2, . . . , bn−2 in Problem 112 is called a Prüfer coding or Prüfer
code for the tree. Thus the Prüfer code for the tree of Figure 2.2 is 234437. Notice
that we do not include the term bn−1 in the Prüfer code because we know it is n.
There is a good bit of interesting information encoded into the Prüfer code for a
tree.

113. What can you say about the vertices of degree one from thePrüfer code for
a tree labeled with the integers from 1 to n?

114. What can you say about the Prüfer code for a tree with exactly two vertices
of degree 1 (and perhaps some vertices with other degrees as well)? Does
this characterize such trees?

115. What can you determine about the degree of the vertex labelled i from the
Prüfer code of the tree?
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116. What is the number of (labelled) trees on n vertices with three vertices of
degree 1? (Assume they are labelled with the integers 1 through n.) This
problem will appear again in the next chapter after some material that will
make it easier.

2.3.4 Spanning trees

Many of the applications of trees arise from trying to find an efficient way to
connect all the vertices of a graph. For example, in a telephone network, at any
given time we have a certain number of wires (or microwave channels, or cellular
channels) available for use. These wires or channels go from a specific place to a
specific place. Thus the wires or channels may be thought of as edges of a graph
and the places the wires connect may be thought of as vertices of that graph. A
tree whose edges are some of the edges of a graph G and whose vertices are all of
the vertices of the graph G is called a spanning tree of G. A spanning tree for
a telephone network will give us a way to route calls between any two vertices in
the network. In Figure 2.4 we show a graph and all its spanning trees.

117. Show that every connected graph has a spanning tree. It is possible to find
a proof that starts with the graph and works “down” towards the spanning
tree and to find a proof that starts with just the vertices and works “up”
towards the spanning tree. Can you find both kinds of proof?
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Figure 2.4: A graph and all its spanning trees.

2.3.5 Minimum cost spanning trees

Our motivation for talking about spanning trees was the idea of finding a minimum
number of edges we need to connect all the edges of a communication network
together. In many cases edges of a communication network come with costs
associated with them. For example, one cell-phone operator charges another one
when a customer of the first uses an antenna of the other. Suppose a company has
offices in a number of cities and wants to put together a communication network
connecting its various locations with high-speed computer communications, but
to do so at minimum cost. Then it wants to take a graph whose vertices are the
cities in which it has offices and whose edges represent possible communications
lines between the cities. Of course there will not necessarily be lines between each
pair of cities, and the company will not want to pay for a line connecting city
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i and city j if it can already connect them indirectly by using other lines it has
chosen. Thus it will want to choose a spanning tree of minimum cost among all
spanning trees of the communications graph. For reasons of this application, if
we have a graph with numbers assigned to its edges, the sum of the numbers on
the edges of a spanning tree of G will be called the cost of the spanning tree.

118. Describe a method (or better, two methods different in at least one aspect)
for finding a spanning tree of minimum cost in a graph whose edges are
labelled with costs, the cost on an edge being the cost for including that
edge in a spanning tree. Prove that your method(s) work.

The method you used in Problem 118 is called a greedy method, because each
time you made a choice of an edge, you chose the least costly edge available to
you.

2.3.6 The deletion/contraction recurrence for spanning trees

There are two operations on graphs that we can apply to get a recurrence (though
a more general kind than those we have studied for sequences) which will let us
compute the number of spanning trees of a graph. The operations each apply to
an edge e of a graph G. The first is called deletion; we delete the edge e from the
graph by removing it from the edge set. Figure 2.5 shows how we can delete edges
from a graph to get a spanning tree.

The second operation is called contraction. Contractions of three different
edges in the same graph are shown in Figure 2.6. Intuitively, we contract an edge
by shrinking it in length until its endpoints coincide; we let the rest of the graph
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Figure 2.5: Deleting two appropriate edges from this graph gives a spanning tree.

“go along for the ride.” To be more precise, we contract the edge e with endpoints
v and w as follows:

1. remove all edges having either v or w or both as an endpoint from the edge
set,

2. remove v and w from the vertex set,

3. add a new vertex E to the vertex set,

4. add an edge from E to each remaining vertex that used to be an endpoint
of an edge whose other endpoint was v or w, and add an edge from E to E
for any edge other than e whose endpoints were in the set {v, w}.

We use G−e (read as G minus e) to stand for the result of deleting e from G, and
we use G/e (read as G contract e) to stand for the result of contracting e from G.

·119. (a) How do the number of spanning trees of G not containing the edge
e and the number of spanning trees of G containing e relate to the
number of spanning trees of G− e and G/e?
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Figure 2.6: The results of contracting three different edges in a graph.
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(b) Use #(G) to stand for the number of spanning trees of G (so that,
for example, #(G/e) stands for the number of spanning trees of G/e).
Find an expression for #(G) in terms of #(G/e) and #(G − e). This
expression is called the deletion-contraction recurrence.

(c) Use the recurrence of the previous part to compute the number of
spanning trees of the graph in Figure 2.7.
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Figure 2.7: A graph.
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2.3.7 Shortest paths in graphs

Suppose that a company has a main office in one city and regional offices in
other cities. Most of the communication in the company is between the main
office and the regional offices, so the company wants to find a spanning tree that
minimizes not the total cost of all the edges, but rather the cost of communication
between the main office and each of the regional offices. It is not clear that such
a spanning tree even exists. This problem is a special case of the following. We
have a connected graph with nonnegative numbers assigned to its edges. (In this
situation these numbers are often called weights.) The (weighted) length of a
path in the graph is the sum of the weights of its edges. The distance between
two vertices is the least (weighted) length of any path between the two vertices.
Given a vertex v, we would like to know the distance between v and each other
vertex, and we would like to know if there is a spanning tree in G such that the
length of the path in the spanning tree from v to each vertex x is the distance
from v to x in G.



2.3. GRAPHS AND TREES 81

120. Show that the following algorithm (known as Dijkstra’s algorithm) applied
to a weighted graph whose vertices are labelled 1 to n gives, for each i, the
distance from vertex 1 to i as d(i).

(a) Let d(1) = 0. Let d(i) = ∞ for all other i. Let v(1)=1. Let v(j) = 0
for all other j. For each i and j, let w(i, j) be the minimum weight of
an edge between i and j, or ∞ if there are no such edges. Let k = 1.
Let t = 1.

(b) For each i, if d(i) > d(k) + w(k, i) let d(i) = d(k) + w(k, i).

(c) Among those i with v(i) = 0, choose one with d(i) a minimum, and let
k = i. Increase t by 1. Let v(i) = 1.

(d) Repeat the previous two steps until t = n.

121. Is there a spanning tree such that the distance from vertex 1 to vertex i given
by the algorithm in Problem 120 is the distance from vertex 1 to vertex i in
the tree (using the same weights on the edges, of course)?
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2.4 Supplementary Problems

1. Use the inductive definition of an to prove that (ab)n = anbn for all nonneg-
ative integers n.

2. Give an inductive definition of
n⋃

i=1

Si and use it and the two set distributive

law to prove the distributive law A ∩
n⋃

i=1

Si =
n⋃

i=1

A ∩ Si.

3. A hydrocarbon molecule is a molecule whose only atoms are either carbon
atoms or hydrogen atoms. In a simple molecular model of a hydrocarbon, a
carbon atom will bond to exactly four other atoms and hydrogen atom will
bond to exactly one other atom. Such a model is shown in Figure 2.8. We

Figure 2.8: A model of a butane molecule
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represent a hydrocarbon compound with a graph whose vertices are labelled
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with C’s and H’s so that each C vertex has degree four and each H vertex
has degree one. A hydrocarbon is called an “alkane” if the graph is a tree.
Common examples are methane (natural gas), butane (one version of which
is shown in Figure 2.8), propane, hexane (ordinary gasoline), octane (to
make gasoline burn more slowly), etc.

(a) How many vertices are labelled H in the graph of an alkane with exactly
n vertices labelled C?

(b) An alkane is called butane if it has four carbon atoms. Why do we say
one version of butane is shown in Figure 2.8?

4. (a) Give a recurrence for the number of ways to divide 2n people into sets
of two for tennis games. (Don’t worry about who serves first.)

(b) Give a recurrence for the number of ways to divide 2n people into sets
of two for tennis games and to determine who serves first.)

5. Give a recurrence for the number of ways to divide 4n people into sets of
four for games of bridge. (Don’t worry about how they sit around the bridge
table or who is the first dealer.)

6. Use induction to prove your result in Supplementary Problem 2 at the end
of Chapter 1.

7. Give an inductive definition of the product notation
n∏

i=1

ai.
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8. Using the fact that (ab)k = akbk, use your inductive definition of product

notation in Problem 7 to prove that

(
n∏

i=1

ai

)k

=
n∏

i=1

ak
i .

∗9. How many labelled trees on n vertices have exactly four vertices of degree
1? (This problem also appears in the next chapter since some ideas in that
chapter make it more straightforward.)

∗10. The degree sequence of a graph is a list of the degrees of the vertices in
nonincreasing order. For example the degree sequence of the first graph in
Figure 2.4 is (4, 3, 2, 2, 1). For a graph with vertices labelled 1 through n, the
ordered degree sequence of the graph is the sequence d1, d2, . . . dn in which
di is the degree of vertex i. For example the ordered degree sequence of the
first graph in Figure 2.2 is (1, 2, 3, 3, 1, 1, 2, 1).

(a) How many labelled trees are there on n vertices with ordered degree
sequence d1, d2, . . . dn? (This problem appears again in the next chapter
since some ideas in that chapter make it more straightforward.)

∗(b) How many labelled trees are there on n vertices with with the degree
sequence in which the degree d appears id times?



Chapter 3

Distribution Problems

3.1 The Idea of a Distribution

Many of the problems we solved in Chapter 1 may be thought of as problems
of distributing objects (such as pieces of fruit or ping-pong balls) to recipients
(such as children). Some of the ways of viewing counting problems as distribution
problems are somewhat indirect. For example, in Problem 37 you probably noticed
that the number of ways to pass out k ping-pong balls to n children so that no
child gets more than one is the number of ways that we may choose a k-element
subset of an n-element set. We think of the children as recipients and objects we
are distributing as the identical ping-pong balls, distributed so that each recipient
gets at most one ball. Those children who receive an object are in our set. It
is helpful to have more than one way to think of solutions to problems. In the

85
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case of distribution problems, another popular model for distributions is to think
of putting balls in boxes rather than distributing objects to recipients. Passing
out identical objects is modeled by putting identical balls into boxes. Passing out
distinct objects is modeled by putting distinct balls into boxes.

3.1.1 The twenty-fold way

When we are passing out objects to recipients, we may think of the objects as
being either identical or distinct. We may also think of the recipients as being
either identical (as in the case of putting fruit into plastic bags in the grocery
store) or distinct (as in the case of passing fruit out to children). We may restrict
the distributions to those that give at least one object to each recipient, or those
that give exactly one object to each recipient, or those that give at most one object
to each recipient, or we may have no such restrictions. If the objects are distinct,
it may be that the order in which the objects are received is relevant (think about
putting books onto the shelves in a bookcase) or that the order in which the
objects are received is irrelevant (think about dropping a handful of candy into
a child’s trick or treat bag). If we ignore the possibility that the order in which
objects are received matters, we have created 2 · 2 · 4 = 16 distribution problems.
In the cases where a recipient can receive more than one distinct object, we also
have four more problems when the order objects are received matters. Thus we
have 20 possible distribution problems.

We describe these problems in Table 3.1. Since there are twenty possible distri-
bution problems, we call the table the “Twenty-fold Way,” adapting terminology
suggested by Joel Spencer for a more restricted class of distribution problems. In
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the first column of the table we state whether the objects are distinct (like people)
or identical (like ping-pong balls) and then give any conditions on how the objects
may be received. The conditions we consider are whether each recipient gets at
most one object, whether each recipient gets at least one object, whether each
recipient gets exactly one object, and whether the order in which the objects are
received matters. In the second column we give the solution to the problem and
the name of the mathematical model for this kind of distribution problem when
the recipients are distinct, and in the third column we give the same informa-
tion when the recipients are identical. We use question marks as the answers to
problems we have not yet solved and models we have not yet studied. We give
explicit answers to problems we solved in Chapter 1 and problems whose answers
are immediate. The goal of this chapter is to develop methods that will allow us
to fill in the table with formulas or at least quantities we know how to compute,
and we will give a completed table at the end of the chapter. We will now justify
the answers that are not question marks and replace some question marks with
answers as we cover relevant material.

If we pass out k distinct objects (say pieces of fruit) to n distinct recipients
(say children), we are saying for each object to which recipient it goes. Thus
we are defining a function from the set of objects to the recipients. We saw the
following theorem in Problem 13b.

Theorem 3 There are nk functions from a k-element set to an n-element set.

We proved it in one way in Problem 13b and in another way in Problem 75. If we
pass out k distinct objects (say pieces of fruit) to n indistinguishable recipients
(say identical paper bags) then we are dividing the objects up into disjoint sets;
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that is, we are forming a partition of the objects into some number, certainly no
more than the number k of objects, of parts. Later in this chapter (and again in
the next chapter) we shall discuss how to compute the number of partitions of a
k-element set into n parts. This explains the entries in row one of our table.

If we pass out k distinct objects to n recipients so that each gets at most one,
we still determine a function, but the function must be one-to-one. The number
of one-to-one functions from a k-element set to an n element set is the same as the
number of one-to-one functions from the set [k] = {1, 2, . . . , k} to an n-element
set. In Problem 20 we proved the following theorem.

Theorem 4 If 0 ≤ k ≤ n, then the number of k-element permutations of an
n-element set is

nk = n(n− 1) · · · (n− k + 1) = n!/(n− k)!.

If k > n there are no one-to-one functions from a k element set to an n element
set, so we define nk to be zero in this case. Notice that this is what the indicated
product in the middle term of our formula gives us. If we are supposed to distribute
k distinct objects to n identical recipients so that each gets at most one, we cannot
do so if k > n, so there are 0 ways to do so. On the other hand, if k ≤ n, then it
doesn’t matter which recipient gets which object, so there is only one way to do
so. This explains the entries in row two of our table.

If we distribute k distinct objects to n distinct recipients so that each recipient
gets at least one, then we are counting functions again, but this time functions
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from a k-element set onto an n-element set. At present we do not know how to
compute the number of such functions, but we will discuss how to do so later in
this chapter and in the next chapter. If we distribute k identical objects to n
recipients, we are again simply partitioning the objects, but the condition that
each recipient gets at least one means that we are partitioning the objects into
exactly n blocks. Again, we will discuss how to compute the number of ways of
partitioning a set of k objects into n blocks later in this chapter. This explains
the entries in row three of our table.

If we pass out k distinct objects to n recipients so that each gets exactly one,
then k = n and the function that our distribution gives us is a bijection. The
number of bijections from an n-element set to an n-element set is n! by Theorem
4. If we pass out k distinct objects to n identical recipients so that each gets
exactly 1, then in this case it doesn’t matter which recipient gets which object,
so the number of ways to do so is 1 if k = n. If k 6= n, then the number of such
distributions is zero. This explains the entries in row four of our table.

We now jump to row eight of our table. We saw in Problem 37 that the number
of ways to pass out k identical ping-pong balls to n children is simply the number
of k-element subsets of an n-element set. In Problem 39d we proved the following
theorem.

Theorem 5 If 0 ≤ k ≤ n, the number of k-element subsets of an n-element set
is given by (

n

k

)
=

nk

k!
=

n!

k!(n− k)!
.

We define
(

n
k

)
to be 0 if k > n, because then there are no k-element subsets of
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an n-element set. Notice that this is what the middle term of the formula in the
theorem gives us. This explains the entries of row 8 of our table. For now we
jump over row 9.

In row 10 of our table, if we are passing out k identical objects to n recipients
so that each gets exactly one, it doesn’t matter whether the recipients are identical
or not; there is only one way to pass out the objects if k = n and otherwise it
is impossible to make the distribution, so there are no ways of distributing the
objects. This explains the entries of row 10 of our table. Several other rows of
our table can be computed using the methods of Chapter 1.

3.1.2 Ordered functions

•122. Suppose we wish to place k distinct books onto the shelves of a bookcase
with n shelves. For simplicity, assume for now that all of the books would
fit on any of the shelves. Also, let’s imagine that once we are done putting
books on the shelves, we push the books on a shelf as far to the left as we
can, so that we are only thinking about how the books sit relative to each
other, not about the exact places where we put the books. Since the books
are distinct, we can think of the first book, the second book and so on.

(a) How many places are there where we can place the first book?

(b) When we place the second book, if we decide to place it on the shelf
that already has a book, does it matter if we place it to the left or right
of the book that is already there?
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(c) How many places are there where we can place the second book? nce
we have i− 1 books placed, if we want to place book i on a shelf that
already has some books, is sliding it in to the left of all the books
already there different from placing it to the right of all the books
already there or between two books already there?

(d) In how many ways may we place the ith book into the bookcase?

(e) In how many ways may we place all the books?

123. Suppose we wish to place the books in Problem 122e (satisfying the assump-
tions we made there) so that each shelf gets at least one book. Now in how
many ways may we place the books?

The assignment of which books go to which shelves of a bookcase is simply a
function from the books to the shelves. But a function doesn’t determine which
book sits to the left of which others on the shelf, and this information is part of
how the books are arranged on the shelves. In other words, the order in which
the shelves receive their books matters. Our function must thus assign an ordered
list of books to each shelf. We will call such a function an ordered function. More
precisely, an ordered function from a set S to a set T is a function that assigns
an (ordered) list of elements of S to some, but not necessarily all, elements of T
in such a way that each element of S appears on one and only one of the lists.1

(Notice that although it is not the usual definition of a function from S to T ,

1The phrase ordered function is not a standard one, because there is as yet no standard name
for the result of an ordered distribution problem.
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a function can be described as an assignment of subsets of S to some, but not
necessarily all, elements of T so that each element of S is in one and only one of
these subsets.) Thus the number of ways to place the books into the bookcase is
the entry in the middle column of row 5 of our table. If in addition we require each
shelf to get at least one book, we are discussing the entry in the middle column
of row 6 of our table. An ordered onto function is one which assigns a list to each
element of T .

In Problem 122e you showed that the number of ordered functions from a k-

element set to an n-element set is
k∏

i=1

(n + i− 1). This product occurs frequently

enough that it has a name; it is called the kth rising factorial power of n and
is denoted by nk. It is read as “n to the k rising.” (This notation is due to
Don Knuth, who also suggested the notation for falling factorial powers.) We can
summarize with a theorem that adds two more formulas for the number of ordered
functions.

Theorem 6 The number of ordered functions from a k-element set to an n-
element set is

nk =
k∏

i=1

(n + i− 1) =
(n + k − 1)!

(n− 1)!
= (n + k − 1)k.

Ordered functions explain the entries in the middle column of rows 5 and 6 of
our table of distribution problems.
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3.1.3 Multisets

In the middle column of row 7 of our table, we are asking for the number of ways
to distribute k identical objects (say ping-pong balls) to n distinct recipients (say
children).

•124. In how many ways may we distribute k identical books on the shelves of a
bookcase with n shelves, assuming that any shelf can hold all the books?

•125. A multiset chosen from a set S may be thought of as a subset with repeated
elements allowed. To determine a multiset we must say how many times
(including, perhaps, zero) each member of S appears in the multiset. The
number of times an element appears is called its multiplicity. For example
if we choose three identical red marbles, six identical blue marbles and four
identical green marbles, from a bag of red, blue, green, white and yellow
marbles then the multiplicity of a red marble in our multiset is three, while
the multiplicity of a yellow marble is zero. The size of a multiset is sum of
the multiplicities of its elements. For example if we choose three identical
red marbles, six identical blue marbles and four identical green marbles, then
the size of our multiset of marbles is 13. What is the number of multisets
of size k that can be chosen from an n-element set?

126. Your answer in the previous problem should be expressible as a binomial co-
efficient. Since a binomial coefficient counts subsets, find a bijection between
subsets of something and multisets chosen from a set S.
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127. How many solutions are there in nonnegative integers to the equation x1 +
x2 + · · ·+ xm = r, where m and r are constants?

128. In how many ways can we distribute k identical objects to n distinct recip-
ients so that each recipient gets at least m?

Multisets explain the entry in the middle column of row 7 of our table of
distribution problems.

3.1.4 Compositions of integers

·129. In how many ways may we put k identical books onto n shelves if each shelf
must get at least one book?

·130. A composition of the integer k into n parts is a list of n positive integers
that add to k. How many compositions are there of an integer k into n
parts?

131. Your answer in Problem 130 can be expressed as a binomial coefficient. This
means it should be possible to interpret a composition as a subset of some
set. Find a bijection between compositions of k into n parts and certain
subsets of some set. Explain explicitly how to get the composition from the
subset and the subset from the composition.

·132. Explain the connection between compositions of k into n parts and the prob-
lem of distributing k identical objects to n recipients so that each recipient
gets at least one.
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The sequence of problems you just completed should explain the entry in the
middle column of row 9 of our table of distribution problems.

3.1.5 Broken permutations and Lah numbers

·133. In how many ways may we stack k distinct books into n identical boxes so
that there is a stack in every box?

We can think of stacking books into identical boxes as partitioning the books
and then ordering the blocks of the partition. This turns out not to be a useful
computational way of visualizing the problem because the number of ways to order
the books in the various stacks depends on the sizes of the stacks and not just
the number of stacks. However, instead of dividing a set up into non-overlapping
parts, we may think of dividing a permutation (thought of as a list) of our k objects
up into n ordered blocks. We will say that a set of ordered lists of elements of
a set S is a broken permutation of S if each element of S is in one and only
one of these lists.2 The number of broken permutations of a k-element set with n
blocks is denoted by L(k, n). The number L(k, n) is called a Lah Number (this is

standard) and, from our solution to Problem 133, is equal to k!
(

k−1
n−1

)
/n!.

The Lah numbers are the solution to the question “In how many ways may
we distribute k distinct objects to n identical recipients if order matters and each
recipient must get at least one?” Thus they give the entry in row 6 and column 3
of our table. The entry in row 5 and column 3 of our table will be the number of

2The phrase broken permutation is not standard, because there is no standard name for the
solution to this kind of distribution problem.
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broken permutations with less than or equal to n parts. Thus it is a sum of Lah
numbers.

We have seen that ordered functions and broken permutations explain the
entries in rows 5 and 6 of our table.

In the next two sections we will give ways of computing the remaining entries.

3.2 Partitions and Stirling Numbers

We have seen how the number of partitions of a set of k objects into n blocks
corresponds to the distribution of k distinct objects to n identical recipients.
While there is a formula that we shall eventually learn for this number, it requires
more machinery than we now have available. However there is a good method for
computing this number that is similar to Pascal’s equation. Now that we have
studied recurrences in one variable, we will point out that Pascal’s equation is in
fact a recurrence in two variables; that is, it lets us compute

(
n
k

)
in terms of values

of
(

m
i

)
in which either m < n or i < k or both. It was the fact that we had such

a recurrence and knew
(

n
0

)
and

(
n
n

)
that let us create Pascal’s triangle.

3.2.1 Stirling Numbers of the second kind

We use the notation S(k, n) to stand for the number of partitions of a k element
set with n blocks. For historical reasons, S(k, n) is called a Stirling Number of the
second kind.
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•134. In a partition of the set [k], the number k is either in a block by itself, or it
is not. How does the number of partitions of [k] with n parts in which k is
in a block with other elements of [k] compare to the number of partitions of
[k− 1] into n blocks? Find a two-variable recurrence for S(k, n), valid for k
and n larger than one.

135. What is S(k, 1)? What is S(k, k)? Create a table of values of S(k, n) for
k between 1 and 5 and n between 1 and k. This table is sometimes called
Stirling’s Triangle (of the second kind). How would you define S(k, 0) and
S(0, n)? (Note that the previous question includes S(0, 0).) How would you
define S(k, n) for n > k? Now for what values of k and n is your two variable
recurrence valid?

136. Extend Stirling’s triangle enough to allow you to answer the following ques-
tion and answer it. (Don’t fill in the rows all the way; the work becomes
quite tedious if you do. Only fill in what you need to answer this ques-
tion.) A caterer is preparing three bag lunches for hikers. The caterer has
nine different sandwiches. In how many ways can these nine sandwiches be
distributed into three identical lunch bags so that each bag gets at least
one?

137. The question in Problem 136 naturally suggests a more realistic question; in
how many ways may the caterer distribute the nine sandwiches into three
identical bags so that each bag gets exactly three? Answer this question.

·138. What is S(k, k − 1)?
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•139. In how many ways can we partition k (distinct) items into n blocks so
that we have ki blocks of size i for each i? (Notice that

∑k
i=1 ki = n and∑k

i=1 iki = k.) The sequence k1, k2, . . . , kn is called the type vector of the
partition.

+ 140. Describe how to compute S(n, k) in terms of quantities given by the formula
you found in Problem 139.

141. Find a recurrence for the Lah numbers L(k, n) similar to the one in Problem
134.

·142. (Relevant in Appendix C.) The total number of partitions of a k-element
set is denoted by B(k) and is called the k-th Bell number. Thus B(1) = 1
and B(2) = 2.

(a) Show, by explicitly exhibiting the partitions, that B(3) = 5.

(b) Find a recurrence that expresses B(k) in terms of B(n) for n < k and
prove your formula correct in as many ways as you can.

(c) Find B(k) for k = 4, 5, 6.

3.2.2 Stirling Numbers and onto functions

◦143. Given a function f from a k-element set K to an n-element set, we can define
a partition of K by putting x and y in the same block of the partition if and
only if f(x) = f(y). How many blocks does the partition have if f is onto?
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How is the number of functions from a k-element set onto an n-element set
related to a Stirling number? Be as precise in your answer as you can.

144. How many labeled trees on n vertices have exactly 3 vertices of degree one?
Note that this problem has appeared before in Chapter 2.

•145. Each function from a k-element set K to an n-element set N is a function
from K onto some subset of N . If J is a subset of N of size j, you know how
to compute the number of functions that map onto J in terms of Stirling
numbers. Suppose you add the number of functions mapping onto J over all
possible subsets J of N . What simple value should this sum equal? Write
the equation this gives you.

◦146. In how many ways can the sandwiches of Problem 136 be placed into three
distinct bags so that each bag gets at least one?

◦147. In how many ways can the sandwiches of Problem 137 be placed into distinct
bags so that each bag gets exactly three?

•148. In how many ways may we label the elements of a k element set with n
distinct labels (numbered 1 through n) so that label i is used ji times? ( If
we think of the labels as y1, y2, . . . , yn, then we can rephrase this question
as follows. How many functions are there from a k-element set K to a set
N = {y1, y2, . . . yn} so that each yi is the image of ji elements of K?) This
number is called a multinomial coefficient and denoted by(

k

j1, j2, . . . , jn

)
.
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149. Explain how to compute the number of functions from a k-element set K to
an n-element set N by using multinomial coefficients.

150. Explain how to compute the number of functions from a k-element set K
onto an n-element set N by using multinomial coefficients.

•151. What do multinomial coefficients have to do with expanding the kth power
of a multinomial x1 + x2 + · · · + xn? This result is called the multinomial
theorem.

3.2.3 Stirling Numbers and bases for polynomials

·152. (a) Find a way to express nk in terms of nj for appropriate values j. You
may use Stirling numbers if they help you.

(b) Notice that xj makes sense for a numerical variable x (that could range
over the rational numbers, the real numbers, or even the complex num-
bers instead of only the nonnegative integers, as we are implicitly as-
suming n does), just as xj does. Find a way to express the power xk

in terms of the polynomials xj for appropriate values of j and explain
why your formula is correct.

You showed in Problem 152b how to get each power of x in terms of the falling
factorial powers xj. Therefore every polynomial in x is expressible in terms of a
sum of numerical multiples of falling factorial powers. Using the language of linear
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algebra, we say that the ordinary powers of x and the falling factorial powers of x
each form a basis for the “space” of polynomials, and that the numbers S(k, n) are
“change of basis coefficients.” If you are not familiar with linear algebra, a basis
for the space of polynomials3 is a set of polynomials such that each polynomial,
whether in that set or not, can be expressed in one and only one way as a sum of
numerical multiples of polynomials in the set.

◦153. Show that every power of x+1 is expressible as a sum of numerical multiples
of powers of x. Now show that every power of x (and thus every polynomial
in x) is a sum of numerical multiples (some of which could be negative) of
powers of x+1. This means that the powers of x+1 are a basis for the space
of polynomials as well. Describe the change of basis coefficients that we use
to express the binomial powers (x+1)n in terms of the ordinary xj explicitly.
Find the change of basis coefficients we use to express the ordinary powers
xn in terms of the binomial powers (x + 1)k.

·154. By multiplication, we can see that every falling factorial polynomial can
be expressed as a sum of numerical multiples of powers of x. In symbols,
this means that there are numbers s(k, n) (notice that this s is lower case,
not upper case) such that we may write xk =

∑k
n=0 s(k, n)xn. These num-

bers s(k, n) are called Stirling Numbers of the first kind. By thinking alge-
braically about what the formula

xk = xk−1(x− k + 1) (3.1)

3The space of polynomials is just another name for the set of all polynomials.
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means, we can find a recurrence for Stirling numbers of the first kind that
gives us another triangular array of numbers called Stirling’s triangle of the
first kind. Explain why Equation 3.1 is true and use it to derive a recurrence
for s(k, n) in terms of s(k − 1, n− 1) and s(k − 1, n).

155. Write down the rows of Stirling’s triangle of the first kind for k = 0 to 6.

By definition, the Stirling numbers of the first kind are also change of basis
coefficients. The Stirling numbers of the first and second kind are change of basis
coefficients from the falling factorial powers of x to the ordinary factorial powers,
and vice versa.

156. Explain why every rising factorial polynomial xk can be expressed as a sum
of multiples of the falling factorial polynomials xn. Let b(k, n) stand for the

change of basis coefficients that allow us to express xk in terms of the falling
factorial polynomials xn; that is, define b(k, n) by the equations

xk =
k∑

n=0

b(k, n)xn.

(a) Find a recurrence for b(k, n).

(b) Find a formula for b(k, n) and prove the correctness of what you say in
as many ways as you can.

(c) Is b(k, n) the same as any of the other families of numbers (binomial
coefficients, Bell numbers, Stirling numbers, Lah numbers, etc.) we
have studied?
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(d) Say as much as you can (but say it precisely) about the change of basis
coefficients for expressing xk in terms of xn.

3.3 Partitions of Integers

We have now completed all our distribution problems except for those in which
both the objects and the recipients are identical. For example, we might be
putting identical apples into identical paper bags. In this case all that matters is
how many bags get one apple (how many recipients get one object), how many
get two, how many get three, and so on. Thus for each bag we have a number,
and the multiset of numbers of apples in the various bags is what determines our
distribution of apples into identical bags. A multiset of positive integers that add
to n is called a partition of n. Thus the partitions of 3 are 1+1+1, 1+2 (which
is the same as 2+1) and 3. The number of partitions of k is denoted by P (k); in
computing the partitions of 3 we showed that P (3) = 3. It is traditional to use
Greek letters like λ (the Greek letter λ is pronounced LAMB duh) to stand for
partitions; we might write λ = 1, 1, 1, γ = 2, 1 and τ = 3 to stand for the three
partitions of three. We also write λ = 13 as a shorthand for λ = 1, 1, 1, and we
write λ a 3 as a shorthand for “λ is a partition of three.”

◦157. Find all partitions of 4 and find all partitions of 5, thereby computing P (4)
and P (5).
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3.3.1 The number of partitions of k into n parts

A partition of the integer k into n parts is a multiset of n positive integers that
add to k. We use P (k, n) to denote the number of partitions of k into n parts.
Thus P (k, n) is the number of ways to distribute k identical objects to n identical
recipients so that each gets at least one.

◦158. Find P (6, 3) by finding all partitions of 6 into 3 parts. What does this say
about the number of ways to put six identical apples into three identical
bags so that each bag has at least one apple?

3.3.2 Representations of partitions

◦159. How many solutions are there in the positive integers to the equation x1 +
x2 + x3 = 7 with x1 ≥ x2 ≥ x3?

160. Explain the relationship between partitions of k into n parts and lists x1, x2,. . . ,
xn of positive integers that add to k with x1 ≥ x2 ≥ . . . ≥ xn. Such a rep-
resentation of a partition is called a decreasing list representation of the
partition.

◦161. Describe the relationship between partitions of k and lists or vectors (x1, x2, . . . , xn)
such that x1 + 2x2 + . . . kxk = k. Such a representation of a partition is
called a type vector representation of a partition, and it is typical to leave
the trailing zeros out of such a representation; for example (2, 1) stands for
the same partition as (2, 1, 0, 0). What is the decreasing list representation
for this partition, and what number does it partition?
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162. How does the number of partitions of k relate to the number of partitions
of k + 1 whose smallest part is one?

When we write a partition as λ = λ1, λ2, . . . , λn, it is customary to write the
list of λis as a decreasing list. When we have a type vector (t1, t2, . . . , tm) for
a partition, we write either λ = 1t12t2 · · ·mtm or λ = mtm(m − 1)tm−1 · · · 2t21t1 .
Henceforth we will use the second of these. When we write λ = λi1

1 λi2
2 · · ·λin

n , we
will assume that λi > λi+1.

3.3.3 Ferrers and Young Diagrams and the conjugate of a
partition

The decreasing list representation of partitions leads us to a handy way to visualize
partitions. Given a decreasing list (λ1, λ2, . . . λn), we draw a figure made up of
rows of dots that has λ1 equally spaced dots in the first row, λ2 equally spaced
dots in the second row, starting out right below the beginning of the first row and
so on. Equivalently, instead of dots, we may use identical squares, drawn so that
a square touches each one to its immediate right or immediately below it along
an edge. See Figure 3.1 for examples. The figure we draw with dots is called
the Ferrers diagram of the partition; sometimes the figure with squares is also
called a Ferrers diagram; sometimes it is called a Young diagram. At this stage
it is irrelevant which name we choose and which kind of figure we draw; in more
advanced work the squares are handy because we can put things like numbers
or variables into them. From now on we will use squares and call the diagrams
Young diagrams.
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Figure 3.1: The Ferrers and Young diagrams of the partition (5,3,3,2)

•163. Draw the Young diagram of the partition (4,4,3,1,1). Describe the geometric
relationship between the Young diagram of (5,3,3,2) and the Young diagram
of (4,4,3,1,1).

•164. The partition (λ1, λ2, . . . , λn) is called the conjugate of the partition (γ1, γ2, . . . , γm)
if we obtain the Young diagram of one from the Young diagram of the other
by flipping one around the line with slope -1 that extends the diagonal of
the top left square. See Figure 3.2 for an example. What is the conjugate

Figure 3.2: The Ferrers diagram the partition (5,3,3,2) and its conjugate.

of (4,4,3,1,1)? How is the largest part of a partition related to the number
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of parts of its conjugate? What does this tell you about the number of
partitions of a positive integer k with largest part m?

165. A partition is called self-conjugate if it is equal to its conjugate. Find a
relationship between the number of self-conjugate partitions of k and the
number of partitions of k into distinct odd parts.

166. Explain the relationship between the number of partitions of k into even
parts and the number of partitions of k into parts of even multiplicity, i.e.
parts which are each used an even number of times as in (3,3,3,3,2,2,1,1).

167. Show that the number of partitions of k into four parts equals the number
of partitions of 3k into four parts of size at most k − 1 (or 3k − 4 into four
parts of size at most k − 2 or 3k + 4 into four parts of size at most k).

168. The idea of conjugation of a partition could be defined without the geometric
interpretation of a Young diagram, but it would seem far less natural without
the geometric interpretation. Another idea that seems much more natural
in a geometric context is this. Suppose we have a partition of k into n parts
with largest part m. Then the Young diagram of the partition can fit into
a rectangle that is m or more units wide (horizontally) and n or more units
deep. Suppose we place the Young diagram of our partition in the top left-
hand corner of an m′ unit wide and n′ unit deep rectangle with m′ ≥ m and
n′ ≥ n, as in Figure 3.3.

(a) Why can we interpret the part of the rectangle not occupied by our
Young diagram, rotated in the plane, as the Young diagram of an-
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Figure 3.3: To complement the partition (5,3,3,2) in a 6 by 5 rectangle: enclose
it in the rectangle, rotate, and cut out the original Young diagram.

other partition? This is called the complement of our partition in the
rectangle.

(b) What integer is being partitioned by the complement?

(c) What conditions on m′ and n′ guarantee that the complement has the
same number of parts as the original one?

(d) What conditions on m′ and n′ guarantee that the complement has the
same largest part as the original one?

(e) Is it possible for the complement to have both the same number of
parts and the same largest part as the original one?

(f) If we complement a partition in an m′ by n′ box and then complement
that partition in an m′ by n′ box again, do we get the same partition
that we started with?

169. Suppose we take a partition of k into n parts with largest part m, comple-
ment it in the smallest rectangle it will fit into, complement the result in
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the smallest rectangle it will fit into, and continue the process until we get
the partition 1 of one into one part. What can you say about the partition
with which we started?

170. Show that P (k, n) is at least 1
n!

(
k−1
n−1

)
.

With the binomial coefficients, with Stirling numbers of the second kind, and
with the Lah numbers, we were able to find a recurrence by asking what happens
to our subset, partition, or broken permutation of a set S of numbers if we remove
the largest element of S. Thus it is natural to look for a recurrence to count the
number of partitions of k into n parts by doing something similar. Unfortunately,
since we are counting distributions in which all the objects are identical, there is no
way for us to identify a largest element. However if we think geometrically, we can
ask what we could remove from a Young diagram to get a Young diagram. Two
natural ways to get a partition of a smaller integer from a partition of n would be
to remove the top row of the Young diagram of the partition and to remove the left
column of the Young diagram of the partition. These two operations correspond
to removing the largest part from the partition and to subtracting 1 from each
part of the partition respectively. Even though they are symmetric with respect
to conjugation, they aren’t symmetric with respect to the number of parts. Thus
one might be much more useful than the other for finding a recurrence for the
number of partitions of k into n parts.

·171. In this problem we will study the two operations and see which one seems
more useful for getting a recurrence for P (k, n). Part of the reason
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(a) How many parts does the remaining partition have when we remove the
largest part (more precisely, we reduce its multiplicity by one) from a
partition of k into n parts? (A geometric way to describe this is that we
remove the first row from the Young diagram of the partition.) What
can you say about the number of parts of the remaining partition if we
remove one from each part?

(b) If we remove the largest part from a partition, what can we say about
the integer that is being partitioned by the remaining parts of the par-
tition? If we remove one from each part of a partition of k into n parts,
what integer is being partitioned by the remaining parts? (Another
way to describe this is that we remove the first column from the Young
diagram of the partition.)

(c) The last two questions are designed to get you thinking about how we
can get a bijection between the set of partitions of k into n parts and
some other set of partitions that are partitions of a smaller number.
These questions describe two different strategies for getting that set of
partitions of a smaller number or of smaller numbers. Each strategy
leads to a bijection between partitions of k into n parts and a set of
partitions of a smaller number or numbers. For each strategy, use
the answers to the last two questions to find and describe this set of
partitions into a smaller number and a bijection between partitions of
k into n parts and partitions of the smaller integer or integers into
appropriate numbers of parts. (In one case the set of partitions and
bijection are relatively straightforward to describe and in the other case
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not so easy.)

(d) Find a recurrence (which need not have just two terms on the right hand
side) that describes how to compute P (k, n) in terms of the number of
partitions of smaller integers into a smaller number of parts.

(e) What is P (k, 1) for a positive integer k?

(f) What is P (k, k) for a positive integer k?

(g) Use your recurrence to compute a table with the values of P (k, n) for
values of k between 1 and 7.

(h) What would you want to fill into row 0 and column 0 of your table
in order to make it consistent with your recurrence? What does this
say P (0, 0) should be? We usually define a sum with no terms in it to
be zero. Is that consistent with the way the recurrence says we should
define P (0, 0)?

It is remarkable that there is no known formula for P (k, n), nor is there one for
P (k). This section is devoted to developing methods for computing values of
P (n, k) and finding properties of P (n, k) that we can prove even without knowing
a formula. Some future sections will attempt to develop other methods.

We have seen that the number of partitions of k into n parts is equal to
the number of ways to distribute k identical objects to n recipients so that each
receives at least one. If we relax the condition that each recipient receives at
least one, then we see that the number of distributions of k identical objects to
n recipients is

∑n
i=1 P (k, i) because if some recipients receive nothing, it does not
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matter which recipients these are. This completes rows 7 and 8 of our table of
distribution problems. The completed table is shown in Figure 3.2. Every entry
in that table tells us how to count something. There are quite a few theorems
that you have proved which are summarized by Table 3.2. It would be worthwhile
to try to write them all down! The methods we used to complete Figure 3.2 are
extensions of the basic counting principles we learned in Chapter 1. The remaining
chapters of this book develop more sophisticated kinds of tools that let us solve
more sophisticated kinds of counting problems.

3.3.4 Partitions into distinct parts

Often Q(k, n) is used to denote the number of partitions of k into distinct parts,
that is, parts that are different from each other.

172. Show that

Q(k, n) ≤ 1

n!

(
k − 1

n− 1

)
.

173. Show that the number of partitions of seven into three parts equals the
number of partitions of 10 into three distinct parts.

·174. There is a relationship between P (k, n) and Q(m, n) for some other number
m. Find the number m that gives you the nicest possible relationship.

·175. Find a recurrence that expresses Q(k, n) as a sum of Q(k−n, m) for appro-
priate values of m.
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∗176. Show that the number of partitions of k into distinct parts equals the number
of partitions of k into odd parts.

∗177. Euler showed that if k 6= 3j2+j
2

, then the number of partitions of k into an
even number of distinct parts is the same as the number of partitions of k
into an odd number of distinct parts. Prove this, and in the exceptional
case find out how the two numbers relate to each other.

3.3.5 Supplementary Problems

1. Answer each of the following questions with nk, kn, n!, k!,
(

n
k

)
,
(

k
n

)
, nk, kn,

nk, kn,
(

n+k−1
k

)
,
(

n+k−1
n

)
,
(

n−1
k−1

)
,
(

k−1
n−1

)
, or “none of the above.”

(a) In how many ways may we pass out k identical pieces of candy to n
children?

(b) In how many ways may we pass out k distinct pieces of candy to n
children?

(c) In how many ways may we pass out k identical pieces of candy to n
children so that each gets at most one? (Assume k ≤ n.)

(d) In how many ways may we pass out k distinct pieces of candy to n
children so that each gets at most one? (Assume k ≤ n.)

(e) In how many ways may we pass out k distinct pieces of candy to n
children so that each gets at least one? (Assume k ≥ n.)
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(f) In how many ways may we pass out k identical pieces of candy to n
children so that each gets at least one? (Assume k ≥ n.)

2. The neighborhood betterment committee has been given r trees to distribute
to s families living along one side of a street. Unless otherwise specified, it
doesn’t matter where a family plants the trees it gets.

(a) In how many ways can they distribute all of them if the trees are
distinct, there are more families than trees, and each family can get at
most one?

(b) In how many ways can they distribute all of them if the trees are
distinct and any family can get any number?

(c) In how many ways can they distribute all the trees if the trees are
identical, there are no more trees than families, and any family receives
at most one?

(d) In how many ways can they distribute them if the trees are distinct,
there are more trees than families, and each family receives at most
one (so there could be some leftover trees)?

(e) In how many ways can they distribute all the trees if they are identical
and anyone may receive any number of trees?

(f) In how many ways can all the trees be distributed and planted if the
trees are distinct, any family can get any number, and a family must
plant its trees in an evenly spaced row along the road?



3.3. PARTITIONS OF INTEGERS 115

(g) Answer the question in Part 2f assuming that every family must get a
tree.

(h) Answer the question in Part 2e assuming that each family must get at
least one tree.

3. In how many ways can n identical chemistry books, r identical mathematics
books, s identical physics books, and t identical astronomy books be ar-
ranged on three bookshelves? (Assume there is no limit on the number of
books per shelf.)

4. One formula for the Lah numbers is

L(k, n) =

(
k

n

)
(k − 1)k−n

Find a proof that explains this product.

5. What is the number of partitions of n into two parts?

·6. What is the number of partitions of k into k − 2 parts?

7. Show that the number of partitions of k into n parts of size at most m equals
the number of partitions of mn−k into no more than n parts of size at most
m− 1.

8. Show that the number of partitions of k into parts of size at most m is equal
to the number of partitions of k + m into m parts.
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9. You can say something pretty specific about self-conjugate partitions of k
into distinct parts. Figure out what it is and prove it. With that, you should
be able to find a relationship between these partitions and partitions whose
parts are consecutive integers, starting with 1. What is that relationship?

10. What is s(k, 1)?

11. Show that the Stirling numbers of the second kind satisfy the recurrence

S(k, n) =
k∑

i=1

S(k − i, n− 1)

(
k − 1

i− 1

)
.

12. Let c(k, n) be the number of ways for k children to hold hands to form
n circles, where one child clasping his or her hands together and holding
them out to form a circle is considered a circle. (Having Mary hold Sam’s
right hand is different from having Mary hold Sam’s left hand.) Find a
recurrence for c(k, n). Is the family of numbers c(k, n) related to any of the
other families of numbers we have studied? If so, how?

13. How many labeled trees on n vertices have exactly four vertices of degree
1?

14. The degree sequence of a graph is a list of the degrees of the vertices in
non-increasing order. For example the degree sequence of the first graph in
Figure 2.4 is (4, 3, 2, 2, 1). For a graph with vertices labeled 1 through n, the
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ordered degree sequence of the graph is the sequence d1, d2, . . . dn in which
di is the degree of vertex i. For example the ordered degree sequence of the
first graph in Figure 2.2 is (1, 2, 3, 3, 1, 1, 2, 1).

(a) How many labeled trees are there on n vertices with ordered degree
sequence d1, d2, . . . dn?

∗(b) How many labeled trees are there on n vertices with with the degree
sequence in which the degree d appears id times?
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Table 3.1: An incomplete table of the number of ways to distribute k objects to
n recipients, with restrictions on how the objects are received

The Twenty-fold Way: A Table of Distribution Problems
k objects and conditions n recipients and mathematical model for distribution
on how they are received Distinct Identical
1. Distinct nk ?
no conditions functions set partitions (≤ n parts)
2. Distinct nk 1 if k ≤ n; 0 otherwise
Each gets at most one k-element permutations
3. Distinct ? ?
Each gets at least one onto functions set partitions (n parts)
4. Distinct k! = n! 1 if k = n; 0 otherwise
Each gets exactly one bijections
5. Distinct, order matters ? ?

? ?
6. Distinct, order matters ? ?
Each gets at least one ? ?
7. Identical ? ?
no conditions ? ?
8. Identical

(
n
k

)
1 if k ≤ n; 0 otherwise

Each gets at most one subsets
9. Identical ? ?
Each gets at least one ? ?
10. Identical 1 if k = n; 0 otherwise 1 if k = n; 0 otherwise
Each gets exactly one
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Table 3.2: The number of ways to distribute k objects to n recipients, with re-
strictions on how the objects are received

The Twenty-fold Way: A Table of Distribution Problems
k objects and conditions n recipients and mathematical model for distribution
on how they are received Distinct Identical

1. Distinct nk
∑k

i=1 S(n, i)
no conditions functions set partitions (≤ n parts)

2. Distinct nk 1 if k ≤ n; 0 otherwise
Each gets at most one k-element permutations
3. Distinct S(k, n)n! S(k, n)
Each gets at least one onto functions set partitions (n parts)
4. Distinct k! = n! 1 if k = n; 0 otherwise
Each gets exactly one permutations

5. Distinct, order matters (k + n− 1)k
∑n

i=1 L(k, i)
ordered functions broken permutations (≤ n parts)

6. Distinct, order matters (k)n(k − 1)k−n L(k, n) =
(

k
n

)
(k − 1)k−n

Each gets at least one ordered onto functions broken permutations (n parts)

7. Identical
(
n+k−1

k

) ∑n
i=1 P (k, i)

no conditions multisets number partitions (≤ n parts)

8. Identical
(
n
k

)
1 if k ≤ n; 0 otherwise

Each gets at most one subsets

9. Identical
(

k−1
n−1

)
P (k, n)

Each gets at least one compositions (n parts) number partitions (n parts)
10. Identical 1 if k = n; 0 otherwise 1 if k = n; 0 otherwise
Each gets exactly one
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Chapter 4

Generating Functions

4.1 The Idea of Generating Functions

4.1.1 Visualizing Counting with Pictures

Suppose you are going to choose three pieces of fruit from among apples, pears
and bananas for a snack. We can symbolically represent all your choices as

+ + + + + + + + + .

Here we are using a picture of a piece of fruit to stand for taking a piece of that
fruit. Thus stands for taking an apple, for taking an apple and a pear,
and for taking two apples. You can think of the plus sign as standing for the
“exclusive or,” that is, + would stand for “I take an apple or a banana but

121
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not both.” To say “I take both an apple and a banana,” we would write . We
can extend the analogy to mathematical notation by condensing our statement
that we take three pieces of fruit to

3 + 3 + 3 + 2 + 2 + 2 + 2 + 2 + 2 + .

In this notation 3 stands for taking a multiset of three apples, while 2 stands
for taking a multiset of two apples and a banana, and so on. What our notation
is really doing is giving us a convenient way to list all three element multisets
chosen from the set { , , }.1

Suppose now that we plan to choose between one and three apples, between
one and two pears, and between one and two bananas. In a somewhat clumsy
way we could describe our fruit selections as

+ 2 +· · ·+ 2 2 +· · ·+ 2 2 2+ 3 +· · ·+ 3 2 +· · ·+ 3 2 2. (4.1)

•178. Using an A in place of the picture of an apple, a P in place of the picture of
a pear, and a B in place of the picture of a banana, write out the formula
similar to Formula 4.1 without any dots for left out terms. (You may use
pictures instead of letters if you prefer, but it gets tedious quite quickly!)
Now expand the product (A + A2 + A3)(P + P 2)(B + B2) and compare the
result with your formula.

1This approach was inspired by George Pólya’s paper “Picture Writing,” in the December,
1956 issue of the American Mathematical Monthly, page 689. While we are taking a somewhat
more formal approach than Pólya, it is still completely in the spirit of his work.
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•179. Substitute x for all of A, P and B (or for the corresponding pictures) in the
formula you got in Problem 178 and expand the result in powers of x. Give
an interpretation of the coefficient of xn.

If we were to expand the formula

( + 2 + 3)( + 2)( + 2), (4.2)

we would get Formula 4.1. Thus Formula 4.1 and Formula 4.2 each describe
the number of multisets we can choose from the set { , , } in which appears
between one and three times, and and each appear once or twice. We interpret
Formula 4.1 as describing each individual multiset we can choose, and we interpret
Formula 4.2 as saying that we first decide how many apples to take, and then
decide how many pears to take, and then decide how many bananas to take. At
this stage it might seem a bit magical that doing ordinary algebra with the second
formula yields the first, but in fact we could define addition and multiplication
with these pictures more formally so we could explain in detail why things work
out. However, since the pictures are for motivation, and are actually difficult to
write out on paper, it doesn’t make much sense to work out these details. We will
see an explanation in another context later on.

4.1.2 Picture functions

As you’ve seen, in our descriptions of ways of choosing fruits, we’ve treated the
pictures of the fruit as if they are variables. You’ve also likely noticed that it is
much easier to do algebraic manipulations with letters rather than pictures, simply
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because it is time consuming to draw the same picture over and over again, while
we are used to writing letters quickly. In the theory of generating functions,
we associate variables or polynomials or even power series with members of a
set. There is no standard language describing how we associate variables with
members of a set, so we shall invent2 some. By a picture of a member of a set we
will mean a variable, or perhaps a product of powers of variables (or even a sum
of products of powers of variables). A function that assigns a picture P (s) to each
member s of a set S will be called a picture function. The picture enumerator
for a picture function P defined on a set S will be the sum of the pictures of the
elements in S. In symbols we can write this conveniently as.

EP (S) =
∑

s:s∈S

P (s).

We choose this language because the picture enumerator lists, or enumerates,
all the elements of S according to their pictures. Thus Formula 4.1 is the picture
enumerator of the set of all multisets of fruit with between one and three apples,
one and two pears, and one and two bananas.

◦180. How would you write down a polynomial in the variable A that says you
should take between zero and three apples?

•181. How would you write down a picture enumerator that says we take between
zero and three apples, between zero and three pears, and between zero and
three bananas?

2We are really adapting language introduced by George Pólya.
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·182. (Used in Chapter 6.) Notice that when we used A2 to stand for taking two
apples, and P 3 to stand for taking three pears, then we used the product
A2P 3 to stand for taking two apples and three pears. Thus we have chosen
the picture of the ordered pair (2 apples, 3 pears) to be the product of the
pictures of a multiset of two apples and a multiset of three pears. Show
that if S1 and S2 are sets with picture functions P1 and P2 defined on
them, and if we define the picture of an ordered pair (x1, x2) ∈ S1 × S2 to
be P ((x1, x2)) = P1(x1)P2(x2), then the picture enumerator of P on the set
S1×S2 is EP1(S1)EP2(S2). We call this the product principle for picture
enumerators.

4.1.3 Generating functions

•183. Suppose you are going to choose a snack of between zero and three apples,
between zero and three pears, and between zero and three bananas. Write
down a polynomial in one variable x such that the coefficient of xn is the
number of ways to choose a snack with n pieces of fruit.

◦184. Suppose an apple costs 20 cents, a banana costs 25 cents, and a pear costs
30 cents. What should you substitute for A, P , and B in Problem 181 in
order to get a polynomial in which the coefficient of xn is the number of
ways to choose a selection of fruit that costs n cents?

•185. Suppose an apple has 40 calories, a pear has 60 calories, and a banana has
80 calories. What should you substitute for A, P , and B in Problem 181
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in order to get a polynomial in which the coefficient of xn is the number of
ways to choose a selection of fruit with a total of n calories?

•186. We are going to choose a subset of the set [n] = {1, 2, . . . , n}. Suppose we
use x1 to be the picture of choosing 1 to be in our subset. What is the
picture enumerator for either choosing 1 or not choosing 1? Suppose that
for each i between 1 and n, we use xi to be the picture of choosing i to
be in our subset. What is the picture enumerator for either choosing i or
not choosing i to be in our subset? What is the picture enumerator for all
possible choices of subsets of [n]? What should we substitute for xi in order
to get a polynomial in x such that the coefficient of xk is the number of ways
to choose a k-element subset of n? What theorem have we just reproved (a
special case of)?

In Problem 186 we see that we can think of the process of expanding the polyno-
mial (1 + x)n as a way of “generating” the binomial coefficients

(
n
k

)
as the coef-

ficients of xk in the expansion of (1 + x)n. For this reason, we say that (1 + x)n

is the “generating function” for the binomial coefficients
(

n
k

)
. More generally, the

generating function for a sequence ai, defined for i with 0 ≤ i ≤ n is the ex-
pression

∑n
i=0 aix

i, and the generating function for the sequence ai with i ≥ 0
is the expression

∑∞
i=0 aix

i. This last expression is an example of a power series.
In calculus it is important to think about whether a power series converges in
order to determine whether or not it represents a function. In a nice twist of lan-
guage, even though we use the phrase generating function as the name of a power
series in combinatorics, we don’t require the power series to actually represent a
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function in the usual sense, and so we don’t have to worry about convergence.3

Instead we think of a power series as a convenient way of representing the terms
of a sequence of numbers of interest to us. The only justification for saying that
such a representation is convenient is because of the way algebraic properties of
power series capture some of the important properties of some sequences that are
of combinatorial importance. The remainder of this chapter is devoted to giving
examples of how the algebra of power series reflects combinatorial ideas.

Because we choose to think of power series as strings of symbols that we
manipulate by using the ordinary rules of algebra and we choose to ignore issues
of convergence, we have to avoid manipulating power series in a way that would
require us to add infinitely many real numbers. For example, we cannot make the
substitution of y+1 for x in the power series

∑∞
i=0 xi, because in order to interpret∑∞

i=0(y + 1)i as a power series we would have to apply the binomial theorem to
each of the (y + 1)i terms, and then collect like terms, giving us infinitely many
ones added together as the coefficient of y0, and in fact infinitely many numbers
added together for the coefficient of any yi. (On the other hand, it would be fine
to substitute y + y2 for x. Can you see why?)

3In the evolution of our current mathematical terminology, the word function evolved through
several meanings, starting with very imprecise meanings and ending with our current rather
precise meaning. The terminology “generating function” may be thought of as an example of
one of the earlier usages of the term function.
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4.1.4 Power series

For now, most of our uses of power series will involve just simple algebra. Since
we use power series in a different way in combinatorics than we do in calculus, we
should review a bit of the algebra of power series.

◦187. In the polynomial (a0 + a1x + a2x
2)(b0 + b1x + b2x

2 + b3x
3), what is the

coefficient of x2? What is the coefficient of x4?

◦188. In Problem 187 why is there a b0 and a b1 in your expression for the coefficient
of x2 but there is not a b0 or a b1 in your expression for the coefficient of x4?
What is the coefficient of x4 in

(a0 + a1x + a2x
2 + a3x

3 + a4x
4)(b0 + b1x + b2x

2 + b3x
3 + b4x

4)?

Express this coefficient in the form

4∑
i=0

something,

where the something is an expression you need to figure out. Now suppose
that a3 = 0, a4 = 0, and b4 = 0. To what is your expression equal after
you substitute these values? In particular, what does this have to do with
Problem 187?

◦189. The point of the Problems 187 and 188 is that so long as we are willing to
assume ai = 0 for i > n and bj = 0 for j > m, then there is a very nice
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formula for the coefficient of xk in the product(
n∑

i=0

aix
i

) m∑
j=0

bjx
j

 .

Write down this formula explicitly.

•190. Assuming that the rules you use to do arithmetic with polynomials apply to
power series, write down a formula for the coefficient of xk in the product( ∞∑

i=0

aix
i

) ∞∑
j=0

bjx
j

 .

We use the expression you obtained in Problem 190 to define the product of
power series. That is, we define the product( ∞∑

i=0

aix
i

) ∞∑
j=0

bjx
j


to be the power series

∑∞
k=0 ckx

k, where ck is the expression you found in Problem
190. Since you derived this expression by using the usual rules of algebra for
polynomials, it should not be surprising that the product of power series satisfies
these rules.4

4Technically we should explicitly state these rules and prove that they are all valid for power
series multiplication, but it seems like overkill at this point to do so!
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4.1.5 Product principle for generating functions

Each time that we converted a picture function to a generating function by sub-
stituting x or some power of x for each picture, the coefficient of x had a meaning
that was significant to us. For example, with the picture enumerator for selecting
between zero and three each of apples, pears, and bananas, when we substituted
x for each of our pictures, the exponent i in the power xi is the number of pieces
of fruit in the fruit selection that led us to xi. After we simplify our product by
collecting together all like powers of x, the coefficient of xi is the number of fruit
selections that use i pieces of fruit. In the same way, if we substitute xc for a
picture, where c is the number of calories in that particular kind of fruit, then
the i in an xi term in our generating function stands for the number of calories
in a fruit selection that gave rise to xi, and the coefficient of xi in our generating
function is the number of fruit selections with i calories. The product principle
of picture enumerators translates directly into a product principle for generating
functions. However, it is possible to give a proof that does not rely on the product
principle for enumerators.

•191. Suppose that we have two sets S1 and S2. Let v1 (v stands for value) be
a function from S1 to the nonnegative integers and let v2 be a function
from S2 to the nonnegative integers. Define a new function v on the set
S1×S2 by v(x1, x2) = v1(x1)+ v2(x2). Suppose further that

∑∞
i=0 aix

i is the
generating function for the number of elements x1 of S1 of value i, that is,
with v1(x1) = i. Suppose also that

∑∞
j=0 bjx

j is the generating function for
the number of elements x2 of S2 of value j, that is, with v2(x2) = j. Prove
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that the coefficient of xk in( ∞∑
i=0

aix
i

) ∞∑
j=0

bjx
j


is the number of ordered pairs (x1, x2) in S1 × S2 with total value k, that
is, with v1(x1) + v2(x2) = k. This is called the product principle for
generating functions.

Problem 191 may be extended by mathematical induction to prove our next
theorem.

Theorem 7 (Product Principle for Generating Functions) If S1, S2, . . . ,
Sn are sets with a value function vi from Si to the nonnegative integers for each
i, and fi(x) is the generating function for the number of elements of Si of each
possible value, then the generating function for the number of n-tuples of each
possible total value is

∏n
i=1 fi(x).

4.1.6 The extended binomial theorem and multisets

•192. Suppose once again that i is an integer between 1 and n.

(a) What is the generating function in which the coefficient of xk is one?
This series is an example of what is called an infinite geometric series.
In the next part of this problem it will be useful to interpret the coeffi-
cient one as the number of multisets of size k chosen from the singleton
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set {i}. Namely, there is only one way to chose a multiset of size k
from {i}: choose i exactly k times.

(b) Express the generating function in which the coefficient of xk is the
number of k-element multisets chosen from [n] as a power of a power
series. What does Problem 125 (in which your answer could be ex-
pressed as a binomial coefficient) tell you about what this generating
function equals?

◦193. What is the product (1− x)
∑n

k=0 xk? What is the product

(1− x)
∞∑

k=0

xk?

•194. Express the generating function for the number of multisets of size k chosen
from [n] (where n is fixed but k can be any nonnegative integer) as a 1 over
something relatively simple.

•195. Find a formula for (1 + x)−n as a power series whose coefficients involve
binomial coefficients. What does this formula tell you about how we should
define

(
−n
k

)
when n is positive?

196. If you define
(
−n
k

)
in the way you described in Problem 195, you can write

down a version of the binomial theorem for (x + y)n that is valid for both
nonnegative and negative values of n. Do so. This is called the extended
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binomial theorem. Write down a special case with n negative, like n = −3,
to see an interesting surprise that suggests why we do not use this formula
later on.

•197. Write down the generating function for the number of ways to distribute
identical pieces of candy to three children so that no child gets more than 4
pieces. Write this generating function as a quotient of polynomials. Using
both the extended binomial theorem and the original binomial theorem, find
out in how many ways we can pass out exactly ten pieces.

•198. What is the generating function for the number of multisets chosen from an
n-element set so that each element appears at least j times and less than m
times? Write this generating function as a quotient of polynomials, then as
a product of a polynomial and a power series.

199. Recall that a tree is determined by its edge set. Suppose you have a tree on
n vertices, say with vertex set [n]. We can use xi as the picture of vertex i
and xixj as the picture of the edge xixj. Then one possible picture of the
tree T is the product P (T ) =

∏
{i,j}:i and jare adjacent xixj.

(a) Explain why the picture of a tree is also
∏n

i=1 x
deg(i)
i .

(b) Write down the picture enumerators for trees on two, three, and four
vertices. Factor them as completely as possible.

(c) Explain why x1x2 · · ·xn is a factor of the picture of a tree on n vertices.
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(d) Write down the picture of a tree on five vertices with one vertex of
degree four, say vertex i. If a tree on five vertices has a vertex of
degree three, what are the possible degrees of the other vertices. What
can you say about the picture of a tree with a vertex of degree three?
If a tree on five vertices has no vertices of degree three or four, how
many vertices of degree two does it have? What can you say about its
picture? Write down the picture enumerator for trees on five vertices.

(e) Find a (relatively) simple polynomial expression for the picture enu-
merator

∑
T :T is a tree on [n] P (T ). Prove it is correct.

(f) The enumerator for trees by degree sequence is the sum over all trees of
xd1

1 xd2
2 · · ·xdn

n , where di is the degree of vertex i. What is the enumerator
by degree sequence for trees on the vertex set [n]?

(g) Find the number of trees on n vertices and prove your formula correct.

4.2 Generating Functions for Integer Partitions

•200. If we have five identical pennies, five identical nickels, five identical dimes,
and five identical quarters, give the picture enumerator for the combinations
of coins we can form and convert it to a generating function for the number
of ways to make k cents with the coins we have. Do the same thing assuming
we have an unlimited supply of pennies, nickels, dimes, and quarters.

•201. Recall that a partition of an integer k is a multiset of numbers that adds
to k. In Problem 200 we found the generating function for the number of
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partitions of an integer into parts of size 1, 5, 10, and 25. When working
with generating functions for partitions, it is becoming standard to use q
rather than x as the variable in the generating function. From now on,
write your answers to problems involving generating functions for partitions
of an integer in this notation.5

(a) Give the generating function for the number of partitions of an integer
into parts of size one through ten.

(b) Give the generating function for the number of partitions of an integer
k into parts of size at most m, where m is fixed but k may vary. Notice
this is the generating function for partitions whose Young diagram fits
into the space between the line x = 0 and the line x = m in a coordinate
plane. (We assume the boxes in the Young diagram are one unit by
one unit.)

•202. In Problem 201b you gave the generating function for the number of parti-
tions of an integer into parts of size at most m. Explain why this is also the
generating function for partitions of an integer into at most m parts. Notice
that this is the generating function for the number of partitions whose Young
diagram fits into the space between the line y = 0 and the line y = m.

5The reason for this change in the notation relates to the subject of finite fields in abstract
algebra, where q is the standard notation for the size of a finite field. While we will make no
use of this connection, it will be easier for you to read more advanced work if you get used to
the different notation.
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•203. When studying partitions of integers, it is inconvenient to restrict ourselves
to partitions with at most m parts or partitions with maximum part size m.

(a) Give the generating function for the number of partitions of an integer
into parts of any size. Don’t forget to use q rather than x as your
variable.

(b) Find the coefficient of q4 in this generating function.

(c) Find the coefficient of q5 in this generating function.

(d) This generating function involves an infinite product. Describe the
process you would use to expand this product into as many terms of a
power series as you choose.

(e) Rewrite any power series that appear in your product as quotients of
polynomials or as integers divided by polynomials.

204. In Problem 203b, we multiplied together infinitely many power series. Here
are two notations for infinite products that look rather similar:

∞∏
i=1

1 + q + q2 + · · ·+ qi and
∞∏
i=1

1 + qi + q2i + · · ·+ qi2 .

However, one makes sense and one doesn’t. Figure out which one makes
sense and explain why it makes sense and the other one doesn’t. If we want
to make sense of a product of the form

∞∏
i=1

1 + pi(q),
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where each pi(q) is a nonzero polynomial in q, describe a relatively simple
assumption about the polynomials pi(q) that will make the product make
sense. If we assumed the terms pi(q) were nonzero power series, is there a
relatively simple assumption we could make about them in order to make
the product make sense? (Describe such a condition or explain why you
think there couldn’t be one.)

•205. What is the generating function (using q for the variable) for the number of
partitions of an integer in which each part is even?

•206. What is the generating function (using q as the variable) for the number
of partitions of an integer into distinct parts, that is, in which each part is
used at most once?

•207. Use generating functions to explain why the number of partitions of an inte-
ger in which each part is used an even number of times equals the generating
function for the number of partitions of an integer in which each part is even.
How does this compare to Problem 166?

•208. Use the fact that
1− q2i

1− qi
= 1 + qi

and the generating function for the number of partitions of an integer into
distinct parts to show how the number of partitions of an integer k into
distinct parts is related to the number of partitions of an integer k into odd
parts.



138 CHAPTER 4. GENERATING FUNCTIONS

209. Write down the generating function for the number of ways to partition
an integer into parts of size no more than m, each used an odd number of
times. Write down the generating function for the number of partitions of
an integer into parts of size no more than m, each used an even number of
times. Use these two generating functions to get a relationship between the
two sequences for which you wrote down the generating functions.

210. In Problem 201b and Problem 202 you gave the generating functions for,
respectively, the number of partitions of k into parts the largest of which is
at most m and for the number of partitions of k into at most m parts. In this
problem we will give the generating function for the number of partitions of
k into at most n parts, the largest of which is at most m. That is, we will
analyze

∑∞
i=0 akq

k where ak is the number of partitions of k into at most n
parts, the largest of which is at most m. Geometrically, it is the generating
function for partitions whose Young diagram fits into an m by n rectangle,
as in Problem 168. This generating function has significant analogs to the
binomial coefficient

(
m+n

n

)
, and so it is denoted by

[
m+n

n

]
q
. It is called a

q-binomial coefficient.

(a) Compute
[

4
2

]
q

=
[

2+2
2

]
q
.

(b) Find explicit formulas for
[

n
1

]
q

and
[

n
n−1

]
q
.

(c) How are
[

m+n
n

]
q

and
[

m+n
m

]
q

related? Prove it. (Note this is the same

as asking how
[

r
s

]
q

and
[

r
r−s

]
q

are related.)
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(d) So far the analogy to
(

m+n
n

)
is rather thin! If we had a recurrence

like the Pascal recurrence, that would demonstrate a real analogy. Is[
m+n

n

]
q

=
[

m+n−1
n−1

]
q
+
[

m+n−1
n

]
q
?

(e) Recall the two operations we studied in Problem 171.

i. The largest part of a partition counted by
[

m+n
n

]
q

is either m or is

less than or equal to m − 1. In the second case, the partition fits
into a rectangle that is at most m − 1 units wide and at most n
units deep. What is the generating function for partitions of this
type? In the first case, what kind of rectangle does the partition
we get by removing the largest part sit in? What is the generating
function for partitions that sit in this kind of rectangle? What
is the generating function for partitions that sit in this kind of
rectangle after we remove a largest part of size m? What recurrence
relation does this give you?

ii. What recurrence do you get from the other operation we studied
in Problem 171?

iii. It is quite likely that the two recurrences you got are different. One
would expect that they might give different values for

[
m+n

n

]
q
. Can

you resolve this potential conflict?

(f) Define [n]q to be 1 + q + · · · + qn−1 for n > 0 and [0]q = 1. We read
this simply as n-sub-q. Define [n]!q to be [n]q[n− 1]q · · · [3]q[2]q[1]q. We
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read this as n cue-torial, and refer to it as a q-ary factorial. Show that[
m + n

n

]
q

=
[m + n]!q
[m]!q[n]!q

.

(g) Now think of q as a variable that we will let approach 1. Find an
explicit formula for

i. lim
q→1

[n]q.

ii. lim
q→1

[n]!q.

iii. lim
q→1

[
m + n

n

]
q
.

Why is the limit in Part iii equal to the number of partitions (of any
number) with at most n parts all of size most m? Can you explain
bijectively why this quantity equals the formula you got?

∗(h) What happens to
[

m+n
n

]
q

if we let q approach -1?

4.3 Generating Functions and Recurrence Rela-

tions

Recall that a recurrence relation for a sequence an expresses an in terms of values
ai for i < n. For example, the equation ai = 3ai−1 + 2i is a first order linear
constant coefficient recurrence.
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4.3.1 How generating functions are relevant

Algebraic manipulations with generating functions can sometimes reveal the so-
lutions to a recurrence relation.

211. Suppose that ai = 3ai−1 + 3i.

•(a) Multiply both sides by xi and sum both the left hand side and right
hand side from i = 1 to infinity. In the left-hand side use the fact that

∞∑
i=1

aix
i = (

∞∑
i=0

aix
i)− a0

and in the right hand side, use the fact that
∞∑
i=1

ai−1x
i = x

∞∑
i=1

ai−1x
i−1 = x

∞∑
j=0

ajx
j = x

∞∑
i=0

aix
i

(where we substituted j for i − 1 to see explicitly how to change the
limits of summation, a surprisingly useful trick) to rewrite the equation
in terms of the power series

∑∞
i=0 aix

i. Solve the resulting equation for
the power series

∑∞
i=0 aix

i. You can save a lot of writing by using a
variable like y to stand for the power series.

•(b) Use the previous part to get a formula for ai in terms of a0.

(c) Now suppose that ai = 3ai−1 + 2i. Repeat the previous two steps for
this recurrence relation. (There is a way to do this part using what
you already know. Later on we shall introduce yet another way to deal
with the kind of generating function that arises here.)
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◦212. Suppose we deposit $5000 in a savings certificate that pays ten percent
interest and also participate in a program to add $1000 to the certificate at
the end of each year (from the end of the first year on) that follows (also
subject to interest). Assuming we make the $5000 deposit at the end of year
0, and letting ai be the amount of money in the account at the end of year
i, write a recurrence for the amount of money the certificate is worth at the
end of year n. Solve this recurrence. How much money do we have in the
account (after our year-end deposit) at the end of ten years? At the end of
20 years?

4.3.2 Fibonacci Numbers

The sequence of problems that follows describes a number of hypotheses we might
make about a fictional population of rabbits. We use the example of a rabbit
population for historic reasons; our goal is a classical sequence of numbers called
Fibonacci numbers. When Fibonacci6 introduced them, he did so with a fictional
population of rabbits.

4.3.3 Second order linear recurrence relations

•213. Suppose we start (at the end of month 0) with 10 pairs of baby rabbits,
and that after baby rabbits mature for one month they begin to reproduce,

6Apparently Leonardo de Pisa was given the name Fibonacci posthumously. It is a shortening
of “son of Bonacci” in Italian.
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with each mature pair producing two new pairs at the end of each month
afterwards. Suppose further that over the time we observe the rabbits, none
die. Let an be the number pairs of rabbits we have at the end of month
n. Show that an = an−1 + 2an−2. This is an example of a second order
linear recurrence with constant coefficients. Using a method similar to that
of Problem 211, show that

∞∑
i=0

aix
i =

10

1− x− 2x2
.

This gives us the generating function for the sequence ai giving the pop-
ulation in month i; shortly we shall see a method for converting this to a
solution to the recurrence.

•214. In Fibonacci’s original problem, each pair of mature rabbits produces one
new pair at the end of each month, but otherwise the situation is the same
as in Problem 213. Assuming that we start with one pair of baby rabbits
(at the end of month 0), find the generating function for the number of pairs
of rabbits we have at the end of n months.

215. Find the generating function for the solutions to the recurrence

ai = 5ai−1 − 6ai−2 + 2i.

The recurrence relations we have seen in this section are called second order
because they specify ai in terms of ai−1 and ai−2, they are called linear because ai−1
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and ai−2 each appear to the first power, and they are called constant coefficient
recurrences because the coefficients in front of ai−1 and ai−2 are constants.

4.3.4 Partial fractions

The generating functions you found in the previous section all can be expressed
in terms of the reciprocal of a quadratic polynomial. However, without a power
series representation, the generating function doesn’t tell us what the sequence is.
It turns out that whenever you can factor a polynomial into linear factors (and
over the complex numbers such a factorization always exists) you can use that
factorization to express the reciprocal in terms of power series.

•216. Express 1
x−3

+ 2
x−2

as a single fraction.

◦217. In Problem 216 you see that when we added numerical multiples of the
reciprocals of first degree polynomials we got a fraction in which the de-
nominator is a quadratic polynomial. This will always happen unless the
two denominators are multiples of each other, because their least common
multiple will simply be their product, a quadratic polynomial. This leads
us to ask whether a fraction whose denominator is a quadratic polynomial
can always be expressed as a sum of fractions whose denominators are first
degree polynomials. Find numbers c and d so that

5x + 1

(x− 3)(x + 5)
=

c

x− 3
+

d

x + 5
.
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•218. In Problem 217 you may have simply guessed at values of c and d, or you
may have solved a system of equations in the two unknowns c and d. Given
constants a, b, r1, and r2 (with r1 6= r2), write down a system of equations
we can solve for c and d to write

ax + b

(x− r1)(x− r2)
=

c

x− r1

+
d

x− r2

.

Writing down the equations in Problem 218 and solving them is called the method
of partial fractions. This method will let you find power series expansions for
generating functions of the type you found in Problems 213 to 215. However, you
have to be able to factor the quadratic polynomials that are in the denominators
of your generating functions.

•219. Use the method of partial fractions to convert the generating function of
Problem 213 into the form

c

x− r1

+
d

x− r2

.

Use this to find a formula for an.

•220. Use the quadratic formula to find the solutions to x2 + x − 1 = 0, and use
that information to factor x2 + x− 1.
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•221. Use the factors you found in Problem 220 to write

1

x2 + x− 1

in the form
c

x− r1

+
d

x− r2

.

(Hint: You can save yourself a tremendous amount of frustrating algebra if
you arbitrarily choose one of the solutions and call it r1 and call the other
solution r2 and solve the problem using these algebraic symbols in place
of the actual roots.7 Not only will you save yourself some work, but you
will get a formula you could use in other problems. When you are done,
substitute in the actual values of the solutions and simplify.)

•222. (a) Use the partial fractions decomposition you found in Problem 220 to
write the generating function you found in Problem 214 in the form

∞∑
n=0

anx
i

and use this to give an explicit formula for an. (Hint: once again it
will save a lot of tedious algebra if you use the symbols r1 and r2 for
the solutions as in Problem 221 and substitute the actual values of the

7We use the words roots and solutions interchangeably.



4.3. GENERATING FUNCTIONS AND RECURRENCE RELATIONS 147

solutions once you have a formula for an in terms of r1 and r2.)

∞∑
n=0

anx
n =

1

1− x− x2
= − 1

x2 + x− 1

=
1√
5
· 1

r1 − x
− 1√

5
· 1

r2 − x

=
1

r1

√
5
· 1

1− x/r1

− 1

r2

√
5
· 1

1− x/r2

=
1

r1

√
5

∞∑
n=0

(
x

r1

)n

− 1

r2

√
5

∞∑
n=0

(
x

r2

)n

This gives us that

an =
1√

5 · rn+1
1

+
1√

5 · rn+1
2

=
2n+1

√
5(−1 +

√
5)n+1

+
2n+1

√
5(−1−

√
5)n+1

=
2n+1(1 +

√
5)n+1

√
5 · 4n+1

− 2n+1(1−
√

5)n+1

√
5 · 4n+1

=
1√
5

(
1 +

√
5

2

)n+1

− 1√
5

(
1−

√
5

2

)n+1

.

(b) When we have a0 = 1 and a1 = 1, i.e. when we start with one pair
of baby rabbits, the numbers an are called Fibonacci Numbers. Use
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either the recurrence or your final formula to find a2 through a8. Are
you amazed that your general formula produces integers, or for that
matter produces rational numbers? Why does the recurrence equation
tell you that the Fibonacci numbers are all integers?

(c) Explain why there is a real number b such that, for large values of n,
the value of the nth Fibonacci number is almost exactly (but not quite)
some constant times bn. (Find b and the constant.)

(d) Find an algebraic explanation (not using the recurrence equation) of
what happens to make the square roots of five go away in the general
formula for the Fibonacci numbers. Explain why there is a real number
b such that, for large values of n, the value of the nth Fibonacci number
is almost exactly (but not quite) some constant times bn. (Find b and
the constant.)

∗(e) As a challenge (which the author has not yet done), see if you can
find a way to show algebraically (not using the recurrence relation, but
rather the formula you get by removing the square roots of five) that
the formula for the Fibonacci numbers yields integers.

223. Solve the recurrence an = 4an−1 − 4an−2.
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4.3.5 Catalan Numbers

224. (a) Using either lattice paths or diagonal lattice paths, explain why the
Catalan Number Cn satisfies the recurrence

Cn =
n∑

i=1

Ci−1Cn−i.

(b) Show that if we use y to stand for the power series
∑∞

i=0 Cnx
n, then we

can find y by solving a quadratic equation. (Hint: does the right hand
side of the recurrence remind you of some products you have worked
with?) Find y.

(c) Taylor’s theorem from calculus tells us that the extended binomial the-
orem

(1 + x)r =
∞∑
i=0

(
r

i

)
xi

holds for any number real number r, where
(

r
i

)
is defined to be

ri

i!
=

r(r − 1) · · · (r − i + 1)

i!
.

Use this and your solution for y (note that of the two possible values
for y that you get from the quadratic formula, only one gives an actual
power series) to get a formula for the Catalan numbers.
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4.4 Supplementary Problems

1. What is the generating function for the number of ways to pass out k pieces
of candy from an unlimited supply of identical candy to n children (where
n is fixed) so that each child gets between three and six pieces of candy
(inclusive)? Use the fact that

(1 + x + x + x3)(1− x) = 1− x4

to find a formula for the number of ways to pass out the candy.

◦2. (a) In paying off a mortgage loan with initial amount A, annual interest
rate p% (on a monthly basis) with a monthly payment of m, what
recurrence describes the amount owed after n months of payments in
terms of the amount owed after n− 1 months? Some technical details:
You make the first payment after one month. The amount of interest
included in your monthly payment is .01p/12. This interest rate is
applied to the amount you owed immediately after making your last
monthly payment.

(b) Find a formula for the amount owed after n months.

(c) Find a formula for the number of months needed to bring the amount
owed to zero. Another technical point: If you were to make the stan-
dard monthly payment m in the last month, you might actually end
up owing a negative amount of money. Therefore it is ok if the result
of your formula for the number of months needed gives a non-integer
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number of months. The bank would just round up to the next integer
and adjust your payment so your balance comes out to zero.

(d) What should the monthly payment be to pay off the loan over a period
of 30 years?

3. We have said that for nonnegative i and positive n we want to define
(
−n
i

)
to be

(
n+i−1

i

)
. If we want the Pascal recurrence to be valid, how should we

define
(
−n
−i

)
when n and i are both positive?

4. Find a recurrence relation for the number of ways to divide a convex n-gon
into triangles by means of non-intersecting diagonals. How do these numbers
relate to the Catalan numbers?

5. How does
∑n

k=0

(
n−k

k

)
relate to the Fibonacci Numbers?

6. Let m and n be fixed. Express the generating function for the number of
k-element multisets of an n-element set such that no element appears more
than m times as a quotient of two polynomials. Use this expression to get a
formula for the number of k-element multisets of an n-element set such that
no element appears more than m times.

7. One natural but oversimplified model for the growth of a tree is that all
new wood grows from the previous year’s growth and is proportional to it
in amount. To be more precise, assume that the (total) length of the new
growth in a given year is the constant c times the (total) length of new
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growth in the previous year. Write down a recurrence for the total length
an of all the branches of the tree at the end of growing season n. Find the
general solution to your recurrence relation. Assume that we begin with a
one meter cutting of new wood (from the previous year) which branches out
and grows a total of two meters of new wood in the first year. What will
the total length of all the branches of the tree be at the end of n years?

8. (Relevant to Appendix C) We have some chairs which we are going to paint
with red, white, blue, green, yellow and purple paint. Suppose that we may
paint any number of chairs red or white, that we may paint at most one
chair blue, at most three chairs green, only an even number of chairs yellow,
and only a multiple of four chairs purple. In how many ways may we paint
n chairs?

9. What is the generating function for the number of partitions of an integer
in which each part is used at most m times? Why is this also the generat-
ing function for partitions in which consecutive parts (in a decreasing list
representation) differ by at most m and the smallest part is also at most
m?



Chapter 5

The Principle of Inclusion and
Exclusion

5.1 The Size of a Union of Sets

One of our very first counting principles was the sum principle which says that
the size of a union of disjoint sets is the sum of their sizes. Computing the size
of overlapping sets requires, quite naturally, information about how they overlap.
Taking such information into account will allow us to develop a powerful extension
of the sum principle known as the “principle of inclusion and exclusion.”

153
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5.1.1 Unions of two or three sets

◦225. In a biology lab study of the effects of basic fertilizer ingredients on plants,
16 plants are treated with potash, 16 plants are treated with phosphate, and
among these plants, eight are treated with both phosphate and potash. No
other treatments are used. How many plants receive at least one treatment?
If 32 plants are studied, how many receive no treatment?

+ 226. Give a formula for the size of the union A∪B of two sets A and B in terms
of the sizes |A| of A, |B| of B, and |A∩B| of A∩B. If A and B are subsets
of some “universal” set U , express the size of the complement U − (A ∪B)
in terms of the sizes |U | of U , |A| of A, |B| of B, and |A ∩B| of A ∩B.

◦227. In Problem 225, there were just two fertilizers used to treat the sample
plants. Now suppose there are three fertilizer treatments, and 15 plants are
treated with nitrates, 16 with potash, 16 with phosphate, 7 with nitrate and
potash, 9 with nitrate and phosphate, 8 with potash and phosphate and 4
with all three. Now how many plants have been treated? If 32 plants were
studied, how many received no treatment at all?

•228. Give a formula for the size of A ∪ B ∪ C in terms of the sizes of A, B, C
and the intersections of these sets.
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5.1.2 Unions of an arbitrary number of sets

•229. Conjecture a formula for the size of a union of sets

A1 ∪ A2 ∪ · · · ∪ An =
n⋃

i=1

Ai

in terms of the sizes of the sets Ai and their intersections.

The difficulty of generalizing Problem 228 to Problem 229 is not likely to be one
of being able to see what the right conjecture is, but of finding a good notation
to express your conjecture. In fact, it would be easier for some people to express
the conjecture in words than to express it in a notation. We will describe some
notation that will make your task easier. It is similar to the notation

EP (S) =
∑

s:s∈S

P (s).

that we used to stand for the sum of the pictures of the elements of a set S when
we introduced picture enumerators.

Let us define ⋂
i:i∈I

Ai

to mean the intersection over all elements i in the set I of Ai. Thus⋂
i:i∈{1,3,4,6}

Ai = A1 ∩ A3 ∩ A4 ∩ A6. (5.1)
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This kind of notation, consisting of an operator with a description underneath of
the values of a dummy variable of interest to us, can be extended in many ways.
For example ∑

I:I⊆{1,2,3,4}, |I|=2

| ∩i∈I Ai| = |A1 ∩ A2|+ |A1 ∩ A3|+ |A1 ∩ A4|

+ |A2 ∩ A3|+ |A2 ∩ A4|+ |A3 ∩ A4|. (5.2)

•230. Use notation something like that of Equation 5.1 and Equation 5.2 to express
the answer to Problem 229. Note there are many different correct ways to
do this problem. Try to write down more than one and choose the nicest
one you can. Say why you chose it (because your view of what makes a
formula nice may be different from somebody else’s). The nicest formula
won’t necessarily involve all the elements of Equations 5.1 and 5.2. (The
author’s version doesn’t use all those elements.)

•231. A group of n students goes to a restaurant carrying backpacks. The manager
invites everyone to check their backpack at the check desk and everyone does.
While they are eating, a child playing in the check room randomly moves
around the claim check stubs on the backpacks. We will try to compute the
probability that, at the end of the meal, at least one student receives his or
her own backpack. This probability is the fraction of the total number of
ways to return the backpacks in which at least one student gets his or her
own backpack back.

(a) What is the total number of ways to pass back the backpacks?
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(b) In how many of the distributions of backpacks to students does at least
one student get his or her own backpack? (Hint: For each student, how
big is the set of backpack distributions in which that student gets the
correct backpack? It might be a good idea to first consider cases with
n = 3, 4, and 5.)

(c) What is the probability that at least one student gets the correct back-
pack?

(d) What is the probability that no student gets his or her own backpack?

(e) As the number of students becomes large, what does the probability
that no student gets the correct backpack approach?

Problem 231 is “classically” called the hatcheck problem; the name comes from
substituting hats for backpacks. If is also sometimes called the derangement prob-
lem. A derangement of an n-element set is a permutation of that set (thought of
as a bijection) that maps no element of the set to itself. One can think of a way
of handing back the backpacks as a permutation f of the students: f(i) is the
owner of the backpack that student i receives. Then a derangement is a way to
pass back the backpacks so that no student gets his or her own.

5.1.3 The Principle of Inclusion and Exclusion

The formula you have given in Problem 230 is often called the principle of
inclusion and exclusion for unions of sets. The reason is the pattern in which
the formula first adds (includes) all the sizes of the sets, then subtracts (excludes)
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all the sizes of the intersections of two sets, then adds (includes) all the sizes of
the intersections of three sets, and so on. Notice that we haven’t yet proved the
principle. There are a variety of proofs. Perhaps one of the most straightforward
(though not the most elegant) is an inductive proof that relies on the fact that

A1 ∪ A2 ∪ · · · ∪ An = (A1 ∪ A2 ∪ · · · ∪ An−1) ∪ An

and the formula for the size of a union of two sets.

232. Give a proof of your formula for the principle of inclusion and exclusion.

233. We get a more elegant proof if we ask for a picture enumerator for A1∪A2∪
· · · ∪ An. So let us assume A is a set with a picture function P defined on
it and that each set Ai is a subset of A.

(a) By thinking about how we got the formula for the size of a union, write
down instead a conjecture for the picture enumerator of a union. You
could use a notation like EP (

⋂
i:i∈S

Ai) for the picture enumerator of the

intersection of the sets Ai for i in a subset S of [n].

(b) If x ∈
n⋃

i=1

Ai, what is the coefficient of P (x) in (the inclusion-exclusion

side of) your formula for EP (
n⋃

i=1

Ai)?
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(c) If x 6∈
n⋃

i=1

Ai, what is the coefficient of P (x) in (the inclusion-exclusion

side of) your formula for EP (
n⋃

i=1

Ai)?

(d) How have you proved your conjecture for the picture enumerator of the
union of the sets Ai?

(e) How can you get the formula for the principle of inclusion and exclusion
from your formula for the picture enumerator of the union?

234. Frequently when we apply the principle of inclusion and exclusion, we will
have a situation like that of Problem 231d. That is, we will have a set A
and subsets A1, A2, . . . , An and we will want the size or the probability of
the set of elements in A that are not in the union. This set is known as the
complement of the union of the Ais in A, and is denoted by A−⋃n

i=1 Ai, or
if A is clear from context, by

⋃n
i=1 Ai. Give the formula for

⋃n
i=1 Ai. The

principle of inclusion and exclusion generally refers to both this formula
and the one for the union.

We can find a very elegant way of writing the formula in Problem 234 if we
let

⋂
i:i∈∅

Ai = A. For this reason, if we have a family of subsets Ai of a set A, we

define1
⋂

i:i∈∅
Ai = A.

1For those interested in logic and set theory, given a family of subsets Ai of a set A, we define⋂
i:i∈S Ai to be the set of all members x of A that are in Ai for all i ∈ S. (Note that this allows
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5.2 Applications of Inclusion and Exclusion

5.2.1 Multisets with restricted numbers of elements

235. In how many ways may we distribute k identical apples to n children so that
no child gets more than four apples? Compare your result with your result
in Problem 197.

5.2.2 The Ménage Problem

236. A group of n married couples comes to a group discussion session where
they all sit around a round table. In how many ways can they sit so that
no person is next to his or her spouse? (Note that two people of the same
sex can sit next to each other.)

∗237. A group of n married couples comes to a group discussion session where
they all sit around a round table. In how many ways can they sit so that
no person is next to his or her spouse or a person of the same sex? This
problem is called the ménage problem. (Hint: Reason somewhat as you did
in Problem 236, noting that if the set of couples who do sit side-by-side is
nonempty, then the sex of the person at each place at the table is determined

x to be in some other Ajs as well.) Then if S = ∅, our intersection consists of all members x of
A that satisfy the statement “if i ∈ ∅, then x ∈ Ai.” But since the hypothesis of the ‘if-then’
statement is false, the statement itself is true for all x ∈ A. Therefore

⋂
i:i∈∅Ai = A.
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once we seat one couple in that set, or, for that matter, once we seat one
person.)

5.2.3 Counting onto functions

•238. Given a function f from the k-element set K to the n-element set [n], we
say f is in the set Ai if f(x) 6= i for every x in K. How many of these sets
does an onto function belong to? What is the number of functions from a
k-element set onto an n-element set?

239. Find a formula for the Stirling number (of the second kind) S(k, n).

240. If we roll a die eight times, we get a sequence of 8 numbers, the number of
dots on top on the first roll, the number on the second roll, and so on.

(a) What is the number of ways of rolling the die eight times so that each
of the numbers one through six appears at least once in our sequence?
To get a numerical answer, you will likely need a computer algebra
package.

(b) What is the probability that we get a sequence in which all six numbers
between one and six appear? To get a numerical answer, you will
likely need a computer algebra package, programmable calculator, or
spreadsheet.

(c) How many times do we have to roll the die to have probability at
least one half that all six numbers appear in our sequence. To an-



162 CHAPTER 5. INCLUSION AND EXCLUSION

swer this question, you will likely need a computer algebra package,
programmable calculator, or spreadsheet.

5.2.4 The chromatic polynomial of a graph

We defined a graph to consist of set V of elements called vertices and a set E of
elements called edges such that each edge joins two vertices. A coloring of a graph
by the elements of a set C (of colors) is an assignment of an element of C to each
vertex of the graph; that is, a function from the vertex set V of the graph to C.
A coloring is called proper if for each edge joining two distinct vertices2, the two
vertices it joins have different colors. You may have heard of the famous four color
theorem of graph theory that says if a graph may be drawn in the plane so that no
two edges cross (though they may touch at a vertex), then the graph has a proper
coloring with four colors. Here we are interested in a different, though related,
problem: namely, in how many ways may we properly color a graph (regardless
of whether it can be drawn in the plane or not) using k or fewer colors? When we
studied trees, we restricted ourselves to connected graphs. (Recall that a graph
is connected if, for each pair of vertices, there is a walk between them.) Here,
disconnected graphs will also be important to us. Given a graph which might
or might not be connected, we partition its vertices into blocks called connected
components as follows. For each vertex v we put all vertices connected to it by a
walk into a block together. Clearly each vertex is in at least one block, because

2If a graph had a loop connecting a vertex to itself, that loop would connect a vertex to a
vertex of the same color. It is because of this that we only consider edges with two distinct
vertices in our definition.
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vertex v is connected to vertex v by the trivial walk consisting of the single vertex
v and no edges. To have a partition, each vertex must be in one and only one
block. To prove that we have defined a partition, suppose that vertex v is in the
blocks B1 and B2. Then B1 is the set of all vertices connected by walks to some
vertex v1 and B2 is the set of all vertices connected by walks to some vertex v2.

·241. (Relevant in Appendix C as well as this section.) Show that B1 = B2.

Since B1 = B2, these two sets are the same block, and thus all blocks containing
v are identical, so v is in only one block. Thus we have a partition of the vertex
set, and the blocks of the partition are the connected components of the graph.
Notice that the connected components depend on the edge set of the graph. If we
have a graph on the vertex set V with edge set E and another graph on the vertex
set V with edge set E ′, then these two graphs could have different connected
components. It is traditional to use the Greek letter γ (gamma)3 to stand for the
number of connected components of a graph; in particular, γ(V, E) stands for the
number of connected components of the graph with vertex set V and edge set E.
We are going to show how the principle of inclusion and exclusion may be used
to compute the number of ways to color a graph properly using colors from a set
C of c colors.

·242. Suppose we have a graph G with vertex set V and edge set E = {e1, e2, . . . e|E|}.
Suppose F is a subset of E. Suppose we have a set C of c colors with which
to color the vertices.

3The Greek letter gamma is pronounced gam-uh, where gam rhymes with ham.
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(a) In terms of γ(V, F ), in how many ways may we color the vertices of G
so that each edge in F connects two vertices of the same color?

(b) Given a coloring of G, for each edge ei in E, let us consider the set
Ai of colorings that the endpoints of e are colored the same color. In
which sets Ai does a proper coloring lie?

(c) Find a formula (which may involve summing over all subsets F of
the edge set of the graph and using the number γ(V, F ) of connected
components of the graph with vertex set V and edge set F ) for the
number of proper colorings of G using colors in the set C.

The formula you found in Problem 242c is a formula that involves powers of c,
and so it is a polynomial function of c. Thus it is called the “chromatic polynomial
of the graph G.” Since we like to think about polynomials as having a variable
x and we like to think of c as standing for some constant, people often use x as
the notation for the number of colors we are using to color G. Frequently people
will use χG(x) to stand for the number of ways to color G with x colors, and call
χG(x) the chromatic polynomial of G.

5.3 Deletion-Contraction and the Chromatic Poly-

nomial

243. In Chapter 2 we introduced the deletion-contraction recurrence for counting
spanning trees of a graph. Figure out how the chromatic polynomial of
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a graph is related to those resulting from deletion of an edge e and from
contraction of that same edge e. Try to find a recurrence like the one for
counting spanning trees that expresses the chromatic polynomial of a graph
in terms of the chromatic polynomials of G − e and G/e for an arbitrary
edge e. Use this recurrence to give another proof that the number of ways
to color a graph with x colors is a polynomial function of x.

244. Use the deletion-contraction recurrence to reduce the computation of the
chromatic polynomial of the graph in Figure 5.1 to computation of chro-
matic polynomials that you can easily compute. (You can simplify your
computations by thinking about the effect on the chromatic polynomial of
deleting an edge that is a loop, or deleting one of several edges between the
same two vertices.)

Figure 5.1: A graph.

1 2

3
4

5



166 CHAPTER 5. INCLUSION AND EXCLUSION

245. (a) In how many ways may you properly color the vertices of a path on
n vertices with x colors? Describe any dependence of the chromatic
polynomial of a path on the number of vertices.

∗(b) (Not tremendously hard.) In how many ways may you properly color
the vertices of a cycle on n vertices with x colors? Describe any depen-
dence of the chromatic polynomial of a cycle on the number of vertices.

246. In how many ways may you properly color the vertices of a tree on n vertices
with x colors?

247. What do you observe about the signs of the coefficients of the chromatic
polynomial of the graph in Figure 5.1? What about the signs of the coeffi-
cients of the chromatic polynomial of a path? Of a cycle? Of a tree? Make
a conjecture about the signs of the coefficients of a chromatic polynomial
and prove it.

5.4 Supplementary Problems

1. Each person attending a party has been asked to bring a prize. The person
planning the party has arranged to give out exactly as many prizes as there
are guests, but any person may win any number of prizes. If there are n
guests, in how many ways may the prizes be given out so that nobody gets
the prize that he or she brought?

2. There are m students attending a seminar in a room with n seats. The
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seminar is a long one, and in the middle the group takes a break. In how
many ways may the students return to the room and sit down so that nobody
is in the same seat as before?

3. What is the number of ways to pass out k pieces of candy from an unlim-
ited supply of identical candy to n children (where n is fixed) so that each
child gets between three and six pieces of candy (inclusive)? If you have
done Supplementary Problem 1 in Chapter 4 compare your answer in that
problem with your answer in this one.

4. In how many ways may k distinct books be arranged on n shelves so that
no shelf gets more than m books?

5. Suppose that n children join hands in a circle for a game at nursery school.
The game involves everyone falling down (and letting go). In how many
ways may they join hands in a circle again so that nobody has the same
person immediately to the right both times the group joins hands?

∗6. Suppose that n people link arms in a folk-dance and dance in a circle. Later
on they let go and dance some more, after which they link arms in a circle
again. In how many ways can they link arms the second time so that no one
links with a person with whom he or she linked arms before?

∗7. (A challenge; the author has not tried to solve this one!) Redo Problem 6
in the case that there are n men and n women and when people arrange
themselves in a circle they do so alternating gender.
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8. Suppose we take two graphs G1 and G2 with disjoint vertex sets, we choose
one vertex on each graph, and connect these two vertices by an edge e to
get a graph G12. How does the chromatic polynomial of G12 relate to those
of G1 and G2?



Chapter 6

Groups Acting on Sets

6.1 Permutation Groups

Until now we have thought of permutations mostly as ways of listing the elements
of a set. In this chapter we will find it very useful to think of permutations as
functions. This will help us in using permutations to solve enumeration problems
that cannot be solved by the quotient principle because they involve counting the
blocks of a partition in which the blocks don’t have the same size. We begin by
studying the kinds of permutations that arise in situations where we have used
the quotient principle in the past.

169
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6.1.1 The rotations of a square

Figure 6.1: The four possible results of rotating a square but maintaining its
location.
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In Figure 6.1 we show a square with its four vertices labeled a, b, c, and d. We
have also labeled the spots in the plane where each of these vertices falls with the
label 1, 2, 3, or 4. Then we have shown the effect of rotating the square clockwise
through 90, 180, 270, and 360 degrees (which is the same as rotating through 0
degrees). Underneath each of the rotated squares we have named the function
that carries out the rotation. We use ρ, the Greek letter pronounced “row,” to
stand for a 90 degree clockwise rotation. We use ρ2 to stand for two 90 degree
rotations, and so on. We can think of the function ρ as a function on the four
element set1 {1, 2, 3, 4}. In particular, for any function ϕ (the Greek letter phi,

1What we are doing is restricting the rotation ρ to the set {1, 2, 3, 4}.
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usually pronounced “fee,” but sometimes “fie”) from the plane back to itself that
may move the square around but otherwise leaves it in the same location, we let
ϕ(i) be the label of the place where vertex previously in position i is now. Thus
ρ(1) = 2, ρ(2) = 3, ρ(3) = 4 and ρ(4) = 1. Notice that ρ is a permutation on the
set {1, 2, 3, 4}.

◦248. The composition f ◦ g of two functions f and g is defined by f ◦ g(x) =
f(g(x)). Is ρ3 the composition of ρ and ρ2? Does the answer depend on the
order in which we write ρ and ρ2? How is ρ2 related to ρ?

◦249. Is the composition of two permutations always a permutation?

In Problem 248 you see that we can think of ρ2◦ρ as the result of first rotating
by 90 degrees and then by another 180 degrees. In other words, the composition
of two rotations is the same thing as first doing one and then doing the other. Of
course there is nothing special about 90 degrees and 180 degrees. As long as we
first do one rotation through a multiple of 90 degrees and then another rotation
through a multiple of 90 degrees, the composition of these rotations is a rotation
through a multiple of 90 degrees.

If we first rotate by 90 degrees and then by 270 degrees then we have rotated
by 360 degrees, which does nothing visible to the square. Thus we say that ρ4 is
the “identity function.” In general the identity function on a set S, denoted
by ι (the Greek letter iota, pronounced eye-oh-ta) is the function that takes each
element of the set to itself. In symbols, ι(x) = x for every x in S. Of course the
identity function on a set is a permutation of that set.
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6.1.2 Groups of permutations

◦250. For any function ϕ from a set S to itself, we define ϕn (for nonnegative
integers n) inductively by ϕ0 = ι and ϕn = ϕn−1 ◦ ϕ for every positive
integer n. If ϕ is a permutation, is ϕn a permutation? Based on your
experience with previous inductive proofs, what do you expect ϕn ◦ ϕm to
be? What do you expect (ϕm)n to be? There is no need to prove these last
two answers are correct, for you have, in effect, already done so in Chapter
2.

◦251. If we perform the composition ι ◦ ϕ for any function ϕ from S to S, what
function do we get? What if we perform the composition ϕ ◦ ι?

What you have observed about iota in Problem 251 is called the identity property
of iota. In the context of permutations, people usually call the function ι “the
identity” rather than calling it “iota.”

Since rotating first by 90 degrees and then by 270 degrees has the same effect
as doing nothing, we can think of the 270 degree rotation as undoing what the 90
degree rotation does. For this reason we say that in the rotations of the square,
ρ3 is the “inverse” of ρ. In general, a function ϕ : T → S is called an inverse of
a function σ : S → T (σ is the lower case Greek letter sigma) if ϕ ◦ σ = σ ◦ϕ = ι.
For a slower introduction to inverses and practice with them, see Section A.1.3
in Appendix A. Since a permutation is a bijection, it has a unique inverse, as in
Section A.1.3 of Appendix A. And since the inverse of a bijection is a bijection
(again, as in the Appendix), the inverse of a permutation is a permutation.
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We use ϕ−1 to denote the inverse of the permutation ϕ. We’ve seen that the
rotations of the square are functions that return the square to its original location
but may move the vertices to different places. In this way we create permutations
of the vertices of the square. We’ve observed three important properties of these
permutations.

• (Identity Property) These permutations include the identity permutation.

• (Inverse Property) Whenever these permutations include ϕ, they also include
ϕ−1.

• (Closure Property) Whenever these permutations include ϕ and σ, they also
include ϕ ◦ σ.

A set of permutations with these three properties is called a permutation
group2 or a group of permutations. We call the group of permutations corre-
sponding to rotations of the square the rotation group of the square. There is a
similar rotation group with n elements for any regular n-gon.

252. If f : S → T , g : T → X, and h : X → Y , is

h ◦ (g ◦ f) = (h ◦ g) ◦ f?

2The concept of a permutation group is a special case of the concept of a group that one
studies in abstract algebra. When we refer to a group in what follows, if you know what groups
are in the more abstract sense, you may use the word in this way. If you do not know about
groups in this more abstract sense, then you may assume we mean permutation group when we
say group.
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What does this say about the status of the associative law

ρ ◦ (σ ◦ ϕ) = (ρ ◦ σ) ◦ ϕ

in a group of permutations?

253. •(a) How should we define ϕ−n for an element ϕ of a permutation group?

•(b) Will the two standard rules for exponents

aman = am+n and (am)n = amn

still hold in a group if one or more of the exponents may be negative?
(No proof required yet.)

(c) Proving that (ϕ−m)
n

= ϕ−mn when m and n are nonnegative is different
from proving that (ϕm)−n = ϕ−mn when m and n are nonnegative.
Make a list of all such formulas we would need to prove in order to prove
that the rules of exponents of Part 253b do hold for all nonnegative
and negative m and n.

(d) If the rules hold, give enough of the proof to show that you know how
to do it; otherwise give a counterexample.

•254. If a finite set of permutations satisfies the closure property is it a permutation
group?

•255. There are three-dimensional geometric motions of the square that return it
to its original location but move some of the vertices to other positions. For
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example, if we flip the square around a diagonal, most of it moves out of the
plane during the flip, but the square ends up in the same location. Draw
a figure like Figure 6.1 that shows all the possible results of such motions,
including the ones shown in Figure 6.1. Do the corresponding permutations
form a group?

256. Let σ and ϕ be permutations.

(a) Why must σ ◦ ϕ have an inverse?

(b) Is (σ ◦ ϕ)−1 = σ−1ϕ−1? (Prove or give a counter-example.)

(c) Is (σ ◦ ϕ)−1 = ϕ−1σ−1? (Prove or give a counter-example.)

◦257. Explain why the set of all permutations of four elements is a permutation
group. How many elements does this group have? This group is called the
symmetric group on four letters and is denoted by S4.

6.1.3 The symmetric group

In general, the set of all permutations of an n-element set is a group. It is called
the symmetric group on n letters. We don’t have nice geometric descriptions
(like rotations) for all its elements, and it would be inconvenient to have to write
down something like “Let σ(1) = 3, σ(2) = 1, σ(3) = 4, and σ(4) = 1” each
time we need to introduce a new permutation. We introduce a new notation for
permutations that allows us to denote them reasonably compactly and compose
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them reasonably quickly. If σ is the permutation of {1, 2, 3, 4} given by σ(1) = 3,
σ(2) = 1, σ(3) = 4 and σ(4) = 2, we write

σ =
(

1 2 3 4
3 1 4 2

)
.

We call this notation the two row notation for permutations. In the two row
notation for a permutation of {a1, a2, . . . , an}, we write the numbers a1 through
an in one row and we write σ(a1) through σ(an) in a row right below, enclosing
both rows in parentheses. Notice that(

1 2 3 4
3 1 4 2

)
=
(

2 1 4 3
1 3 2 4

)
,

although the second ordering of the columns is rarely used.
If ϕ is given by

ϕ =
(

1 2 3 4
4 1 2 3

)
,

then, by applying the definition of composition of functions, we may compute σ◦ϕ
as shown in Figure 6.2.

We don’t normally put the circle between two permutations in two row no-
tation when we are composing them, and refer to the operation as multiplying
the permutations, or as the product of the permutations. To see how Figure 6.2
illustrates composition, notice that the arrow starting at 1 in ϕ goes to 4. Then
from the 4 in ϕ it goes to the 4 in σ and then to 2. This illustrates that ϕ(1) = 4
and σ(4) = 2, so that σ(ϕ(1)) = 2.
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Figure 6.2: How to multiply permutations in two row notation.
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258. For practice, compute
(

1 2 3 4 5
3 4 1 5 2

)(
1 2 3 4 5
4 3 5 1 2

)
.

6.1.4 The dihedral group

We found four permutations that correspond to rotations of the square. In Prob-
lem 255 you found four permutations that correspond to flips of the square in
space. One flip fixes the vertices in the places labeled 1 and 3 and interchanges
the vertices in the places labeled 2 and 4. Let us denote it by ϕ1|3. One flip fixes
the vertices in the positions labeled 2 and 4 and interchanges those in the posi-
tions labeled 1 and 3. Let us denote it by ϕ2|4. One flip interchanges the vertices
in the places labeled 1 and 2 and also interchanges those in the places labeled 3
and 4. Let us denote it by ϕ12|34. The fourth flip interchanges the vertices in the
places labeled 1 and 4 and interchanges those in the places labeled 2 and 3. Let
us denote it by ϕ14|23. Notice that ϕ1|3 is a permutation that takes the vertex in
place 1 to the vertex in place 1 and the vertex in place 3 to the vertex in place
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3, while ϕ12|34 is a permutation that takes the edge between places 1 and 2 to the
edge between places 2 and 1 (which is the same edge) and takes the edge between
places 3 and 4 to the edge between places 4 and 3 (which is the same edge). This
should help to explain the similarity in the notation for the two different kinds of
flips.

•259. Write down the two row notation for ρ3, ϕ2|4, ϕ12|34 and ϕ2|4 ◦ ϕ12|34.

260. (You may have already done this problem in Problem 255, in which case
you need not do it again!) In Problem 255, if a rigid motion in three-
dimensional space returns the square to its original location, in how many
places can vertex number one land? Once the location of vertex number
one is decided, how many possible locations are there for vertex two? Once
the locations of vertex one and vertex two are decided, how many locations
are there for vertex three? Answer the same question for vertex four. What
does this say about the relationship between the four rotations and four flips
described just before Problem 259 and the permutations you described in
Problem 255?

The four rotations and four flips of the square described before Problem 259
form a group called the dihedral group of the square. Sometimes the group is
denoted D8 because it has eight elements, and sometimes the group is denoted by
D4 because it deals with four vertices! Let us agree to use the notation D4 for the
dihedral group of the square. There is a similar dihedral group, denoted by Dn,
of all the rigid motions of three-dimensional space that return a regular n-gon to
its original location (but might put the vertices in different places).
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261. Another view of the dihedral group of the square is that it is the group of
all distance preserving functions, also called isometries, from a square to
itself. Notice that an isometry must be a bijection. Any rigid motion of the
square preserves the distances between all points of the square. However,
it is conceivable that there might be some isometries that do not arise from
rigid motions. (We will see some later on in the case of a cube.) Show
that there are exactly eight isometries (distance preserving functions) from
a square to itself.

262. How many elements does the group Dn have? Prove that you are correct.

•263. In Figure 6.3 we show a cube with the positions of its vertices and faces
labeled. As with motions of the square, we let we let ϕ(x) be the label of
the place where vertex previously in position x is now.

(a) Write in two row notation the permutation ρ of the vertices that corre-
sponds to rotating the cube 90 degrees around a vertical axis through
the faces t (for top) and u (for underneath). (Rotate in a right-handed
fashion around this axis, meaning that vertex 6 goes to the back and
vertex 8 comes to the front.)

(b) Write in two row notation the permutation ϕ that rotates the cube
120 degrees around the diagonal from vertex 1 to vertex 7 and carries
vertex 8 to vertex 6.

(c) Compute the two row notation for ρ ◦ ϕ.
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Figure 6.3: A cube with the positions of its vertices and faces labeled. The curved
arrows point to the faces that are blocked by the cube.
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(d) Is the permutation ρ ◦ ϕ a rotation of the cube around some axis? If
so, say what the axis is and how many degrees we rotate around the
axis. If ρ ◦ ϕ is not a rotation, give a geometric description of it.

·264. How many permutations are in the group R? R is sometimes called the
“rotation group” of the cube. Can you justify this?
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265. As with a two-dimensional figure, it is possible to talk about isometries of a
three-dimensional figure. These are distance preserving functions from the
figure to itself. The function that reflects the cube in Figure 6.3 through a
plane halfway between the bottom face and top face exchanges the vertices
1 and 5, 2 and 6, 3 and 7, and 4 and 8 of the cube. This function preserves
distances between points in the cube. However, it cannot be achieved by a
rigid motion of the cube because a rigid motion that takes vertex 1 to vertex
5, vertex 2 to vertex 6, vertex 3 to vertex 7, and vertex 4 to vertex 8 would
not return the cube to its original location; rather it would put the bottom
of the cube where its top previously was and would put the rest of the cube
above that square rather than below it.

(a) How many elements are there in the group of permutations of [8] that
correspond to isometries of the cube?

(b) Is every permutation of [8] that corresponds to an isometry either a
rotation or a reflection?

6.1.5 Group tables (Optional)

We can always figure out the composition of two permutations of the same set
by using the definition of composition, but if we are going to work with a given
permutation group again and again, it is worth making the computations once
and recording them in a table. For example, the group of rotations of the square
may be represented as in Table 6.1. We list the elements of our group, with the
identity first, across the top of the table and down the left side of the table, using
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the same order both times. Then in the row labeled by the group element σ
and the column labeled by the group element ϕ, we write the composition σ ◦ ϕ,
expressed in terms of the elements we have listed on the top and on the left side.
Since a group of permutations is closed under composition, the result σ ◦ ϕ will
always be expressible as one of these elements.

Table 6.1: The group table for the rotations of a square.

◦ ι ρ ρ2 ρ3

ι ι ρ ρ2 ρ3

ρ ρ ρ2 ρ3 ι
ρ2 ρ2 ρ3 ι ρ
ρ3 ρ3 ι ρ ρ2

266. In Table 6.1, all the entries in a row (not including the first entry, the one
to the left of the line) are different. Will this be true in any group table for
a permutation group? Why or why not? Also in Table 6.1 all the entries in
a column (not including the first entry, the one above the line) are different.
Will this be true in any group table for a permutation group? Why or why
not?

267. In Table 6.1, every element of the group appears in every row (even if you
don’t include the first element, the one before the line). Will this be true in
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any group table for a permutation group? Why or why not? Also in Table
6.1 every element of the group appears in every column (even if you don’t
include the first entry, the one before the line). Will this be true in any
group table for a permutation group? Why or why not?

·268. Write down the group table for the dihedral group D4. Use the ϕ notation
described earlier to denote the flips. (Hints: Part of the table has already
been written down. Will you need to think hard to write down the last row?
Will you need to think hard to write down the last column?)

You may notice that the associative law, the identity property, and the inverse
property are three of the most important rules that we use in regrouping paren-
theses in algebraic expressions when solving equations. There is one property we
have not yet mentioned, the commutative law, which would say that σ ◦ϕ = ϕ◦σ.
It is easy to see from the group table of the rotation group of a square that it
satisfies the commutative law.

269. Does the commutative law hold in all permutation groups?

6.1.6 Subgroups

We have seen that the dihedral group D4 contains a copy of the group of rotations
of the square. When one group G of permutations of a set S is a subset of another
group G′ of permutations of S, we say that G is a subgroup of G′.

◦270. Find all subgroups of the group D4 and explain why your list is complete.
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271. Can you find subgroups of the symmetric group S4 with two elements? Three
elements? Four elements? Six elements? (For each positive answer, describe
a subgroup. For each negative answer, explain why not.)

6.1.7 The cycle decomposition of a permutation

The digraph of a permutation gives us a nice way to think about it. Notice that

the product in Figure 6.2 is
(

1 2 3 4
2 3 1 4

)
. We have drawn the directed graph

of this permutation in Figure 6.4. You see that the graph has two directed cycles,

Figure 6.4: The directed graph of the permutation
(

1 2 3 4
2 3 1 4

)
.

1

23
4

the rather trivial one with vertex 4 pointing to itself, and the nontrivial one with
vertex 1 pointing to vertex 2 pointing to vertex 3 which points back to vertex 1.
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A permutation is called a cycle if its digraph consists of exactly one cycle. Thus(
1 2 3
2 3 1

)
is a cycle but

(
1 2 3 4
2 3 1 4

)
is not a cycle by our definition. We

write (1 2 3) or (2 3 1) or (3 1 2) to stand for the cycle σ =
(

1 2 3
2 3 1

)
.

We can describe cycles in another way as well. A cycle of the permutation σ
is a list (i σ(i) σ2(i) . . . σn(i)) that does not have repeated elements while the
list (i σ(i) σ2(i) . . . σn(i) σn+1(i)) does have repeated elements.

272. If the list (i σ(i) σ2(i) . . . σn(i)) does not have repeated elements but the
list (i σ(i) σ2(i) . . . σn(i) σn+1(i)) does have repeated elements, then what
is σn+1(i)?

We say σj(i) is an element of the cycle (i σ(i) σ2(i) . . . σn(i)). Notice that the
case j = 0 means i is an element of the cycle. Notice also that if j > n, σj(i) =
σj−n−1(i), so the distinct elements of the cycle are i, σ(i), σ2(i), through σn(i).
We think of the cycle (i σ(i) σ2(i) . . . σn(i)) as representing the permutation σ
restricted to the set of elements of the cycle. We say that the cycles

(i σ(i) σ2(i) . . . σn(i))

and
(σj(i) σj+1(i) . . . σn(i) i σ(i) σ2(i) . . . σj−1(i))

are equivalent. Equivalent cycles represent the same permutation on the set of
elements of the cycle. For this reason, we consider equivalent cycles to be equal
in the same way we consider 1

2
and 2

4
to be equal. In particular, this means that

(i1 i2 . . . in) = (ij ij+1 . . . in i1 i2 . . . ij−1).
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•273. Find the cycles of the permutations ρ, ϕ1|3 and ϕ12|34 in the group D4.

◦274. Find the cycles of the permutation
(

1 2 3 4 5 6 7 8 9
3 4 6 2 9 7 1 5 8

)
.

275. If two cycles of σ have an element in common, what can we say about them?

Problem 275 leads almost immediately to the following theorem.

Theorem 8 For each permutation σ of a set S, there is a unique partition of S
each of whose blocks is the set of elements of a cycle of σ.

More informally, we may say that every permutation partitions its domain into
disjoint cycles. We call the set of cycles of a permutation the cycle decomposition
of the permutation. Since the cycles of a permutation σ tell us σ(x) for every x in
the domain of σ, the cycle decomposition of a permutation completely determines
the permutation. Using our informal language, we can express this idea in the
following corollary to Theorem 8.

Corollary 2 Every partition of a set S into cycles determines a unique permu-
tation of S.

276. Prove Theorem 8.
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In Problems 273 and 274 you found the cycle decompositions of typical ele-
ments of the group D4 and of the permutation

(
1 2 3 4 5 6 7 8 9
3 4 6 2 9 7 1 5 8

)
.

The group of all rotations of the square is simply the set of the four powers
of the cycle ρ = (1 2 3 4). For this reason, it is called a cyclic group3 and often
denoted by C4. Similarly, the rotation group of an n-gon is usually denoted by
Cn.

277. Write a recurrence for the number c(k, n) of permutations of [k] that have
exactly n cycles, including 1-cycles. Use it to write a table of c(k, n) for k
between 1 and 7 inclusive. Can you find a relationship between c(k, n) and
any of the other families of special numbers such as binomial coefficients,
Stirling numbers, Lah numbers, etc. we have studied? If you find such a
relationship, prove you are right.

·278. (Relevant to Appendix C.) A permutation σ is called an involution if
σ2 = ι. When you write down the cycle decomposition of an involution,
what is special about the cycles?

3The phrase cyclic group applies in a more general (but similar) situation. Namely the set
of all powers of any member of a group is called a cyclic group.
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6.2 Groups Acting on Sets

We defined the rotation group C4 and the dihedral group D4 as groups of permu-
tations of the vertices of a square. These permutations represent rigid motions of
the square in the plane and in three-dimensional space respectively. The square
has geometric features of interest other than its vertices; for example, its diag-
onals, or its edges. Any geometric motion of the square that returns it to its
original location takes each diagonal to a possibly different diagonal, and takes
each edge to a possibly different edge. In Figure 6.5 we show the results on the
sides and diagonals of the rotations of a square. The rotation group permutes

Figure 6.5: The results on the sides and diagonals of rotating the square
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the sides of the square and permutes the diagonals of the square as it rotates the
square. Thus we say the rotation group “acts” on the sides and diagonals of the
square.
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◦279. (a) Write down the two-line notation for the permutation ρ that a 90 degree
rotation does to the sides of the square.

(b) Write down the two-line notation for the permutation ρ2 that a 180
degree rotation does to the sides of the square.

(c) Is ρ2 = ρ ◦ ρ? Why or why not?

(d) Write down the two-line notation for the permutation ρ̂ that a 90 degree
rotation does to the diagonals d13, and d24 of the square.

(e) Write down the two-line notation for the permutation ρ̂2 that a 180
degree rotation does to the diagonals of the square.

(f) Is ρ̂2 = ρ̂ ◦ ρ̂? Why or why not? What familiar permutation is ρ̂2 in
this case?

We have seen that the fact that we have defined a permutation group as the
permutations of some specific set doesn’t preclude us from thinking of the elements
of that group as permuting the elements of some other set as well. In order to
keep track of which permutations of which set we are using to define our group
and which other set is being permuted as well, we introduce some new language
and notation. We are going to say that the group D4 “acts” on the edges and
diagonals of a square and the group R of permutations of the vertices of a cube
that arise from rigid motions of the cube “acts” on the edges, faces, diagonals,
etc. of the cube.

•280. In Figure 6.3 we show a cube with the positions of its vertices and faces
labeled. As with motions of the square, we let we let ϕ(x) be the label of
the place where vertex previously in position x is now.
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·(a) In Problem 263 we wrote in two row notation the permutation ρ of
the vertices that corresponds to rotating the cube 90 degrees around
a vertical axis through the faces t (for top) and u (for underneath).
(We rotated in a right-handed fashion around this axis, meaning that
vertex 6 goes to the back and vertex 8 comes to the front.) Write in
two row notation the permutation ρ of the faces that corresponds to
this member ρ of R.

(b) In Problem 263 we wrote in two row notation the permutation ϕ that
rotates the cube 120 degrees around the diagonal from vertex 1 to
vertex 7 and carries vertex 8 to vertex 6. Write in two row notation
the permutation ϕ of the faces that corresponds to this member of R.

(c) In Problem 263 we computed the two row notation for ρ ◦ ϕ. Now
compute the two row notation for ρ ◦ ϕ (ρ was defined in Part 280a),
and write in two row notation the permutation ρ ◦ ϕ of the faces that
corresponds to the action of the permutation ρ ◦ ϕ on the faces of
the cube (for this question it helps to think geometrically about what
motion of the cube is carried out by ρ◦ϕ). What do you observe about
ρ ◦ ϕ and ρ ◦ ϕ?

We say that a permutation group G acts on a set S if, for each member σ of
G there is a permutation σ of S such that

σ ◦ ϕ = σ ◦ ϕ

for every member σ and ϕ of G. In Problem 280c you saw one example of this
condition. If we think intuitively of ρ and ϕ as motions in space, then following
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the action of ϕ by the action of ρ does give us the action of ρ ◦ ϕ. We can also
reason directly with the permutations in the group R of rigid motions (rotations)
of the cube to show that R acts on the faces of the cube.

◦281. Show that a group G of permutations of a set S acts on S with ϕ = ϕ for
all ϕ in G.

◦282. The group D4 is a group of permutations of {1, 2, 3, 4} as in Problem 255.
We are going to show in this problem how this group acts on the two-
element subsets of {1, 2, 3, 4}. In Problem 287 we will see a natural geometric
interpretation of this action. In particular, for each two-element subset {i, j}
of {1, 2, 3, 4} and each member σ of D4 we define σ({i, j}) = {σ(i), σ(j)}.
Show that with this definition of σ, the group D4 acts on the two-element
subsets of {1, 2, 3, 4}.

·283. Suppose that σ and ϕ are permutations in the group R of rigid motions of
the cube. We have argued already that each rigid motion sends a face to
a face. Thus σ and ϕ both send the vertices on one face to the vertices on
another face. Let {h, i, j, k} be the set of labels next to the vertices on a
face F .

(a) What are the labels next to the vertices of the face F ′ that F is sent
to by ϕ? (The function ϕ may appear in your answer.)

(b) What are the next to the vertices of the face F ′′ that F ′ is sent to by
σ?



192 CHAPTER 6. GROUPS ACTING ON SETS

(c) What are the labels next to the vertices of the face F ′′′ that F is sent
to by σ ◦ ϕ?

(d) How have you just shown that the group R acts on the faces?

6.2.1 Groups acting on colorings of sets

Recall that when you were asked in Problem 45 to find the number of ways to
place two red beads and two blue beads at the corners of a square free to move
in three-dimensional space, you were not able to apply the quotient principle to
answer the question. Instead you had to see that you could divide the set of six
lists of two Rs and two Bs into two sets, one of size two in which the Rs and
Bs alternated and one of size four in which the two reds (and therefore the two
blues) would be side-by-side on the square. Saying that the square is free to move
in space is equivalent to saying that two arrangements of beads on the square
are equivalent if a member of the dihedral group carries one arrangement to the
other. Thus an important ingredient in the analysis of such problems will be how
a group can act on colorings of a set of vertices. We can describe the coloring of
the square in Figure 6.6 as the function f with

f(1) = R, f(2) = R, f(3) = B, and f(4) = B,

but it is more compact and turns out to be more suggestive to represent the
coloring in Figure 6.6 as the set of ordered pairs

(1, R), (2, R), (3, B), (4, B). (6.1)
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Figure 6.6: The colored square with coloring {(1, R), (2, R), (3, B), (4, B)}
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This gives us an explicit list of which colors are assigned to which vertex.4

Then if we rotate the square through 90 degrees, we see that the set of ordered
pairs becomes

{(ρ(1), R), (ρ(2), R), (ρ(3), B), (ρ(4), B)} (6.2)

which is the same as

{(2, R), (3, R), (4, B), (1, B)}.

or, in a more natural order,

{(1, B), (2, R), (3, R), (4, B)}. (6.3)

4The reader who has studied Appendix A will recognize that this set of ordered pairs is the
relation of the function f , but we won’t need to make any specific references to the idea of a
relation in what follows.
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The reordering we did in 6.3 suggests yet another simplification of notation.
So long as we know we that the first elements of our pairs are labeled by the
members of [n] for some integer n and we are listing our pairs in increasing order
by the first component, we can denote the coloring

{(1, B), (2, R), (3, R), (4, B)}

by BRRB. In the case where we have numbered the elements of the set S we are
coloring, we will call this list of colors of the elements of S in order the standard
notation for the coloring. We will call the ordering used in 6.3 the standard
ordering of the coloring.

Thus we have three natural ways to represent a coloring of a set as a function,
as a set of ordered pairs, and as a list. Different representations are useful for
different things. For example, the representation by ordered pairs will provide a
natural way to define the action of a group on colorings of a set. Given a coloring
as a function f , we denote the set of ordered pairs

{(x, f(x))|x ∈ S},

suggestively as (S, f) for short. We use f(1)f(2) · · · f(n) to stand for a particular
coloring (S, f) in the standard notation.

◦284. Suppose now that instead of coloring the vertices of a square, we color its
edges. We will use the shorthand 12, 23, 34, and 41 to stand for the edges
of the cube between vertex 1 and vertex 2, vertex 2 and vertex 3, and so on.
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Then a coloring of the edges with 12 red, 23 blue, 34 red and 41 blue can
be represented as

{(12, R), (23, B), (34, R), (41, B)}. (6.4)

If ρ is the rotation through 90 degrees, then we have a permutation ρ acting
on the edges. This permutation acts on the colorings to give us a permuta-
tion ρ of the set of colorings.

(a) What is ρ of the coloring in 6.4?

(b) What is ρ2 of the coloring in 6.4?

If G is a group that acts the set S, we define the action of G on the colorings
(S, f) by

σ((S, f)) = σ({(x, f(x))|x ∈ S}) = {(σ(x), f(x))|x ∈ S}. (6.5)

We have the two bars over σ, because σ is a permutation of one set that gives us
a permutation σ of a second set, and then σ acts to give a permutation σ of a
third set, the set of colorings. For example, suppose we want to anlayze colorings
of the faces of a cube under the action of the rotation group of the cube as we
have defined it on the vertices. Each vertex-permutation σ in the group gives a
permutation σ of the faces of the cube. Then each permutation σ of the faces
gives us a permutation σ of the colorings of the faces.

In the special case that G is a group of permutations of S rather than a group
acting on S, Equation 6.5 becomes

σ((S, f)) = σ({(x, f(x))|x ∈ S}) = {(σ(x), f(x))|x ∈ S}.
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In the case where G is the rotation group of the square acting on the vertices of the
square, the example of acting on a coloring by ρ that we saw in 6.3 is an example
of this kind of action. In the standard notation, when we act on a coloring by σ,
the color in position i moves to position σ(i).

285. Why does the action we have defined on colorings in Equation 6.5 take a
coloring to a coloring?

286. Show that if G is a group of permutations of a set S, and f is a coloring
function on S, then the equation

σ({(x, f(x))|x ∈ S}) = {(σ(x), f(x))|x ∈ S}

defines an action of G on the colorings (S, f) of S.

6.2.2 Orbits

•287. In Problem 282

(a) What is the set of two element subsets that you get by computing
σ({1, 2}) for all σ in D4?

(b) What is the multiset of two-element subsets that you get by computing
σ({1, 2}) for all σ in D4?

(c) What is the set of two-element subsets you get by computing σ({1, 3})
for all σ in D4?
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(d) What is the multiset of two-element subsets that you get by computing
σ({1, 3}) for all σ in D4?

(e) Describe the two sets in parts (a) and (c) geometrically in terms of the
square.

◦288. This problem uses the notation for permutations in the dihedral group of the
square introduced before Problem 259. What is the effect of a 180 degree
rotation ρ2 on the diagonals of a square? What is the effect of the flip ϕ1|3
on the diagonals of a square? How many elements of D4 send each diagonal
to itself? How many elements of D4 interchange the diagonals of a square?

In Problem 287 you saw that the action of the dihedral group D4 on two
element subsets of {1, 2, 3, 4} seems to split them into two blocks, one with two
elements and one with 4. We call these two blocks the “orbits” of D4 acting on
the two element subsets of {1, 2, 3, 4}. More generally, given a group G acting on
a set S, the orbit of G determined by an element x of S is the set

{σ(x)|σ ∈ G},

and is denoted by Gx. In Problem 287 it was possible to have Gx = Gy. In fact
in that problem, Gx = Gy for every y in Gx.

289. Suppose a group acts on a set S. Could an element of S be in two different
orbits? (Say why or why not.)

Problem 289 almost completes the proof of the following theorem.
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Theorem 9 Suppose a group acts on a set S. The orbits of G form a partition
of S.

It is probably worth pointing out that this theorem tells us that the orbit Gx
is also the orbit Gy for any element y of Gx.

290. Complete the proof of Theorem 9.

Notice that thinking in terms of orbits actually hides some information about
the action of our group. When we computed the multiset of all results of acting on
{1, 2} with the elements of D4, we got an eight-element multiset containing each
side twice. When we computed the multiset of all results of acting on {1, 3} with
the elements of D4, we got an eight-element multiset containing each diagonal
of the square four times. These multisets remind us that we are acting on our
two-element sets with an eight-element group. The multiorbit of G determined
by an element x of S is the multiset

{σ(x)|σ ∈ G},

and is denoted by Gxmulti.
When we used the quotient principle to count circular seating arrangements

or necklaces, we partitioned up a set of lists of people or beads into blocks of
equivalent lists. In the case of seating n people around a round table, what made
two lists equivalent was, in retrospect, the action of the rotation group Cn. In
the case of stringing n beads on a string to make a necklace, what made two lists
equivalent was the action of the dihedral group. Thus the blocks of our partitions
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were orbits of the rotation group or the dihedral group, and we were counting
the number of orbits of the group action. In Problem 45, we were not able to
apply the quotient principle because we had blocks of different sizes. However,
these blocks were still orbits of the action of the group D4. And, even though
the orbits have different sizes, we expect that each orbit corresponds naturally to
a multiorbit and that the multiorbits all have the same size. Thus if we had a
version of the quotient rule for a union of multisets, we could hope to use it to
count the number of multiorbits.

◦291. (a) Find the orbit and multiorbit of D4 acting on the coloring

{(1, R), (2, R), (3, B), (4, B)},

or, in standard notation, RRBB, of the vertices of a square.

(b) How many group elements map the coloring RRBB to itself? What is
the multiplicity of RRBB in its multiorbit?

(c) Find the orbit and multiorbit of D4 acting on the coloring

{(1, R), (2, B), (3, R), (4, B)}.

(d) How many elements of the group send the coloring RBRB to itself?
What is the multiplicity of RBRB in its orbit?

292. (a) If G is a group, how is the set {τσ|τ ∈ G} related to G?

(b) Use this to show that y is in the multiorbit Gxmulti if and only if
Gxmulti = Gymulti.



200 CHAPTER 6. GROUPS ACTING ON SETS

Problem 292b tells us that, when G acts on S, each element x of S is in one and
only one multiorbit. Since each orbit is a subset of a multiorbit and each element
x of S is in one and only one orbit, this also tells us there is a bijection between
the orbits of G and the multiorbits of G, so that we have the same number of
orbits as multiorbits.

When a group acts on a set, a group element is said to fix an element of x ∈ S
if σ(x) = x. The set of all elements fixing an element x is denoted by Fix(x).

293. Suppose a group G acts on a set S. What is special about the subset Fix(x)
for an element x of S?

•294. Suppose a group G acts on a set S. What is the relationship of the multi-
plicity of x ∈ S in its multiorbit and the size of Fix(x)?

295. What can you say about relationships between the multiplicity of an element
y in the multiorbit Gxmulti and the multiplicites of other elements? Try to
use this to get a relationship between the size of an orbit of G and the size
of G.

We suggested earlier that a quotient principle for multisets might prove useful.
The quotient principle came from the sum principle, and we do not have a sum
principle for multisets. Such a principle would say that the size of a union of
disjoint multisets is the sum of their sizes. We have not yet defined the union
of multisets or disjoint multisets, because we haven’t needed the ideas until now.
We define the union of two multisets S and T to be the multiset in which the
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multiplicity of an element x is the maximum5 of the multiplicity of x in S and
its multiplicity in T . Similarly, the union of a family of multisets is defined by
defining the multiplicity of an element x to be the maximum of its multiplicities
in the members of the family. Two multisets are said to be disjoint if no element
is a member of both, that is, if no element has multiplicity one or more in both.
Since the size of a multiset is the sum of the multiplicities of its members, we
immediately get the sum principle for multisets.

The size of a union of disjoint multisets is the sum of their
sizes.

Taking the multisets all to have the same size, we get the product principle for
multisets.

The union of a set of m disjoint multisets, each of size n

has size mn.

The quotient principle for multisets then follows immediately.

If a p-element multiset is a union of q disjoint multisets,
each of size r, then q = p/r.

•296. How does the size of the union of the set of multiorbits of a group G acting
on a set S relate to the number of multiorbits and the size of G?

5We choose the maximum rather than the sum so that the union of sets is a special case of
the union of multisets.
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•297. How does the size of the union of the set of multiorbits of a group G acting
on a set S relate to the numbers |Fix(x)|?

•298. In Problems 296 and 297 you computed the size of the union of the set of
multiorbits of a group G acting on a set S in two different ways, getting
two different expressions which must be equal. Write the equation that says
they are equal and solve for the number of multiorbits, and therefore the
number of orbits.

6.2.3 The Cauchy-Frobenius-Burnside Theorem

•299. In Problem 298 you stated and proved a theorem that expresses the number
of orbits in terms of the number of group elements fixing each element of
S. It is often easier to find the number of elements fixed by a given group
element than to find the number of group elements fixing an element of S.

(a) For this purpose, how does the sum
∑

x:x∈S |Fix(x)| relate to the number
of ordered pairs (σ, x) (with σ ∈ G and x ∈ S) such that σ fixes x?

(b) Let χ(σ) denote the number of elements of S fixed by σ. How can the
number of ordered pairs (σ, x) (with σ ∈ G and x ∈ S) such that σ
fixes x be computed from χ(σ)? (It is ok to have a summation in your
answer.)

(c) What does this tell you about the number of orbits?

300. A second computation of the result of problem 299 can be done as follows.
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(a) Let χ̂(σ, x) = 1 if σ(x) = x and let χ̂(σ, x) = 0 otherwise. Notice
that χ̂ is different from the χ in the previous problem, because it is a
function of two variables. Use χ̂ to convert the single summation in
your answer to Problem 298 into a double summation over elements x
of S and elements σ of G.

(b) Reverse the order of the previous summation in order to convert it into
a single sum involving the function χ given by

χ(σ) = the number of elements of S left fixed by σ.

In Problem 299 you gave a formula for the number of orbits of a group G
acting on a set X. This formula was first worked out by Cauchy in the case
of the symmetric group, and then for more general groups by Frobenius. In his
pioneering book on Group Theory, Burnside used this result as a lemma, and while
he attributed the result to Cauchy and Frobenius in the first edition of his book,
in later editions, he did not. Later on, other mathematicians who used his book
named the result “Burnside’s Lemma,” which is the name by which it is still most
commonly known. Let us agree to call this result the Cauchy-Frobenius-Burnside
Theorem, or CFB Theorem for short in a compromise between historical accuracy
and common usage.

301. In how many ways may we string four (identical) red, six (identical) blue,
and seven (identical) green beads on a necklace?

302. If we have an unlimited supply of identical red beads and identical blue
beads, in how many ways may we string 17 of them on a necklace?
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303. If we have five (identical) red, five (identical) blue, and five (identical) green
beads, in how many ways may we string them on a necklace?

304. In how many ways may we paint the faces of a cube with six different colors,
using all six?

305. In how many ways may we paint the faces of a cube with two colors of paint?
What if both colors must be used?

306. In how many ways may we color the edges of a (regular) (2n + 1)-gon free
to move around in the plane (so it cannot be flipped) if we use red n times
and blue n + 1 times? If this is a number you have seen before, identify it.

∗307. In how many ways may we color the edges of a (regular) (2n + 1)-gon free
to move in three-dimensional space so that n edges are colored red and n+1
edges are colored blue? Your answer may depend on whether n is even or
odd.

∗308. (Not unusually hard for someone who has worked on chromatic polynomials.)
How many different proper colorings with four colors are there of the vertices
of a graph which is a cycle on five vertices? (If we get one coloring by rotating
or flipping another one, they aren’t really different.)

∗309. How many different proper colorings with four colors are there of the graph
in Figure 6.7? Two graphs are the same if we can redraw one of the graphs,
not changing the vertex set or edge set, so that it is identical to the other
one. This is equivalent to permuting the vertices in some way so that when
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we apply the permutation to the endpoints of the edges to get a new edge
set, the new edge set is equal to the old one. Such a permutation is called
an automorphism of the graph. Thus two colorings are different if there is
no automorphism of the graph that carries one to the other one.

Figure 6.7: A graph on six vertices.
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6.3 Pólya-Redfield Enumeration Theory

George Pólya and Robert Redfield independently developed a theory of generating
functions that describe the action of a group G on colorings of a set S by a set T
when we know the action of G on S. Pólya’s work on the subject is very accessible
in its exposition, and so the subject has become popularly known as Pólya theory,



206 CHAPTER 6. GROUPS ACTING ON SETS

though Pólya-Redfield theory would be a better name. In this section we develop
the elements of this theory.

The idea of coloring a set S has many applications. For example, the set S
might be the positions in a hydrocarbon molecule which are occupied by hydrogen,
and the group could be the group of spatial symmetries of the molecule (that is,
the group of permutations of the atoms of the molecule that move the molecule
around so that in its final position the molecule cannot be distinguished from the
original molecule). The colors could then be radicals (including hydrogen itself)
that we could substitute for each hydrogen position in the molecule. Then the
number of orbits of colorings is the number of chemically different compounds we
could create by using these substitutions.6

In Figure 6.8 we show two different ways to substitute the OH radical for a
hydrogen atom in the chemical diagram we gave for butane in Chapter 2. We have
colored one vertex of degree 1 with the radical OH and the rest with the atom H.
There are only two distinct ways to do this, as the OH must either connect to an
“end” C or a “middle” C. This shows that there are two different forms, called
isomers of the compound shown. This compound is known as butyl alcohol.

6There is a fascinating subtle issue of what makes two molecules different. For example,
suppose we have a molecule in the form of a cube, with one atom at each vertex. If we interchange
the top and bottom faces of the cube, each atom is still connected to exactly the same atoms
as before. However, we cannot achieve this permutation of the vertices by a member of the
rotation group of the cube. It could well be that the two versions of the molecule interact with
other molecules in different ways, in which case we would consider them chemically different.
On the other hand, if the two versions interact with other molecules in the same way, we would
have no reason to consider them chemically different. This kind of symmetry is an example of
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Figure 6.8: The two different isomers of butyl alcohol.
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So think intuitively about some “figure” that has places to be colored. (Think
of the faces of a cube, the beads on a necklace, circles at the vertices of an n-gon,
etc.) How can we picture the coloring? If we number the places to be colored, say
1 to n, then we have a standard way to represent our coloring. For example, if
our colors are blue, green and red, then BBGRRGBG describes a typical coloring
of 8 such places. Unless the places are somehow “naturally” numbered, this idea
of a coloring imposes structure that is not really there. Even if the structure is
there, visualizing our colorings in this way doesn’t “pull together” any common
features of different colorings; we are simply visualizing all possible colorings. We
have a group (think of it as symmetries of the figure you are imagining) that acts
on the places. That group then acts in a natural way on the colorings of the
places and we are interested in orbits of the colorings. Thus we want a picture
that pulls together the common features of the colorings in an orbit. One way

what is called chirality in chemistry.
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to pull together similarities of colorings would be to let the letters we are using
as pictures of colors commute as we did with our pictures in Chapter 4; then our
picture BBGRRGBG becomes B3G3R2, so our picture now records simply how
many times we use each color. Think about how we defined the action of a group
on the colorings of a set on which the group acts. You will see that acting with a
group element won’t change how many times each color is used; it simply moves
colors to different places. Thus the picture we now have of a given coloring is an
equally appropriate picture for each coloring in an orbit. One natural question
for us to ask is “How many orbits have a given picture?”

•310. Suppose we draw identical circles at the vertices of a regular hexagon. Sup-
pose we color these circles with two colors, red and blue.

(a) In how many ways may we color the set {1, 2, 3, 4, 5, 6} using the colors
red and blue?

(b) These colorings are partitioned into orbits by the action of the rota-
tion group on the hexagon. Using our standard notation, write down
all these orbits and observe how many orbits have each picture, as-
suming the picture of a coloring is the product of commuting variables
representing the colors.

(c) Using the picture function of the previous part, write down the picture
enumerator for the orbits of colorings of the vertices of a hexagon under
the action of the rotation group.

In Problem 310c we saw a picture enumerator for pictures of orbits of the action
of a group on colorings. As above, we ask how many orbits of the colorings have
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any given picture. We can think of a multivariable generating function in which
the letters we use to picture individual colors are the variables, and the coefficient
of a picture is the number of orbits with that picture. Such a generating function
provides an answer to our natural question, and so it is this sort of generating
function we will seek. Since the CFB theorem was our primary tool for saying how
many orbits we have, it makes sense to think about whether the CFB theorem
has an analog in terms of pictures of orbits.

6.3.1 The Orbit-Fixed Point Theorem

•311. Suppose now we have a group G acting on a set and we have a picture
function on that set with the additional feature that for each orbit of the
group, all its elements have the same picture. In this circumstance we define
the picture of an orbit or multiorbit to be the picture of any one of its
members. The orbit enumerator Orb(G, S) is the sum of the pictures of
the orbits. (Note that this is the same as the sum of the pictures of the
multiorbits.) The fixed point enumerator Fix(G, S) is the sum of the
pictures of each of the fixed points of each of the elements of G. We are
going to construct a generating function analog of the CFB theorem. The
main idea of the proof of the CFB theorem was to try to compute in two
different ways the number of elements (i.e. the sum of all the multiplicities
of the elements) in the union of all the multiorbits of a group acting on a
set. Suppose instead we try to compute the sum of all the pictures of all
the elements in the union of the multiorbits of a group acting on a set. By
thinking about how this sum relates to Orb(G, S) and Fix(G, S), find an
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analog of the CFB theorem that relates these two enumerators. State and
prove this theorem.

We will call the theorem of Problem 311 the Orbit-Fixed Point Theorem.
In order to apply the Orbit-Fixed Point Theorem, we need some basic facts about
picture enumerators.

•312. Suppose that P1 and P2 are picture functions on sets S1 and S2 in the sense
of Section 4.1.2. Define P on S1 × S2 by P (x1, x2) = P1(x1)P2(x2). How
are EP1 , EP1 , and EP related? (You may have already done this problem in
another context!)

•313. Suppose Pi is a picture function on a set Si for i = 1, . . . , k. We define the
picture of a k-tuple (x1, x2, . . . , xk) to be the product of the pictures of its
elements, i.e.

P̂ ((x1, x2, . . . xk)) =
k∏

i=1

Pi(xi).

How does the picture enumerator E
P̂

of the set S1 × S2 × · · · × Sk of all
k-tuples with xi ∈ Si relate to the picture enumerators of the sets Si? In
the special case that Si = S for all i and Pi = P for all i, what is E

P̂
(Sk)?

•314. Use the Orbit-Fixed Point Theorem to determine the Orbit Enumerator for
the colorings, with two colors (red and blue), of six circles placed at the
vertices of a hexagon which is free to move in the plane. Compare the
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coefficients of the resulting polynomial with the various orbits you found in
Problem 310.

315. Find the generating function (in variables R, B) for colorings of the faces of a
cube with two colors (red and blue). What does the generating function tell
you about the number of ways to color the cube (up to spatial movement)
with various combinations of the two colors?

6.3.2 The Pólya-Redfield Theorem

Pólya’s (and Redfield’s) famed enumeration theorem deals with situations such as
those in Problems 314 and 315 in which we want a generating function for the set
of all colorings a set S using a set T of colors, where the picture of a coloring is
the product of the multiset of colors it uses. We are again thinking of the colors
as variables. The point of the next series of problems is to analyze the solutions
to Problems 314 and 315 in order to see what Pólya and Redfield saw (though
they didn’t see it in this notation or using this terminology).

•316. In Problem 314 we have four kinds of group elements: the identity (which
fixes every coloring), the rotations through 60 or 300 degrees, the rotations
through 120 and 240 degrees, and the rotation through 180 degrees. The
fixed point enumerator for the rotation group acting on the colorings of the
hexagon is by definition the sum of the fixed point enumerators of colorings
fixed by the identity, of colorings fixed by 60 or 300 degree rotations, of
colorings fixed by 120 or 240 degree rotations, and of colorings fixed by
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the 180 degree rotation. To the extent that you haven’t already done it
in an earlier problem, write down each of these enumerators (one for each
kind of permutation) individually and factor each one (over the integers) as
completely as you can.

317. In Problem 315 we have five different kinds of group elements. For each
kind of element, to the extent that you haven’t already done it in an earlier
problem, write down the fixed point enumerator for the elements of that
kind. Factor the enumerators as completely as you can.

•318. In Problem 316, each “kind” of group element has a “kind” of cycle structure.
For example, a rotation through 180 degrees has three cycles of size two.
What kind of cycle decomposition does a rotation through 60 or 300 degrees
have? What kind of cycle decomposition does a rotation through 120 or 240
degrees have? Discuss the relationship between the cycle structures and the
factored enumerators of fixed points of the permutations in Problem 316.

Recall that we said that a group of permutations acts on a set S if, for each
member σ of G there is a permutation σ of S such that

σ ◦ ϕ = σ ◦ ϕ

for all members σ and ϕ of G. Since σ is a permutation of S, σ has a cycle
decomposition as a permutation of S (as well as whatever its cycle decomposition
is in the original permutation group G).
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319. In Problem 317, each “kind” of group element has a “kind” of cycle decom-
position in the action of the rotation group of the cube on the faces of the
cube. For example, a rotation of the cube through 180 degrees around a
vertical axis through the centers of the top and bottom faces has two cy-
cles of size two and two cycles of size one. To the extent that you haven’t
already done it in an earlier problem, answer the following questions. How
many such rotations does the group have? What are the other “kinds”
of group elements, and what are their cycle structures? Discuss the rela-
tionship between the cycle decomposition and the factored enumerator in
Problem 317.

•320. The usual way of describing the Pólya-Redfield enumeration theorem in-
volves the “cycle indicator” or “cycle index” of a group acting on a set.
Suppose we have a group G acting on a finite set S. Since each group ele-
ment σ gives us a permutation σ of S, as such it has a decomposition into
disjoint cycles as a permutation of S. Suppose σ has c1 cycles of size 1, c2

cycles of size 2, ..., cn cycles of size n. Then the cycle monomial of σ is

z(σ) = zc1
1 zc2

2 · · · zcn
n .

The cycle indicator or cycle index of G acting on S is

Z(G, S) =
1

|G|
∑

σ:σ∈G

z(σ).

•(a) What is the cycle index for the group D6 acting on the vertices of a
hexagon?
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(b) What is the cycle index for the group of rotations of the cube acting
on the faces of the cube?

•321. How can you compute the Orbit Enumerator of G acting on colorings of S
by a finite set T of colors from the cycle index of G acting on S? (Use t,
thought of as a variable, as the picture of an element t of T .) State and prove
the relevant theorem! This is Pólya’s and Redfield’s famous enumeration
theorem.

322. Suppose we make a necklace by stringing 12 pieces of brightly colored plastic
tubing onto a string and fastening the ends of the string together. We have
ample supplies of blue, green, red, and yellow tubing available. Give a
generating function in which the coefficient of BiGjRkY h is the number of
necklaces we can make with i blues, j greens, k reds, and h yellows. How
many terms would this generating function have if you expanded it in terms
of powers of B, G, R, and Y ? Does it make sense to do this expansion?
How many of these necklaces have 3 blues, 3 greens, 2 reds, and 4 yellows?

•323. What should we substitute for the variables representing colors in the orbit
enumerator of G acting on the set of colorings of S by a set T of colors
in order to compute the total number of orbits of G acting on the set of
colorings? What should we substitute into the variables in the cycle index
of a group G acting on a set S in order to compute the total number of
orbits of G acting on the colorings of S by a set T? Find the number of
ways to color the faces of a cube with four colors.
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324. We have red, green, and blue sticks all of the same length, with a dozen
sticks of each color. We are going to make the skeleton of a cube by taking
eight identical lumps of modeling clay and pushing three sticks into each
lump so that the lumps become the vertices of the cube. (Clearly we won’t
need all the sticks!) In how many different ways could we make our cube?
How many cubes have four edges of each color? How many have two red,
four green, and six blue edges?

325. How many cubes can we make in Problem 324 if the lumps of modeling clay
can be any of four colors?

Figure 6.9: A possible computer network.

1 2

3

45

6

∗326. In Figure 6.9 we see a graph with six vertices. Suppose we have three
different kinds of computers that can be placed at the six vertices of the
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graph to form a network. In how many different ways may the computers
be placed? (Two graphs are not different if we can redraw one of the graphs
so that it is identical to the other one.) This is equivalent to permuting
the vertices in some way so that when we apply the permutation to the
endpoints of the edges to get a new edge set, the new edge set is equal to
the old one. Such a permutation is called an automorphism of the graph.
Then two computer placements are the same if there is an automorphism of
the graph that carries one to the other.

327. Two simple graphs on the set [n] = {1, 2, . . . , n} with edge sets E and E ′

(which we think of as sets of two-element sets for this problem) are said
to be isomorphic if there is a permutation σ of [n] which, in its action of
two-element sets, carries E to E ′. We say two graphs are different if they
are not isomorphic. Thus the number of different graphs is the number of
orbits of the set of all sets of two-element subsets of [n] under the action of
the group Sn. We can represent an edge set by its characteristic function
(as in problem 33). That is, we define

χE({u, v}) =

{
1 if {u, v} ∈ E
0 otherwise.

Thus we can think of the set of graphs as a set of colorings with colors 0 and
1 of the set of all two-element subsets of [n]. The number of different graphs
with vertex set [n] is thus the number of orbits of this set of colorings under
the action of the symmetric group Sn on the set of two-element subsets of
[n]. Use this to find the number of different graphs on five vertices.
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6.4 Supplementary Problems

1. Show that a function from S to T has an inverse (defined on T ) if and only
if it is a bijection.

2. How many elements are in the dihedral group D3? The symmetric group
S3? What can you conclude about D3 and S3?

3. A tetrahedron is a three-dimensional geometric figure with four vertices, six
edges, and four triangular faces. Suppose we start with a tetrahedron in
space and consider the set of all permutations of the vertices of the tetrahe-
dron that correspond to moving the tetrahedron in space and returning it
to its original location, perhaps with the vertices in different places.

(a) Explain why these permutations form a group.

(b) What is the size of this group?

(c) Write down in two row notation a permutation that is not in this group.

4. Find a three-element subgroup of the group S3. Can you find a different
three-element subgroup of S3?

5. Prove true or demonstrate false with a counterexample: “In a permutation
group, (σϕ)n = σnϕn.”

6. If a group G acts on a set S, and if σ(x) = y, is there anything interesting
we can say about the subgroups Fix(x) and Fix(y)?
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7. (a) If a group G acts on a set S, does σ(f) = f ◦ σ define a group action
on the functions from S to a set T? Why or why not?

(b) If a group G acts on a set S, does σ(f) = f ◦σ−1 define a group action
on the functions from S to a set T? Why or why not?

(c) Is either of the possible group actions essentially the same as the ac-
tion we described on colorings of a set, or is that an entirely different
action?

8. Find the number of ways to color the faces of a tetrahedron with two colors.

9. Find the number of ways to color the faces of a tetrahedron with four colors
so that each color is used.

10. Find the cycle index of the group of spatial symmetries of the tetrahedron
acting on the vertices. Find the cycle index for the same group acting on
the faces.

11. Find the generating function for the number of ways to color the faces of
the tetrahedron with red, blue, green and yellow.

12. Find the generating function for the number of ways to color the faces of a
cube with four colors so that all four colors are used.

13. How many different graphs are there on six vertices with seven edges?
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14. Show that if H is a subgroup of the group G, then H acts on G by σ(τ) = σ◦τ
for all σ in H and τ in G. What is the size of an orbit of this action? How
does the size of a subgroup of a group relate to the size of the group?
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Appendix A

Relations

A.1 Relations as Sets of Ordered Pairs

A.1.1 The relation of a function

328. Consider the functions from S = {−2,−1, 0, 1, 2} to T = {1, 2, 3, 4, 5} de-
fined by f(x) = x + 3, and g(x) = x5 − 5x3 + 5x + 3. Write down the set
of ordered pairs (x, f(x)) for x ∈ S and the set of ordered pairs (x, g(x)) for
x ∈ S. Are the two functions the same or different?

Problem 328 points out how two functions which appear to be different are
actually the same on some domain of interest to us. Most of the time when we are
thinking about functions it is fine to think of a function casually as a relationship

221
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between two sets. In Problem 328 the set of ordered pairs you wrote down for
each function is called the relation of the function. When we want to distinguish
between the casual and the careful in talking about relationships, our casual term
will be “relationship” and our careful term will be “relation.” So relation is
a technical word in mathematics, and as such it has a technical definition. A
relation from a set S to a set T is a set of ordered pairs whose first elements are in
S and whose second elements are in T . Another way to say this is that a relation
from S to T is a subset of S × T .

A typical way to define a function f from a set S, called the domain of the
function, to a set T , called the range, is that f is a relationship from S to T that
relates one and only one member of T to each element of X. We use f(x) to
stand for the element of T that is related to the element x of S. If we wanted
to make our definition more precise, we could substitute the word “relation” for
the word “relationship” and we would have a more precise definition. For our
purposes, you can choose whichever definition you prefer. However, in any case,
there is a relation associated with each function. As we said above, the relation
of a function f : S → T (which is the standard shorthand for “f is a function
from S to T” and is usually read as f maps S to T ) is the set of all ordered pairs
(x, f(x)) such that x is in S.

329. Here are some questions that will help you get used to the formal idea of a
relation and the related formal idea of a function. S will stand for a finite
set of size s and T will stand for a finite set of size t.

(a) What is the size of the largest relation from S to T?
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(b) What is the size of the smallest relation from S to T?

(c) The relation of a function f : S → T is the set of all ordered pairs
(x, f(x)) with x ∈ S. What is the size of the relation of a function
from S to T? That is, how many ordered pairs are in the relation of a
function from S to T?

(d) We say f is a one-to-one1 function or injection from S to T if each
member of S is related to a different element of T . How many different
elements must appear as second elements of the ordered pairs in the
relation of a one-to-one function (injection) from S to T?

(e) A function f : S → T is called an onto function or surjection if each
element of T is f(x) for some x ∈ S. What is the minimum size that
S can have if there is a surjection from S to T?

330. When f is a function from S to T , the sets S and T play a big role in
determining whether a function is one-to-one or onto (as defined in Problem
329). For the remainder of this problem, let S and T stand for the set of
nonnegative real numbers.

(a) If f : S → T is given by f(x) = x2, is f one-to-one? Is f onto?

(b) Now assume for the rest of the problem that S ′ is the set of all real
numbers and g : S ′ → T is given by g(x) = x2. Is g one-to-one? Is g
onto?

1The phrase one-to-one is sometimes easier to understand when one compares it to the phrase
many-to-one. John Fraliegh, an author of popular textbooks in abstract and linear algebra,
suggests that two-to-two might be a better name that one-to-one.
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(c) Assume for the rest of the problem that T ′ is the set of all real numbers
and h : S → T ′ is given by h(x) = x2. Is h one-to-one? Is h onto?

(d) And if the function j : S ′ → T ′ is given by j(x) = x2, is j one-to-one?
Is j onto?

331. If f : S → T is a function, we say that fmaps x to y as another way to say
that f(x) = y. Suppose S = T = {1, 2, 3}. Give a function from S to T
that is not onto. Notice that two different members of S have mapped to
the same element of T . Thus when we say that f associates one and only
one element of T to each element of S, it is quite possible that the one and
only one element f(1) that f maps 1 to is exactly the same as the one and
only one element f(2) that f maps 2 to.

A.1.2 Directed graphs

We visualize numerical functions like f(x) = x2 with their graphs in Cartesian
coordinate systems. We will call these kinds of graphs coordinate graphs to dis-
tinguish them from other kinds of graphs used to visualize relations that are
non-numerical. In Figure A.1 we illustrate another kind of graph, a “directed
graph” or “digraph” of the “comes before in alphabetical order” relation on the
letters a, b, c, and d. To draw a directed graph of a relation on a finite2 set S,
we draw a circle (or dot, if we prefer), which we call a vertex, for each element of

2We could imagine a digraph on an infinite set, but we could never draw all the vertices and
edges, so people sometimes speak of digraphs on infinite sets. One just has to be more careful
with the definition to make sure it makes sense for infinite sets.
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Figure A.1: The alphabet digraph.

a


b


c


d


the set, we usually label the vertex with the set element it corresponds to, and we
draw an arrow from the vertex for a to that for b if a is related to b, that is, if the
ordered pair (a, b) is in our relation. We call such an arrow an edge or a directed
edge. We draw the arrow from a to b, for example, because a comes before b in
alphabetical order. We try to choose the locations where we draw our vertices
so that the arrows capture what we are trying to illustrate as well as possible.
Sometimes this entails redrawing our directed graph several times until we think
the arrows capture the relationship well.

332. Draw the digraph of the “is a proper subset of” relation on the set of subsets
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of a two element set. How many arrows would you have had to draw if this
problem asked you to draw the digraph for the subsets of a three-element
set?

We also draw digraphs for relations from a finite set S to a finite set T ; we
simply draw vertices for the elements of S (usually in a row) and vertices for the
elements of T (usually in a parallel row) and draw an arrow from x in S to y in
T if x is related to y. Notice that instead of referring to the vertex representing
x, we simply referred to x. This is a common shorthand.

333. Draw the digraph of the relation from the set {A, M, P, S} to the set {Sam,
Mary, Pat, Ann, Polly, Sarah} given by “is the first letter of.”

334. Draw the digraph of the relation from the set {Sam, Mary, Pat, Ann, Polly,
Sarah} to the set {A, M, P, S} given by “has as its first letter.”

335. Draw the digraph of the relation on the set {Sam, Mary, Pat, Ann, Polly,
Sarah} given by “has the same first letter as.”

A.1.3 Digraphs of Functions

336. When we draw the digraph of a function f , we draw an arrow from the
vertex representing x to the vertex representing f(x). One of the relations
you considered in Problems 333 and 334 is the relation of a function.
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(a) Which relation is the relation of a function?

(b) How does the digraph help you visualize that one relation is a function
and the other is not?

337. Digraphs of functions help us to visualize whether or not they are onto or
one-to-one. For example, let both S and T be the set {−2,−1, 0, 1, 2} and
let S ′ and T ′ be the set {0, 1, 2}. Let f(x) = 2− |x|.

(a) Draw the digraph of the function f assuming its domain is S and its
range is T . Use the digraph to explain why or why not this function
maps S onto T .

(b) Use the digraph of the previous part to explain whether or not the
function is one-to one.

(c) Draw the digraph of the function f assuming its domain is S and its
range is T ′. Use the digraph to explain whether or not the function is
onto.

(d) Use the digraph of the previous part to explain whether or not the
function is one-to-one.

(e) Draw the digraph of the function f assuming its domain is S ′ and its
range is T ′. Use the digraph to explain whether the function is onto.

(f) Use the digraph of the previous part to explain whether the function
is one-to-one.

(g) Suppose that the function f has domain S ′ and range T . Draw the
digraph of f and use it to explain whether f is onto.



228 APPENDIX A. RELATIONS

(h) Use the digraph of the previous part to explain whether f is one-to-one.

A one-to-one function from a set X onto a set Y is frequently called a bijection,
especially in combinatorics. Your work in Problem 337 should show you that a
digraph is the digraph of a bijection from X to Y

• if the vertices of the digraph represent the elements of X and Y ,

• if each vertex representing an element of X has one ond only one arrow
leaving it, and

• each vertex representing an element of Y has one and only one arrow entering
it.

338. If we reverse all the arrows in the digraph of a bijection f , we get the digraph
of another function g. Is g a bijection? What is f(g(x))? What is g(f(x))?

If f is a function from S to T , if g is a function from T to S, and if f(g(x)) = x
for each x in T and g(f(x)) = x for each x in S, then we say that g is an inverse
of f (and f is an inverse of g).

More generally, if f is a function from a set R to a set S, and g is a function from
S to T , then we define a new function f ◦ g, called the composition of f and g, by
f ◦g(x) = f(g(x)). Composition of functions is a particularly important operation
in subjects such as calculus, where we represent a function like h(x) =

√
x2 + 1 as

the composition of the square root function and the square and add one function
in order to use the chain rule to take the derivative of h.
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The function ι (the Greek letter iota is pronounced eye-oh-ta) from a set S to
itself, given by the rule ι(x) = x for every x in S, is called the identity function
on S. If f is a function from S to T and g is a function from T to S such that
g(f(x)) = x for every x in S, we can express this by saying that g ◦ f = ι, where
ι is the identity function of S. Saying that f(g(x)) = x is the same as saying that
f ◦ g = ι, where now ι stands for the identity function on T . We use the same
letter for the identity function on two different sets when we can use context to
tell us on which set the identity function is being defined.

339. If f is a function from S to T and g is a function from T to S such that
g(f(x)) = x, how can we tell from context that g ◦ f is the identity function
on S and not the identity function on T?

340. Explain why a function that has an inverse must be a bijection.

341. Is it true that the inverse of a bijection is a bijection?

342. If g and h are inverses of f , then what can we say about g and h?

343. Explain why a bijection must have an inverse.

Since a function with an inverse has exactly one inverse g, we call g the inverse
of f . From now on, when f has an inverse, we shall denote its inverse by f−1.
Thus f(f−1(x)) = x and f−1(f(x)) = x. Equivalently f ◦f−1 = ι and f−1 ◦f = ι.
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A.2 Equivalence Relations

So far we’ve used relations primarily to talk about functions. There is another
kind of relation, called an equivalence relation, that comes up in the counting
problems with which we began. In Problem 8 with three distinct flavors, it was
probably tempting to say there are 12 flavors for the first pint, 11 for the second,
and 10 for the third, so there are 12 · 11 · 10 ways to choose the pints of ice cream.
However, once the pints have been chosen, bought, and put into a bag, there is
no way to tell which is first, which is second and which is third. What we just
counted is lists of three distinct flavors—one-to-one functions from the set {1, 2, 3}
in to the set of ice cream flavors. Two of those lists become equivalent once the
ice cream purchase is made if they list the same ice cream. In other words, two of
those lists become equivalent (are related) if they list same subset of the set of ice
cream flavors. To visualize this relation with a digraph, we would need one vertex
for each of the 12 · 11 · 10 lists. Even with five flavors of ice cream, we would need
one vertex for each of 5 · 4 · 3 = 60 lists. So for now we will work with the easier
to draw question of choosing three pints of ice cream of different flavors from four
flavors of ice cream.

344. Suppose we have four flavors of ice cream, V(anilla), C(hocolate), S(trawberry)
and P(each). Draw the directed graph whose vertices consist of all lists of
three distinct flavors of the ice cream, and whose edges connect two lists if
they list the same three flavors. This graph makes it pretty clear in how
many “really different” ways we may choose 3 flavors out of four. How many
is it?
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345. Now suppose again we are choosing three distinct flavors of ice cream out of
four, but instead of putting scoops in a cone or choosing pints, we are going
to have the three scoops arranged symmetrically in a circular dish. Similarly
to choosing three pints, we can describe a selection of ice cream in terms of
which one goes in the dish first, which one goes in second (say to the right of
the first), and which one goes in third (say to the right of the second scoop,
which makes it to the left of the first scoop). But again, two of these lists
will sometimes be equivalent. Once they are in the dish, we can’t tell which
one went in first. However, there is a subtle difference between putting each
flavor in its own small dish and putting all three flavors in a circle in a
larger dish. Think about what makes the lists of flavors equivalent, and
draw the directed graph whose vertices consist of all lists of three of the
flavors of ice cream and whose edges connect two lists between which we
cannot distinguish as dishes of ice cream. How many dishes of ice cream can
we distinguish from one another?

346. Draw the digraph for Problem 38 in the special case where we have four
people sitting around the table.

In Problems 344, 345, and 346 (as well as Problems 34c, 38, and 39d) we can
begin with a set of lists, and say when two lists are equivalent as representations
of the objects we are trying to count. In particular, in Problems 344, 345, and
346 you drew the directed graph for this relation of equivalence. Your digraph
had an arrow from each vertex (list) to itself (or else you want to go back and
give it these arrows). This is what we mean when we say a relation is reflexive.
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Whenever you had an arrow from one vertex to a second, you had an arrow from
the second back to the first. This is what we mean when we say a relation is
symmetric.

When people sit around a round table, each list is equivalent to itself: if List1
and List2 are identical, then everyone has the same person to the right in both
lists (including the first person in the list being to the right of the last person).
To see the symmetric property of the equivalence of seating arrangements, if List1
and List2 are different, but everyone has the same person to the right when they
sit according to List2 as when they sit according to List1, then everybody better
have the same person to the right when they sit according to List1 as when they
sit according to List2.

In Problems 344, 345 and 346 there is another property of those relations you
may have noticed from the directed graph. Whenever you had an arrow from L1

to L2 and an arrow from L2 to L3, then there was an arrow from L1 to L3. This is
what we mean when we say a relation is transitive. You also undoubtedly noticed
how the directed graph divides up into clumps of mutually connected vertices.
This is what equivalence relations are all about. Let’s be a bit more precise in our
description of what it means for a relation to be reflexive, symmetric or transitive.

• If R is a relation on a set X, we say R is reflexive if (x, x) ∈ R for every
x ∈ X.

• If R is a relation on a set X, we say R is symmetric if (x, y) is in R whenever
(y, x) is in R.

• If R is a relation on a set X, we say R is transitive if whenever (x, y) is in
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R and (y, z) is in R, then (x, z) is in R as well.

Each of the relations of equivalence you worked with in the Problem 344, 345
and 346 had these three properties. Can you visualize the same three properties in
the relations of equivalence that you would use in Problems 34c, 38, and 39d? We
call a relation an equivalence relation if it is reflexive, symmetric and transitive.

After some more examples, we will see how to show that equivalence relations
have the kind of clumping property you saw in the directed graphs. In our first
example, using the notation (a, b) ∈ R to say that a is related to B is going to get
in the way. It is really more common to write aRb to mean that a is related to
b. For example, if our relation is the less than relation on {1, 2, 3}, you are much
more likely to use x < y than you are (x, y) ∈ <, aren’t you? The reflexive law
then says xRx for every x in X, the symmetric law says that if xRy, then yRx,
and the transitive law says that if xRy and yRz, then xRz.

347. For the necklace problem, Problem 43, our lists are lists of beads. What
makes two lists equivalent for the purpose of describing a necklace? Verify
explicitly that this relationship of equivalence is reflexive, symmetric, and
transitive.

348. Which of the reflexive, symmetric and transitive properties does the < re-
lation on the integers have?

349. A relation R on the set of ordered pairs of positive integers that you learned
about in grade school in another notation is the relation that says (m, n)
is related to (h, k) if mk = hn. Show that this relation is an equivalence
relation. In what context did you learn about this relation in grade school?
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350. Another relation that you may have learned about in school, perhaps in the
guise of “clock arithmetic,” is the relation of equivalence modulo n. For
integers (positive, negative, or zero) a and b, we write

a ≡ b (mod n)

to mean that a− b is an integer multiple of n, and in this case, we say that
a is congruent to b modulo n. Show that the relation of congruence modulo
n is an equivalence relation.

351. Define a relation on the set of all lists of n distinct integers chosen from
{1, 2, . . . , n}, by saying two lists are related if they have the same elements
(though perhaps in a different order) in the first k places, and the same
elements (though perhaps in a different order) in the last n − k places.
Show this relation is an equivalence relation.

352. Suppose that R is an equivalence relation on a set X and for each x ∈ X,
let Cx = {y|y ∈ X and yRx}. If Cx and Cz have an element y in common,
what can you conclude about Cx and Cz (besides the fact that they have an
element in common!)? Be explicit about what property(ies) of equivalence
relations justify your answer. Why is every element of X in some set Cx?
Be explicit about what property(ies) of equivalence relations you are using
to answer this question. Notice that we might simultaneously denote a set
by Cx and Cy. Explain why the union of the sets Cx is X. Explain why two
distinct sets Cx and Cz are disjoint. What do these sets have to do with the
“clumping” you saw in the digraph of Problem 344 and 345?
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In Problem 352 the sets Cx are called equivalence classes of the equivalence
relation R. You have just proved that if R is an equivalence relation of the set
X, then each element of X is in exactly one equivalence class of R. Recall that
a partition of a set X is a set of disjoint sets whose union is X. For example,
{1, 3}, {2, 4, 6}, {5} is a partition of the set {1, 2, 3, 4, 5, 6}. Thus another way to
describe what you proved in Problem 352 is the following:

Theorem 10 If R is an equivalence relation on X, then the set of equivalence
classes of R is a partition of X.

Since a partition of S is a set of subsets of S, it is common to call the subsets into
which we partition S the blocks of the partition so that we don’t find ourselves in
the uncomfortable position of referring to a set and not being sure whether it is
the set being partitioned or one of the blocks of the partition.

353. In each of Problems 38, 39d, 43, 344, and 345, what does an equivalence
class correspond to? (Five answers are expected here.)

354. Given the partition {1, 3}, {2, 4, 6}, {5} of the set {1, 2, 3, 4, 5, 6}, define two
elements of {1, 2, 3, 4, 5, 6} to be related if they are in the same part of the
partition. That is, define 1 to be related to 3 (and 1 and 3 each related to
itself), define 2 and 4, 2 and 6, and 4 and 6 to be related (and each of 2, 4,
and 6 to be related to itself), and define 5 to be related to itself. Show that
this relation is an equivalence relation.

355. Suppose P = {S1, S2, S3, . . . , Sk} is a partition of S. Define two elements
of S to be related if they are in the same set Si, and otherwise not to be
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related. Show that this relation is an equivalence relation. Show that the
equivalence classes of the equivalence relation are the sets Si.

In Problem 355 you just proved that each partition of a set gives rise to an
equivalence relation whose classes are just the parts of the partition. Thus in
Problem 352 and Problem 355 you proved the following Theorem.

Theorem 11 A relation R is an equivalence relation on a set S if and only if S
may be partitioned into sets S1, S2, . . . , Sn in such a way that x and y are related
by R if and only if they are in the same block Si of the partition.

In Problems 344, 345, 38 and 43 what we were doing in each case was counting
equivalence classes of an equivalence relation. There was a special structure to
the problems that made this somewhat easier to do. For example, in 344, we had
4 · 3 · 2 = 24 lists of three distinct flavors chosen from V, C, S, and P. Each list
was equivalent to 3 · 2 · 1 = 3! = 6 lists, including itself, from the point of view
of serving 3 small dishes of ice cream. The order in which we selected the three
flavors was unimportant. Thus the set of all 4 · 3 · 2 lists was a union of some
number n of equivalence classes, each of size 6. By the product principle, if we
have a union of n disjoint sets, each of size 6, the union has 6n elements. But
we already knew that the union was the set of all 24 lists of three distinct letters
chosen from our four letters. Thus we have 6n = 24, so that we have n = 4
equivalence classes.

In Problem 345 there is a subtle change. In the language we adopted for
seating people around a round table, if we choose the flavors V, C, and S, and
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arrange them in the dish with C to the right of V and S to the right of C, then
the scoops are in different relative positions than if we arrange them instead with
S to the right of V and C to the right of S. Thus the order in which the scoops
go into the dish is somewhat important—somewhat, because putting in V first,
then C to its right and S to its right is the same as putting in S first, then V to
its right and C to its right. In this case, each list of three flavors is equivalent to
only three lists, including itself, and so if there are n equivalence classes, we have
3n = 24, so there are 24/3 = 8 equivalence classes.

356. If we have an equivalence relation that divides a set with k elements up
into equivalence classes each of size m, what is the number n of equivalence
classes? Explain why.

357. In Problem 351, what is the number of equivalence classes? Explain in words
the relationship between this problem and the Problem 39d.

358. Describe explicitly what makes two lists of beads equivalent in Problem
43 and how Problem 356 can be used to compute the number of different
necklaces.

359. What are the equivalence classes (write them out as sets of lists) in Problem
45, and why can’t we use Problem 356 to compute the number of equivalence
classes?

In Problem 356 you proved our next theorem. In Chapter 1 (Problem 42) we
discovered and stated this theorem in the context of partitions and called it the
Quotient Principle.
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Theorem 12 If an equivalence relation on a set of size k has equivalence classes
each of size m, then the number of equivalence classes is k/m.



Appendix B

Mathematical Induction

B.1 The Principle of Mathematical Induction

B.1.1 The ideas behind mathematical induction

There is a variant of one of the bijections we used to prove the Pascal Equation
that comes up in counting the subsets of a set. In the next problem it will help us
compute the total number of subsets of a set, regardless of their size. Our main
goal in this problem, however, is to introduce some ideas that will lead us to one
of the most powerful proof techniques in combinatorics (and many other branches
of mathematics), the principle of mathematical induction.

360. (a) Write down a list of the subsets of {1, 2}. Don’t forget the empty set!

239
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Group the sets containing containing 2 separately from the others.

(b) Write down a list of the subsets of {1, 2, 3}. Group the sets containing
3 separately from the others.

(c) Look for a natural way to match up the subsets containing 2 in Part (a)
with those not containing 2. Look for a way to match up the subsets
containing 3 in Part (b) containing 3 with those not containing 3.

(d) On the basis of the previous part, you should be able to find a bijection
between the collection of subsets of {1, 2, . . . , n} containing n and those
not containing n. (If you are having difficulty figuring out the bijection,
try rethinking Parts (a) and (b), perhaps by doing a similar exercise
with the set {1, 2, 3, 4}.) Describe the bijection (unless you are very
familiar with the notation of sets, it is probably easier to describe to
describe the function in words rather than symbols) and explain why
it is a bijection. Explain why the number of subsets of {1, 2, . . . , n}
containing n equals the number of subsets of {1, 2, . . . , n− 1}.

(e) Parts (a) and (b) suggest strongly that the number of subsets of a
n-element set is 2n. In particular, the empty set has 20 subsets, a one-
element set has 21 subsets, itself and the empty set, and in Parts a
and b we saw that two-element and three-element sets have 22 and 23

subsets respectively. So there are certainly some values of n for which
an n-element set has 2n subsets. One way to prove that an n-element
set has 2n subsets for all values of n is to argue by contradiction. For
this purpose, suppose there is a nonnegative integer n such that an
n-element set doesn’t have exactly 2n subsets. In that case there may
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be more than one such n. Choose k to be the smallest such n. Notice
that k − 1 is still a positive integer, because k can’t be 0, 1, 2, or
3. Since k was the smallest value of n we could choose to make the
statement “An n-element set has 2n subsets” false, what do you know
about the number of subsets of a (k − 1)-element set? What do you
know about the number of subsets of the k-element set {1, 2, . . . , k}
that don’t contain k? What do you know about the number of subsets
of {1, 2, . . . , k} that do contain k? What does the sum principle tell
you about the number of subsets of {1, 2, . . . , k}? Notice that this
contradicts the way in which we chose k, and the only assumption that
went into our choice of k was that “there is a nonnegative integer n
such that an n-element set doesn’t have exactly 2n subsets.” Since this
assumption has led us to a contradiction, it must be false. What can
you now conclude about the statement “for every nonnegative integer
n, an n-element set has exactly 2n subsets?”

361. The expression

1 + 3 + 5 + · · ·+ 2n− 1

is the sum of the first n odd integers (notice that the nth odd integer is
2n − 1). Experiment a bit with the sum for the first few positive integers
and guess its value in terms of n. Now apply the technique of Problem 360
to prove that you are right.

In Problems 360 and 361 our proofs had several distinct elements. We had a
statement involving an integer n. We knew the statement was true for the first
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few nonnegative integers in Problem 360 and for the first few positive integers in
Problem 361. We wanted to prove that the statement was true for all nonnegative
integers in Problem 360 and for all positive integers in Problem 361. In both cases
we used the method of proof by contradiction; for that purpose we assumed that
there was a value of n for which our formula wasn’t true. We then chose k to
be the smallest value of n for which our formula wasn’t true.1 This meant that
when n was k− 1, our formula was true, (or else that k− 1 wasn’t a nonnegative
integer in Problem 360 or that k − 1 wasn’t a positive integer in Problem 361).
What we did next was the crux of the proof. We showed that the truth of our
statement for n = k − 1 implied the truth of our statement for n = k. This
gave us a contradiction to the assumption that there was an n that made the
statement false. In fact, we will see that we can bypass entirely the use of proof
by contradiction. We used it to help you discover the central ideas of the technique
of proof by mathematical induction.

The central core of mathematical induction is the proof that the truth of a
statement about the integer n for n = k− 1 implies the truth of the statement for
n = k. For example, once we know that a set of size 0 has 20 subsets, if we have
proved our implication, we can then conclude that a set of size 1 has 21 subsets,
from which we can conclude that a set of size 2 has 22 subsets, from which we
can conclude that a set of size 3 has 23 subsets, and so on up to a set of size
n having 2n subsets for any nonnegative integer n we choose. In other words,
although it was the idea of proof by contradiction that led us to think about such

1The fact that every set of positive integers has a smallest element is called the Well-Ordering
Principle. In an axiomatic development of numbers, one takes the Well-Ordering Principle or
some equivalent principle as an axiom.
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an implication, we can now do without the contradiction at all. What we need to
prove a statement about n by this method is a place to start, that is a value b of
n for which we know the statement to be true, and then a proof that the truth of
our statement for n = k−1 implies the truth of the statement for n = k whenever
k > b.

B.1.2 Mathematical induction

The principle of mathematical induction states that

In order to prove a statement about an integer n, if we can

1. Prove the statement when n = b, for some fixed integer b

2. Show that the truth of the statement for n = k − 1 implies the
truth of the statement for n = k whenever k > b,

then we can conclude the statement is true for all integers n ≥ b.

As an example, let us return to Problem 360. The statement we wish to prove is
the statement that “A set of size n has 2n subsets.”

Our statement is true when n = 0, because a set of size 0 is the empty
set and the empty set has 1 = 20 subsets. (This step of our proof is
called a base step.)

Now suppose that k > 0 and every set with k − 1 elements has 2k−1

subsets. Suppose S = {a1, a2, . . . ak} is a set with k elements. We
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partition the subsets of S into two blocks. Block B1 consists of the
subsets that do not contain an and block B2 consists of the subsets
that do contain an. Each set in B1 is a subset of {a1, a2, . . . ak−1},
and each subset of {a1, a2, . . . ak−1} is in B1. Thus B1 is the set of
all subsets of {a1, a2, . . . ak−1}. Therefore by our assumption in the
first sentence of this paragraph, the size of B1 is 2k−1. Consider the
function from B2 to B1 which takes a subset of S including an and
removes an from it. This function is defined on B2, because every
set in B2 contains an. This function is onto, because if T is a set in
B1, then T ∪ {ak} is a set in B2 which the function sends to T . This
function is one-to-one because if V and W are two different sets in B2,
then removing ak from them gives two different sets in B1. Thus we
have a bijection between B1 and B2, so B1 and B2 have the same size.
Therefore by the sum principle the size of B1 ∪B2 is 2k−1 +2k−1 = 2k.
Therefore S has 2k subsets. This shows that if a set of size k − 1 has
2k−1 subsets, then a set of size k has 2k subsets. Therefore by the
principle of mathematical induction, a set of size n has 2n subsets for
every nonnegative integer n.

The first sentence of the last paragraph is called the inductive hypothesis. In
an inductive proof we always make an inductive hypothesis as part of proving that
the truth of our statement when n = k − 1 implies the truth of our statement
when n = k. The last paragraph itself is called the inductive step of our proof.
In an inductive step we derive the statement for n = k from the statement for
n = k − 1, thus proving that the truth of our statement when n = k − 1 implies
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the truth of our statement when n = k. The last sentence in the last paragraph
is called the inductive conclusion. All inductive proofs should have a base step,
an inductive hypothesis, an inductive step, and an inductive conclusion.

There are a couple details worth noticing. First, in this problem, our base
step was the case n = 0, or in other words, we had b = 0. However, in other
proofs, b could be any integer, positive, negative, or 0. Second, our proof that the
truth of our statement for n = k− 1 implies the truth of our statement for n = k
required that k be at least 1, so that there would be an element ak we could take
away in order to describe our bijection. However, condition (2) of the principle
of mathematical induction only requires that we be able to prove the implication
for k > 0, so we were allowed to assume k > 0.

362. Use mathematical induction to prove your formula from Problem 361.

B.1.3 Proving algebraic statements by induction

363. Use mathematical induction to prove the well-known formula that for all
positive integers n,

1 + 2 + · · ·+ n =
n(n + 1)

2
.

364. Experiment with various values of n in the sum

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n · (n + 1)
=

n∑
i=1

1

i · (i + 1)
.
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Guess a formula for this sum and prove your guess is correct by induction.

365. For large values of n, which is larger, n2 or 2n? Use mathematical induction
to prove that you are correct.

366. What is wrong with the following attempt at an inductive proof that all
integers in any consecutive set of n integers are equal for every positive
integer n? For an arbitrary integer i, all integers from i to i are equal, so
our statement is true when n = 1. Now suppose k > 1 and all integers in any
consecutive set of k − 1 integers are equal. Let S be a set of k consecutive
integers. By the inductive hypothesis, the first k−1 elements of S are equal
and the last k− 1 elements of S are equal. Therefore all the elements in the
set S are equal. Thus by the principle of mathematical induction, for every
positive n, every n consecutive integers are equal.

B.2 Strong Induction

One way of looking at the principle of mathematical induction is that it tells us
that if we know the “first” case of a theorem and we can derive each other case of
the theorem from a smaller case, then the theorem is true in all cases. However,
the particular way in which we stated the theorem is rather restrictive in that
it requires us to derive each case from the immediately preceding case. This
restriction is not necessary, and removing it leads us to a more general statement
of the principle of mathematical induction which people often call the strong
principle of mathematical induction. It states:
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In order to prove a statement about an integer n if we can

1. prove our statement when n = b and

2. prove that the statements we get with n = b, n = b + 1, . . .n =
k − 1 imply the statement with n = k,

then our statement is true for all integers n ≥ b.

367. What postage do you think we can make with five and six cent stamps? Do
you think that there is a number N such that if n ≥ N , then we can make
n cents worth of postage?

You probably see that we can make n cents worth of postage as long as n is at
least 20. However, you didn’t try to make 26 cents in postage by working with 25
cents; rather you saw that you could get 20 cents and then add six cents to that
to get 26 cents. Thus if we want to prove by induction that we are right that if
n ≥ 20, then we can make n cents worth of postage, we are going to have to use
the strong version of the principle of mathematical induction.

We know that we can make 20 cents with four five-cent stamps. Now we let k
be a number greater than 20, and assume that it is possible to make any amount
between 20 and k − 1 cents in postage with five and six cent stamps. Now if k is
less than 25, it is 21, 22, 23, or 24. We can make 21 with three fives and one six.
We can make 22 with two fives and two sixes, 23 with one five and three sixes,
and 24 with four sixes. Otherwise k − 5 is between 20 and k − 1 (inclusive) and
so by our inductive hypothesis, we know that k − 5 cents can be made with five
and six cent stamps, so with one more five cent stamp, so can k cents. Thus by
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the (strong) principle of mathematical induction, we can make n cents in stamps
with five and six cent stamps for each n ≥ 20.

Some people might say that we really had five base cases, n = 20, 21, 22,
23, and 24, in the proof above and once we had proved those five consecutive
base cases, then we could reduce any other case to one of these base cases by
successively subtracting 5. That is an appropriate way to look at the proof. In
response, a logician might say that it is also the case that, for example, by proving
we could make 22 cents, we also proved that if we can make 20 cents and 21 cents
in stamps, then we could also make 22 cents. We just didn’t bother to use the
assumption that we could make 20 cents and 21 cents! On the other hand a
computer scientist might say that if we want to write a program that figures out
how to make n cents in postage, we use one method for the cases n = 20 to
n = 24, and then a general method for all the other cases. So to write a program
it is important for us to think in terms of having multiple base cases. How do you
know what your base cases are? They are the ones that you solve without using
the inductive hypothesis. So long as one point of view or the other satisfies you,
you are ready to use this kind of argument in proofs.

368. A number greater than one is called prime if it has no factors other than
itself and one. Show that each positive number is either a power of a prime
(remember what p0 and p1 are) or a product of powers of prime numbers.

369. Show that the number of prime factors of a positive number n ≥ 2 is less
than or equal to log2 n. (If a prime occurs to the kth power in a factorization
of n, you can consider that power as k prime factors.) (There is a way to do
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this by induction and a way to do it without induction. It would be ideal
to find both ways.)

370. One of the most powerful statements in elementary number theory is Euclid’s
Division Theorem2. This states that if m and n are positive integers, then
there are unique nonnegative intergers q and r with 0 ≤ r < n, such that
m = nq + r. The number q is called the quotient and the number r is called
the remainder. In computer science it is common to denote r by m mod n.
In elementary school you learned how to use long division to find q and r.
However, it is unlikely that anyone ever proved for you that for any pair of
positive intgers, m and n, there is such a pair of nonnegative numbers q and
r. You now have the tools needed to prove this. Do so.

2In a curious twist of language, mathematicians have long called The Division Algorithm or
Euclid’s Division Algorithm. However as computer science has grown in importance, the word
algorithm has gotten a more precise definition: an algorithm is now a method to do something.
There is a method (in fact there are more than one) to get the q and r that Euclid’s Division
Theorem gives us, and computer scientists would call these methods algorithms. Your author
has chosen to break with mathematical tradition and restrict his use of the word algorithm to
the more precise interpretation as a computer scientist probably would. We aren’t giving a
method here, so this is why the name used here is “Euclid’s Division Theorem.”
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Appendix C

Exponential Generating
Functions

C.1 Indicator Functions

When we introduced the idea of a generating function, we said that the formal
sum

∞∑
i=0

aix
i

may be thought of as a convenient way to keep track of the sequence ai. We then
did quite a few examples that showed how combinatorial properties of arrange-
ments counted by the coefficients in a generating function could be mirrored by

251
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algebraic properties of the generating functions themselves. The monomials xi

are called indicator polynomials. (They indicate the position of the coefficient ai.)
One example of a generating function is given by

(1 + x)n =
∞∑
i=0

(
n

i

)
xi.

Thus we say that (1 + x)n is the generating function for the binomial coefficients(
n
i

)
. The notation tells us that we are assuming that only i varies in the sum on

the right, but that the equation holds for each fixed integer n. This is implicit
when we say that (1 + x)n is the generating function for

(
n
i

)
, because we haven’t

written i anywhere in (1 + x)n, so it is free to vary.
Another example of a generating function is given by

xn =
∞∑
i=0

s(n, i)xi.

Thus we say that xn is the generating function for the Stirling numbers of the
first kind, s(n, i). There is a similar equation for Stirling numbers of the second
kind, namely

xn =
∞∑
i=0

S(n, i)xi.

However, with our previous definition of generating functions, this equation would
not give a generating function for the Stirling numbers of the second kind, because
S(n, i) is not the coefficient of xi. If we were willing to consider the falling factorial



C.2. EXPONENTIAL GENERATING FUNCTIONS 253

powers xi as indicator polynomials, then we could say that xn is the generating
function for the numbers S(n, i) relative to these indicator polynomials. This
suggests that perhaps different sorts of indicator polynomials go naturally with
different sequences of numbers.

The binomial theorem gives us yet another example.

◦371. Write (1 + x)n as a sum of multiples of xi

i!
rather than as a sum of multiples

of xi.

This example suggests that we could say that (1+x)n is the generating function

for the falling factorial powers ni relative to the indicator polynomials xi

i!
. In

general, a sequence of polynomials is called a family of indicator polynomials
if there is one polynomial of each nonnegative integer degree in the sequence.
Those familiar with linear algebra will recognize that this says that a family of
indicator polynomials forms a basis for the vector space of polynomials. This
means that each polynomial can be expressed as a sum of numerical multiples of
indicator polynomials in one and only one way. One could use the language of
linear algebra to define indicator polynomials in an even more general way, but a
definition in such generality would not be useful to us at this point.

C.2 Exponential Generating Functions

We say that the expression
∑∞

i=0 ai
xi

i!
is the exponential generating function

for the sequence ai. It is standard to use EGF as a shorthand for exponential
generating function. In this context we call the generating function

∑n
i=0 aix

i that
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we originally studied the ordinary generating function for the sequence ai.
You can see why we use the term exponential generating function by thinking
about the exponential generating function (EGF) for the all ones sequence,

∞∑
i=0

1
xi

i!
=

∞∑
i=0

xi

i!
= ex,

which we also denote by exp(x). Recall from calculus that the usual definition of
ex or exp(x) involves limits at least implicitly. We work our way around that by

defining ex to be the power series
∑∞

i=0
xi

i!
.

◦372. Find the EGF (exponential generating function) for the sequence an = 2n.
What does this say about the EGF for the number of subsets of an n-element
set?

◦373. Find the EGF (exponential generating function) for the number of ways to
paint the n streetlight poles that run along the north side of Main Street in
Anytown, USA using five colors.

374. For what sequence is ex−e−x

2
= cosh x the EGF (exponential generating func-

tion)?

·375. For what sequence is ln( 1
1−x

) the EGF? (The notation ln(y) stands for the
natural logarithm of y. People often write log(y) instead.) Hint: Think of
the definition of the logarithm as an integral, and don’t worry at this stage
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whether or not the usual laws of calculus apply, just use them as if they do!
We will then define ln(1− x) to be the power series you get.1

·376. What is the EGF for the number of permutations of an n-element set?

·377. What is the EGF for the number of ways to arrange n people around a round
table? Try to find a recognizable function represented by the EGF. Notice
that we may think of this as the EGF for the number of permutations on n
elements that are cycles.

·378. What is the EGF
∑∞

n=0 p2n
x2n

(2n)!
for the number of ways p2n to pair up 2n

people to play a total of n tennis matches (as in Problems 12a and 44)? Try
to find a recognizable function represented by the EGF.

1It is possible to define the derivatives and integrals of power series by the formulas

d

dx

∞∑
i=0

bix
i =

∞∑
i=1

ibix
i−1

and ∫ x

0

∞∑
i=0

bix
i =

∞∑
i=0

bi

i + 1
xi+1

rather than by using the limit definitions from calculus. It is then possible to prove that the sum
rule, product rule, etc. apply. (There is a little technicality involving the meaning of composition
for power series that turns into a technicality involving the chain rule, but it needn’t concern us
at this time.)



256 APPENDIX C. EXPONENTIAL GENERATING FUNCTIONS

◦379. What is the EGF for the sequence 0, 1, 2, 3, . . .? You may think of this as
the EGF for the number of ways to select one element from an n element
set. What is the EGF for the number of ways to select two elements from
an n-element set?

·380. What is the EGF for the sequence 1, 1, · · · , 1, · · ·? Notice that we may think
of this as the EGF for the number of identity permutations on an n-element
set, which is the same as the number of permutations of n elements whose
cycle decomposition consists entirely of 1-cycles, or as the EGF for the
number of ways to select an n-element set (or, if you prefer, an empty set)
from an n-element set. As you may have guessed, there are many other
combinatorial interpretations we could give to this EGF.

◦381. What is the EGF for the number of ways to select n distinct elements from
a one-element set? What is the EGF for the number of ways to select a
positive number n of distinct elements from a one-element set? Hint: When
you get the answer you will either say “of course,” or “this is a silly problem.”

·382. What is the EGF for the number of partitions of a k-element set into exactly
one block? (Hint: is there a partition of the empty set into exactly one
block?)

·383. What is the EGF for the number of ways to arrange k books on one shelf
(assuming they all fit)? What is the EGF for the number of ways to arrange
k books on a fixed number n of shelves, assuming that all the books can fit
on any one shelf? (Remember Problem 122e.)
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C.3 Applications to Recurrences.

We saw that ordinary generating functions often play a role in solving recurrence
relations. We found them most useful in the constant coefficient case. Expo-
nential generating functions are useful in solving recurrence relations where the
coefficients involve simple functions of n, because the n! in the denominator can
cancel out factors of n in the numerator.

◦384. Consider the recurrence an = nan−1 + n(n− 1). Multiply both sides by xn

n!
,

and sum from n = 2 to ∞. (Why do we sum from n = 2 to infinity instead

of from n = 1 or n = 0?) Letting y =
∑∞

i=0 ai
xi

i!
, show that the left-hand

side of the equation is y− a0− a1x. Express the right hand side in terms of
y, x, and ex. Solve the resulting equation for y and use the result to get an
equation for an. (A finite summation is acceptable in your answer for an.)

·385. The telephone company in a city has n subscribers. Assume a telephone call
involves exactly two subscribers (that is, there are no calls to outside the
network and no conference calls), and that the configuration of the telephone
network is determined by which pairs of subscribers are talking. Notice that
we may think of a configuration of the telephone network as a permutation
whose cycle decomposition consists entirely of one-cycles and two-cycles,
that is, we may think of a configuration as an involution in the symmetric
group Sn.

(a) Give a recurrence for the number cn of configurations of the network.
(Hint: Person n is either on the phone or not.)
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(b) What are c0 and c1?

(c) What are c2 through c6?

·386. Recall that a derangement of [n] is a permutation of [n] that has no fixed
points, or equivalently is a way to pass out n hats to their n different owners
so that nobody gets the correct hat. Use dn to stand for the number of
derangements of [n]. We can think of a derangement of [n] as a list of 1
through n so that i is not in the ith place for any n. Thus in a derangement,
some number k different from n is in position n. Consider two cases: either
n is in position k or it is not. Notice that in the second case, if we erase
position n and replace n by k, we get a derangement of [n − 1]. Based on
these two cases, find a recurrence for dn. What is d1? What is d2? What is
d0? What are d3 through d6?

C.3.1 Using calculus with exponential generating func-
tions

·387. Your recurrence in Problem 385 should be a second order recurrence.

(a) Assuming that the left hand side is cn and the right hand side involves
cn−1 and cn−2, decide on an appropriate power of x divided by an ap-
propriate factorial by which to multiply both sides of the recurrence.
Using the fact that the derivative of xn

n!
is xn−1

(n−1)!
, write down a differen-

tial equation for the EGF T (x) =
∑∞

i=0 ci
xi

i!
. Note that it makes sense
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to substitute 0 for x in T (x). What is T (0)? Solve your differential
equation to find an equation for T (x).

(b) Use your EGF to compute a formula for cn.

·388. Your recurrence in Problem 386 should be a second order recurrence.

(a) Assuming that the left-hand side is dn and the right hand side involves
dn−1 and dn−2, decide on an appropriate power of x divided by an ap-
propriate factorial by which to multiply both sides of the recurrence.
Using the fact that the derivative of xn

n!
is xn−1

(n−1)!
, write down a differ-

ential equation for the EGF D(x) =
∑∞

i=0 di
xi

i!
. What is D(0)? Solve

your differential equation to find an equation for D(x).

(b) Use the equation you found for D(x) to find an equation for dn. Com-
pare this result with the one you computed by inclusion and exclusion.

C.4 The Product Principle for EGFs

One of our major tools for ordinary generating functions was the product principle.
It is thus natural to ask if there is a product principle for exponential generating
functions. In Problem 383 you likely found that the EGF for the number of ways
of arranging n books on one shelf was exactly the same as the EGF for the number
of permutations of [n], namely 1

1−x
or (1 − x)−1. Then using our formula from

Problem 122e and the ordinary generating function for multisets, you probably
found that the EGF for number of ways of arranging n books on some fixed number
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m of bookshelves was (1− x)−m. Thus the EGF for m shelves is a product of m
copies of the EGF for one shelf.

◦389. In Problem 373 what would the exponential generating function have been if
we had asked for the number of ways to paint the poles with just one color of
paint? With two colors of paint? What is the relationship between the EGF
for painting the n poles with one color of paint and the EGF for painting
the n poles with five colors of paint? What is the relationship among the
EGF for painting the n poles with two colors of paint, the EGF for painting
the poles with three colors of paint, and the EGF for painting the poles with
five colors of paint?

In Problem 385 you likely found that the EGF for the number of network
configurations with n customers was ex+x2/2 = ex · ex2/2. In Problem 380 you
saw that the EGF for the number of permutations on n elements whose cycle
decompositions consist of only one-cycles was ex, and in Problem 378 you likely
found that the EGF for the number of tennis pairings of 2n people, or equivalently,
the number of permutations of 2n objects whose cycle decomposition consists of
n two-cycles is ex2/2.

·390. What can you say about the relationship among the EGF for the number
of permutations whose cycle structure consists of disjoint two-cycles and
one-cycles, i.e., which are involutions, the exponential generating function
for the number of permutations whose cycle decomposition consists of dis-
joint two-cycles only and the EGF for the number of permutations whose
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cycle decomposition consists of of disjoint one-cycles only (these are identity
permutations on their domain)?

In Problem 388 you likely found that the EGF for the number of permutations
of [n] that are derangements is e−x

1−x
. But every permutation is a product of a

derangement and a permutation whose cycle decomposition consists of one-cycles,
because the permutation that sends i to i is a one-cycle, so that when you find
the cycle decomposition of a permutation, the cycles of size greater than one are
the cycle decomposition of a derangement (of the set of elements moved by the
permutation), and the elements not moved by the permutation are one-cycles.

·391. If we multiply the EGF for derangements times the EGF for the number of
permutations whose cycle decompositions consist of one-cycles only, what
EGF do we get? For what set of objects have we found the EGF?

We now have four examples in which the EGF for a sequence or a pair of objects
is the product of the EGFs for the individual objects making up the sequence or
pair.

·392. What is the coefficient of xn

n!
in the product of two EGFs

∑∞
i=0 ai

xi

i!
and∑∞

j=0 bj
xj

j!
? (A summation sign is appropriate in your answer.)

In the case of painting streetlight poles in Problem 389, let us examine the
relationship among the EGF for painting poles with two colors, the EGF for
painting poles with three colors, and the EGF for painting poles with five colors,
e5x. To be specific, the EGF for painting poles red and white is e2x and the EGF
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for painting poles blue, green, and yellow is e3x. To decide how to paint poles
with red, white, blue, green, and yellow, we can decide which set of poles is to
be painted with red and white, and which set of poles is to be painted with blue,
green and yellow. Notice that the number of ways to paint a set of poles with red
and white depends only on the size of that set, and the number of ways to paint
a set of poles with blue, green, and yellow depends only on the size of that set.

·393. Suppose that ai is the number of ways to paint a set of i poles with red and
white, and bj is the number of ways to paint a set of j poles with blue, green
and yellow. In how many ways may we take a set N of n poles, divide it
up into two sets I and J (using i to stand for the size of I and j to stand
for the size of the set J , and allowing i and j to vary) and paint the poles
in I red and white and the poles in J blue, green, and yellow? (Give your
answer in terms of ai and bj. Don’t figure out formulas for ai and bj to use
in your answer; that will make it harder to get the point of the problem!)
How does this relate to Problem 392?

Problem 393 shows that the formula you got for the coefficient of xn

n!
in the

product of two EGFs is the formula we get by splitting a set N of poles into
two parts and painting the poles in the first part with red and white and the
poles in the second part with blue, green, and yellow. More generally, you could
interpret your result in Problem 392 to say that the coefficient of xn

n!
in the product∑∞

i=0 ai
xi

i!

∑∞
j=0 bj

xj

j!
of two EGFs is the sum, over all ways of splitting a set N of

size n into an ordered pair of disjoint sets I of size i and J of size j, of the product
aibj.
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There seem to be two essential features that relate to the product of exponen-
tial generating functions. First, we are considering structures that consist of a
set and some additional mathematical construction on or relationship among the
elements of that set. For example, our set might be a set of light poles and the
additional construction might be a coloring function defined on that set. Other
examples of additional mathematical constructions or relationships on a set could
include a permutation of that set; in particular an involution or a derangement,
a partition of that set, a graph on that set, a connected graph on that set, an
arrangement of the elements of that set around a circle, or an arrangement of the
elements of that set on the shelves of a bookcase. In fact a set with no additional
construction or arrangement on it is also an example of a structure. Its additional
construction is the empty set! When a structure consists of the set S plus the
additional construction, we say the structure uses S. What all the examples we
have mentioned in our earlier discussion of exponential generating functions have
in common is that the number of structures that use a given set is determined by
the size of that set. We will call a family F of structures a species of structures
on subsets of a set X if structures are defined on finite subsets of X and if the
number of structures in the family using a finite set S is finite and is determined
by the size of S (that is, if there is a bijection between subsets S and T of X, the
number of structures in the family that use S equals the number of structures in
the family that use T ). We say a structure is an F-structure if it is a member of
the family F .

·394. In Problem 383, why is the family of arrangements of sets of books on a
single shelf (assuming they all fit) a species?
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·395. In Problem 385, why is the family of sets of people actually making phone
calls (assuming nobody is calling outside the telephone network) at any given
time, with the added relationship of who is calling whom, a species? Why
is the the family of sets of people who are not using their phones a species
(with no additional construction needed)?

The second essential feature of our examples of products of EGFs is that
products of EGFs seem to count structures on ordered pairs of two disjoint sets
(or more generally on k-tuples of mutually disjoint sets). For example, we can
determine a five coloring of a set S by partitioning it in all possible ways into two
sets and coloring the first set in the pair with our first two colors and our second
pair with the last three colors. Or we can partition our set in all possible ways
into five parts and color part i with our ith color. We don’t have to do the same
thing to each part of our partition; for example, we could define a derangement
on one part and an identity permutation on the other; this defines a permutation
on the set we are partitioning, and we have already noted that every permutation
arises in this way.

Our combinatorial interpretation of EGFs will involve assuming that the co-
efficient of xi

i!
counts the number of structures on a particular set of of size i in

a species of structures on subsets of a set X. Thus in order to give an interpre-
tation of the product of two EGFs we need to be able to think of ordered pairs
of structures on disjoint sets or k-tuples of structures on disjoint sets as struc-
tures themselves. Thus given a structure on a set S and another structure on a
disjoint set T , we define the ordered pair of structures (which is a mathematical
construction!) to be a structure on the set S ∪ T . We call this a pair structure
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on S ∪ T . We can get many structures on a set S ∪ T in this way, because S ∪ T
can be divided into many other pairs of disjoint sets. In particular, the set of pair
structures whose first structure comes from F and whose second element comes
from G is denoted by F · G.

396. Show that if F and G are species of structures on subsets of a set X, then
the pair structures of F · G form a species of structures.

Given a species F of structures, the number of structures using any particular
set of size i is the same as the number of structures in the family using any other
set of size i. We can thus define the exponential generating function (EGF) for

the family as the power series
∑∞

i=1 ai
xi

i!
, where ai is the number of structures of

F that use one particular set of size i. In Problems 372, 373, 376, 377, 378, 380,
381, 382, 383, 387, and 388 we were computing EGFs for species of subsets of
some set.

397. If F and G are species of subsets of X, how is the EGF for F · G related to
the EGFs for F and G? Prove you are right.

398. Without giving the proof, how can you compute the EGF f(x) for the
number of structures using a set of size n in the species F1 · F2 · · · Fk of
structures on k-tuples of subsets of of X from the EGFs fi(x) for Fi for each
i from 1 to k? (Here we are using the natural extension of the idea of the
pair structure to the idea of a k-tuple structure.)

The result of Problem 398 will be of enough use to us that we will state it
formally along with two useful corollaries.
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Theorem 13 If F1, F2, . . . , Fk are species set X and Fi has EGF fi(x), then
the family of k-tuple structures F1 · F2 · · · Fn has EGF

∏n
i=1 fi(x).

We call Theorem 13 the General Product Principle for Exponential
Generating Functions. We give two corollaries; the proof of the second is not
immediate though not particularly difficult.

Corollary 3 If F is a species of structures on subsets of X and f(x) is the
EGF for F , then f(x)k/ is the EGF for the k-tuple structures on k-tuples of
F-structures using disjoint subsets of X.

Our next corollary uses the idea of a k-set structure. Suppose we have a species
F of structures on nonempty subsets of X, that is, a species of structures which
assigns no structures to the empty set. Then we can define a new species F (k) of
structures, called “k-set structures,” using nonempty subsets of X. Given a fixed
positive integer k, a k-set structure on a subset Y of X consists of a k-element
set of nonempty disjoint subsets of X whose union is Y and an assignment of an
F -structure to each of the disjoint subsets. This is a species on the set of subsets
of X; the subset used by a k-set structure is the union of the sets of the structure.
To recapitulate, the set of k-set structures on a subset Y of X is the set of all
possible assignments of F -structures to k nonempty disjoint sets whose union is
Y . (You can also think of the k-set structures as a family of structures defined on
blocks of partitions of subsets of X into k blocks.)

Corollary 4 If F is a species of structures on nonempty subsets of X and f(x)

is the EGF for F , then for each positive integer k, f(x)k

k!
is the EGF for the family

F (k) of k-set structures on subsets of X.
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399. Prove Corollary 4.

·400. Use the product principle for EGFs to explain the results of Problems 390
and 391.

·401. Use the general product principle for EGFs or one of its corollaries to explain
the relationship between the EGF for painting streetlight poles in only one
color and the EGF for painting streetlight poles in 5 colors in Problems 373
and 389. What is the EGF for the number pn of ways to paint n streetlight
poles with some fixed number k of colors of paint?

·402. Use the general product principle for EGFs or one of its corollaries to explain
the relationship between the EGF for arranging books on one shelf and the
EGF for arranging books on n shelves in Problem 383.

403. (Optional) Our very first example of exponential generating functions used
the binomial theorem to show that the EGF for k-element permutations of
an n element set is (1 + x)n. Use the EGF for k-element permutations of
a one-element set and the product principle to prove the same thing. Hint:
Review the alternate definition of a function in Section 3.1.2.

404. What is the EGF for the number of ways to paint n streetlight poles red,
white, blue, green and yellow, assuming an even number of poles must be
painted green and an even number of poles must be painted yellow? Give a
formula for the number of ways to paint n poles. (Don’t forget the factorial!)
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·405. What is the EGF for the number of functions from an n-element set onto
a one-element set? (Can there be any functions from the empty set onto a
one-element set?) What is the EGF for the number cn of functions from an
n-element set onto a k element set (where k is fixed)? Use this EGF to find
an explicit expression for the number of functions from a k-element set onto
an n-element set and compare the result with what you got by inclusion and
exclusion.

·406. In Problem 142 you showed that the Bell Numbers Bn satisfy the equation
Bn+1 =

∑n
k=0

(
n
k

)
Bn−k (or a similar equation for Bn). Multiply both sides

of this equation by xn

n!
and sum from n = 0 to infinity. On the left hand side

you have a derivative of a certain EGF we might call B(x). On the right
hand side, you have a product of two EGFs, one of which is B(x). What
is the other one? What differential equation involving B(x) does this give
you? Solve the differential equation for B(x). This is the EGF for the Bell
numbers!

407. Prove that n2n−1 =
∑n

k=1

(
n
k

)
k by using EGFs.

·408. In light of Problem 382, why is the EGF for the Stirling numbers S(n, k) of
the second kind (with n fixed and k allowed to vary) not (ex − 1)n? What
is it equal to instead?
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C.5 The Exponential Formula

Exponential generating functions turn out to be quite useful in advanced work in
combinatorics. One reason why is that it is often possible to give a combinatorial
interpretation to the composition of two exponential generating functions. In
particular, if f(x) =

∑n
i=0 ai

xi

i!
and g(x) =

∑∞
j=1 bj

xj

j!
, it makes sense to form the

composition f(g(x)) because in so doing we need add together only finitely many
terms in order to find the coefficient of xn

n!
in f(g(x)) (since in the EGF g(x)

the dummy variable j starts at 1). Since our study of combinatorial structures
has not been advanced enough to give us applications of a general formula for
the compositions of EGFs, we will not give here the combinatorial interpretation
of composition in general. However, we have seen some examples where one
particular composition can be applied. Namely, if f(x) = ex = exp(x), then
f(g(x)) = exp(g(x)) is well defined when b0 = 0. We have seen three examples
in which an EGF is ef(x) where f(x) is another EGF. There is a fourth example
in which the exponential function is slightly hidden.

·409. If f(x) is the EGF for the number of partitions of an n-set into one block,
and g(x) is the EGF for the total number of partitions of an n-element set,
that is, for the Bell numbers Bn, how are the two EGFs related?

·410. Let f(x) be the EGF for the number of permutations of an n-element set
with one cycle of size one or two and no other cycles, including no other one-
cycles. What is f(x)? What is the EGF g(x) for the number of permutations
of an n-element set all of whose cycles have size one or two, that is, the
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number of involutions in Sn, or the number of configurations of a telephone
network? How are these two exponential generating functions related?

·411. Let f(x) be the EGF for the number of permutations of an n-element set
whose cycle decomposition consists of exactly one two-cycle and no other
cycles (this includes having no one-cycles). Let g(x) be the EGF for the
number of permutations whose cycle decomposition consists of two-cycles
only, that is, for tennis pairings. What is f(x)? What is g(x)? How are
these two exponential generating functions related?

·412. Let f(x) be the EGF for the number of permutations of an n-element set
that have exactly one cycle. Notice that if n > 1 this means they have no
one-cycles. (This is the same as the EGF for the number of ways to arrange
n people around a round table.) Let g(x) be the EGF for the total number
of permutations of an n-element set. What is f(x)? What is g(x)? How are
f(x) and g(x) related?

There was one element that our last four problems had in common. In each
case our EGF f(x) involved the number of structures of a certain type (partitions,
telephone networks, tennis pairings, permutations) that used only one set of an
appropriate kind. (That is, we had a partition with one part, a telephone network
consisting either of one person or two people connected to each other, a tennis
pairing of one set of two people, or a permutation with one cycle.) Our EGF g(x)
was the number of structures of the same “type” (we put type in quotation marks
here because we don’t plan to define it formally) that could consist of any number
of sets of the appropriate kind. Notice that the order of these sets was irrelevant.
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For example, we don’t order the blocks of a partition or the cycles in a cycle
decomposition of a permutation. Thus we were relating the EGF for structures
which were somehow “building blocks” to the EGF for structures which were sets
of building blocks. For a reason that you will see later, it is common to call the
building blocks connected structures. Notice that our connected structures were
all based on nonempty sets, so we had no connected structures whose value was
the empty set. Thus in each case, if f(x) =

∑∞
i=0 ai

xi

i!
, we would have a0 = 0.

The relationship between the EGFs was always g(x) = ef(x). We now give a
combinatorial explanation for this relationship.

·413. Suppose that F is a species of structures on subsets of a set X with no
structures on the empty set. Let f(x) be the EGF for F .

(a) In the power series

ef(x) = 1 + f(x) +
f(x)2

2!
+ · · ·+ f(x)k

k!
+ · · · =

∞∑
k=0

f(x)k

k!
,

what does Corollary 4 tell us about the coefficient of xn

n!
in f(x)k

k!
?

(b) What does the coefficient of xn

n!
in ef(x) count?

In Problem 413 we proved the following theorem, which is called the exponential
formula.

Theorem 14 Suppose that F is a species of structures on subsets of a set X with
no structures on the empty set. Let f(x) be the EGF for F . Then the coefficient
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of xn

n!
in ef(x) is the number of sets of structures on disjoint sets whose union is a

particular set of size n.

Let us see how the exponential formula applies to the examples in Problems
409, 410, 411 and 412. In Problem 382 our family F should consist of one-block
partitions of finite subsets of a set, say the set of natural numbers. Since a partition
of a set is a set of blocks whose union is S, a one block partition whose block is
B is the set {B}. Then any nonempty finite subset of the natural numbers is
the set used by exactly one structure in F . (There is no one block partition of
the empty set, so we have no structures using the empty set.) As you showed
in Problem 382 the EGF for partitions with just one block is ex − 1. Thus by
the exponential formula, exp(ex − 1) is the EGF for sets of disjoint subsets of the
positive integers whose union is any particular set N of size n. This set of disjoint
sets partitions the set N . Thus exp(ex − 1) is the EGF for partitions of sets of
size n. (As we wrote our description, it is the EGF for partitions of n-element
subsets of the positive integers, but any two n-element sets have the same number
of partitions.) In other words, exp(ex − 1) is the exponential generating function
for the Bell numbers Bn.

·414. Explain how the exponential formula proves the relationship we saw in Prob-
lem 412.

·415. Explain how the exponential formula proves the relationship we saw in Prob-
lem 411.

·416. Explain how the exponential formula proves the relationship we saw in Prob-
lem 410.
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·417. In Problem 373 we saw that the EGF for the number of ways to use five
colors of paint to paint n light poles along the north side of Main Street
in Anytown was e5x. We should expect an explanation of this EGF using
the exponential formula. Let F be the family of all one-element sets of light
poles with the additional construction of an ordered pair consisting of a light
pole and a color. Thus a given light pole occurs in five ordered pairs. Put no
structure on any other finite set. Show that this is a species of structures on
the finite subsets of the positive integers. What is the exponential generating
function f(x) for F? Assuming that there is no upper limit on the number
of light poles, what subsets of S does the exponential formula tell us are
counted by the coefficient of xn in ef(x)? How do the sets being counted
relate to ways to paint light poles?

One of the most spectacular applications of the exponential formula is also
the reason why, when we regard a combinatorial structure as a set of building
block structures, we call the building block structures connected. In Chapter 2 we
introduced the idea of a connected graph and in Problem 104 we saw examples of
graphs which were connected and were not connected. A subset C of the vertex
set of a graph is called a connected component of the graph if

• every vertex in C is connected to every other vertex in that set by a walk
whose vertices lie in C, and

• no other vertex in the graph is connected by a walk to any vertex in C.

In Problem 241 we showed that each connected component of a graph consists of
a vertex and all vertices connected to it by walks in the graph.
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·418. Show that every vertex of a graph lies in one and only one connected com-
ponent of a graph. (Notice that this shows that the connected components
of a graph form a partition of the vertex set of the graph.)

·419. Explain why no edge of the graph connects two vertices in different connected
components.

·420. Explain why it is that if C is a connected component of a graph and E ′ is
the set of all edges of the graph that connect vertices in C, then the graph
with vertex set C and edge set E ′ is a connected graph. We call this graph
a connected component graph of the original graph.

The last sequence of problems shows that we may think of any graph as the
set of its connected component graphs. (Once we know them, we know all the
vertices and all the edges of the graph.) Notice that a graph is connected if and
only if it has exactly one connected component. Since the connected components
form a partition of the vertex set of a graph, the exponential formula will relate
the EGF for the number of connected graphs on n vertices with the EGF for the
number of graphs (connected or not) on n vertices. However, because we can draw
as many edges as we want between two vertices of a graph, there are infinitely
many graphs on n vertices, and so the problem of counting them is uninteresting.
We can make it interesting by considering simple graphs, namely graphs in
which each edge has two distinct endpoints and no two edges connect the same
two vertices. It is because connected simple graphs form the building blocks for
viewing all simple graphs as sets of connected components that we refer to the
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building blocks for structures counted by the EGFs in the exponential formula as
connected structures.

·421. Suppose that f(x) =
∑∞

n=0 cn
xn

n!
is the exponential generating function for

the number of simple connected graphs on n vertices and g(x) =
∑∞

i=0 ai
xi

i!

is the exponential generating function for the number of simple graphs on i
vertices. From this point onward, any use of the word graph means simple
graph.

(a) Is f(x) = eg(x), is f(x) = eg(x)−1, is g(x) = ef(x)−1 or is g(x) = ef(x)?

(b) One of ai and cn can be computed by recognizing that a simple graph
on a vertex set V is completely determined by its edge set and its edge
set is a subset of the set of two-element subsets of V . Figure out which
it is and compute it.

(c) Write g(x) in terms of the natural logarithm of f(x) or f(x) in terms
of the natural logarithm of g(x).

(d) Write log(1 + y) as a power series in y.

(e) Why is the coefficient of x0

0!
in g(x) equal to one? Write f(x) as a power

series in g(x)− 1.

(f) You can now use the previous parts of the problem to find a formula
for cn that involves summing over all partitions of the integer n. (It
isn’t the simplest formula in the world, and it isn’t the easiest formula
in the world to figure out, but it is nonetheless a formula with which
one could actually make computations!) Find such a formula.
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The point to the last problem is that we can use the exponential formula in
reverse to say that if g(x) is the EGF for the number of (nonempty) connected
structures of size n in a given family of combinatorial structures and f(x) is the
EGF for all the structures of size n in that family, then not only is f(x) = eg(x),
but g(x) = ln(f(x)) as well. Further, if we happen to have a formula for either
the coefficients of f(x) or the coefficients of g(x), we can get a formula for the
coefficients of the other one!

C.6 Supplementary Problems

1. Use product principle for EGFs and the idea of coloring a set in two colors
to prove the formula ex · ex = e2x.

2. Find the EGF for the number of ordered functions from a k-element set to
an n-element set.

3. Find the EGF for the number of ways to string n distinct beads onto a
necklace.

4. Find the exponential generating function for the number of broken permu-
tations of a k-element set into n parts.

5. Find the EGF for the total number of broken permutations of a k-element
set.



C.6. SUPPLEMENTARY PROBLEMS 277

6. Find the EGF for the number of graphs on n vertices in which every vertex
has degree 2.

7. Recall that a cycle of a permutation cannot be empty.

(a) What is the EGF for the number of cycles on an even number of ele-
ments (i.e. permutations of an even number n of elements that form an
n-cycle)? Your answer should not have a summation sign in it. Hint:

If y =
∑∞

i=0
x2i

2i
, what is the derivative of y?

(b) What is the EGF for the number of permutations on n elements whose
cycle decomposition consists of even cycles?

(c) What is the EGF for the number of cycles on an odd number of ele-
ments?

(d) What is the EGF for the number of permutations on n elements whose
cycle decomposition consists of odd cycles?

(e) How do the EGFs in parts (b) and (d) of this problem relate to the
EGF for all permutations on n elements?
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Pólya-Redfield Theorem, 140

pair structure, 173
pair, ordered, 3
partial fractions

method of, 94
partition

blocks of, 6
of a set, 6, 63

partition (of a set), 154
partition of a set

type vector, 64
partition of an integer, 67

conjugate of, 69
decreasing list, 68
Ferrers diagram, 69
into n parts, 67
self-conjugate, 69
type vector, 68
Young diagram, 69

partitions of a set
number of, 64

Pascal’s Triangle, 13
path

lattice, 21
diagonal, 22

length of, 52



INDEX 285

permutation
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