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Abstract

Projector-based display systems have been usexnfripwter
graphics for about as long as the field has existedile
projector-based systems have many advantages,
significant disadvantages the need to obtain an accurate
analytical model of the mechanical setup, includihg
external parameters of the projectors, and a dagumi of
the display surface. We introduce a new methodhi@tatter.
Instead of employing some formiafiperceptible structured
light that requires non-trivial infrastructure, we contlly
observe images of whatever graphical content isigoei
projected, to refine an ongoing estimate for thspldy
surface geometry. In effect we enjoy the benefithe high
signal-to-noise ratio of “structured” light, but dmt get to
choose the structure. The approach is robust acdrate,
and can be realized with commercial off-the-shelf
components. And although we do not demonstrate ithis
can be extended to include continual estimatiorotber
system parameters that vary over time. The metlaodbe
used with a variety of projector-based displays sfoentific
visualization, trade shows, entertainment, orQiffice of the
Future

CR Categories and Subject Descriptors. 1.4.1 [Image
Processing and Computer Vision]:Digitization and age
Capturé] Imaging geometry; Scanning; 1.4.8 [Image Processing
and Computer Vision]: Scene AnalysiRange data; Shape
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Introduction

Technological and economic improvements are helping
make projector-based display systems increasingiplsle
option for applications such as large-scale sdienti

visualization, simulation, or entertainment. Exaenpl
systems include the CAVE™ [1], the ReActor Roomd(an
similar systems) by Trimensions, tBdfice of the Futurg?],
the Princeton Display Wall [3], and the Stanfortbimation
Mural [4]. Beyond permanent fixtures, such dispdggtems
are often used for portable visualization, for ep#enat
conferences or trade shows. On a much more graald,sc
newer and more powerful light projectors are insieg
opportunities to turn large physical structures itgmporary
projector display surfaces. For example, during the
millennium celebration in Egypt, the Pyramids wesed as
display surfaces for dynamic imagery.

While projector-based systems offer many advantages
other display options for many applications, a sigant
disadvantageis the need to obtain an accurate analytical
model of the mechanical setup, including the exern
parameters of the projectors, and a descriptidgheflisplay
surface. The problem is that the display surfacaadsan
integral part of a single device, and thereforeniist be
initially characterized, and periodically monitored

Figure 0. (From left to

right, top
(a) A image is directly projected on a curved surface;
(b) The image is pre-warped based on the display
surface estimation. The bending artifact was corrected;
(c) A desktop window is severely distorted due to a
sharp discontinuity on the display surface; (d) The view

to down)
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after correction.

We present an iterative approach to automaticadtgminine

the display surface geometry, without human intetiea,
unobtrusively and continuously while the systenbésng
used for real work. We use cameras in a closed4asipion

to automate the process. Given the physical relskip
between projector and a camera, and a crude estiohdte
display surface geometry, we iteratively refine dstimate
based on image-based correlation between the known
projector image, and the observed camera image.
Specifically we use a Kalman filter to estimate lgvegth of

a (parametric) ray from each projector pixel. Theult is a
complete 3D description of the surface, allowinge do
modify the projected imagery so that it appearsemirfrom

any given viewpoint [5]. Some experiments results a
shown in Figure 0.

It is interesting to consider the inherent apprajgmess of
this approach for display surfaces. Typically, firgifeature
correspondence using correlation techniques isridigble
for images or regions that lack high-frequency eont
However, for our particular application, it is Ol tniss
measurement opportunities in such a region bedatisere
are no problematic features for the system to aleseéhere
are none for the human to observe either. Wherethes
noticeably distorted features, the user will seathbut so
will the system, which can then account for them by
adjusting the estimate of the display surface. Giee
sufficient variation of the projected image congemiver
time, the system eventually converges on the aclisplay
surface geometry. Because our method is non-ineyushe
calibration process can always been running to tagiran
optimal calibration while the system is being us$edreal
work. Our simulation results (described later) peed high
degree of accuracy, and our actual implementatppears
to agree.

Our approach has the following key advantages:

® Self-calibrating. Once started, no human intervention
is needed.

® Continuous and unobtrusive. Close-loop continuous
calibration that does not affect the projected ienag
quality. When there are visible problems it corsect
them, when there are not, it does nothing.

® Robust. We use a Kalman Filter (minimal mean
stochastic estimator) to optimally weight the meadu
correlation, with a relatively conservative tunitg
reduce the likelihood of a negative impact fronaksé
correlation.

® Minimal equipment. No need for high-speed cameras
or projectors, or specialized image processing
hardware

® Flexible setup. The cameras must be rigid but can be
located relatively casually with respect to the
projectors. The only restriction is that what tleaynot
“see” they cannot be used to calibrate.

® Sochastic framework. Because the framework is in
place, other parameters can be added to the list of

elements to be estimated. For example, internal
projector parameters could be estimated using
techniques similar to [6].

Our goal is to improve the setup and maintenance of
conventional projector-based display systems, arfidrther
enable the rendering of perspectively correctedgema on
more unusual surfaces [2, 5].

Related Work

We could categorize different calibration methodsdd on
two orthogonal criteria, passive vs. active, andinenvs.

off-line. Active methods usually emit explicit eggrinto

the display environment to aid in the estimation tioé

surface properties, while passive methods use exibting

energy in the environment, such as light. Off-liadibration
methods usually would interfere with the normal rapien

of the system. The normal operation has to berimpéed if

an off-line calibration procedure has to be perfedm
On-line calibration methods can be used while §fstesn is
in normal use. Based on these criteria, existifipedion

methods can be categorized in table 1.

On-line Off-line
Passive Stereo Mechanical alignment
Active Imperceptible Laser scan,
structured light Structured light

Table 1. Different Calibration Method

Most commercial systems use a passive off-linebcatiion
method. They use precise electromechanical setapguare
that projectors and display surfaces are complidt the
specification, such as perpendicular projectioratplanar
surface at a given distance. Such setup is ushalky and
expensive, and sometime impossible to implementtdue
space restriction.

In some setup, the projectors are casually pldoeatder to

generate perspectively corrected imagery, the ediapiay

surface geometry needs to be acquired. Active iof-|
method such as Laser range scan or stereo frormtatea

light can be use. The major disadvantage of thetbads is
that they interfere with the normal operation.Hétsystem
needs to be re-calibrated due to various changes) as
drifts or changes in the setup, it has to be sbutrdfirst to

perform the calibration.

In [2], they proposed a new on-line active calitmat
method called imperceptible structured light. These
special engineered digital light projector thaaide to turn
light on and off at a very high rate (over 1000 HEhis
projector projects image bit-plane by bit-plane.oTef the
24 bit-planes are reserved to insert one structuigit
pattern and its complement. Because the switckisg fast,
human eye is unable to distinguish between thelbite
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showing structured light pattern and the next dwa shows
its complement. So what a human sees is a nornagem
with slightly extra shade of gray. However, a symclized
camera with a shutter speed faster than one bitejla
duration is able to see only the structured ligittgrn. With
the help of these structured patterns, the disglayace
geometry can be accurately acquired. Because taikad
hides the patterns within the normal imagery, it ba used
online while people are using the system for edarywork.
There are two major disadvantage of this methadt, fit
sacrificed the image quality, only 22 of the 24 Hlénes is
used to display the normal image, the two reserved
bit-planes adds an extra gray level to the entivage, both
the color number and the contrast is reduced; sigoit
requires a special digital light projector thahist available
on the market now.

Passive stereo algorithm requires no special hawlasd is

very easy to implement. However, finding corresparak

between two images based on correlation is knowheto
unreliable. So no commercial system to our knowdelgs

been using stereo algorithm to calibrate their ldigp
sub-system.

The algorithm we proposed in the next section [Emssive
online method.

Algorithm

We define the display surface as a triangular masthne
projector space. Each verteef) in the mesh corresponds
to a pixel) in the projector's image plan& is called a
feature point. Feature points are uniformly disitéd over
the projector's image plane. The density of featpoints
depends on the surface continuity and the comjoutaiti
budget. The more irregular the surface is, the ériglensity
is required, at the cost of longer computing tiffilee center
of projection of the projector (pandZ defines a projection
ray, Ver can only move along this projection ray. Figure 1
shows the constraint between different points.

Display Surface

Epipolar Line
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Figure 1. Point Ver is a termination point on the
projection ray from O, though Z. It is uniquely decided

by a parametric value t. Ver’s projection (Z’) on the
image plane is limited by the epipolar constraint.

From [7], we know that for a given>84 projection matrix
(Mprj), and a feature poinZ on the image plane, if we
rewrite Myoj as M =[P P], wherep is a 3x 3
matrix, ﬁ is a 3x1 vector,Ver can be computed by the
following formula:

xO g
- b By
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wheret is a parametric value, and =[U,V]" , its position
on the projector’s image plane..

Equation 1

When a feature poirt is projected on the display surface,
its projectionZ’ can be found by a camera. If we know the
projection matrix of the camera (M), we could solve fot
using the traditional stereo algorithm. Though ester
algorithm is simple, it only uses a single obsepratthus it

is very vulnerable to noise or false matches. Stead, we
use a Kalman filter, a minimum variance stochastic
estimator, to estimate the parametric valuteratively. A
basic introduction to the Kalman filter can be fduim
Chapter 1 of [8] and [9].

With multiple observations over time, the chancedélse
match is greatly reduced so the robustness oflgfogithm is
improved. The Kalman filter also provides a pretiaa of
where theZ will be projected. We use this predication to
search for match in a smaller area while the stalgorithm
usually has to search the entire epipolar line. e actual
match is found, thelifferencebetween the predication and
the actual match was corrected.

In our Kalman filter model, for every, we have a

measurement[uo,vo]T -- its projection on the display
surface observed by the camera, we want to solve fbe
parametric value that determines the 3D positiorvVert
Assuming the display surface is static, the follogg are our
system equations that govern the estimate proBesause
the perspective projection is not linear, we hageuse
Extended Kalman filter (EKF).

1:I:+l = 1:k

uvd =M_[x v z 1

u,vy' =[u0,v0]T +H(T, -T,)
where H is the Jacobian matrix of partial derivatives of
measurement function with respect.to

I CAREVALE
Hat ot H

Equation 2
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We denote Pas the estimated error covariance,ifthe
measurement variance, the time update equations are

taa =L

B Equation 3
I:)k+1 = I:)k +Q

And our measurement update equations are

_ _ R, 00_
K, =R H.(HHF HII"'D gl
00 R

t, =t + Kk([uo,vo]T —[%,%]T) Equation 4

B = -KH )R
After the Kalman filter update, the 3D position \&r is
updated with the newy using equation 1.

Our algorithm starts with a very rough estimate tioé

display surface -- every feature point has the sanitial t

set to 0.5, then randomly refines the estimatieratively. In

each iteration, we perform the following operation:

1. Capture of display image and the projected image

2. Select a subset of feature points to find their
corresponding image in projected image using
correlation.

3. Kalman Filter update of these selected featanetf

4. 2D Delaunay Triangulation to update the mesh.

We let this process run as long as the systemriduon.
Notice that in the time update equation, we addera
small amount of process variance to compensatgossible
drifts in the system. If we s& to zero, the Kalman filter
will not update its estimate of the display surfafter it has
converged. With this added process variancestillable to
adjust itself, though very slowly, towards changkeg to
drift or other factors, even after convergence.

Selection of Feature Points

Due to computational constraints, we cannot comjluge
entire feature set within in one iteration, insteesl select a
subset of feature points in one iteration. The ct&le
process has two parts, sequential selection,
distance-based selection. In sequential selectian first
define a list of feature points, and then permbglist. In
each iteration, a number of consecutive points he t
permuted list are selected. So that every pointehastly
equal possibility of being updated.

and

In distance-based selection, we want to idernpivgsible
outlying points and correct them as soon as passile
found that outlying points are usually far awaynfrahe
correct points in 3D. So we use a selection probassd on
Euclidean distance. We define a maximum neighbathoo
distance (MND). For every feature poi®) (that has been
updated, we find its closest neighbgy)(that also has been

updated at least once, if the distance betweeamdZ, is
greater than MND, thiZ is considered as a point with higher
uncertainty and added to the selected point liste @ay
argue that this distance-based selection imposes an
assumption of the display surface geometry -- no tw
neighbor points can be farther than MND, but int,falcis
selection only tries to identifgossibleoutlying points. If a
point with high uncertainty turns out to be a cotrene
indeed, it will converge to that position in subsent
updates. In practice, we set the MND to be twieedistance
between two neighboring feature points with thetiahi
estimate { = 0.5). We found this MND works well in
practice.

Predicative Pattern Match

Once we have a list of selected feature pointsywast to
find out its corresponding points in the cameragmanith
the current parametric value and the estimated error
variance R we compute the closest poinZg,) and the
furthest point (Zynax), whereZ.,, is computed with t -
sqrt( R), andZnaxis computed with + sqrt( Px); The Zmax
andZ.,, are projected back to the camera image plane. They
form a rectangular bounding box on the image pl@me
diagonal line of the bounding box is the epipolael The
search only needs to be performed in the boundimxg Bhe
estimated error variance, Rill gradually decrease as the
Kalman filter slowly converges. Consequentiallg #earch
area will become smaller and smaller.

For each selected feature point, we use a 16x Ik lalcound
it as the correlation template. Matrox Imaging kityr (MIL)

is used to perform the pattern matching within gpecified

bounding box in the camera image. It can returnaicm
with subpixel accuracy. In some cases, there gilitultiple

matches returned by the MIL, all are within the bding

box. In such a case, we computed the mean andathéssd
deviation of these matches, if the standard denais

greater than the measurement variangettie entire match
set is discarded. Otherwise, their mean is useitheaginal

result.

Since MILs template matching routine searchesehtre
area, some time it will return a matching that @ an the
epipolar line. This is probably due to two factdiisst, the
calibration error of the projector and cameraseemal and
internal parameters; secondly, there is electromiése
during the process of digitizing analog videos.slich
deviated result is encountered, we compute it to
the epipolar line (one diagonal line of boundinghdf it is

greater than R this match is discarded.
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* MIL DISPLAY #1

Figure 2. A image captured by the camera. The
bounding box is superimposed, its diagonal is the
epipolar line. The highlighted green square indicates
an accepted match, while the red circle indicates a
rejected one because it is too far away from the
epipolar line.

In our algorithm, we do not perform the rectificatiof the
camera image. Rectification is widely used in giere
algorithm. It is a two-dimensional transformatiohat
transfers the epipolar lines parallel to the imagean lines.
So that the search for correspondence is limitedh®
scanlines. We do not do so because the numberimspoe
compute in each iteration is at most at the ordeten,
rectification would cost more time than the speeidbpings

in the search phase. We use MIL to perform template
matching, its hierarchy search algorithm is verst fso that
there is virtually no time difference whether tleach area
is a line or a box. Plus, we still check the resettirned by
MIL to see if it is within the epipolar line withome
tolerance.

Rendering Correct |mage

We use the technique described in [2] to rendespentively
corrected image. To do this, we first need to @eat
triangular mesh. We first implemented a scan-liresda
triangulation routine to create a complete mesh lendt
deform as its vertices’ 3D position is being update our
experiments, we found that this approach creatateseery
noticeable distortions if there is a “hole” in theesh. The
“hole” can be defined as one not-yet-updated point
surrounded by updated points. So we have to perform
triangulation in run-time. Assuming there is no
self-intersection of the display surface, the tgialation can

be performed in projector’s screen space. 2D Delgun
triangulation algorithm is much easier to implememtd
more robust than its 3D counterpart.

Since rendering is not our primary focus, we did go to

great lengths to achieve fast rendering speedugfenrote a
bare bone OpenGL program that was enough to denatest
that the surface estimate was correct. This casees in
video. A faster computer would do it. Further moveg
believe that in most applications, the renderingl &ne
capture of depth information is decoupled.

Experiment Results

We implemented our algorithm under Windows NT
environment. We initially developed and tested our
algorithm in simulation, in which we performed some
well-controlled experiments, and then went to & sgatem.
The difference between the simulator and the realpsis
that in the real setup, we have to find the extearal
internal parameters of the camera and the projedterfirst
present our result in the simulator, then the teisub real
setup. To make our result more convincing, in our
simulation, we used the real external and intepaghmeters

of the camera and the projector found in the retls So all

of our experiments have the same setup, the porjest
about 1000 mm away from the display surface, ard th
camera is 600 mm upper right to the projector, fogat
the display surface.

In our simulation, we sef) (process noise) to le-10,
measurement varianéeto 9 (3*3 pixel), and the estimated
error covariance o 0.5. The density of the feature points
is 40 x 30. We performed two experiments, one &ittlanar
display surface with discontinuity, the other wéhcurved
concave surface. During the estimation process, we
happened to use a canned image sequenced recaidga@u
DV camcorder. In practice, this sequence would loe t
ongoing stream of whatever every-day imagery tleg uss
displaying. We let the system run about 45 minitesach
experiment, the accuracy of our result is showTahble 2.

Mean Error(mm) | Max. Errofmm)

Planar Surface 2.41 6.78

Curved Surface 1.39 5.23

Table 2. Accuracy of the Simulation

The estimated surfaces are shown in figure 3 and 4
respectively. Figure 0 (c) and (d) are simulatedtyses
based on the estimate of the planar surface.

L In both of our experiments, we found a few outffage or six),

all of them were on the boundary. They are at [#86tmm away
from their neighbors, so they can easily be idetiby the
distance-based selection routine described eaFlerresult shown
here does not take into account the points seldgted
distance-based selection routine.
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Figure 3. Planar surface simulation. Blue surface is
the actual surface; red dots are the estimated feature
points. Light blue dots are selected outlying points
detected by our distance-based heuristic.

Figure 4. A bird-eye view of the curved surface
simulation.

In our real setup, there is no ground truth we campare
our result with. The estimated surface in the selp is
shown in figure 5. Figure 0 (a) and (b) show thiéedénce
between an uncorrected view and a corrected vieathAdy
show, the distortion due to non-planar display atefwas
corrected. More of the results can be found invitleo.

Figure 5. The estimate of a curved display surface
after we run our algorithm for over a half hour in a real
setup.

Conclusions

Beyond large display systems, we are excited by the
growing prospect of graphical imagery displayed real

surfaces around us [2]. We believe that our appraac
surface estimation provides an important piechéeftuzzle.
The approach is accurate, robust, and can be ingplead in
practice with reasonably common components andmaihi
infrastructure.

Beyond the algorithmic improvements we present here
look forward to improved hardware. For example, satay
“smart projectors” with built-in cameras will be manon,
enabling automatic adjustments beyond simple keagsto
correction. Some day graphics engines will suppoore
efficient rendering onto non-planar (and non-regtdar)
surfaces, and maybe will even support automatic
view-dependent correction.
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