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Abstract
The Spatial Semantic Hierarchy (SSH) provides a
robot-independent ontology and logical theory for
building topological maps of large-scale environ-
ments online. Existing SSH implementations make
very limited use of perceptual information and thus
create many candidate maps. Metrical mapping im-
plementations capture detailed knowledge about lo-
cal small-scale space but do not handle large envi-
ronments well due to computational limitations and
global metrical uncertainty. In this paper, we ex-
tend the SSH to utilize better sensory information
by incorporating information derived from local
metrical models into the large-scale space frame-
work. This new extension of the Spatial Semantic
Hierarchy uses local topology obtained from local
perceptual models to constrain a global topological
map search.

1 Introduction
Modern research developments provide robots with precise
metrical models of the local surrounding environment. These
models, including occupancy grids, obstacle maps, and even
some vision based representations, permit a robot to perceive,
plan, and move efficiently in small-scale space. All suffer
uncertainty when scaling to large-scale space due to global
localization problems in sufficiently complex environments.
We term local, bounded implementations of these methods
local perceptual models (LPMs).

The Spatial Semantic Hierarchy (SSH) provides a frame-
work for building topological maps of large-scale environ-
ments[Kuipers, 2000]. An axiomatic formalization of the
SSH[Remolina and Kuipers, 2001; In Press] specifies how
topological maps can be built during exploration. Following
this specification, there exists an implementation which al-
lows an autonomous robot to build correct topological maps
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of large-scale environments online. This implementation
is well-suited to resolving map ambiguities when exploring
large-scale space.

The SSH was designed to be robot independent. It defines
weak requirements for building robust cognitive maps. To
demonstrate this, existing implementations make very limited
use of perceptual information. In this paper, we extend the
SSH to utilize better sensory information in order to build
a complete local perceptual model of the sensory surround.
The addition of LPMs allows the Spatial Semantic Hierarchy
to construct complete local topology descriptions from small-
scale space observations, greatly improving the efficiency of
topological mapping in large-scale space.

Our approach allows us to factor spatial uncertainty into
distinct components, controlled in distinct ways. First, move-
ment uncertainty is controlled by the behavior of feedback-
driven motion control laws. Second, pose uncertainty is con-
trolled by incremental localization within the local perceptual
model. Third, topological ambiguity about the large-scale
structure of the environment is controlled by the abduction
process that builds the topological map. Fourth, global met-
rical uncertainty is controlled by relaxing metrical informa-
tion in separate local frames of reference into a single global
frame of reference, guided by the topological map.

This paper has four main sections. We begin by surveying
research on metrical, topological, and hybrid mapping tech-
niques. Next, we review the SSH: the representation frame-
work, the logical formalization, and an implementation. We
then present local perceptual models and their interface with
the SSH. We conclude by summarizing the benefits of this
extension and discussing future work.

2 Related Work in Mobile Robot Mapping
2.1 Metrical Maps
Researchers have worked extensively on making metrical
methods, such as occupancy grids, computationally feasible
for building large maps with a single, global coordinate sys-
tem [Gutmann and Schlegel, 1996]. Additionally, methods
to create metrical maps using a set of landmarks have been
well explored[Smith et al., 1990; Dissanayakeet al., 2001;
Montemerloet al., 2002].

Metrical maps excel in handling some of the initial, low-
level problems roboticists encounter. Because these meth-



ods are often used with high-precision sensors which reduce
perceptual aliasing(when observations at multiple locations
are similar), localizing within local environments is efficient.
This reduces the effect of odometry error on pose estima-
tion. Furthermore, recent probabilistic methods make met-
rical mapping robust and fast[Thrun, 2000].

Current metrical map implementations have several disad-
vantages. Metrical maps reduce position error in local space,
but errors propagate over large spaces. Similarly, metrical
maps cannot easily handle cyclical environments once posi-
tion estimates have drifted sufficiently. Mapping and plan-
ning in very large metrical maps can be time consuming and
algorithms are often run offline. Metrical maps also suffer
from the lack of a good interface for higher-level, symbolic
problem solvers. They are insufficient for a robot to reason
about the layout of its environment or to communicate route
directions to another robot that lacks the same map.

2.2 Topological Maps
A topological map represents an environment as a graph.
There have been several distinct topological mapping im-
plementations[Kuipers and Byun, 1991; Mataric, 1992;
Shatkay and Kaelbling, 1997; Duckett and Nehmzow, 1999]
which differ in the semantics for the graphs. Some topo-
logical mapping implementations build topological maps au-
tonomously, some are given topological mapsa priori, and
some explore autonomously while the researcher provides
place names to overcomeperceptual aliasing(multiple loca-
tions are similar in appearance).

Topological maps are more compact representations than
global metrical maps. They allow high-level symbolic rea-
soning for map-building, navigation, planning, and commu-
nication. Since the environment is discretized into a graph,
movement errors that accumulate between graph nodes do not
necessarily accumulate across a global frame of reference.

To date, topological mapping implementations have not
created maps of extremely large environments. Often imple-
mentations are brittle; they assume the environment is well-
structured, static, and simple. However, cognitive map re-
search supports the creation of topological maps of large,
complex environments[Siegel and White, 1975; Yeap, 1988;
Chownet al., 1995; Kuipers, 2000].

2.3 Hybrid Maps
Recently, researchers have begun to look at hybrid topolog-
ical/metrical maps. The SSH, often thought of as a frame-
work for creating only topological maps, has always allowed
for a global metrical map to be createdafter the topological
map. Kuipers and Byun[1991] created a “patchwork metri-
cal map” using the topological map as a base for integrating
data gathered locally at places and along paths. Local frames
of reference at place neighborhoods and along path segments
are relaxed into a single global frame of reference, minimiz-
ing the “strain” at their joints.

Thrunet al. [1998] also create a topological map to guide
the generation of a global metrical map. Thrun[1998] tried
the opposite direction, creating a topological map from a
global metrical map, which unfortunately entails the afore-
mentioned metrical map scaling problems. Related work con-

nects the compact representations of rooms into both global
metrical and topological maps[Yeap and Jefferies, 1999].

Most work on hybrid maps has dealt with generating
topological and metrical maps as disjoint, sequential pro-
cesses. Some recent research integrates metrical and topolog-
ical mapping by matching local metrical models to eliminate
topological place aliasing[Duckett and Saffiotti, 2000]. Once
a correct topological map is built, the local metrical models
are pieced together to make a global metrical map.

Our extension to the SSH uses local perceptual models
(currently, occupancy grids) to extract local topology descrip-
tions of places. Local topologies constrain the global topo-
logical map search by eliminating many inconsistent maps.
Unlike previous methods, we do not compare actual LPMs
but assume that the local topology description of a place can
be created deterministically for comparison.1 Finally, LPMs
can be reused to create a patchwork global metrical map.

3 The Spatial Semantic Hierarchy (SSH)
3.1 SSH Framework
The SSH describes knowledge of large-scale space in terms
of four distinct representations for spatial knowledge with dif-
ferent ontologies[Kuipers, 2000]. Large-scale space is de-
fined as space whose structure is beyond the sensory horizon
of the robot. When an environment is described as a large-
scale space, places are represented as zero-dimensional ob-
jects, connected by one-dimensional paths, and perhaps con-
tained in two-dimensional regions.

At the control level, knowledge consists of hill-climbing
control laws that define isolateddistinctive states (dstates),
and trajectory-following control laws that take the robot from
one dstate to the neighborhood of the next. Thecausal level
consists ofcausal schemas〈ds, a, ds′〉 where the statesds
andds′ correspond to distinctive states, and the deterministic
actiona represents the sequence of control laws for moving
from ds to ds′. Each dstate has a singleview, a description
of the sensory input vector obtained at a distinctive state. The
topological levelconsists ofplaces, paths, andregionsrelated
by connectivity, order, and containment. A topological map
is constructed by an abduction process to explain a sequence
of observations. Themetrical levelis a global metrical map
constructed from a patchwork of local metrical maps which
use the topological map as a skeleton.

By definition, the details of the robot’s sensory experience
are below the level of abstraction of large-scale space: they
belong tosmall-scale space. A major contribution of the cur-
rent work is to show how the same environment can be de-
scribed as both small-scale and large-scale representations,
how the two representations are related, and how they help
each other build a more powerful and robust spatial model.

3.2 SSH Logical Formalization
Remolina and Kuipers[2001; In Press] present a formaliza-
tion of the SSH framework as a non-monotonic logical the-

1Transient objects, such as pedestrians, can be eliminated from
the LPM; however, we leave as future work the generalization of
local topology extraction to cover quasi-static entities such as doors,
which can be open in one LPM and closed in another.



ory. The theory contains axioms describing the properties
and relationships of actions, views, distinctive states, causal
schemas, places, paths, and regions.

This theory provides a clear and precise specification of
the possible logical models (topological maps) given the se-
quence of actions and views observed while exploring. Apri-
oritized circumscription policy[McCarthy, 1980; Lifschitz,
1994] specifies how the simplest of these logical models is
identified. This policy drives theabductionof the topological
map from experience. In particular, anested abnormality the-
ory [Lifschitz, 1995] manages the complex, block-structured
set of axioms and their circumscription.

The SSH logical theory consists of several sets of axioms.
One set of axioms describes the robot’s sensorimotor expe-
rience by asserting causal schemas. Another set of axioms
enforces the SSH topological properties. A third set of ax-
ioms incorporates local metrical information, such as bounds
on the path distances between places and the local radial an-
gles between paths at a place.

3.3 SSH Implementation
The current implementation of the SSH causal and topo-
logical map builder follows the logical formalization. It
takes as input an alternating sequence of views and actions
v0, a1, v1, a2, v2, . . . , an, vn. An observationconsists of an
action and the resulting view〈ai, vi〉. The algorithm con-
ducts a best-first search in the space of maps to find the sim-
plest map that is consistent with the axioms and explains all
the observations. This corresponds to the unshaded portion of
Figure 1. This implementation allows online execution, pro-
viding the robot with the current preferred topological map at
any time while exploring the environment.

A map consists of a set of constant symbols referring to
actions, views, dstates, causal schemas, places, paths, and re-
gions. A map also contains ground instances of both spa-
tial relations (such as left-of relations) and equality relations
(specifying which symbols refer to the same object). A new
observation〈ai, vi〉 may require that the current map be ex-
tended. Typically several new map extensions are consistent
with the axioms, producing a search tree of potential maps.

For example, suppose the current mapM explains the ob-
servation sequence through viewvi−1 and the current dstate
is dsi−1, which means thatview(dsi−1, vi−1). Now the
robot experiences the observation〈ai, vi〉. If M already con-
tains a causal schema〈dsh, ai, dsk〉 where dsh ≡ dsi−1

and view(dsk, vi), then M explains the current observa-
tion (dsi ≡ dsk), so no map extension is necessary. If
¬view(dsk, vi), thenM is discarded because of an incorrect
equivalence between two dstates at some previous time step.

If the observation is not explained byM , the algorithm
extends the map by creating the new dstate symboldsi,
adding the causal schema〈dsi−1, ai, dsi〉, and asserting
view(dsi, vi). It extends the tree of maps by branching on
the assertiondsi ≡ dsi−l for everypreviously-known dstate
whereview(dsi−l, vi). This is in addition to the map exten-
sion wheredsi is a completely new dstate. These maps are
checked for consistency with the axioms in the SSH causal
and topological theory. The simplest consistent map (mini-
mal by the prioritized circumscription policy)M ′ is selected

from the entire map search tree and expanded with the next
observation it not yet seen.M ′ may remain the simplest con-
sistent map, may be discarded due to an inconsistent obser-
vation, or may create more map extensions to be added to the
search tree.

The best-first search is guaranteed to find a consistent map
of the observation sequence if one exists; however, best-first
search can overlook the globally simplest map.2 The local
topology representations presented here reduce the size of the
search tree, which may permit exhaustive breadth-first search
to find the globally simplest map. The local metrical axioms
for abduction are not currently implemented but can refine the
map preference order to improve best-first search.

4 Integrating Small-Scale Space into the SSH

The SSH was originally designed to make minimal assump-
tions about a robot’s sensorimotor system. Here, we ex-
tend the SSH to include local perceptual models of small-
scale space. We show how the structure of these models can
provide local topology descriptions that greatly improve the
search for the correct topological map. This extension corre-
sponds to the shaded portion of Figure 1.

First, we show how a bounded local perceptual model
(LPM) describes the neighborhood of a topological place. (It
can also be used to describe the ephemeral surroundings of
the robot as it executes a travel action.) Second, we show
how the LPM of a place neighborhood can be analyzed to
identify descriptions ofgatewaysandpath fragments. Third,
we show how to derive a completelocal topologydescrip-
tion of the place neighborhood from the set of gateways and
path fragments in the LPM. Fourth, we explain the benefits
of using the local topology during construction of the global
topological map.

4.1 Local Perceptual Models

The SSH topological map describes a place according to its
role in large-scalespace: as a point location on one or more
one-dimensional paths. The direction (+ or−) on a path de-
notes the direction up or down the order of places along the
path. Each place has a dstate facing each direction along each
of its paths. After arriving at one dstate at a place, a turn ac-
tion takes the robot to another dstate, ready to travel along a
path to a different place.

Thelocal perceptual model(LPM) unpacks this simple ab-
straction of a place into an extended two-dimensional region,
describing thesmall-scalespace within the sensory scope
of the robot. In our current implementation, the LPM is a
bounded occupancy grid, but the paradigm is intended to ex-
tend to other sensor models. The LPM provides all the usual
benefits of metrical maps: serving as a virtual sensor (or “ob-
server”), supporting local path planning, and improving ob-
stacle avoidance.

2If the observation sequence is too short, or if the environment
is highly symmetrical, the resulting map could besimpler than the
actual environment. With real environments, rich sensors, and ex-
tended exploration this is usually not a problem. Only rare patho-
logical environments are inconsistent with the SSH logical theory.



Figure 1:Topological Mapping Implementation. The unshaded region is the classic SSH implementation (Section 3.3) which
relies on hill-climbing to gather views. The shaded region is the extended SSH (Section 4) that extracts the local topology from
a local perceptual model. This extension substantially reduces map search allowing the optimal map to be found faster.

The abstraction relation between place (a large-scale-space
object) and LPM (a small-scale-space object) is the key issue
of this paper. Arriving at a dstate corresponds to arriving at
a gatewayassociated with apath fragmentin the LPM, fac-
ing inward. (Gateways and path fragments are detailed in
Section 4.2). A turn action from this dstate to another corre-
sponds to moving within the LPM to reach another gateway,
facing outward.3 Travel away from the place along a path
starts with the robot facing outward at a gateway with an ap-
plicable trajectory-following control law.

The use of the LPM imposes a responsibility on the robot:
on arrival at a place, it must explore enough to eliminate
uncertainty about which accessible positions are free or ob-
structed within the bounded scope of the local place neigh-
borhood. In return, the robot obtains two substantial benefits
in terms of its spatial knowledge. First, it can localize unam-
biguously at any pose within the LPM, rather than relying on
the minimalist SSH strategy of hill-climbing to an unambigu-
ous pose. Second, it constructs acompleterepresentation of
the set of gateways and path fragments, and hence of dstates
and possible turn actions, at that state. This complete local
topology description will be quite helpful to the construction
of the global topological map.

4.2 Identifying Gateways and Path Fragments
A gatewayis a boundary between qualitatively different re-
gions of the environment: specifically a boundary of the lo-
cal place neighborhood (in the classic SSH, the boundary be-
tween trajectory- following and hill-climbing applicability).
Each gateway has two directions,inward andoutward. Gate-
ways can be identified using several different criteria that ap-
pear to be functionally identical. We plan to investigate these
alternatives in more detail in future work.

• Positions within an LPM can be tagged with the con-
trol law applicability conditions they satisfy, allowing
gateways to be defined as boundaries between regions
of different control law applicability. This criterion most
closely matches the definition of gateways given above.

• In the PLAN framework, Chownet al. [1995] define
gateways as the locations of major changes in visibility.

3Even following one travel action with another along the same
path, which requires no turn action in large-scale space, results in
physically moving between gateways in the LPM.

“In buildings, these [gateways] are typically
doorways. . . . Therefore, a gateway occurs
where there is at least a partial visual sepa-
ration between two neighboring areas and the
gateway itself is a visual opening to a previ-
ously obscured area. At such a place, one has
the option of entering the new area or staying
in the previous area.” (page 32)

• A geometric criterion for identifying gatewaysin cor-
ridors is the medial axis of free space in the LPM.
A gateway corresponds to a “constriction” (or “critical
line” [Thrun, 1998]) along a medial axis edge, where the
distance between the edge and obstacles is a local mini-
mum near a larger maximum. Due to its computational
simplicity and our current experimental environments,
this is the criterion used in our current implementation
(Figure 2).

The local perceptual model of a place neighborhood will
also includepath fragments: portions of large-scale paths
that are grounded in small-scale space. Each path fragment
is associated with at least one gateway, while each gateway
is associated with exactly one path fragment. Path fragments
associated with a single gateway are portions of paths that
terminate at the topological place. In large-scale space, many
paths may continue through each place. For each such path,
the LPM will contain a path fragment associated with two
gateways (Figure 2(c) has two gateways that lie on the same,
horizontal path fragment). Path fragments are never associ-
ated with more than two gateways.

We assume that the robot has a procedure to decide whether
or not a given gateway shares its path fragment with another
gateway (i.e. the path fragment continues through the place
neighborhood). The details of this procedure are below the
level of our theory and depend on the robot configuration and
the environment.

An essential requirement of this step is that thecomplete
set of path fragments and gateways in the LPM are identified.
This extracts the local topology and abstracts topological path
relations directly from gateway information instead of creat-
ing causal schemas from turn actions.

4.3 Describing the Local Topology
Whether a robot is reasoning about large-scale or small-scale
space, when a robot arrives at a place on a path, it must select



(a) (b) (c)

Figure 2:Finding Gateways in an LPM. Our current implementation of a local perceptual model (LPM) is a bounded occu-
pancy grid. The robot is shown as a circle in the center of the LPM.(a) To find gateways in corridor environments, the algorithm
computes the medial axis of the occupancy grid free space.(b) The maximum of the medial axis graph is found (where the
distance of obstacles from the graph is maximal) and each edge is traversed, looking for “constrictions” (where the distance
between the graph edge and obstacles is a local minimum).(c) The final gateways are drawn as lines connecting the graph edge
minima (circle) with the closest obstacles.

a path on which to depart. From the complete set of path frag-
ments and gateways identified in the LPM, the local topolog-
ical structure of the place neighborhood defines the options
for this choice.

Building the local topology enforces a circular order on
directed path fragments and gateways. This process is shown
for two LPMS in Figure 3.

• Create a set of tuples〈PF,GW,CL〉, where:

– PF is a path fragment and a direction (+ or −)
along it;

– GW is the gateway (or pair of gateways) onPF
facing the same direction;

– CL is the control law for a travel action away from
the place along the path fragment in that direction.
In our current implementation, these are:Midline,
LeftWall, RightWall, DeadEnd, andNone. (For
terminating path fragments,DeadEnd means that
further travel is blocked, andNone means that no
control law is applicable.)

• Initialize the circular order with the tuples including
outward-facing gateways, in their clockwise sequence
around the place. For path fragments that both enter and
leave the place neighborhood, both directed path frag-
ments will now appear in the order.

• Each tuple with an inward-facing gateway and a path
fragment that terminates at the place is now inserted into
the order. Its position in the order between outward-
facing gateways is determined by the same procedure
that decides whether a path fragment continues through
the neighborhood.4

4In the current implementation, an inward-facing gateway is pro-
jected across the LPM until it intersects a gateway on the other side,
an obstacle, or is too far from any obstacle to support a control law.

This produces a structure called thesmall-scale starde-
scription of the local topology (Figures 3(b) and 3(e)), since
the elements of the description (path fragments and gateways)
belong to the small-scale space ontology of the LPM. When
this place is incorporated into a topological map, each path
fragment is bound to a corresponding path, and a distinctive
state is defined for each (path, direction) combination. This
produces a corresponding circularly ordered structure called a
large-scale starthat describes the local topology in the large-
scale space ontology (Figures 3(c) and 3(f)).

The local topology description provides a purely qualita-
tive account of “left” and “right”. Starting from the robot’s
current path fragment and direction, the subset of path frag-
ments (or dstates in the large-scale star) encountered by mov-
ing down the circular order until observing the same path
fragment in the opposite direction yields the possible desti-
nations of a “Turn right” action. This avoids the need to de-
fine “right” and “left” in terms of a threshold on some angular
variable.

Since the set of path fragments and gateways in the LPM
is complete, the description of the dstates and directed paths
at the place in the circular order of the large-scale star is also
complete. Causal schemas for turn actions〈dsi, turn, dsj〉
are implicitly defined between every pair of dstatesdsi and
dsj at the place. This simplifies construction of the global
topological map.

4.4 Building the Topological Map
The global topological map is built using the search algorithm
described in Section 3.3. The existing implementation pro-
cesses views and actions. To recapitulate, for a given obser-
vation〈ai, vi〉, starting at a dstatedsi−1, if the map does not
contain an equivalent of the causal schema〈dsi−1, ai, dsi〉,
then the search tree is extended with maps in which the suc-
cessor statedsi matches each existing dstate with viewvi.



Small-scale star
description from PF1+

((PF1+, (gw1,out) & (gw4,in), Midline),
(PF2+, (gw2,out), Midline),
(PF3+, (gw5,in), DeadEnd),
(PF4+, (gw3,out), Midline),
(PF1-, (gw4,out) & (gw1,in), Midline),
(PF4-, (gw3,in), DeadEnd),
(PF3-, (gw5,out), Midline),
(PF2-, (gw2,in), DeadEnd)

An example large-scale
star abstraction
((ds1, Pa1+),
(ds2, Pa2+),
(ds3, (Pa3+)),
(ds4, Pa4+),
(ds5, Pa1-),
(ds6, (Pa4-)),
(ds7, Pa3-),
(ds8, (Pa2-))

(a) (b) (c)

Small-scale star
description from PF1+

((PF1+, (gw1,out) & (gw2,in), LeftWall),
(PF2+, (gw2,in), None),
(PF1-, (gw2,out) & (gw1,in), RightWall),
(PF2-, (gw2,out), Midline)

An example large-scale
star abstraction
((ds1, Pa1+),
(ds2, (Pa2+)),
(ds3, Pa1-),
(ds4, Pa2-)

(d) (e) (f)

Figure 3:Local Topological Extraction of the Star Description. (a)Given the gateways and path fragments of a place the
robot must extract the local topology.(b) The local topology extraction forms a small-scale star description for the place.
The star enumerates all the path fragments encountered in clockwise order.(c) Once a local topology is extracted, the map
builder creates dstates and paths for the place (a large-scale star) in order to create maps. This environment has five gateways,
four paths, and eight dstates. Path directions in parentheses denote termination at the place.(d-f)The same process in another
environment that has three gateways, two paths, and four dstates. Here, there is a path fragment (PF2+) that does not intersect
an obstacle and does not have an applicable control law.

This is in addition to the map extension wheredsi is a new
dstate. The proposed new maps are checked against the ax-
ioms of the SSH logical theory, and inconsistent maps are
discarded.

The local topology description substantially improves the
computational complexity by constraining this search. The
new algorithm processes places and actions. After a travel ac-
tion, when the robot arrives at a place neighborhood, it builds
an LPM and a star description of the place. This provides both
a complete set of dstates at the place and a set of schemas de-
scribing all possible turn actions among them, removing the
need for views.

For turn actions, the correct causal schemas
〈dsi, turnk, dsj〉 have already been created, so no new
map extensions are necessary. For a travel action, the tree
of maps must be extended whenever the causal schema
〈dsi, travelk, dsj〉 does not already appear in the map, but
the branching is constrained. Rather than adding a map to
the tree for each dstatedsj with view vj , the algorithm will
create a new map only for each place with the same local

topology as the current place. Perceptual aliasing can occur
only when the local topology descriptions of two places
match, not simply when two dstates have the same view.

In both the previous and new algorithms, the tree of maps
branches whenever there is no causal schema〈dsi, ak, dsj〉
in the map to describe the current observation. Therefore, the
worst-case complexity for breadth-first search in both cases
is exponential,O(bd), whereb − 1 is the number of known
states matching the current observation andd is the number
of actions that can cause branching.

In the previous algorithm (unshaded portion of Figure 1),
branching can occur for any turn or travel action, sod ≤ p+q
wherep is the number of turn actions executed andq is the
number of travel actions. The branching factor is the number
of previously discovered dstates with views matching the ob-
served view plus one (the hypothesis where the robot is at a
new dstate). In the worst case, all dstates have the same view,
thus we can boundb ≤ p+q+1. Consequently, the complex-
ity of the previous implementation isO((p + q + 1)(p+q)).

In the new algorithm (shaded portion of Figure 1), local



topology reduces both the branching factorb and the branch-
ing frequencyd. Since the local topology describes every
possible turn at the current place, branching occurs only after
travel actions, never after turns, sod ≤ q. After a novel travel
action, the map branching factor is the number ofplacesin
the map that match the observedlocal topology, plus one
(hypothesis where the robot is at a new place). This clearly
constrains search more than view matching, but in the worst
case is still the number of travel actions, sob ≤ q + 1.
Therefore, the worst-case complexity of the new algorithm
is O((q + 1)q).

These worst-case bounds only occur in environments
which are completely perceptually aliased; however, even
with partial perceptual aliasing, using LPMs greatly reduces
search. The next following illustrates the performance of each
in an interesting, small real-world environment.

A real world example

We illustrate our extended version of the SSH by building a
topological map of a real office environment. The environ-
ment contains multiple nested loops and significant percep-
tual aliasing—in both dstates (same view) and places (same
local topology). The environment and the paths explored are
shown in Figure 4(a). The true environment has 9 places,
36 dstates (four at each place), 6 paths, and twelve path seg-
ments which connect the nine places. The robot visits all nine
places in 14 travels actions, which is the optimal number of
travel actions to cover all twelve path segments. A total of 15
LPMs are made during exploration.

For the previous SSH implementation (Section 3.3), the ex-
ploration routine turns to every dstate during each visit to a
placebeforeturning to the dstate it leaves on. The turns en-
sure every dstate in the environment is visited while main-
taining the optimal number of travel actions. The turns also
create multiple maps during each visit to a place.

Within this algorithm, exhaustive breadth-first search cre-
ates over 5,000 consistent candidate maps before the eighth
travel action. This high number of models is due to the large
amount of perceptual aliasing among dstates (i.e. the small
number of views) in this environment. This search becomes
intolerably slow after eight travel actions, so we stopped the
process before exploration completed.

The best-first search is able to finish the entire route with
around 1000 consistent candidate maps (the number varies
because of a non-deterministic selection between equally
simple maps). The topological map that is minimal accord-
ing to the circumscription policy is an oversimplification of
the true environment due to the large amount of perceptual
aliasing which often unifies dstates with the same view (re-
gardless of the local topology of their respective places).

The new algorithm generates no new maps after turn ac-
tions. Hence, new maps are only added to the search tree
when perceptual aliasing of entire places occurs after a travel
action. This algorithm creates only 35 consistent candidate
maps for the total exploration when using breadth-first search.
Moreover, the structurally correct topological map of the en-
vironment (Figure 4(b)) is recognized by the algorithm as
minimal according to the circumscription policy when com-

pared to the other candidate maps.5

5 Future Work and Concluding Remarks
This paper extends the Spatial Semantic Hierarchy to ex-
ploit local perceptual models. In this integrated system, lo-
cal perceptual models resolve uncertainties encountered dur-
ing robot motion and generate local topological description
at topological places while the SSH axioms manage global
topological ambiguities. Local topologies extracted from
LPMs reduce the number of maps generated, which makes
the map search more efficient. This hybrid cognitive-mapping
approach, utilizing the reciprocal strengths of both topologi-
cal and metrical maps, facilitates efficient, accurate mapping
of complex large-scale environments.

This extension to the Spatial Semantic Hierarchy creates a
number of new, interesting research issues.

• How can the SSH logical theory be extended to formal-
ize our extended approach?

• How can using omnidirectional cameras instead of met-
rical maps reinforce the discovery and use of gateways?

• How can a robot explore and map dynamic environments
(e.g. where doors open and close across LPMs)?

• Can this extension scale to hierarchical definitions of
places (e.g. rooms, buildings, neighborhoods, cities)?
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