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Abstract Area coverage is a well-known problem in robotics. Extensive research
has been conducted for the single robot coverage problem in the past decades.
More recently, the research community has focused its attention on formulations
where multiple robots are considered. In this paper, a new formulation of the multi-
robot coverage problem is proposed. The novelty of this work is the introduction
of a sensor network, which cooperates with the team of robots in order to provide
coordination. The sensor network, taking advantage of its distributed nature, is
responsible for both the construction of the path and for guiding the robots. The
coverage of the environment is achieved by guaranteeing the reachability of the
sensor nodes by the robots. Two distributed algorithms for path construction are
discussed. The first aims to speed up the construction process exploiting a concurrent
approach. The second aims to provide an underlying structure for the paths by
building a Hamiltonian path and then partitioning it. A statistical analysis has been
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performed to show the effectiveness of the proposed algorithms. In particular, three
different indexes of quality, namely completeness, fairness, and robustness, have
been studied.
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1 Introduction

Area coverage has been investigated by the robotics research community through
the years. Indeed, this problem lends itself to several applications in different fields,
from industrial, such as lawn-mowing [1] or vacuum-cleaning [2], to military such as
de-mining [3], or humanitarian, such as search and rescue operations [4].

The robot area coverage problem is the problem of determining a path that
must be followed by a robot in order to completely cover the environment. Several
approaches, ranging from grid decompositions of the environment to the develop-
ment of heuristics, have been proposed. More recently, formulations which extend
the problem to the multi-robot context have been introduced. The idea is to take
advantage of the cooperation among the robots to provide higher robustness as well
as to lower the time required to complete the task.

Indeed, three major issues define the area coverage problem, according to [5]: the
capability to generate paths that are able to completely cover the environment; the
time required to complete the coverage operations; and finally, the availability of a
priori information of the environment. Additionally, a fourth issue derives from the
presence (or absence) of obstacles.

In this paper, a new formulation for the Multi-Robot Coverage problem is
proposed. The novelty of this work is the introduction of a sensor network, which
cooperates with the team of robots in order to provide coordination to it. This paper
investigates how the dynamics of the area coverage problem are modified when
introducing a sensor network into the system. The sensor network, taking advantage
of its distributed nature, is responsible for both the construction of the path and
for guiding of the robots. Here, we focus on the distributed construction of paths.
Specifically, two distributed algorithms have been provided. The first one aims to
speed up the construction process exploiting a concurrent approach. The second
aims to provide an underlying structure by building a Hamiltonian path and then
partitioning it. A statistical analysis has been performed to show the effectiveness
of the proposed solutions. In particular, three different indexes of quality, namely
completeness, fairness, and robustness, have been studied.

The rest of the paper is organized as follows. In Section 2 the state of the art
of both the Robot Coverage problem and of the Hamiltonian Path problem is
given. In Section 3 the formulation of the problem is given and some indexes of
quality are proposed. In Section 4 an overview of the two proposed distributed
approaches is given. In Section 5 the most relevant aspects of these approaches are
deeper investigated. In Section 6 the effectiveness of these approaches with respect
to the indexes of quality introduced in Section 3 is investigated. In Section 7 the
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performance, in terms of computational load and communication load is discussed.
Finally, in Section 8 conclusions are drawn.

2 Related work

2.1 Robot area coverage

The (area) coverage problem was shown to be related to the covering salesman
problem in [6]. Specifically, the covering salesman problem is a variant of the
traveling salesman problem where, instead of visiting each city, an agent must visit a
neighborhood of each city that minimizes the travel length for the agent. In [6], this
problem was proven to be NP-hard making use of the reduction from the (NP-hard)
problem “Hamiltonian Circuit in Planar Bipartite Graphs with Maximum Degree 3”
to the problem “Hamiltonian Circuit in Grid Graphs”.

In [7], two different formulations of the coverage problem are described: offline
and online. The offline formulation assumes robots to be equipped with a map of the
work area, [8–10]. The online formulation does not assume any prior information
about the environment to be available for the robots, [11–13]. Moreover, coverage
algorithms can be classified into deterministic and non-deterministics according to
[14]. Deterministic approaches [15–19] guarantee the complete coverage of the
environment, while non-deterministic approaches [20, 21] cannot.

In [8], the problem of covering a continuous planar area by a square-shaped tool
attached to a mobile robot is addressed. Here, the authors suggest to subdivide the
work-area into disjoint cells, whose size is related to the tool carried by the robot.
Successively, a spanning tree of the graph induced by the cells is performed, while
covering every point precisely once. Hence, the coverage of the environment is
simply obtained by letting the robot circumnavigate the tree.

In [9], an offline formulation of the multi-robot coverage problem is addressed.
A path-planning algorithm which extends the idea proposed in [8] to the multi-
robot scenario is described. The main contribution of this work is the introduction
of the Multi Spanning Tree Coverage (MSTC) problem formulation. The idea is to
optimally divide the spanning-tree previously computed in such a way that each robot
covers an equal portion of the tree. An argumentation about the robustness and the
efficiency of the proposed algorithm is provided as well.

In [10], an extension of the previous approach is suggested. This work is motivated
by the observation that the coverage time can be significantly influenced by the
structure of the spanning trees. As a result of their investigation, the authors claim
that an optimal time coverage algorithm for a system with k robots will result (at
least theoretically) in total coverage time of �N/k�, where N is the number of cells.
In addition, they prove that robots should be spread out as uniformly as possible
along the spanning tree in order to achieve this goal. In fact, in this way the k paths
will result in almost the same length.

In [11], the authors propose an algorithmic approach to deal with the distributed
complete coverage problem. This work represents an extension to the single robot
sensor-based coverage of unknown environments proposed in [22]. By assuming that
global communication is available among robots, each robot is assigned an area of
the unknown environment to cover. This area is decomposed into cells and it is
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described by an adjacency graph which is incrementally built. In detail, the Morse
decomposition based on the Boustrophedon approach, first proposed in [23], is
exploited by each robot. Robots can achieve a global picture of the environment
by integrating each graph with information coming from other robots.

In [12], an algorithm for the complete multi-robot coverage of a connected space
with unknown obstacles is presented. This algorithm operates by maintaining, as far
as possible, small uncovered regions between covered areas and obstacles. In addi-
tion, the authors show that repeated coverage can occur only around regions where
the paths between obstacles are less than twice the width of the robots coverage
range. This property holds even when the robots have no a priori knowledge of
the environment, and therefore helps to prevent unnecessary wastage of time and
resources.

In [13], the authors introduce a novel strategy for the exploration of an unknown
environment with a multi-robot system. Communication among robots is restricted
to line-of-sight and to a maximum interdistance between robots. The proposed
strategy produces a spring-like formation which scan the area in strips. Additionally,
in the presence of obstacles the formation is deformed and split in two in order
to circumvent the obstacle and to adapt to the varying width of the free space.
Moreover, the authors provide an upper bound for the amount of repeated coverage.
This is limited to the areas where paths between obstacles are too narrow to allow
robots to enter and leave the area on non-overlapping paths.

In [15], an algorithm for efficient cooperative search is described. The idea is
to divide a work area into small pieces in order to make multiple mobile robots
cooperate efficiently. The searching motion of mobile robots is represented by
a queue of paths and the division of the work areas is achieved by allocating
appropriate paths to each robot respectively. In this way, the cost of the searching
can be shared among the multiple mobile robots.

In [16], the problem of cooperative area sweeping by multiple mobile robots
is addressed. The authors propose a non path-following approach called On-Line
Goal Selection (OGS) algorithm for robot motion planning in autonomous behavior.
Cooperation is achieved by organizing the robots as a decentralized market-like
structure and task-sharing is addressed by exploiting a negotiation mechanism.

In [17], a distributed cooperative coverage algorithm named DCR is described. It
represents an extension of an earlier complete single-robot algorithm called CCR

[24]. In detail, DCR executes independently on each robot in a team where the
individual robots do not know the initial locations of their peers and applies to
systems of robots operating in a rectilinear environment that use only intrinsic
contact sensing to determine the boundaries of the environment.

In [18], a polynomial-time multi-robot coverage heuristic named the Multi-Robot
Forest Coverage (MFC) is proposed. This approach relies on an algorithm for finding
a tree cover with trees of balanced weights (one for each robot). In addition, the
authors provide an analysis which shows the cover time to be at most eight times
larger than the optimal one.

In [19], the authors introduce a distributed algorithm exploiting the indirect
form of communication adopted by ants. Robots leave chemical odor traces which
evaporate over time and evaluate the strength of smell at every point they reach,
with some measurement error. The effectiveness of this communication scheme to
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perform the task of cleaning the floor of an unmapped building, or more broadly any
other task requiring the traversal of an unknown region is investigated.

In [20], two algorithms for solving the 2D coverage problem using a team of
robots are described. Specifically, these algorithms rely on the observation that local
dispersion is a natural way to achieve global coverage. Therefore, both algorithms
are based on local, mutually dispersive interaction between robots when they are
within sensing range of each other. In fact, “spreading out” robots throughout the
environment lowers the risk of having robots too close to each other, which would
result in poor coverage as overlap would be experienced.

In [21], a biologically inspired neural network approach to autonomous coop-
erative coverage path planning of multiple cleaning robots is proposed. Paths are
generated on-line by using a neural network, where the dynamic of each neuron
is characterized by a shunting neural equation. Robots see each other as moving
obstacles and cooperate to achieve a common sweeping goal.

In this work, a slightly different formulation is proposed. The classic scenario is ex-
tended by a sensor network which provides coordination to the robots by exploiting
its distributed nature. The sensor network is responsible for both the construction of
the path and for guiding of the robots. In particular, this work investigates how the
dynamics of the coverage problem are modified by the introduction of such a sensor
network.

2.2 Hamiltonian path

In the mathematical field of graph theory, a Hamiltonian path is a path in an
undirected graph which visits each vertex exactly once. A Hamiltonian cycle (or
Hamiltonian circuit) is a cycle in an undirected graph which visits each vertex exactly
once and also returns to the starting vertex. Determining whether such paths and
cycles exist in graphs is the Hamiltonian path problem which is NP-complete [25].

The Hamiltonian path problem for graph G is equivalent to the Hamiltonian cycle
problem in a graph H obtained from G by adding a new vertex and connecting it to
all vertexes of G. The Hamiltonian cycle problem is a special case of the traveling
salesman problem (TSP), obtained by setting the distance between two cities to a
finite constant if they are adjacent or to infinity otherwise.

Several centralized approaches providing either exact or approximate solutions
for the TSP have been proposed in literature. Exact solutions are generally obtained
exploiting branch and bound techniques [26], linear programming formulations [27],
or integer programming formulations [28]. Approximate solutions are achieved
using heuristic local search methods. Heuristics are largely applied to solve large
instances of the TSP as they can compute near optimal solutions in a relatively
short time. Starting from the classical tour construction heuristics such as nearest
neighbor heuristics [29], insertion heuristics [30], heuristics based on spanning trees
[31], savings heuristics [32], and 3-opt [33], further heuristic approaches have been
proposed like simulated annealing [34], genetic algorithms [35], neural networks [36]
or ant-colony [37].

Distributed implementation methods can be found in literature as well. For
instance, a distributed implementation of simulated annealing is described in [38],
while a distributed implementation of a parallel genetic algorithm on a cluster
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of workstations is given in [39]. Another distributed approach, which provides a
parallelization of a branch-and-bound algorithm, is proposed in [40].

Many variations of the classical TSP formulation have been proposed over the
years. Among them, the Multiple Traveling Salesman Problem (MTSP) is the closest
to the Multi-Robot Coverage Problem. An interesting extension of the MTSP is the
balanced version for which all paths are required to be of equal length. An overview
of the MTSP formulation and solution procedures can be found in [41].

3 Problem formulation

Given a sensor network described by a graph G = (N, L) where N is the set of nodes
(sensors) with cardinality n and L is the set of edges (connectivity matrix) and, given
a set K of robots with cardinality k, the following assumptions are made:

• The sensor network is deployed within an open environment without obstacles.
(The deployment might be either manual or automatic by a robot. If by robot,
the algorithm proposed in [42] or [43] might be used),

• The quasi-uniform deployment is obtained by placing each sensor node at exactly
one vertex of a noisy grid built over the whole environment,

• Each node knows its location in respect to a global frame (the localization can
be achieved for instance using the algorithm proposed in [44]),

• There is a link layer that provides the abstraction of reliable communication (for
instance using re-transmission),

• The cardinality of the robots set is strictly lower than the cardinality of the
sensors set: k << n.

According to this scenario, the coverage problem consists of constructing k paths,
where a path is defined as an open succession of 2-connected nodes, so that:

• each node belongs to a path
• any pair of paths is disjointed
• all paths are of equal length (optimality condition)

Hence, the coverage of an environment is achieved by guaranteeing the reachability
of the nodes by the robots. Note that, the introduction of a sensor network allows
some assumptions to be relaxed. Specifically, the following significant differences can
be pointed out with respect to the “off-line coverage” formulation:

• No prior knowledge of the environment is required for the robots
• The number of robots, either joining or leaving the network, can be assumed to

be dynamic

At the same time, this formulation leads to new interesting questions:

• How to provide a fully distributed framework able to build paths as close to
optimality as possible?

• How to handle the eventuality that a robot might join (respectively leave) the
network. This would imply the ability of the network to re-organize the pre-
existing paths in order to keep the “optimality” condition.
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This formulation can be described by the Integer Linear Programming formulation
proposed in Appendix A.1 if the distance between adjacent nodes is considered
approximately constant, as a consequence of the quasi-uniform deployment. In this
case, any feasible solution is inherently optimal. However, it is legitimate to ask
how close to optimality can a solution be if a distributed formulation is considered.
Therefore, the following properties, particularly the fairness of the solution, are
investigated in order to evaluate the effectiveness of the proposed solution:

• Completeness in terms of network coverage, which means having each node
belonging to a path

• Fairness in terms of equal distribution of the duty among the robots, which means
having paths in average of the same length

• Robustness in terms of ability to re-cover from the situation in which a robot
might get broken or a new one might join the network

Indeed, these indexes were already adopted in [9]. Although some similarities might
be pointed out, this paper is mainly focused on investigating how the dynamics
of the problem are modified by the deployment of a sensor network within the
environment.

4 The proposed solution

Two different distributed approaches are proposed. Both of them have strengths and
weaknesses that will be discussed in detail. However, due to the NP-hard nature of
the problem, none of them is able to guarantee optimality in a deterministic way. For
this reason, statistical analysis is provided in order to validate their effectiveness.
Following the formulation given in Section 3, it can be observed that a fair dis-
tribution of the duty is achieved if the number of nodes belonging to any path is
approximately �N/k�. Indeed, this is in agreement with the condition of optimality
proposed in [10], for which an optimal algorithm should lead to a total time coverage
of �N/k�. In fact, due to the quasi-uniform deployment of the sensor network, the
time required for a robot to travel between two neighbors can be approximatively
considered a constant c in average. Therefore, a path can be traversed in c · �N/k�.

4.1 Algorithm I: overview

The first algorithm constructs paths in a concurrent way. The idea is to use the
distributed nature of the sensor network to speed up the construction process. There
are tree steps:

• Heads Selection
• Coarse Paths Construction
• Orphan Recovery Policy

4.1.1 Heads selection

When the presence of the robots is sensed, this information is spread out across the
network, and the heads selection process is triggered. The idea is to select heads,
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i.e., nodes where the path construction process is started from, so that a natural
partition of the environment is achieved. Intuitively, this can be explained by the fact
that, as the algorithm is distributed and the construction of the paths is concurrent,
minimizing the interaction improves the performance. More details will be provided
in the next section.

4.1.2 Coarse path construction

This process is started as soon as the heads have been chosen. As previously stated,
the idea is to exploit the distributed nature of the network to speed up the path
construction process. Several policies to make the more effective local decision have
been investigated and their peculiarities will be shown in the next section. The
pseudo-code in Algorithm 1 shows a possible distributed implementation of the
proposed solution, where v and p are respectively the current tail of the path and
its predecessor, N (i) is the set of neighbors of node i, Nav(i) ⊂ N (i) is the subset
of available neighbors describing the possible candidates to be added and d(i, j)
represents a distance between node i and node j. Figure 1 shows a typical result
of the coarse path construction procedure.

Algorithm 1 Coarse path construction
1: v ← Tail
2: p ← Tail’s predecessor
3: v broadcasts request of availability to N (v)

4: Nav(v) ← v gains availability responses
5: d ← ∞
6: n ← 0
7: for j ∈ Nav(v) do
8: v computes d(v, j)
9: if d(v, j) < d then

10: d = d(v, j)
11: n = j
12: end
13: end
14: if n = 0 then
15: v notifies to p the end of construction process
16: else
17: v broadcasts the request of attachment of n
18: v receives the reply r from n
19: if r = success then
20: v notifies to n to start the path construction process
21: else
22: Nav(v) = Nav(v) \ {n}
23: Go to 5
24: end
25: end
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Fig. 1 Coarse path
construction
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4.1.3 Orphan recovery policy

Due to the distributed nature of the system as well as the locality of the decision
process, a second step is required in order to fully cover the environment. Once
the first step is terminated, there might be several incomplete paths with different
lengths. For this reason, a local shortest-path-first-served mechanism is provided in
order to balance the final length of the paths.

Nodes which have not been added to any path, after a period of latency of
attachment request put themselves in the “orphan” status and start this process.
Note that, particular attention should be paid to avoid the formation of crosslinks
when adding orphans to the paths. For this reason, an ad-hoc policy to avoid this
issue has been devised and will be discussed in the next section. The pseudo-code in
Algorithm 2 shows a possible distributed implementation of this step, where v is an
orphan, M(i, j) is the crossing links check function, Att(i, j) is the checks. Figure 2
depicts how the paths are modified after the Orphan Recovery Policy is run.

4.2 Algorithm II: overview

The second algorithm involves the construction of an approximate Hamiltonian
path in a distributed way. The idea is to first build a continuous “backbone” and
successively provide an optimal partition of it. The proposed solution involves two
steps:

• Approximate Hamiltonian Path Construction
• Path Partitioning

This algorithm, similar to the “Route First-Cluster Second” approach proposed in
[45] for transportation scheduling, has the great advantage of providing an under-
lying structure for the obtained paths. This property turns out to be very interesting
when investigating the robustness of the algorithm (considering a robot either joining
or leaving the scene). In fact, the availability of a continuous “backbone” allows
for an easy reconfiguration, i.e., modification of paths, by exploiting only local
information.
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Algorithm 2 Orphan recovery policy
1: v ← Orphan
2: v broadcasts request of attachment to N (v)

3: Nav(v) ← v gains availability responses
4: Nsav(v) ← v sorts Nav(v) w.r.t. ascending length of path
5: M, MB ← ∞
6: B, p, pB ← 0
7: for j ∈ Nsav(v) do
8: Att(v, j) ← v computes attachment condition
9: if Att(v, j) = Branch then

10: v computes M′(v, j)
11: if M′(v, j) < MB then
12: MB = M′(v, j)
13: pB = j
14: end
15: else
16: v computes M(v, j)
17: if M(v, j) < M then
18: M = M(v, j)
19: p = j
20: end
21: end
22: end
23: if p 	= 0 then
24: v sends request of attachment to p
25: v receives the reply r from p
26: if r = success then
27: v sets its status from “orphan” to “visited”
28: else
29: Go to 2
30: end
31: else if pB 	= 0 then
32: v sends request of attachment to p
33: v receives the reply r from p
34: if r = success then
35: v sets its status from “orphan” to “visited”
36: else
37: Go to 2
38: end
39: end

4.2.1 Approximate Hamiltonian path construction

When the presence of the robots is sensed, the approximate Hamiltonian path
construction process is triggered. A fully distributed algorithm which makes local
decisions based on a heuristic approach is provided. Moreover, an additional step,
namely the “Path Refining” process, is given as well in order to add nodes which
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Fig. 2 Final paths
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have not been included into the path after the first step is run. Note that, the
proposed algorithm builds an approximate Hamiltonian path, since the final path
might not include all nodes due to the locality of the decision process. However,
these nodes can be simply added to the paths as branches. This situation does
not significantly influence the performance, as in practice it happens very rarely
and involves a negligible percentage of nodes (less than 1%). The pseudo-code in
Algorithm 3 shows a possible distributed implementation of the first step of the

Algorithm 3 Approximate Hamiltonian path construction
1: v ← Tail
2: p ← Tail’s predecessor
3: v broadcasts request of availability to N (v)

4: Nav(v) ← v gains availability responses
5: d ← ∞
6: n ← 0
7: for j ∈ Nav(v) do
8: v computes d(i, j)
9: if d(v, j) < d then

10: d = d(v, j)
11: n = j
12: end
13: end
14: if n = 0 then
15: v notifies to p the end of the path construction
16: else
17: v broadcasts the notification of attachment of n
18: v receives the acknowledgments of notification by n
19: end
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Fig. 3 Approximate
Hamiltonian path construction
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proposed approach, while the path refining process is the same as in Algorithm 2
without sorting the neighbors. Figure 3 shows a typical result of the Hamiltonian
path construction procedure after the first step, while Fig. 4 depicts the final path
once the refinement has been run.

4.2.2 Path partitioning

This second step aims to fairly distribute the duty among the robots so that each
of them has to travel in average the same distance. The availability of a Hamil-
tonian path along with the knowledge of the number of robots within the network
make it possible to solve this process locally without the requirement of additional

Fig. 4 Refining step
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communication among nodes. In detail, the i-th node performs the following opera-
tion to find out which path it belongs to:

Pi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⌈
hi − N(mod k) · ⌈ N

k

⌉

⌊ N
K

⌋

⌉

+ N(mod k) i f hi > N(mod k) ·
⌈

N
k

⌉

⌈
hi

⌈ N
k

⌉

⌉

otherwise

(1)

where, Pi is an integer representing the path number, N is the number of nodes, k is
the number of robots (paths), hi is the position of the i-th node in the Hamiltonian
path and, �x� is the ceiling function which converts the argument x to the smallest
integer not less than x, while 
x� is the floor function which converts the argument
x to the highest integer less than or equal to x. The equation (1) is a consequence of
the following observation about the division operator:

a = b · c + d (2)

a = (b − d) · c + d · (c + 1) (3)

which simply says that a set of a nodes can be partitioned in d subsets of cardinality
(c + 1) and (b − d) subsets of cardinality c. In this way, a simple but effective way to
guarantee fairness when partitioning the Hamiltonian path is achieved.

5 Algorithmic analysis

The proposed algorithms are made up by several steps. In this section, a deeper
investigation for the most relevant aspects is provided.

5.1 Heads selection

As the system is fully distributed and the paths are built concurrently, the selection
of the heads turns out to be crucial for the performance of the algorithm. Note
that, the effectiveness of a selection cannot be validated independently from the
other steps. Indeed, it is strictly related to the local policy that has been adopted
for the path construction. This underlines the complexity that arises when dealing
with distributed algorithms.

Several approaches have been investigated, the following two turned out to be the
most prominent:

• Selecting the heads roughly at the center of mass of the k regions in which the
environment is supposed to be partitioned

• Selecting the heads equidistantly along the border of the network

Both strategies confirm the intuition for which having a natural partition of the
environment allows each path to “grow” independently. In fact, a minimization of
the interactions leads to a minimization of the packets that need to be sent over the
network. This is explained by the fact that the majority of the traffic over the network
is due to the negotiations of a node among different paths. Simulations have been
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performed to prove the effectiveness of both approaches. According to the results,
the second technique turns out to scale better with the size of the network. Indeed, it
was quite expected, as it was developed purposely to overcome the limitations of the
first technique.

5.2 Local policies for path construction

The area coverage problem has been proved to be NP-hard [6]. The distributed
nature of the system does not help to make it easier. Therefore, the assumption of
considering heuristics to solve the problem is reasonable. Here, the idea is to provide
a local mechanism to effectively explore the environment.

At the beginning the following simple policies have been investigated:

• Naive Random Policy
• Closest-Neighbor Policy
• Closest-to-the-Head Policy
• Closest-to-the-Barycenter Policy

As expected, the random policy does not provide good results, though it might be
considered as a lower bound for the performance of the system. Unfortunately, the
policy based on the choice of the closest neighbor does not produce satisfying results
either. This can be explained by the fact that, none of them provides any kind of
cooperation. Note that, cooperation is meant in an “implicit” way. In other words,
it should be achieved as an emerging phenomenon rather than by an explicit action.
This motivation inspired the development of the last two policies, which showed to
perform significantly better. In fact, as paths become “attractive”, interactions get
implicitly minimized (emerging cooperation).

However, the best performances have been achieved when considering a hybrid
policy. More clearly, starting from the following considerations:

• Both the Closest-To-The-Head Policy and the Closest-To-The-Barycenter Pol-
icy produce paths which do not move too far away from the head. However, the
paths tend to be a little bit too jagged

• The Closest-Neighbor Policy produces paths which are very straight. However,
they tend to interfere with each other.

A solution, which introduces the concept of virtual distance, has been devised.
Specifically, a virtual distance is defined as the linear combination of two factors:

Vd (x1, x2, x3) = α · ‖x1 − x2‖ + (1 − α) · ‖x1 − x3‖ (4)

where, {x1, x2, x3} ∈ R2 represent three location, ‖x‖ is the Euclidean metric and α is
a tunable parameter. At this point, a flexible way of taking into account two different
aspects when making local decisions is provided.

5.3 Crossing links formation

The crosslink formation has been thoroughly investigated for several problems, such
as geographical routing [46, 47]. Here, a simple solution, which turns out to be very
effective for the particular structure of the problem, has been adopted. In order to
explain it, consider the situation depicted in Fig. 5. According to it, nodes {A, B, C}



A framework for multi-robot node coverage in sensor networks 295

Fig. 5 Crosslink situation

belong to the same path, while node D is an orphan. Moreover, the pair of segments
AC, CB represent the actual paths, while the pair of segments DA, DC and DC, DB
describe the links that would be added if the orphan D were attached respectively to
the pair of nodes {A, C} or {B, C}. It is easy to verify that only one of the two options
is “safe”, namely attaching D to the pair {A, C}. The proposed solution leads to the
safe decision, computing the difference between the lengths of the additional pair of
links that would be added and the link that would be removed. The intuition behind
this method is that the removal of long links coupled with the addition of short ones
should result in lowering the chances to create a crosslink, at least from a probabilistic
standpoint. In practice, in the case of the example it would be:

Sol = argmin
{1,2}

{
M1, M2

}
(5)

where

M1 = DA + DC − AC
(6)

M2 = DB + DC − CB

Fig. 6 Crosslink solution
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represent the difference respectively for the first and second pair of nodes. Figure 6
shows the correct attachment for the orphan D to the pair {A, C}.

6 Analysis of completeness, fairness and robustness

Some properties, namely completeness, fairness and robustness, have been intro-
duced in Section 3, as indexes of quality to evaluate the effectiveness of an approach.
Here, an investigation w.r.t. these indexes for both algorithms is provided.

6.1 Test case

In order to evaluate the performance of the proposed algorithms, a statistical analysis
was performed. A simulation environment developed under Matlab by the authors
has been exploited. The analysis involved several configurations with an increasing
number of nodes, (64, 132, 256). Each configuration were tested considering an
increasing number of robots as well, (4, 6, 8). The connectivity graph was obtained
according to the following parameters: percentage of connected node 90%, range
of connectivity 15% of the longest distance between two nodes. Finally, for each
configuration, 100 trials have been run.

6.2 Algorithm I

This algorithm allows to build paths concurrently exploiting the distributed nature of
the sensor network.

6.2.1 Completeness

According to the simulation results, the algorithm is always able to guarantee
completeness as long as there are no isolated nodes. Table 1 shows the percentage of
“covered” nodes achieved with the first step, namely the Coarse Path Construction,
and the second one, namely the Orphan Recovery Policy. Although, the algorithm
cannot guarantee the full coverage of the environment with only one step, the
statistical analysis proved the network to be fully covered after the second step
is run.

6.2.2 Fairness

The algorithm has been devised with the aim of balancing the duty among the robots.
Although optimality cannot be guaranteed (in a deterministic way), statistical results,
shown in Table 2, proves the effectiveness of the proposed solution. Note that, the
ratio Std

Mean Value is percent.

Table 1 Completeness: success percentage

Number of nodes Number of robots First step [% success] Second step [% success]

64 {4, 6, 8} {82.06, 88.83, 88.75} {100, 100, 100}
132 {4, 6, 8} {81.44, 81.54, 81.43} {100, 100, 100}
256 {4, 6, 8} {86.00, 86.55, 88.10} {100, 100, 100}
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Table 2 Fairness

Number of nodes Number of robots Path length mean value Std
Mean value

64 {4, 6, 8} {16, 10.6, 8} {10.83, 8.84, 16.54}
132 {4, 6, 8} {33, 22, 16.5} {6.94, 4.90, 5.25}
256 {4, 6, 8} {64, 42.67, 32} {5.41, 2.92, 3.49}

6.2.3 Robustness

This algorithm speeds up the construction of the paths by means of a concurrent
approach. However, this is achieved exploiting locally a heuristic procedure. Conse-
quently, the resulting paths do not have a common baseline. Therefore, providing
a generic approach to properly modify them whether a robot leaves or joins the
network, is far from being easy to realize. In practice, simulations proved that any
time a robot joins or leaves the network, it is much more convenient to re-build from
scratch the paths rather than trying to modify the pre-existing ones. Indeed, this is the
main limitation of this algorithm, which is only partially reduced by the fact that the
time required to build the k paths is significantly lowered by the concurrent approach.

6.3 Algorithm II

This algorithm first builds an approximate Hamiltonian path, and successively per-
forms an optimal partition of it.

6.3.1 Completeness

As the algorithm builds a Hamiltonian path before to assign a duty to each robot,
the completeness is structurally guaranteed as long as there are no isolated nodes.
Specifically, Table 3 shows the percentage of nodes belonging to the approximate
Hamiltonian path after the first and second step. In addition, the percentage of nodes
attached as branches is provided as well. According to the statistical results, shown
in Table 3, although the algorithm cannot be guaranteed to always provide the exact
Hamiltonian Path, in practice it performs very well.

Note that, the problem of computing a Hamiltonian path is hard, whether the
nature of the system is distributed or not. Indeed, the formulation based on the
Integer Linear Programming, provided in Appendix A.1, gives an evidence of
this complexity. In fact, focusing the attention on the constraint (30), known in
literature as “Sub-tour elimination constraint” [48], it can be easily recognized that
the complexity of the problem grows exponentially, in terms of number of constraints
added to the problem, w.r.t. the number of nodes.

Table 3 Completeness: success percentage

Number of nodes First step [% success] Second step [% success] Isolated branches [% nodes]

64 85.19 100 0.11
132 85.23 100 0.08
256 82.04 100 0.07
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Here, although simplicity and reduced computational complexity have been taken
into account when devising this algorithm, the performance achieved is satisfactory.
This is due to the particular nature of the adopted connectivity graph. Nevertheless,
for the context in analysis, this assumption is reasonable, as the desired connectivity
graph can always be achieved by means of an appropriate tuning of the communica-
tion range of the nodes. In practice, the real requirement is merely the availability of
local connectivity between the neighbor as depicted in Fig. 7.

6.3.2 Fairness

The algorithm has been devised with the aim of equally distributing the duty among
the robots. Moreover, unlike the previous approach, here the availability of an exact
Hamiltonian path guarantees optimality in a deterministic way. However, as shown
in Table 3, the Hamiltonian path, due to the distributed nature of the computation,
might not be optimal.

6.3.3 Robustness

The eventuality that a robot might either get broken or join the network can be han-
dled in a systematic way. This is due to the fact that the availability of a Hamiltonian
path provides a common baseline for the assignment of the paths. Moreover,both
adding a path or deleting a pre-existing one are simply a specialization of the general
rule provided in Section 4.2.2. Note that, another interesting aspect can be pointed
out: the reactivity of the network, i.e., the time required for the network to re-
organize itself anytime a robot gets broken or a new one joins the network. In fact,
as soon as one of these events is recognized, the time required for the network
to re-organize itself is not related to the re-construction of the paths, which is
instantaneously given by the rule (1), but it is only related to the notification time, i.e.,
the time required to spread out the information across the network. This is indeed
an interesting property of the algorithm.

Fig. 7 Connectivity
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7 Performance analysis

In this section, an analysis about the the complexity in terms of computational and
communication load, of both algorithms is provided.

7.1 Algorithm I

7.1.1 Computational load

During the “Coarse Path Construction”, according to the pseudo-code proposed in
Algorithm 1, the dominant operation is the loop (lines: 7–13) in which the candidate
to be added is chosen. The worst case is achieved when the current tail has to sent p
times the request of attachment, where p is the degree of a node, i.e., the number of
its neighbors. The related complexity is

C1(p) = O(p) + O(p − 1) + · · · + O(1) (7)

C1(p) = O(p2) (8)

where p is the max number of neighbors of each node. Note that, the pseudo-code
provided in Algorithm 1 does not reflect the most efficient implementation. In fact, a
priority queue might be introduced to easily lower the complexity to O(p). However,
this version has been preferred for sake of clarity.

During the “Orphan Recovery” step, according to the pseudo-code proposed in
Algorithm 2, the dominant operation is the loop (lines: 7–22) in which the orphan
selects the path to be added to. The related complexity is equal to O(p) where p is the
max degree of any node. The worst case is achieved when the request of attachment
for the orphan has to be sent p times. Thus, the complexity turns out to be

C2(p) = O
(

p2
)
. (9)

Therefore, the overall computational complexity for the construction of each path is
equal to:

C
(
N′, p

) = N′ · [
α · C1(p) + (1 − α) · C2(p)

]
(10)

C
(
N′, p

) = O
(
N′ · p2

)
(11)

where, N′ = N
k is the average number of nodes of a path, with N the number of nodes

and k the number of robots, and α is the percentage of nodes covered at the first step,
which can be retrieved by the statistical analysis.

7.1.2 Communication load

During the “Coarse Path Construction”, according to the pseudo-code proposed
in Algorithm 1, the number of exchanged packets is determined by the number of
neighbors p of a node (line 4). In detail:

P1(p) = O(p). (12)

During the “Orphan Recovery” step, according to the pseudo-code proposed
in Algorithm 2, the number of exchanged packates is O(p) for each attempt of
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attachment (line 3). In the worst case, p attempts are required in order to successfully
attach an orphan (line 29). Consequently, the number of packets exchanged is:

P2(p) = O
(

p2
)
. (13)

Therefore, the overall number of packets required by the algorithm to build each
path is given by:

P
(
N′, p

) = N′ · [
α · P1(p) + (1 − α) · P2(p)

]
(14)

P
(
N′, p

) = O
(
N′ · p2

)
(15)

where, N′ = N
k is the average number of nodes of a path.

7.2 Algorithm II

7.2.1 Computational load

During the “Approximate Hamiltonian Path Construction”, according to the
pseudo-code proposed in Algorithm 3, the dominant operation is the loop (lines:
7–13) in which the candidate to be added is chosen. The related complexity is

C1(p) = O(p) (16)

where p is the max number of neighbors of each node.
During the “Path Refining process”, according to the pseudo-code proposed in

Algorithm 2, the dominant operation is the loop (lines: 7–22) in which the orphan
selects the path to be added to. The related complexity is equal to O(p) where p
is the max number of neighbors of each node. The worst case is achieved when the
request of attachment for the orphan has to be sent p times. Thus, the complexity
turns out to be

C2(p) = O
(

p2) . (17)

Therefore, the overall computational complexity is equal to:

C(N, p) = N · [
α · C1(p) + (1 − α) · C2(p)

]
(18)

C(N, p) = O
(
N · p2

)
(19)

where, N is the number of nodes and α is the percentage of nodes covered at the first
step, which can be retrieved by the statistical analysis.

7.2.2 Communication load

During the “Approximate Hamiltonian Path Construction”, according to the
pseudo-code proposed in Algorithm 3, the number of exchanged packets is deter-
mined by the number of neighbors p of a node (line 4). In detail:

P1(p) = O(p). (20)

During the “Path Refining process”, according to the pseudo-code proposed
in Algorithm 2, the number of exchanged packates is O(p) for each attempt of
attachment (line 3), where p is the number of neighbors of a node. In the worst
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case, p attempts are required in order to successfully attach an orphan (line 29).
Consequently, the number of packets exchanged is:

P2(p) = O
(

p2
)
. (21)

Therefore, the overall number of packets required by the algorithm in order to
build an approximate Hamiltonian path is given by:

P(N, p) = N · [
α · P1(p) + (1 − α) · P2(p)

]
(22)

P(N, p) = O
(
N · p2

)
(23)

where N is the number of nodes.

8 Conclusion

The robot area coverage problem has been investigated by the robotics research
community through the years. At the beginning, formulations involving a single robot
were proposed, while more recently teams of robots have been taken into account.

In this paper, a new formulation for the Multi-Robot Coverage problem is
proposed. The novelty is the introduction of a sensor network, which cooperates
with the robots in order to provide coordination to them. This is achieved taking
advantage of the distributed nature of the sensor network. The sensor network is
responsible for both the construction of the path and for guiding the robots.

This paper focuses the attention on the distributed construction of paths. Two
different algorithms have been provided. The first one speeds up the construction
process exploiting a concurrent approach. While the second guarantees an underly-
ing structure for the paths building a Hamiltonian path and then partitioning it.

A statistical analysis involving several configurations with different numbers of
nodes and robots has been provided to validate the effectiveness of the proposed
approaches. Three indexes of quality, namely completeness, fairness and robustness,
have been exploited to investigate the performances.

According to the statistical results, both approaches proved to perform well.
Moreover, they were shown to be complementary in the sense that the strength
of one approach was the weakness of the other and vice-versa. In fact, the first
algorithm, although it speeds up the the path construction process, turns out not
to be optimal in case whether a robot leaves or joins the network. Conversely, the
second approach, although it takes more time for the Hamiltonian path construction,
provides reactivity in case a robot either joins or leaves the network.

Several challenges still remain for future work. From a theoretical standpoint,
an analytical investigation for the bounds of performances should be considered.
Moreover, a wider definition of robustness involving the failure of the sensor
network, in terms of both communication and functioning, should be taken into
account. Finally, a real implementation of these approaches in order to validate their
effectiveness in a real context should be provided.
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Appendix A. Centralize formulation as ILP

A.1 Simple partitioning

Given a graph G = (N, L) with N the set of nodes (with cardinality n) and L the
connectivity matrix (with cardinality l), H ∈ N the set of sinks (with cardinality k)
and R the set of partition’s indexes (always with cardinality k). The simple partition-
ing problem can be formulated as follows:

min 1 = 1

s.t.
∑

k

∑

i

ph
ij = 1 ∀ j ∈ N \ H (24)

∑

k

∑

i

ph
ij = 0 ∀ j ∈ H (25)

∑

k

∑

i

ph
ji = 1 ∀ j ∈ H (26)

∑

i∈H

∑

j∈N (i)

ph
ij = 1 ∀h ∈ R (27)

∑

h∈N ( j )

ph
jh ≤

∑

i∈N ( j )

ph
ij ∀ j ∈ N \ H, ∀h ∈ R (28)

∑

k

ph
ij + ph

ji ≤ 1 ∀(i, j) ∈ L (29)

∑

(i, j )∈L∩V

ph
ij ≤ |V| − 1 ∀ V ⊂ N \ H, V 	= ∅, ∀h ∈ R (30)

⌊
N
k

⌋

− 1 ≤
∑

(i, j )∈L

ph
ij ≤

⌈
N
k

⌉

− 1 ∀h ∈ R (31)

where,

ph
(ij ) =

{
1 If the link (i, h) belong to the path h,
0 otherwise.

(32)

In detail, the (24) constrains each node to belong only to one path, the (25) and
(26) are boundary conditions for the heads. The (27) forces the heads to belong to
different paths, the (28) is similar to the flow conservation constraint of network flows
problem. Together with constraint (24), it forces each node j ∈ N \ H to have at
most one outgoing link (note that sources will have only an incoming link). The (29)
avoids the paths to go backward, the (30), known in literature as Sub-tour elimination
constraint avoids to have isolated cycles. Finally the (31) implies that all paths will
have either length

⌊ N
k

⌋
or

⌊ N
k

⌋ + 1.
The bogus objective function points out that any feasible solution is inherently

optimal for this formulation. If the distance between adjacent nodes is not considered
constant, this formulation can be slightly modified to account the minimization of the
overall length of the paths. Additionally, note that this problem might not be feasible
if the connectivity matrix is not carefully chosen. However, for a sensor network this
problem can be easily overcome by properly tuning the range of connectivity among
nodes.
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A.2 Shortest paths partitioning

In order to minimize the overall length of the paths, the simple partitioning formu-
lation can be modified by introducing a distance matrix D of Euclidean distances
between pairs of nodes along with a real objective function.

min
R∑

k

∑

(i, j )∈L

dij · pk
ij

s.t.
∑

k

∑

i

pk
ij = 1 ∀ j ∈ N \ H (33)

∑

k

∑

i

pk
ij = 0 ∀ j ∈ H (34)

∑

k

∑

i

pk
ji = 1 ∀ j ∈ H (35)

∑

i∈H

∑

j∈N (i)

pk
ij = 1 ∀k ∈ R (36)

∑

h∈N ( j )

pk
jh ≤

∑

i∈N ( j )

pk
ij ∀ j ∈ N \ H, ∀k ∈ R (37)

∑

k

pk
ij + pk

ji ≤ 1 ∀(i, j) ∈ L (38)

∑

(i, j )∈L∩V

pk
ij ≤ |V| − 1 ∀ V ⊂ N, V 	= ∅, ∀k ∈ R (39)

⌊
N
k

⌋

− 1 ≤
∑

(i, j )∈L

pk
ij ≤

⌈
N
k

⌉

− 1 ∀k ∈ R (40)

In detail, the cost of a path is defined as the sum of the Euclidian distances between
successive nodes belonging to this path.
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