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ABSTRACT
Motivation: The hallmarks of cancer by Hanahan and Weinberg (2000,
2011) have become highly influential in cancer research. They reduce
the complexity of cancer into ten principles (e.g. resisting cell death,
sustaining proliferative signaling) that explain the biological capabili-
ties acquired during the development of human tumours. Since new
research depends crucially on existing knowledge, technology for se-
mantic classification of scientific literature according to the hallmarks
of cancer could greatly support literature review, knowledge discovery
and applications in cancer research.
Results: We present the first step towards the development of such
technology. We introduce a corpus of 1,499 PubMed abstracts an-
notated according to the scientific evidence they provide for the ten
currently known hallmarks of cancer. We use this corpus to train a
system that classifies PubMed literature according to the hallmarks.
The system uses supervised machine learning and rich features
largely based on biomedical text mining. We report good performance
in both intrinsic and extrinsic evaluations, demonstrating both the ac-
curacy of the methodology and its potential in supporting practical
cancer research. We discuss how this approach could be developed
and applied further in the future.
Availability: The corpus of hallmark-annotated PubMed abstracts
and the software for classification are available at:
http://www.cl.cam.ac.uk/~sb895/HoC.html
Contact: simon.baker@cl.cam.ac.uk

1 INTRODUCTION
Cancer figures among the leading causes of mortality worldwide,
with c. 14M new cases and 8.2M cancer related deaths reported
in 2012 (Stewart and Wild, 2014). The number of new cases is
expected to rise by c. 70% over the next two decades, making it
more important than ever to develop effective tools for prevention,
detection and treatment of this disease. New research into cancer
draws on existing knowledge reported in scientific literature. Rele-
vant literature has grown rapidly in both size and complexity. There
are over 3M citations related to “cancer” in PubMed 1. As many
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as 151,872 were added over the past year. The high number of
potentially relevant articles is a valuable source on to which new
research can build, but at the same time poses a challenge for sci-
entists. While applications such as Google Scholar 2 and PubMed
Advanced Search 3 can be of help, they fall short in providing all
and only the information of interest. To collect relevant articles
keyword-based queries are the most common approach for literature
retrieval. However, due to the complexity of scientific data in can-
cer research, the massive number of keywords, their synonyms and
combinations exceeds what researchers can realistically handle. For
example, a cancer researcher would not find all the literature about
“sustaining proliferative signaling” by searching for “proliferative
signaling”. Rather, the use of hundreds of search terms (e.g.“growth
factors”, “growth factor receptors”, “cell cycle” etc.) would be re-
quired, along with manual filtering of the search results. It is an
extremely time-consuming task for researchers to read, interpret,
select and structure data in an organized manner.

Text mining (TM) can provide more targeted methodology for
identifying relevant information in scientific literature. Past decades
have seen a great development in biomedical TM that has made
large-scale information extraction (IE) and knowledge discovery
from literature possible and yielded impressive results in real-life
tasks (Simpson and Demner-Fushman, 2012; McDonald et al.,
2012). To date, the main emphasis of cancer-centric TM work has
been on tasks such as text classification and IE (e.g. named entity
recognition, relation and event extraction) (Zhua et al., 2011; Spasic
et al., 2014). Although only some of this work has been evaluated
in context of real-life cancer research, its enormous promises are
evidenced by studies which have revealed new scientific knowledge
in text-mined information that are not observable by informal data
inspection (Korhonen et al., 2012).

In this paper we introduce a TM technique for supporting se-
mantic classification of scientific literature for cancer research. Our
classification is based on the hallmarks of cancer. First intro-
duced by Hanahan and Weinberg in an article that has been cited
over 20,000 times (Google Scholar, March 2015) (Hanahan and
Weinberg, 2000), hallmarks are now widely employed in cancer re-
search. A complex disease, cancer involves genetic and epigenetic
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alterations that affect a large number of genes, proteins and sig-
naling networks during tumor progression (Marusyk et al., 2012).
Ten characteristics (i.e. hallmarks) of normal cells required for
malignant growth have been proposed that provide an organizing
principle to simplify the diversity of the biological processes lead-
ing to cancer. These include 1) sustaining proliferative signaling,
2) evading growth suppressors 3) enabling replicative immortality
4) activating invasion and metastasis, 5) inducing angiogenesis, 6)
resisting cell death, 7) deregulating cellular energetics, 8) avoiding
immune destruction, 9) genome instability and mutation and 10)
tumor-promoting inflammation) (Hanahan and Weinberg, 2011).
Rationalizing the complexity in the underlying biological processes,
hallmarks can help researchers gain a better understanding of the
cellular events leading to cancer. The ability to identify important
pathways within one or several hallmarks may also lead to the devel-
opment of e.g. more effective cancer drugs (Hanahan and Weinberg,
2011).

Within the bioinformatics community, hallmarks have inspired
harvesting interactions between genes and proteins and relations
between environment and cancer from high-throughput omics data
as well as scientific literature. The latter work has led into the
development of ontology tools (e.g. OncoCL (Doland, 2014), On-
coSearch (Lee, 2014)) for discovery of information related to
specific proteins, genes or cancers. Within biomedical TM, some
research has been conducted on identifying hallmark-based pro-
cesses (i.e. events) in biomedical literature (Pyysalo et al., 2013).
This work has been based on the initial hallmark classification of
Hanahan and Weinberg (2000) and it has focussed on a set of
events known to be relevant for the cancer genetics domain. Since
hallmarks involve complex processes, relevant scientific data are
diverse and difficult to harvest using standard search techniques.
What is ideally needed is powerful technology which categorizes
and ranks data in literature on the basis of their relevance for hall-
marks. Exploration of the resulting semantically-structured data
could help scientists find relevant information faster, make links
between otherwise unconnected articles and create summaries and
novel hypotheses from the scientific literature.

We present here a TM technique capable of such large-scale se-
mantic classification of PubMed literature according to the current
ten hallmarks of cancer (Hanahan and Weinberg, 2011). We first in-
troduce a corpus of 1,499 cancer-related PubMed abstracts which
we have annotated according to the evidence they provide for hall-
marks. We show that the annotations are accurate and that the corpus
is representative. We then report experiments where the corpus is
used as training and test data for automatic hallmark classification
of literature. Our machine learning approach is based on Support
Vector Machines (SVM) and employs a rich set of features based
on Natural Language Processing (NLP) and existing resources. We
present direct and task-based evaluation of the classification which
demonstrates both the accuracy of the approach and its usefulness
in supporting cancer research. We discuss future development and
applications of our methodology.

2 METHODS
The following two sub-sections describe the development of the
hallmark corpus and the classifiers, respectively.

2.1 The hallmarks of cancer corpus
2.1.1 Evidence for hallmarks of cancer Our starting point was to
define the scientific evidence for hallmarks of cancer. Our primary
resource were the two articles by Hanahan and Weinberg (2000,
2011) which describe examples of the cellular processes, proteins
and genes involved in individual hallmarks. For example, “apopto-
sis” can provide evidence for the “resisting cell death” hallmark, and
similarly can “caspase 3” because it is known to drive the apoptotic
process. We also gathered additional evidence in literature during
the annotation process. For example, articles studying specific cel-
lular processes often also mention proteins or genes that can provide
evidence for hallmarks. When needed, we used the KEGG pathways
in cancer to confirm a proteins function and its role in cell signaling
(http://www.genome.jp/kegg/disease/cancer.html).

2.1.2 PubMed literature retrieval Abstracts were retrieved from
PubMed journals representing sub-areas of biomedicine relevance
to cancer research (e.g. molecular biology, public health, clinical
medicine), using a set of search terms representative for each of the
10 hallmarks (see Table 1). The terms and their synonyms appear-
ing in Hanahan and Weinberg (2000, 2011) were employed, along
with additional ones selected by a team of cancer researchers at
Karolinska Institutet, Sweden. When needed, the term “cancer” was
added to filter out irrelevant abstracts (e.g. those concerning the “im-
mune response” without any obvious link to cancer). The PubMed
searches were limited to years 1992, 2002 and 2012 to ensure cover-
age of varied data over time. The total number of retrieved abstracts
per hallmark ranged from less than a hundred to several thousands.
The abstracts were downloaded in the XML-format.

2.1.3 Annotation The annotation was conducted by an expert
with 15+ years of experience in cancer research. The XUL-based
annotation tool described in (Guo et al., 2012) was used with its
menu items customized to our hallmark task. The abstracts were
chosen for annotation randomly, starting from the top of the list
returned by PubMed search. Abstracts not containing information
about hallmarks were left unannotated, as were those linked to re-
view articles. Annotation was performed at sentence level so that
only sentences describing findings or conclusions of the study in
question were included. A sentence was annotated when it contained
clear evidence for one or several hallmarks of cancer. In the latter
case multiple labels were assigned to the sentence. Figure 1) shows
annotated example sentences for different hallmarks, with hallmark
evidence highlighted. The annotation labels for a given abstract is
the combined set of labels of its individual sentences.

After the first round of annotation, additional annotation was
required. For this, ten supplementary sets of abstracts were re-
trieved from PubMed limited to the year 2010 using the search
terms “cell cycle”, “cellular energetics”, “DNA repair”, “glycol-
ysis metabolism”, “immunosuppression”, “inflammation immune
system cancer”, “ inflammation oxidative stress cancer”, “necrosis
cancer”, “cell cycle checkpoints” and “contact inhibition”.

2.1.4 Statistics of annotated data Table 2 shows the distribution
of 1,499 abstracts and sentences for each of the hallmark categories
(for the shorthand notation of each hallmark category please see
Table 1). While we succeeded in finding a sufficient number of
abstracts for most hallmarks, a few (e.g. CE) remained fairly low
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Figure 1. Example sentences and colour-highlighted evidence for hall-
marks.

Table 1. Hallmarks and their search terms

Hallmark Search term
1. Sustaining proliferative signaling (PS) Proliferation Receptor Cancer

“Growth factor” Cancer
“Cell cycle” Cancer

2. Evading growth suppressors (GS) “Cell cycle” Cancer
“Contact inhibition”

3. Resisting cell death (CD) Apoptosis Cancer
Necrosis Cancer
Autophagy Cancer

4. Enabling replicative immortality (RI) Senescence Cancer
Immortalization Cancer

5. Inducing angiogenesis (A) Angiogenesis Cancer
“Angiogenic factor”

6. Activating invasion & metastasis (IM) Metastasis Invasion Cancer
7. Genome instability & mutation (GI) Mutation Cancer

“DNA repair” Cancer
Adducts Cancer
“Strand breaks” Cancer
“DNA damage” Cancer

8. Tumor-promoting inflammation (TPI) Inflammation Cancer
“Oxidative stress” Cancer
Inflammation “Immune response” Cancer

9. Deregulating cellular energetics (CE) Glycolysis Cancer; “Warburg effect” Cancer
10. Avoiding immune destruction (ID) “Immune system” Cancer

Immunosuppression Cancer

in frequency, most likely reflecting the lack of relevant scientific
data in literature. To investigate the accuracy of annotations, we
performed inter-annotator agreement analysis where a second ex-
pert annotator was asked to annotate a subset of 155 abstracts. The
annotation was compared against that of the annotator who anno-
tated the whole corpus. Good agreement was found between the
two annotators with the average Cohen’s Kappa of .81 for all the
categories.

Table 2. Distribution of data for the ten hallmarks

Hallmark # Abstracts # Sentences
1. PS 462 993
2. GS 242 468
3. CD 430 883
4. RI 115 295
5. A 143 357
6. IM 291 667
7. GI 333 771
8. TPI 194 437
9. CE 105 213
10. ID 108 226

2.2 Hallmark classification
2.2.1 An overview of the classification process Our methodol-
ogy for hallmark classification consists of processing texts using an
NLP pipeline, extracting a rich set of features from the resulting
processed data and external resources, and classifying the fea-
tures using supervised machine learning. We have binary classifiers
for each hallmark category so that a given text can be classi-
fied under more than one category when each classifier is trained
independently.

Figure 2. Processing pipeline
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The NLP pipeline is illustrated in Figure 2. We start by tokenis-
ing and Part-of-Speech tagging input text using the C&C tagger
(Clark, 2002) which employs the Penn Treebank grammatical cate-
gories and is trained on biomedical texts. We lemmatise (stem) the
output using the BioLemmatizer trained for biomedical texts (Liu
et al., 2012). The C&C Parser is then used to extract grammatical
relations from lemmatized text. We trained the C&C Parser using
available annotations from molecular biology (Rimell and Clark,
2009). Finally, named entities of relevance to hallmarks are ex-
tracted from parsed data using the state-of-the-art Named Entity
Recognition (NER) tool ABNER (Settles, 2005). ABNER is trained
on the NLPBA and BioCreative corpora, and achieves an F-score
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accuracy of 70.5% and 69.9% on these two corpora, respectively
(Leitner et al., 2010).

In the feature filtering (feature selection) stage of the pipeline,
features that are deemed too rare or too common in the annotated
corpus are filtered out, so that only the most discriminating features
are used by the classifiers. The thresholds are set for each of the hall-
marks by a process of trial and error, typically a minimum threshold
value of 5, while the maximum threshold varies greatly depending
on the feature type; usually a value larger than 500.

This improves both accuracy and reduces training time. This pro-
cedure is done separately for each of the hallmarks, i.e. we only
select the features in the corpus that occur in abstracts annotated
with the given hallmark. Therefore, each hallmark classifier has a
unique set of selected features. Table 3 summarises the number of
features for each hallmark after feature filtering. The features are
represented in a sparse binary format for each abstract, with a value
1 indicating that the given abstract contains this feature.

The binary features are then input into 10 classifiers (support
vector machines with radial basis function kernels) that label each
abstract with a binary label indicating its relevance for a particular
hallmark.

2.2.2 Features and feature extraction We experimented with
seven feature types, chosen on the basis that many had performed
well in previous (biomedical) text classification tasks.

1. Lemmatised bag of words (LBow): The simplest feature em-
ploys all the words occurring in input texts. We lemmatise the
words in order to reduce feature sparsity.

2. Noun bigrams (N-Bigrams): Noun bigrams are used because
they can be useful in capturing two word -concepts in texts
(e.g. Gene silencing). No lemmatising is employed in order to
preserve the meaning of such concepts.

3. Grammatical relations (GR): We use the Dobj (direct object),
ncsubj (non-clausal subject), and iobj (indirect object) relations
in parsed data. taking into account their head and dependent
words.

4. Verb classes (VC): Verb classes group semantically similar
predicates together, providing the means to abstract away from
individual verbs when faced with data sparsity. We used the
hierarchical classification of 399 verbs by Sun and Korhonen
(2009) which was automatically acquired from cancer risk as-
sessment literature using clustering. We use all three levels of
abstraction by allocating 3 bits in our feature representation
for each concrete class (1 bit for each level of the abstraction
hierarchy).

5. Named entities (NE): Named entities capture domain specific
concepts in texts, providing another way to group words into
meaningful categories. We use five named entity types which
are particularly relevant for cancer research: Proteins, DNA,
RNA, Cell line, and Cell type. We store in the feature a pair of
the entity type and the associated words or phrases.

6. Medical Subject Headings (MeSH): MeSH is a comprehen-
sive controlled vocabulary for indexing journal articles and
books in the life sciences. Most abstracts in our dataset contain
an associated list of MeSH terms which we employ as features.

7. Chemical lists (Chem): Hallmark -related processes may
involve chemicals. Since most abstracts in our corpus also con-
tain, as metadata, a list of associated chemicals, we used these
as features (a total of 3,021 chemicals).

Table 3. The final number of features for each hallmark after the feature
filtering stage

Hallmark LBoW N-Bigrams GR VC NE MeSH Chem Total
1. PS 1471 355 435 121 302 280 129 3093
2. GS 863 176 189 119 108 156 55 1666
3. CD 1403 289 380 119 215 262 114 2782
4. RI 506 59 53 105 54 80 26 883
5. A 590 93 96 105 82 97 28 1091
6. IM 1052 220 253 114 161 172 43 2015
7. GI 1215 188 235 126 100 216 77 2157
8. TPI 843 122 152 111 99 121 34 1482
9. CE 410 54 53 103 31 68 20 739
10. ID 498 48 59 99 55 68 14 841

2.2.3 Classifiers Given a set of training examples, each marked
as belonging to one or more hallmark categories, an SVM train-
ing algorithm builds a binary model that predicts whether or not
a new example falls into a particular category. An SVM model is
a representation of the examples as points in space, mapped in a
way such that the examples of the separate categories are divided
by a clear gap that is as wide as possible. It constructs a hyperplane
or a set of them in a high-dimensional space which can be used
for classification or regression. The goal is to find the maximum-
margin hyperplane which has the largest distance to the nearest data
points of any class (Gunn et al., 1998; Hsu et al., 2003). SVMs have
been applied widely in text classification over the past two decades
(Joachims, 1998; Sebastiani, 2002) due to their relatively high per-
formance in both cross-domain (Basu et al., 2003; Sebastiani, 2002)
and biomedical text classification tasks (Cohen and Hersh, 2005;
Shatkay et al., 2008).

We use the LIBSVM (Chang and Lin, 2011) in our experiments.
It implements the Sequential Minimal Optimization Algorithm for
kernelised SVMs. We have experimented using both a linear ker-
nel and non-linear kernel such as the Radial Basis Function (RBF)
kernel. On average, non-linear kernels such as the RBF performs
around 5% higher in F-score accuracy.

3 RESULTS
3.1 Intrinsic evaluation
We evaluate the classifiers intrinsically using precision:

true positive
true positive+false positive

, recall: true positive
true positive+false negative

,
accuracy: true positive+true negative

total
, and F-score: 2×precision×recall

precision+recall

against manual annotations. The aforementioned measurements are
typically expressed as percentages. We use standard cross-validation
to avoid sampling bias. The data is divided into four folds, i.e. the
model is trained with 75% of the data and tested with the remaining
25% , and this is done four times for full coverage of the dataset.
The size of folds was selected based on the sparsity of the test data.
Within the 75% of the training data, we also perform another step of
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cross-validation for parameter tuning of the SVM kernels. Here we
do a five-fold cross-validation, where we train with 80% of the data
(for a given parameter configuration).

Table 4. Classification results using ten independent SVM classifiers

Hallmark # Abstracts Precision Recall Accuracy F-score
1. PS 462 77.0% 61.7% 83.4% 68.5%
2. GS 242 73.5% 59.5% 90.5% 65.8%
3. CD 430 86.6% 75.3% 90.1% 80.6%
4. RI 115 92.9% 68.7% 97.3% 79.0%
5. A 143 90.2% 70.6% 96.6% 79.2%
6. IM 291 86.4% 71.8% 92.7% 78.4%
7. GI 333 88.2% 76.3% 92.8% 81.8%
8. TPI 240 81.6% 64.6% 92.4% 72.1%
9. CE 105 96.8% 85.7% 98.9% 90.9%
10. ID 108 81.6% 65.7% 96.6% 72.8%
Average 85.5% 70.0% 93.2% 76.9%

Table 4 shows the results for each of the ten trained hallmark
classifiers. The accuracy is impressive (93.2% on average), rang-
ing between 83.4% and 98.9%. The average F-score is 76.9%, with
three categories scoring above 80% and from the remaining six cat-
egories only two scoring lower than 70%. The best results achieved
are for the Cellular energetics (CE) category, and the lowest for
the Evading growth suppressors (GS) and the Sustaining prolif-
erative signalling (PS) categories. The lower results are largely
affected by recall (sensitivity) rather than precision (positive pre-
dictive value). They are not caused by data sparsity (as indicated by
#Abstracts) but more likely by intrinsic difficulty of the categories
in question. For example, the same underlying processes are rel-
evant for both hallmarks and the difference is mainly apparent in
the sets of proteins involved. A similar observation can be made
with regards to Avoiding immune destruction (ID) and the Tumour
promoting inflammation (TPI) categories, as they both represent
immune response and inflammation, and involve overlapping pro-
cesses. Further feature development such as named entity clustering
could help and distinguish between such categories.

We compare the performance of our classifiers against two base-
lines:

Baseline 1: Bag of Words (BoW): We use the standard BoW base-
line, where we count the occurrences of each word appearing in a
given abstract (instance), and use these word-count pairs as features
for the SVM classifier with an RBF kernel, fine-tuned across five
cross-folds akin to our classifiers.

Baseline 2: Keyword-based classification: We compare our re-
sults to a simple keyword-match classification. We use the keywords
in Table 1; if any of the keyword strings appears in the abstract text,
it is classified under the corresponding hallmark(s).

The results presented in Table 5 show that our approach outper-
forms both baselines for all hallmarks, in most cases by a significant
margin.

We conducted a leave-one-out feature analysis in order to deter-
mine which features contribute the most to the classification result.
This involves removing one feature type (out of those outlined in
Section 2.2.2) at a time and observing the change in results. The
setup of this experiment is exactly the same as that described pre-
viously, with the exception of one feature type being left out. The
cross validation and parameter turning is repeated for each feature
leave-out iteration.

Table 5. Comparison of our approach to the Bag of Words (BoW) and key-
word classification baselines. All numbers are F-scores. The symbol (*)
denotes statistical significance level of p < 0.05, (#) denotes p < 0.001

according to the McNemar test.

Hallmark Our approach Baseline 1: BoW Baseline 2: Keyword
1. PS 68.5% 63.2% * 62.6% #
2. GS 65.8% 64.1% * 64.5%
3. CD 80.6% 74.3% 70.4% #
4. RI 79.0% 72.4% 66.7% #
5. A 79.2% 75.2% 74.1% *
6. IM 78.4% 71.2% * 51.0% *
7. GI 81.8% 73.2% 51.7% *
8. TPI 72.1% 67.4% 58.6% *
9. CE 90.9% 78.4% * 77.3% #
10. ID 72.8% 59.1% # 44.7% #
Average: 76.9% 69.9% 62.2%

The analysis, shown in Table 6, shows that the most important
feature type is the lemmatized bag of words (LBoW) which, when
left out, results in a decrease of 9.8% basis points and (as our only
feature type) decreases accuracy for all the ten categories. The verb
clustering (VC) feature performs the worst in this analysis, showing
the smallest drop in F-score (0.2% on average). It is possible that
the clusters learned from cancer risk assessment literature were not
the best fit with our data and use of more relevant literature could
improve performance. From the ten categories, five benefited from
all of the seven feature types.

3.2 Case studies
To evaluate the usefulness of the hallmark classification on unseen
data, we performed four case studies. In the first two, we apply
our approach to literature on selected tumor types and anticancer
drugs. For well-studied tumor types and drugs, the most relevant
and frequent hallmarks are known by experts. Whether the automat-
ically generated literature distribution profiles confirm this existing
knowledge can be a good indicator of the reliability of the classifi-
cation and can complement intrinsic system evaluation. The results
of these case studies were tested for statistical significance using χ2

homogeneity test for each hallmark (using a 2×2 contingency table)
followed by a Bonferroni correction for the entire profile’s p-values.

In the last two case studies, we evaluate our approach in the con-
text of information retrieval. As described earlier, the hallmarks do
not normally appear explicitly as literal strings in text; rather, they
are latent in nature and retrieval of a comprehensive set of articles
relating to these hallmarks requires using a large number of key-
words like the ones presented in Table 1, and can result in a large
number of false positives. Therefore, our goal is to show that we can
identify a higher number of true instances than realistic using a stan-
dard keyword search, whilst keeping the number of false positives
lower.

3.2.1 Case study 1 Basal cell carcinoma and melanoma are
two types of human skin cancers with different biology, and con-
sequently differing degrees of malignancy. Melanoma is highly
metastatic with high mortality while the more common basal cell
carcinoma rarely or never metastasises and has lower mortality
(Tomasetti and Vogelstein, 2015)

All PubMed abstracts available in December 2014, including
22,564 abstracts for basal cell carcinoma and 98,924 for melanoma
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Table 6. Results for leave-one-out analysis

Hallmark All GR VC NE MeSH Chem LBoW N-Bigram
1. PS 68.5% 66.1% 67.1% 64.4% 66.5% 66.2% 66.3% 65.8%
2. GS 65.8% 60.7% 63.0% 61.7% 61.9% 61.7% 51.7% 59.0%
3. CD 80.6% 78.6% 80.5% 80.2% 78.3% 80.4% 70.4% 80.5%
4. RI 79.0% (80.2%) (81.2%) 79.0% 78.4% 79.0% 69.9% 79.0%
5. A 79.2% (81.4%) 79.1% (81.1%) (79.4%) (81.1%) 70.7% (80.3%)
6. IM 78.4% 78.1% (79.4%) 77.6% 76.9% (78.9%) 68.7% 77.5%
7. GI 81.8% (82.1%) 81.8% (82.0%) 79.2% (83.0%) 74.2% (81.9%)
8. TPI 72.1% 69.7% (72.5%) 71.1% 68.0% (71.6%) 60.5% 70.5%
9. CE 90.9% 88.8% 89.8% 88.1% 88.7% 88.7% 84.5% 88.1%
10. ID 72.8% 70.4% 72.4% 72.4% 69.0% 72.7% 54.0% 71.7%
Average 76.9% 75.6% 76.7% 75.8% 74.6% 76.3% 67.1% 75.4%

Note: Figures in parentheses show an improvement in accuracy when the given feature is removed from classifications. All figures are F-scores.

were used. The results of classification are shown in Figure 3. Out of
a total of 121,488 abstracts from the original literature search; only
46,727 abstracts (38%) were classified as relevant, highlighting the
time saving function of automatic classification.

Comparing the literature distribution for the hallmarks activat-
ing invasion and metastasis, a significant difference can be seen
with higher numbers of abstracts for melanoma, reflecting the exist-
ing knowledge about the metastatic potential of melanoma (Akinci
et al., 2008; Young et al., 2008; Fidler, 1995). A significantly higher
number of abstracts for melanoma were also found for angiogene-
sis and avoiding immune destruction. Also these two parameters
reflect malignancy. This classification pattern is in line with exist-
ing scientific knowledge, demonstrating the reliable performance of
our approach. Our methodology structures a large amount of textual
information (more than 121,000 abstracts for the two tumor types
in the original PubMed search) according to hallmarks - a task that
would be near impossible to conduct manually.

Figure 3. Case study 1: the distribution of Basal cell carcinoma and
Melanoma literature over the relevant hallmarks. (*) denotes statistical
significance level (p < 0.05), (#) denotes (p < 0.001)

3.2.2 Case study 2 Sorafenib and taxol are two drugs that have
been developed to treat cancer via different mechanisms. So-
rafenib acts by inhibiting development of new blood vessels (anti-
angiogenic) (Wilhelm et al., 2006), while taxol inhibits cancer cell
growth by inducing genomic instability (Schiff and Horwitz, 1980)

We used for investigation all the PubMed abstracts available in
December 2014, including 3,846 abstracts for sorafenib and 24,827

for taxol. The results of classification are illustrated in Figure 4.
Out of a total of 28,673 abstracts in the original literature retrievals
only 8,993 abstracts were classified as relevant for cancer hall-
marks (31%), again highlighting the time-saving aspect of automatic
classification

Figure 4. Case study 2: the distribution of Sorafenib and Taxol literature
over the relevant hallmarks. (*) denotes statistical significance level (p <

0.05), (#) denotes (p < 0.001)

Comparing the literature distribution for sorafenib and taxol, there
is a significant difference in the percentage of abstracts relevant
for the aforementioned hallmarks: a significantly higher number
of abstracts for sorafenib were found for the hallmarks inducing
angiogenesis resisting cell death and sustaining proliferative sig-
naling. This is in line with the anti-angiogenic effect of sorafenib
and its effect in causing cell death (Wilhelm et al., 2006). The most
frequent hallmarks in taxol literature are “genomic instability and
mutation”. This corresponds to existing knowledge about taxol as
a drug that interferes with microtubules and chromosomal segre-
gation in a dividing cell, and may lead to genetic instability (Abal
et al., 2003; Pihan and Doxsey, 1999). This study, again, reflects the
accuracy of the literature distribution profiles and the reliability of
the classification results.

3.2.3 Case study 3 This case study investigates whether our
classification approach can identify a higher number of relevant
abstracts and with fewer false positives than a standard keyword
search approach. We compare the number of articles retrieved by
PubMed keyword search to what our classifiers can identify for a
given search topic. For our test topic, we use “Melanoma”. We
combine the search query “Melanoma” with a single search string
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according to expert’s best description of each hallmark name (see
Table 7 for the search queries used). We can estimate the percent-
age of its false positives by ascertaining the relevance of the top
20 PubMed-retrieved search results for each hallmark using expert
evaluation: an expert in cancer research is asked whether each of
the top 20 retrieved abstract is really related to the given hallmark
based on the abstract text. We can compare our classifiers’ perfor-
mance by retrieving articles from PubMed for “Melanoma” (98,924
abstracts in total), and then run our classifiers over these articles to
find which of the “Melanoma” abstracts that are also associated with
each of the hallmarks; therefore, we are identifying abstracts that are
both relevant to the search topic “Melanoma” and each of the hall-
marks, thereby directly comparing retrieval performance with that
of the PubMed keyword search queries (Table 7).

We then evaluate the output of our classifiers for the same list of
20 abstracts for each hallmark also against expert’s judgement, and
compare the percentage of false positives of our classifiers, using
the PubMed keyword search as a benchmark.

Table 8 summarises the results. Overall, our classifiers managed
to identify substantially more abstracts than the keyword based ap-
proach in seven of the ten hallmarks, while having a much lower
percentage of false positives for the sample of top 20 retrieved
results for all of the hallmarks.

Table 7. The search queries used to describe the ten hallmarks while
searching for the topic: Melanoma.

Hallmark Search query
1. PS melanoma AND proliferation
2. GS melanoma AND ”growth suppression”
3. CD melanoma AND ”cell death”
4. RI melanoma AND immortalization
5. A melanoma AND angiogenesis
6. IM melanoma AND ”invasion metastasis”
7. GI melanoma AND ”genomic instability mutation”
8. TPI melanoma AND inflammation7
9. CE melanoma AND ”warburg effect”
10. ID melanoma AND ”immune destruction”

Table 8. Case study 3 results, comparing the number of abstracts retrieved
from Pubmed using the search queries in Table 7, and the number of classi-
fied abstracts out of a total of 98,924 abstracts using our approach. The %
false-positive numbers are only of the top 20 retrieved abstracts using each
of the search strings in Table 7, and not of the entire result set.

Hallmark Keyword search Our approach
# Retrieved % False-positives # Classified % False-positives

1. PS 6958 0% 1808 0%
2. GS 105 35% 472 0%
3. CD 1813 0% 4972 0%
4. RI 23 25% 198 5%
5. A 2155 0% 1514 0%
6. IM 1954 0% 12424 0%
7. GI 101 10% 6478 0%
8. TPI 1395 15% 313 0%
9. CE 20 15% 80 5%
10. ID 35 0% 2674 0%
Average: 1456 10% 3093 1%

3.2.4 Case study 4 In the previous case study, we constrained the
keyword search string to terms that best describe the ten hallmarks.
In this case study, we replicate the experimental setting from the
previous case study, except that we do an unconstrained direct ex-
periment, where an independent expert in cancer research is asked
to search for papers about the topic (Melanoma) with a set of terms
that they believe are associated with each of the hallmarks. I.e. the
search terms do not need to be a description of the names of the hall-
marks as in the previous case study, instead it is left to the expert to
openly decide on any associated terms to search. Table 9 lists the
resulting search queries selected by our expert volunteer.

Table 9. Search queries used by an independent user to retrieve documents
about Melanoma, relating to each of the ten hallmarks

Hallmark Search query
1. PS melanoma AND ”growth factor”
2. GS melanoma AND ”cell cycle”
3. CD melanoma AND apoptosis
4. RI melanoma AND telomerase
5. A Melanoma and ”angiogenic factor”
6. IM melanoma AND EMT
7. GI melanoma AND ”DNA damage”
8. TPI melanoma AND ”oxidative stress”
9. CE melanoma AND glycolysis
10. ID melanoma AND immunosuppression

Table 10. Case study 4 results, comparing the number of abstracts retrieved
from Pubmed using the search queries in Table 9, and the number of classi-
fied abstracts out of a total of 98,924 abstracts using our approach. The %
false-positive numbers are only of the top 20 retrieved abstracts using each
of the search strings in Table 9, and not of the entire result set.

Hallmark Keyword search Our approach
# Retrieved % False-positives # Classified % False-positives

1. PS 3079 30% 1808 0%
2. GS 2512 0% 472 0%
3. CD 4834 0% 4972 0%
4. RI 191 85% 198 0%
5. A 89 0% 1514 0%
6. IM 1812 0% 12424 0%
7. GI 868 0% 6478 0%
8. TPI 395 70% 313 0%
9. CE 142 35% 80 10%
10. ID 1399 0% 2674 0%
Average: 1532 20% 3093 1%

The results show that overall, our classifiers identify substantially
more abstracts than the keyword based approach for the majority
of the hallmarks, while having a much lower percentage of false
positives for the sample of top 20 retrieved results as compared to
the keyword-based search.

One should note the very high false-positives for Hallmarks 4 and
8 (RI and TPI) for the top 20 retrieved PubMed keyword search.
This highlights some of the weaknesses of a keyword only search
approach , where even expert users may not find the optimal search
terms for each hallmark, it shows the need of carefully selecting
the correct hallmark related terms in order to avoid false positives
in standard keyword search. In contrast, our classifiers can mitigate
this risk since they take into account thousands of linguistic features
instead of a small set of search terms.
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4 DISCUSSION
The evaluation reported above demonstrates the accuracy and the
practical potential of hallmark-based text classification. We report
here further analysis in order to gain insight into the errors made by
the classifier and how to improve our approach in the future. We first
looked into multi-labeling. As Table 11 shows, 40% of the abstracts
in our annotated corpus are multi-labelled. Figure 5 displays the
proportion of abstracts in the corpus according to the percentage of
matched hallmark labels for a given abstract in the classifier output.
63.3% of abstracts have 100% of their labels correctly predicted by
the classifier, while 14.8% have no matches (0% of their labels). The
high percentage of 100% matched and 0% matched can be attributed
to 60% of the abstracts having a single label.

Table 11. The number of hallmark labels per abstract in our corpus

Hallmarks per abstract Frequency Proportion
1 951 60.2%
2 450 28.5%
3 141 8.9%
4 31 2.0%
5 5 0.3%

Figure 5. The distribution of all abstracts according to the percentage of
their correctly predicted hallmarks

Table 12. Hallmark co-occurrence distribution in the annotated corpus

PS GS CD RI A IM GI PI CE ID
PS 462 120 165 19 38 79 31 25 9 5
GS 120 242 86 15 10 28 31 9 2 0
CD 165 86 430 23 28 48 44 37 16 14
RI 19 15 23 115 2 6 28 4 3 2
A 38 10 28 2 143 42 0 14 2 3

IM 79 28 48 6 42 291 14 24 9 13
GI 31 31 44 28 0 14 333 27 7 6
PI 25 9 37 4 14 24 27 194 7 14
CE 9 2 16 3 2 9 7 7 105 0
ID 5 0 14 2 3 13 6 14 0 108

We next examined the actual hallmark pair co-occurrences (i) in
the annotated corpus (Table 12 where the diagonal line shows the
number of occurrences for a given hallmark in the corpus indepen-
dent of other co-occurring hallmarks) and (ii) as predicted by the
classifier (Table 13). Looking at Table 12, hallmarks that most often

Table 13. Hallmark co-occurrence distribution as predicted by the classifier

PS GS CD RI A IM GI PI CE ID
PS 285 110 154 14 32 64 23 14 9 8
GS 113 142 82 6 8 24 27 3 2 0
CD 138 78 327 14 21 37 38 29 13 12
RI 13 16 21 80 1 7 26 4 3 1
A 31 8 19 1 105 32 1 10 2 2

IM 69 26 35 2 33 211 12 15 7 11
GI 23 26 40 24 0 12 258 19 6 5
PI 16 8 28 1 10 18 23 125 6 16
CE 8 6 18 1 0 7 1 4 86 0
ID 8 2 10 1 3 12 7 14 0 72

co-occur with each other include ”sustaining proliferative signaling
(PS)”, ”resisting cell death (CD)”, and ”evading growth suppressors
(GS)”, with 165 abstracts labeled as PS and CD, and 120 abstracts
labeled as PS and GS. These co-occurrences could be explained by
the fact that they are all related to cell cycle regulation. For example,
in the sentence: “Moreover, harmine not only induced endothelial
cell cycle arrest and apoptosis, but also suppressed endothelial cell
migration and tube formation as well as induction of neovascular-
ity in a mouse corneal micropocket assay”, the phrase: ”cell cycle
arrest” is a good indicator of PS and GS, and the word ”apoptosis”
is a good indicator of CD. This might be explained by overlapping
capabilities (e.g. cell growth) and is likely to be the main reason
for the lower classifier performance figures for these three hall-
marks in Table 4. Looking at Table 13, for many hallmarks the
predicted co-occurrences are well-correlated with those in the an-
notated corpus. For example PS and CD are co-classified 154 times
which is relatively comparable to their 165 co-occurrences in the
corpus. Similar observations can be made with regard to PS and GS.
Our current approach is based on training ten independent, binary
classifiers to predict whether an abstract belongs to a given hall-
mark category. We could also experiment with models that allow
the classifiers to work together, for example models based on joint
inference (Poon and Vanderwende, 2010) or joint learning (Zang
et al., 2013). This type of methodology, which has been success-
fully applied to similar NLP tasks is likely to improve performance
as it provides the means to capture dependencies and interactions
between co-occurring hallmarks.

The first two case studies provide additional evidence that our
system correctly classifies literature over the hallmarks of cancer.
The automatic system rapidly generated profiles that would have
been difficult and very time-consuming to produce manually, which
would facilitate overviews of scientific literature. In the future, the
approach may be further developed to support the detection of novel
patterns and research hypotheses in literature.

The last two case studies show that our approach can support in-
formation retrieval in comparison with a search string intersection
query where the goal is to identify documents for a given topic,
as well as articles that relate specifically to certain hallmarks. Our
approach generally identifies more documents, and has a smaller
percentage of false positives than standard keyword based search.
This can perhaps be explained by the latent nature of the hallmarks
in texts - the fact that they are rarely stated explicitly but rather via
indirect correlation of terms that describe relevant biological pro-
cesses, and therefore are not easily found by basic keyword search.
Our case studies also demonstrate that experts selecting the wrong
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set of search terms may result in a high number of false positives,
and that our classifiers are not susceptible to this problem since they
are trained on a large number of features, and not on the occurrence
of a single search term.

Our analysis also suggests that many hallmarks could be sub-
divided, for example, according to the established pathways in-
volved in tumor development. During cancer development aber-
rantly regulated intracellular signaling pathways tend to rearrange
networks regulating cancer cells and the networks themselves can be
divided into sub-circuits which regulate certain capabilities of can-
cer cells, e.g. viability circuit. We are currently developing such an
enriched classification of hallmarks, so as to help cancer researchers
navigate more easily to the literature of their specific interest. How-
ever, whether the more subtle differences between subcategories of
hallmarks can be captured by machine learning is yet to be known,
and we plan to investigate that in due time.

5 CONCLUSIONS
We have introduced a TM technique capable of large-scale seman-
tic classification of PubMed literature according to the evidence they
provide for the hallmarks of cancer (Hanahan and Weinberg, 2011).
Our evaluation demonstrates both the accuracy of the approach and
its usefulness in supporting cancer research. In the future, we plan
to improve and refine our classification approach as discussed in
the previous section. Given the prominence of hallmarks in recent
and current cancer research, we expect that the resulting method-
ology will offer a highly useful literature analysis tool for cancer
researchers. The ability to organise literature semantically accord-
ing to the hallmarks of cancer can help researchers summarise
known and find novel information in literature faster. It can sup-
port both basic and applied research into cancer, including cancer
drug development, prevention strategies, biomarker discovery and
identification of previously unknown associations between genes,
proteins, signaling networks, tumor types, drug, chemicals, and
other entities.
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