
  

  

Abstract— We describe the design and implementation of a 

socially assistive robot that monitors the performance of a user 

during a seated arm exercise scenario, with the purpose of 

providing motivation to the user to complete the task and to 

improve performance. The visual arm pose recognition 

procedure used by the robot in tracking user performance, the 

three exercise games, and the methodology behind the human-

robot interaction dialogue are presented. A two-condition 

experimental study was conducted with elderly participants to 

test the feasibility and effectiveness of the robot exercise system, 

the results of which demonstrate the viability and usefulness of 

the system in motivating exercise among elderly users.  

I. INTRODUCTION 

OCIALLY Assistive Robotics (SAR) [1] is an area of 

Human-Robot Interaction (HRI) that focuses on aiding 

through social rather than physical interaction between the 

robot and the human user, and has the potential to enhance 

the quality of life for large user populations, including the 

elderly, people with physical impairments and those involved 

in rehabilitation therapy. The world's population is growing 

older, thereby introducing a wide array of societal 

challenges. It is estimated that in 2050 there will be three 

times more people over the age 85 than there are today. 

Many are expected to need physical and cognitive assistance.  

The demand for such assistance is quickly outpacing the 

available supply of available and affordable human care. As 

the elderly population continues to grow, a great deal of 

attention and research will be dedicated to assistive systems 

that allow the elderly to live independently in their own 

homes.  As such, the main purpose of socially assistive 

robotics technology is not to replace human care-givers, but 

rather to provide assistance where human assistance is not 

available or affordable. 

The robotics literature that addresses the area of assistive 

robots for the elderly is limited.  Researchers have developed 

robots that focus on providing assistance for functional 

needs, such as mobility and health monitoring [4], navigation 

and schedule reminders [5], as well as social and emotional 

needs, such as reducing depression [6] and increasing social 

interaction [7]. 
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Our focus is on designing and studying the effectiveness 

of socially assistive robotics technology towards providing 

affordable customized care for individuals in need of 

assistance [2], [3], with particular emphasis on how the 

user’s intrinsic motivation can be influenced by a socially 

assistive robot in order to maximize the probability of 

success of the therapeutic intervention.   

II. GOALS AND APPROACH 

Regular physical exercise has been shown to be effective 

at maintaining and improving the overall health of elderly 

individuals [8], [9], [10], [11]. The work presented in this 

paper is an experimental implementation of a socially 

assistive robot whose purpose is to motivate users to exercise 

by engaging in a simple seated arm exercise scenario. The 

overall goal of the pilot study is to evaluate and validate the 

effectiveness of the approach in order to gain insight for 

future, long-term studies involving the intended user 

populations in need of such customized assistance, such as 

the elderly and/or stroke patients.  The specific aims of the 

work were as follows: 

1) To create a socially assistive robot capable of 

interacting with elderly users in an exercise scenario, 

while providing feedback, praise, and motivation 

throughout.  

2) To conduct a study with elderly participants to test the 

feasibility and effectiveness of our system design, as 

well as to gain insight into the role of user autonomy 

and choice within the exercise scenario. 

3) To get feedback from the participants for the purpose 

of improving the system design. 

III. ROBOT EXERCISE SYSTEM 

A. System Overview 

The exercise scenario consists of a socially assistive robot 

whose purpose is to instruct, evaluate, and encourage users 

to perform simple arm gesture exercises.  The scenario is 

one-on-one, allowing the robot to focus its attention on the 

single user in order to provide timely, accurate feedback, and 

to maximize the effectiveness of the exercise session for the 

user.  In the set up, the user is seated in a chair in front of the 

robot; the user and robot face each other.  A black curtain is 

used as a backdrop to facilitate the visual perception of the 

user’s arm movements.  The complete exercise setup is 

shown in Fig. 1(a).  
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During the exercise sessions, the robot asks the user to 

perform simple seated arm gesture exercises.  The range of 

the robot’s arm motion in the exercises is restricted to the 

sides of the body in order to improve the accuracy of the 

robot’s visual detection of the user’s arms when repeating 

the user-demonstrated motions.  This type of seated exercise, 

called “chair exercise” or “chair aerobics”, is commonly 

practiced in senior living facilities and provides grounding 

for our exercise system.  Chair exercises are highly regarded 

for their accessibility to those with low mobility [8], [9], 

[10], [11], for their safety as they reduce the possibility of 

injury due to falling from improper balance [8], [11], and for 

their health benefits such as improved flexibility [8], [10], 

muscle strength [8], [10], [11], ability to perform everyday 

tasks [8], [10], [11], and even memory recall [9]. 

The user is able to communicate with the robot through 

the use of a wireless button control interface, the popular 

Wiimote remote control, which communicates via Bluetooth 

with the button labels modified to suit our exercise system.  

There are two buttons available to the user to respond to 

prompts from the robot, labeled “Yes” and “No”, and one 

button for the user to request a rest break at any time during 

the interaction.   

B. Robot Platform 

To address the role of the robot’s physical embodiment, 

we use a biomimetic anthropomorphic robot platform that 

consists of a humanoid torso mounted on a MobileRobots 

Pioneer 2DX mobile base.  The torso comprises 19 

controllable degrees of freedom, which include: 6 DOF arms 

(x2), 1 DOF gripping hands (x2), 2 DOF pan/tilt neck, 1 

DOF expressive eyebrows, and a 2 DOF expressive mouth. 

A photograph of the robot is shown in Fig. 1(b). 

A standard USB camera is located at the waist of the robot 

to capture the user’s arm movements, allowing the robot to 

provide appropriate feedback about the exercise.  

The robot’s speech is generated by the commercially 

available NeoSpeech text-to-speech engine [19], and a 

speaker on the robot outputs the synthesized voice to the 

user. The robot’s lip movements are synchronized with the 

spoken words for increased naturalness of speech. 

C. Exercise Games 

Three exercise games are available in our system: the 

Workout game, the Imitation game, and the Memory game. 

During an exercise session, the user is given the opportunity 

to play all three games, and often any game more than once. 

The following is a description of each game in detail. 

1) Workout Game: In this game, the robot fills the role of 

a traditional exercise instructor by showing the user which 

arm gesture exercises to perform, by demonstrating with its 

own arms, and asking the user to imitate.  The robot gives 

the user feedback in real time, providing corrections when 

appropriate (e.g., “Raise your left arm and lower your right 

arm” or “Bend your left forearm inwards a little”), and praise 

in response to each successful imitation (e.g., “Great job!” or 

“Now you’ve got the hang of it”).  In monitoring user 

performance, the robot compares the user’s current arm 

angles as detected by the vision module to those of the 

specified goal arm angles to determine performance 

accuracy.  The comparison procedure is robust to user 

fatigue and variations in range of motion; it relies more on 

the user’s current hand positions and forearm angles than on 

the absolute differences of the goal and user arm angles. 

2) Imitation Game: In this game, the roles of the user and 

robot from the Workout game are reversed, and thus the user 

becomes the exercise instructor showing the robot what to 

do.  The robot encourages the user to create his/her own arm 

gesture exercises, and imitates user movements in real time. 

As the roles of the interaction are reversed, with the robot 

relinquishing control of the exercise routine to user, the robot 

no longer provides instructive feedback on the exercises. 

However, the robot does continue to speak and engage the 

user by means of encouragement and general commentary.  

For example, if the robot detects that the user is not moving 

her arms, it encourages the user again to create new gestures 

by saying, for instance, “Mary, try and come up with your 

own gestures and I’ll imitate you.”  In addition, the robot 

makes general comments about the game or user, such as 

“You’re a good instructor Mary” or “This is my favorite 

game, thanks for the workout.” 

3) Memory Game: In this game, the user is challenged to 

learn a sequence of different arm gestures.  The goal of the 

game is for the user to try and memorize ever-longer 

sequences, and thus compete against his/her own high score.  

The sequence is determined at the start of the game and does 

not change for the duration of the game.  The arm gesture 

poses used for each position in the sequence are chosen at 

random at run time, and the sequence is of infinite length, 

thereby making the game challenging for users at any skill 

level. 

The robot starts out by showing the first two positions of 

the sequence and asks the user to perform them while it 

provides feedback.  Once the user has successfully repeated 

the first two gestures with the help of the robot, the user is 

asked to repeat the sequence again from the beginning, this 

time without demonstration or verbal feedback from the 

robot.  Once the gestures are completed without help, the 

(a) 
 

(b) 
Fig. 1:  (a) Exercise setup with user and robot facing each other.  

(b) The socially assistive robot platform 



  

robot shows the next two gestures in the sequence, and the 

user is again asked to perform the entire sequence from the 

beginning (now four gestures in length).  As the user 

continues to successfully memorize all shown gestures, the 

robot continues to show the user two more (next six, and 

then eight gestures in total length), and the game progresses 

in difficulty. 

The robot helps the user to keep track of the sequence by 

counting along with each correct gesture, and reminding the 

user of the poses when it detects errors (e.g., “Oh, that’s too 

bad! Here again is gesture five”).  The robot also reports to 

the user his/her current high score (i.e., the number of 

gestures remembered correctly) in an attempt to motivate 

improvement upon past performance. 

D. General Interaction Methodology 

Many social intricacies contribute to the foundation of a 

meaningful relationship, details of which Bickmore and 

Picard have outlined in regards to human-computer 

interaction [18] but which also apply to human-robot 

interaction.  These include empathy, humor, reference to 

mutual knowledge, continuity behaviors, politeness, and 

trust, among others.  We place great importance on these 

relationship building tools and integrated each, in some form 

or another, into the social interaction component of our robot 

exercise instructor.   

Our primary focus was in eliminating the perceived 

repetitiveness of the robot’s verbal instructions/comments.  

We believe that if the robot is perceived by the user as 

repetitive and hence predictable, this can lead to a decrease 

in the perception of the robot’s intelligence by the user, and 

ultimately to a loss of trust in the robot’s helpfulness in 

motivating exercise.  Special attention was therefore placed 

on adding variety to the robot’s utterances.  

Towards this end, the robot always draws from a list of 

phrases that emphasize the same point when speaking to the 

user, choosing one randomly at run time.  For example, there 

are more than ten different ways in which the robot can 

praise the user (e.g., “Awesome!”, “Nice job!”, “Fantastic!”).  

Furthermore, if the robot needs to repeat itself exactly, for 

example when providing the same feedback comment during 

the Workout game, it adds filler words to the given phrase, 

such as the user’s name or the word “try” or both (e.g., “Try 

and raise your left arm”, “John, raise your left arm”).  

Adding the user’s name to the interaction dialogue was an 

important part of our system design, not only to add 

variability, but also for its relationship building abilities [18]. 

The robot always uses the user’s name at the first greeting, 

and also when bidding farewell at the end of a session. 

IV. VISION MODULE 

In order to monitor user performance and provide accurate 

feedback during the exercise routines, the robot must be able 

to recognize the user’s arm gestures.  To accomplish this, we 

developed a vision module that recognizes the user’s arm 

gestures/poses in real time, with minimal requirements for 

the surrounding environment and none for the user. 

 Several different approaches have been developed to 

accomplish tracking of human motions, both in 2D and 3D, 

including skeletonization methods [14], [15], gesture 

recognition using probabilistic methods [16], and color-

based tracking [17], among others.  We opted to create an 

arm pose recognition system that takes advantage of our 

simplified exercise setup in order to achieve real-time results 

without imposing any markers on the user. 

 To simplify the visual recognition of the user, a black 

curtain was used to provide a static and contrasting 

background for fast segmentation of the user’s head and 

hands, the most important features of the arm pose 

recognition task, independent of the user’s skin tone. 

 The arm pose recognition algorithm consists of the 

following four major steps: 

1) Create segmented image: The original gray-scale 

camera frame is converted into a black/white image by 

applying a single threshold over the image.  All pixels below 

the threshold are set to black, and the rest to white.  Fig. 2(a) 

shows an original grayscale image captured from the camera, 

with the segmented image shown in Fig. 2(b).   

2) Detect the user’s face: The OpenCV frontal face 

detector is used to determine the location and size of the 

user’s face. With these values, an estimate for the shoulder 

position for both sides of the body is made.  

3) Determine hand locations: The hand locations of the 

user are determined by examining the extrema points of the 

body pixels (max/min white pixel locations along x and y 

directions away from body) inside the region above the chest 

line and to the side of the face in the segmented image. The 

algorithm applies a simple set of rules, or heuristics, to 

choose which extrema points correspond to the hand location 
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Fig. 2:  (a),(c),(d) Example face and arm angle detection results 

superimposed over original grayscale camera frames. (b) Segmented 

image of camera frame shown in (a). 



  

for the given arm. For example, if highest white pixel (body 

pixel) in the segmented image on the left side is further than 

the approximate shoulder-to-forearm distance, then that is 

the left hand location.  

4) Determine arm angles: Once the hand location for a 

given arm is found, the elbow point is estimated, which in 

turn provides the desired arm angles. The elbow point is 

estimated using the white pixel (body pixel) that lies furthest 

from the line connecting the hand position and the shoulder 

position, while also not exceeding the maximum allowable 

distance from the hand (to enforce forearm length 

restriction).  Example arm angle detection results can be seen 

in Fig. 2(a), (c) and (d). 

 The vision module only searches for frontal faces, and 

thus detection rates depend largely on whether or not the 

user is facing the robot.  However, high detection rates are 

not actually necessary for accurate gesture recognition, as the 

most recent detected face location is used in the arm 

detection procedure if a face is not found in the current 

frame. This substitution works well, since the user’s head 

position generally remains stationary while the user is seated 

in a chair in front of the robot throughout the interaction.  

The arm pose recognition algorithm runs with an average 

frame rate of 20 fps on a 2.4 GHz Intel Core 2 Duo 

processor, and while the arm detection procedure was not 

formally evaluated, the system was observed to be fairly 

robust to different types of clothing, lighting, and user body 

types, with a notable arm angle estimation accuracy that is 

sufficient for the purposes of our exercise system. 

V. STUDY 

A. Method 

A feasibility study was conducted with residents from our 

partner senior living facility, Southern California 

Presbyterian Homes. Each participant took part in an 

exercise session with the robot twice per week for two 

weeks, yielding a total of four exercise sessions per 

participant.  The primary purpose of the study was to test and 

validate the effectiveness of our robot exercise instructor 

system as well as to obtain valuable feedback from the 

participants for possible system improvement.  The study 

was also designed to explore the role of choice and user 

autonomy within the exercise game scenario.  Fig. 3 shows a 

participant interacting with the robot during the study. 

Self-determination, represented in a task such as choice of 

activity, has been shown to increase or be less detrimental to 

intrinsic motivation when compared to similar task 

conditions that do not involve choice [12], [13].  These 

results are interesting because increasing the user’s intrinsic 

motivation to complete the task, or in our case to exercise, is 

perhaps the most effective way to encourage long-term 

behavior change. 

B. Experiment Conditions 

Two experiment conditions were created to test user 

preferences regarding choice of activity: the Choice 

condition, and the No Choice condition.  The conditions 

differ only in the manner in which the exercise games 

(Workout, Imitation, Memory) are chosen to be played 

during the exercise sessions.  The design of the experiment is 

within-subject, as each participant engages in both 

conditions at least twice.  The following are descriptions of 

each condition: 

1) Choice Condition: The user is given the choice of 

which game to play at specific points in the interaction.  The 

robot prompts the user to press the “Yes” button when he  

hears the game he would like to play, as the robot calls out 

the names of each of the three game choices.  After the user 

has made a choice, the chosen game is played for a duration 

ranging from one to two minutes in length, after which the 

robot asks the user if he would like to play a different game.  

Depending on the user’s response, the robot either continues 

playing the same game for another one to two minutes, or 

prompts the user again to choose which game to play next. 

2) /o Choice Condition: The robot chooses which of the 

three games to play at the specified game change intervals 

(every one to two minutes).  The robot always changes from 

one game to another to try to minimize the user’s frustration, 

as the robot is unaware of the user’s personal game 

preferences.  For simplicity, in this condition the robot 

always chooses to first play the Workout game, followed by 

the Imitation and Memory games, then cycles through them 

in the same order again. 

C. Hypotheses 

The hypotheses for the study were as follows: 

1) After the first session, no significant difference will be 

found between the participants’ preferences for the 

Choice or No Choice conditions;  

2) After the fourth and final session, more participants will 

prefer the Choice condition over the No Choice 

condition. 

The first hypothesis is based on the notion that the 

participants, having just been introduced to the exercise 

system, will not yet have any strong feelings about any of the 

three available games, and therefore will have little to no 

preference to whether they themselves or the robot chooses 

which games to play.  

 

Fig. 3:  Study participant creating a novel gesture for the robot to 

perform during the Imitation game. 



  

The second hypothesis stems from the idea that the 

participants, having already interacted with the robot in 

exercise sessions for two weeks and having gained more 

experience with each game, will have developed personal 

game preferences and therefore will prefer to choose for 

themselves which games to play. 

VI. RESULTS 

A. Participant Statistics 

Twelve participants were recruited to participate in the 

study, one of whom dropped out after two sessions due to 

scheduling conflicts.  Thus, eleven participants were able to 

complete the entire four-session, two-week trial.  There were 

ten female participants and one male participant.  All of the 

participants were seniors over the age of sixty-five.  

B. Participant Preferences Regarding Choice 

The first exercise session presented each participant with 

both study conditions, each lasting ten minutes in duration.  

The order in which the conditions were presented was 

counter-balanced among the participants. For the next two 

sessions, the participants interacted with the robot only in the 

Choice condition, and for the fourth and final session, they 

interacted only in the No Choice condition. 

The survey results after the first session indicate that 3 

participants preferred the Choice condition, 7 participants 

preferred the No Choice condition, and 1 participant had no 

preference.  These results are consistent with our first 

hypothesis, as the difference in participant preferences 

between the two conditions is not statistically significant.  It 

is interesting to note, however, that even though most 

participants preferred the No Choice condition, almost all of 

them, 10 out of 11, reported increased enjoyment of the task 

when given the opportunity to choose which exercise game 

to play; this result is consistent with the literature on choice 

effects on intrinsic motivation. 

After the fourth and final session, the participants were 

again asked to state their preference among the two 

conditions, and the results are similar to those of the first 

survey.  Two participants switched their preference from one 

condition to the other, and one additional participant 

expressed no preference.  This result does not support our 

second hypothesis, and may be due to the fact that the 

enjoyment derived from choosing the game does not out-

weigh the enjoyment derived from relaxation due to reduced 

responsibility, as some of the participants reported being the 

case.  A graph summarizing the participants’ preferences of 

study conditions is shown in Fig.4 (a). 

It is interesting to note that even though a majority of the 

participants reported preferring the No Choice condition 

after the final session, all 11 participants at one point or 

another during the study took advantage of having a choice 

in the Choice condition.  Specifically, when given the option 

by the robot to change games, the participants either chose to 

continue playing the same game they were playing or chose 

to avoid playing a game they did not want to play.  Neither 

of these cases would occur in the No Choice condition, as 

the robot was unaware of the user’s current game 

preferences.  This result speaks to the usefulness of user 

choice in the game scenario, suggesting that a hybrid 

approach that includes both user and robot decision making, 

tuned automatically for each user, might ultimately be best 

for achieving a fluid and enjoyable game interaction for all 

participants.  

C. Participant Perceptions and Feelings towards Robot 

In the questionnaire given after the last exercise session, 

the participants were asked to rate their perception of robot’s 
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intelligence, and helpfulness in getting them to exercise.  

They were also asked to rate the level of importance they put 

on their participation in the exercise sessions with the robot, 

and their mood in general during the four exercise sessions.  

The rating scale was a five-point Likert scale, with the 

number 1 representing “Not at all”, 3 “Moderately”, and 5 

“Very” (e.g., “Not at all helpful” and “Very helpful”).  The 

question regarding user mood during the sessions contained 

a modified scale, where the mood options ranged from 1 

“Irritated/frustrated”, to 5 “Happy/joyful”, with the medium 

range being 3 “Normal”. 

The results of the survey questions regarding participant 

perception and feelings towards the robot exercise system 

are encouraging, as they indicate that the participants 

perceived the robot to have above moderate intelligence, and 

that the robot was more than moderately helpful in getting 

them to exercise.  Furthermore, the participants reported 

placing an above moderate level of importance to the 

exercise sessions and normal-to-moderately pleased mood 

during the sessions, which is crucial for achieving long-term 

success in any socially assistive robot setting.  A summary of 

the results in shown in Fig. 4 (b).  The average rating was 

approximately 3.5 for each category; this is encouraging 

especially considering that the majority of participants rated 

each category with a score of 4 or above, and no participants 

rated any category with the lowest score of 1. In fact, only 

two participants rated the categories of helpfulness and 

importance below the moderate level of 3, and only one 

participant rated the categories of intelligence and mood 

below the moderate level.  

Another interesting result from the study is that the 

participants largely (9 out of 11) favored the Workout game 

over the others, as shown in Fig. 4 (c).  The participants (8 

out of 11) also reported that they considered the robot to be 

more like an exercise instructor than a game conductor, 

companion, or none of these.  Both of these results are 

important because they suggest that the participants have 

determined the robot to be an entity that they can trust and 

that is capable of helping them, rather than simply 

entertaining them. 

VII. CONCLUSIONS 

In this paper we have presented the design, 

implementation, and evaluation of a socially assistive robot 

that is capable of interacting with people and engaging them 

in a seated arm exercise scenario.  A feasibility study was 

conducted with elderly participants; the results validate the 

effectiveness of the socially assistive robot in motivating 

users to perform simple physical exercises.  Future work 

includes studying the role of physical embodiment by 

comparing the effectiveness of a physical robot to that of a 

computer simulation of the same robot, and also expanding 

the length of the study to investigate the long-term 

effectiveness of the socially assistive robot system.   
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