
MULTI-VEHICLE COOPERATIVE CONTROL FLIGHT TEST
Anawat Pongpunwattana, Richard Wise, Rolf Rysdyk

University of Washington, Seattle, WA
Anthony J. Kang, The Boeing Company, St. Louis, MO

Abstract
During the spring and summer of 2005, the

Autonomous Flight Systems Laboratory at the
University of Washington1 and Boeing St. Louis
developed and flight tested control software for the
Boeing Multi-Vehicle UAV Testbed. The goal of
this collaboration was to demonstrate the ability of
a team of UAVs to autonomously allocate a set of
targets among the team and fly to the targets while
avoiding designated areas. A distributed
architecture was used maximizing the benefits of
increased autonomy in the areas of task allocation
and path planning. The real-time decision making
component consists of the Evolution-based
Cooperative Planning System (ECoPS) developed
under DARPA funding. The approach was
demonstrated in simulations and in a flight test at
Fort Leonard Wood, Missouri.

Introduction
Unmanned Aerial Vehicles (UAVs) are

valuable in many civil and military applications.
Currently operational UAVs require a skilled team
of technicians and engineers to closely monitor and
control the system during the operation. To
increase autonomy, the UAVs must have the ability
to navigate safely in a hostile environment and
make decisions to perform the assigned tasks
effectively. To demonstrate such capability, a
research team at the Boeing Company in St. Louis,
Missouri, developed the Multi-Vehicle UAV
Testbed. This testbed provides a modular system for
prototyping technologies for cooperative planning
and control for a team of UAVs.

Together with the Boeing St. Louis team, the
Autonomous Flight Systems Laboratory at the
University of Washington (UW) developed control
software for the testbed. The objective was to
develop efficient real-time control and

1www.aa.washington.edu/research/afsl

communication software and to demonstrate its
performance in flight. The end product is a
distributed control software with efficient
algorithms for computation of cooperative
trajectories for a team of UAVs to accomplish a
common goal set. The algorithms must: 1) be
suitable for real-time implementation onboard the
UAVs, 2) adapt to changes in the environment, 3)
avoid collisions, 4) generate feasible trajectories
using uncertain information of the environment, and
5) deal with moving and unexpected “pop-up”
targets. The Evolution-based Cooperative Planning
System (ECoPS) [1] is used as the real-time
decision making component of the software. ECoPS
is a distributed planning system for team
coordination and path planning. The planning
algorithms are based on techniques from
evolutionary computation and market strategies.

Figure 1. BAT unmanned autonomous vehicle
prepared for launch

Multi-Vehicle Testbed
The Boeing Multi-Vehicle UAV testbed

consists of a fleet of UAVs and a communication
and control infrastructure. The aircraft are BAT
UAVs manufactured by the MLB Company, Figure
1. The six-foot wingspan UAV is equipped with an
autopilot system which accepts navigation
commands through radio communication. The
aircraft have a gross weight of 15 lbs which
includes a 4 lbs payload and have an endurance of 2

Figure 2. Architecture of the Multi-Vehicle UAV Testbed

to 2.5 hours flying at 25 to 50 mph. The aircraft
payload consists of a geo-stabilized 3-axis nose-
mounted camera providing real-time video feed to a
ground station.

The testbed has a modular design for
controlling both real and simulated UAVs
simultaneously. Figure illustrates the architecture of
the testbed and its components. The testbed consists
of five main components: a simulated or real UAV,
a multi-vehicle ground control station, an
environment simulation, mission processor
hardware, and a gateway controller. The simulated
UAV is used for initial lab testing and participating
along side real UAVs for large multi-vehicle
experiments. The Rapid Prototyping Groundstation
(RPGStn) is a ground control station that allows the
control of up to four real or simulated UAVs. The
environment simulation is a Boeing-developed
software package that is used to create a multitude
of interactive targets and threats. It can also
simulate on-board sensors to stimulate the rest of
the testbed. The mission processor hardware is a
platform for hosting experimental vehicle controller
software. It provides access to telemetry downlink
and control uplink. It also provides a method for
multiple vehicles to interact with each other. The

final component is the gateway controller. This is
an application often hosted on the mission
processor hardware that allows one or more
controllers access to the real and simulated UAVs.
This application allows the experimental
controllers, the ground control station and back-up
safety systems to all have access to the UAVs.

The ground-based computing and
communication infrastructure is based on the Open
Control Platform (OCP). OCP is used as a software
tool for developing control algorithms. It provides
integration with design tools like
MATLAB/SIMULINK in common operating
systems (OS) and enables distributed simulation of
multiple unmanned vehicles. OCP was developed
by the Boeing Company as part of the Defense
Advanced Research Projects Agency's “Software
Enabled Control” research program. A major
component of OCP is the object-oriented
middleware called the Real-Time Common Object
Request Broker Architecture (RT CORBA), which
allows OCP to be used for developing distributed
control and communication applications. It
provides computing services and an application
program interface (API) with graphical tools for
automatic code generation facilitating the

development of real-time distributed software.
Figure 3 shows the hierarchical components of
OCP.

Controls API

Middleware Services \ Wrappers

RT CORBA

OS (Windows, Linux, RTOS, etc.)

Figure 3. Open Control Platform’s components

Control System
Each vehicle is controlled by a mission

processor/gateway controller which shares
information with the ground station and other
vehicle controllers via network communication. The
vehicle team is provided a set of tasks at the
beginning of a mission. Each vehicle's controller
makes coordinated decisions in choosing its tasks
and computing paths that support the completion of
its tasks. The computed paths are sent to the UAV
in the form of waypoints and to the ground station
for visualization and monitoring. The controller
autonomously adapts its task plan and paths to
changes in the environment.

Controller Behaviors
The UW controller software is a multi-

threaded application created using OCP and
consists of two sets of behaviors:

1. Data-driven Behaviors:

• decodes and processes incoming inter-
vehicle communication data.

• decodes and processes incoming data
received from the RPGStn.

• formats incoming sensor data and
updates target information.

• sets initial flight plan and Home-
Waypoints.

• updates vehicle position and ground
speed.

• updates vehicle altitude and air speed.

2. Timer Behaviors:

• 1 Hz:

− controls the execution of the on-
line planning process

− controls the creation and
transmission of waypoints to the
vehicle and the RPGStn.

• 5 Hz:

− controls the off-line planning
process.

• 10 Hz:

− processes inter-vehicle
communication messages for team
coordination.

Waypoint Generation
The waypoint generation and transmission is

controlled within the controller's 1 Hz timer
behavior which also governs the planning process.
Planning occurs in two phases, off-line and on-line.
Off-line planning executes prior to the start of the
autonomous mission. On-line planning starts upon
reception of an activation command from the
RPGStn. Once activated, a certain length of the
path is committed to as the committed trajectory.
The on-line planning process continues to adapt the
path beyond the committed trajectory. Segments of
the evolving path are added to the committed
trajectory continuously during the flight.

A counter within the 1 Hz timer behavior
controls creation and transmission of waypoints as
follows:

• counter < 40

− The current position of the vehicle
relative to the position of the next
waypoint is compared.

− If the vehicle is near the next waypoint,
its waypoint data is updated.

− New waypoint data is transmitted to the
vehicle.

− The counter is incremented.

• counter >= 40

− The evolving path is added to the
section of committed trajectory to
construct a total trajectory.

− The total trajectory is discretized by
normalization based on the size of the
operational field area and a standard
number of waypoints.

− Trajectory discretization is done evenly
in time.

− Waypoint data is calculated at
appropriate times.

− Waypoint data is converted to the
format used by the vehicle and the
RPGStn.

− Waypoint data is transmitted to the
vehicle and the RPGStn.

− The counter is reset to zero.

Due to bandwidth limitation, a flight plan sent
to the vehicle in each update is defined by only four
waypoints sequentially listed as: 1) Home-
Waypoint 2) Current-Waypoint 3) Next-Waypoint
and 4) Home-Waypoint. Home-Waypoint is
located at the ground station. Current-Waypoint is
the first waypoint ahead of the vehicle at time of
transmission. Home-Waypoint is added to the list at
both the beginning and the end for fail-safe reasons.

Planning System
Most of the computation performed by each

controller pertains to planning. The function of the
planning system is to schedule and allocate tasks to
those vehicles that can achieve them optimally. A
team objective function is formulated based on
mission objectives and corresponding cost
assessment, e.g. in terms of threat exposure, vehicle
payload, endurance, and range. The planning
system is based on a distributed market-protocol to
optimize the team objective function, Figure 4. This
scheme is motivated by the optimization process in
market economies and team decision theory [2].
Under the market protocol, the vehicles choose
their own tasks and plan their routes to benefit the
team. Completing tasks will bring reward to the

team, which is weighed against the cost associated
with the task and path execution.

Vehicle
Agent

Vehicle
Agent

Vehicle
Agent

- Mission Objectives
- Constraints
- Global information

- Trading Bids
- Local sensor Info

Planning suggestions

-Trading announcement
-Trading results

- System status
- Local information

Active Coordinator

Coordinator
Agent

Coordinator
Agent

Coordinator
Agent

Figure 4. Distributed market-protocol based
planning system.

The market-protocol based system considers
the vehicles as participants in a market that trades in
tasks. In this system, vehicles buy or sell tasks
through a coordinator agent that enable organized
and efficient trading and facilitate human operator
interaction with the system. Coordinator agents are
implemented on each vehicle, but only one is active
at any given time. The computational burden to run
a coordinator agent is small relative to that for
making trading decisions. A significant advantage
of coordinator agents is the continuous, albeit low-
bandwidth, monitoring of team members and task
allocation. If a vehicle is unable to communicate,
the active coordinator agent will put its tasks up for
auction. Conversely, if the active coordinator agent
is damaged, a simple election mechanism
designates a new coordinator agent from among the
communicating team members.

Vehicle Agents are key components of ECoPS
containing a Planner and a Communicator which
interact with the active coordinator agent. The
Planner serves as the brain of the vehicle agent,
making trading decisions to obtain a set of tasks and
computing the best task sequence and
corresponding paths. An Evolutionary
Computation (EC) based technique is used to solve
the optimization problems.

Market-Based Algorithm for Task Allocation
This section describes the task trading

mechanism in ECoPS. The details of each step are
described in the next section and decision making
algorithms can be found in [1]. Figure 5 illustrates
the concept of the task trading. Consider a system
with NV vehicles and NT tasks at trading round n.
Each vehicle i owns a set of tasks Ti. The task
allocation A can be expressed as

{ }1 2() (), (), , ()VNn n n n=? T T T… (1)

The set of all tasks, T, is given by

1

() ()
VN

i

i

n n
=

=T T∪ (2)

where () ()i n n⊂T T . The task allocation
optimization problem can be defined by

 max ()J
A

A (3)

where J is the team objective function. Vehicle i
submits a set of tasks i iS ⊂ T in a sell-bid at a
price ()iSπ . The set of all tasks submitted for sale
is expressed as

{ }1 2

1

() () (), (), , ()
V

V

N
Ni

i

n S n S n S n S n
=

Ψ = = …∪ (4)

The set of all possible tasks vehicle i can buy at
trading round n is given by

{ }
1,

1 1 1

() ()

(), , (), (), , ()

V

V

N
i j

j j i

Ni i

n S n

S n S n S n S n

= ≠

− +

Φ =

= … …

∪
 (5)

Vehicle i bids on a set of task i iB ∈Φ at a price
()iBπ . At the end of trading round n, the set of

tasks owned by vehicle i is

(1) () () ()i i i in n B n S n+ = ∪ −T T (6)

and the task allocation can be written as

{ }1(1) (1), , (1)VNn n n+ = + +A T T… (7)

The goal of task trading is to find A(n) such that

 *lim ()
n

n
→∞

=A A (8)

where A* is the optimal solution of the task
allocation problem, Equation (3). This goal can be
accomplished if all vehicles make trading decisions
such that

{ }((1)) (()), 1,2,J n J n n+ > ∀ ∈A A … (9)

S2 S3S1

S2

S1

T2

T1 T3

vehicle 2

vehicle 1 vehicle 3

Market

Selling Task

Buying Task

B3∈{S1, S2}

B2∈{S1, S3}

B1∈{S2, S3}

S3

Figure 5. Diagram illustrating the concept of
task trading in market-based planning systems.

The most significant part of the mission
problem formulation is the definition of the team
objective function. In ECoPS, this function
captures the dynamics and uncertainties associated
with the mission. The order of events and actions
during the mission affect the function output
continuously. For a vehicle with multiple tasks, the
cost assessment of the possible task execution
sequences will include the level of threat exposure,
chances of successful task completion, and time
required for task execution. The degree of certainty
of information is also accounted for in the objective
function, which is thus affected when new
information becomes available.

The team objective function J is composed of
two main terms and can be written as:

1 1

VT NN

i v
i v

J R C
= =

= −∑ ∑ (10)

The first term represents the expected mission score
gained upon task completion. The second term is

the expected total cost of task completion, which
depends on the probability of survival and the
amount of fuel used by all the vehicles. The
probability of task completion depends on the
probability of survival up to that time. Survivability
is computed from the degree of intersection of
vehicle paths with the distribution of possible
obstacle locations. At each time step, the expected
mission score is computed by summing the score of
expected task completions. Therefore, a simulation
is executed for each candidate plan to predict the
value of all system states and the objective function.
Details of the objective function are provided in [1].

ECoPS Task-Trading Communication
Task trading in ECoPS is done by means of

inter-vehicle communication, as described in this
section. The task allocation process is initialized as
follows:

• The active coordinator agent broadcasts all
the unassigned tasks to the team.

• Each vehicle agent submits a bid for a task.

• The coordinator sends bidding results to all
vehicle agents.

• Each vehicle agent updates its task plan and

• The active coordinator updates the task
allocation table.

These steps repeat until all the tasks are assigned.
Then the main task trading starts. Figure 6 shows
the task trading sequence in one round of trading
which is composed of four main phases: selling,
buying, confirming, and transferring:

• The selling phase starts as the coordinator agent
broadcast a request for sell bids to all the
vehicle agents. The request includes a response
time limit. The vehicle agents determine which
of their tasks should be put up for sale, and
transmit their sell bids to the coordinator agent.
A sell bid consists of a trade item, in this case a
set of tasks and its sell price. The sell price is
the minimum bid price of the the buying phase,
also referred to as the reserved price.

• The buying phase starts when the time limit of
the sell bid request expires, or when the
coordinator receives sell bids from all the

vehicle agents. The coordinator agent gathers
all the trading items and broadcasts a request
for buy bids including a time limit. Each of the
vehicle agents makes a decision to bid on one
of the trading items and submits its buy bid to
the coordinator agent.

• The confirming phase is a part of the trading
sequence to allow vehicle agents to retract their
buy bids before the final trading results are
announced. This phase starts when the time
limit of the buy bid request expires, or when the
coordinator receives buy bids from all the
vehicle agents. Given the submitted responses,
the coordinator agent determines and broadcasts
the initial trading results which indicate
whether each bid will be accepted or rejected,
again with a time limit for response. Next, each
vehicle agent decides to either retract or
confirm the bid, and transmits that to the
coordinator agent.

• Lastly, the transferring phase starts when the
time limit of the confirmation request expires,
or when the coordinator agent receives
confirmation messages from all the vehicles.
The coordinator agent then finalizes the trading
results and broadcast them to the vehicle
agents. Finally, each vehicle agent updates its
task plan accordingly to the received trading
results.

CA sends request
for selling tasks

VA determines
selling tasks

VA sends
sell bid

CA broadcasts
on-market tasks

VA determines
buying confirmation

CA sends initial
trading results

CA determines
initial trading results

VA determines
buying tasks

VA sends
buy bid

Vehicle Agent (VA)

Coordinator Agent (CA)

VA sends buying
confirmation

CA sends final
trading results

VA updates
its task plan

Selling Phase

Buying
Phase

Confirming Phase

Transferring
Phase

Figure 6. Task trading sequence in one round of
trading

ECoPS Path Planning
The path-planning process generates a vehicle

motion plan in support of the execution of vehicle
tasks. This process is composed of two intrinsically
linked elements: task-sequencing and planning of
an effective path between task locations. To allow
the vehicle to respond effectively to changes in its
environment, the path-planning process
continuously generates and evaluates feasible paths
through a sequence of task location waypoints up to
its final goal location.

Population

Produce
Offspring

(mutation)

Evaluate
(fitness)

Selection

Decode

Environment

Vehicle
Capabilities

Goal

Constraints

Path Encoding Best
Path

Figure 7. Diagram of EC-based path planning
algorithm

ECoPS is based on both Genetic Algorithms
(GA) and Evolutionary Programming (EP) [3].
Work by Capozzi [4] suggests that combining
features of both paradigms can improve the
optimization process. An EC-based path planning
algorithm comprises path encoding, fitness
evaluation, selection scheme, and mutation
mechanisms. Figure 7 illustrates the planning
process of the algorithm.

A path is encoded as a sequence of chained
parameterized segments, Figure 8. The locations of
the vehicle and the goal are shown as a blue triangle
and a green circle respectively. In the application to
the Boeing Multi-Vehicle UAV testbed, we
considered two segment types: straight lines and
constant radius curves, Figure 9. The segment
parameters are limited to keep motion within the
vehicle capabilities. Continuity is enforced
between adjoining segments. At all times, each
candidate path is extended to the goal location by
addition of the necessary number of go-to-goal
segments.

The fitness function associates a value with
each candidate path which captures the dynamics
and uncertainties in the system. The fitness value is
defined as the inverse of the expected value of the

G

Figure 8. An encoded path composed of a chain
of connected segments

start position,
heading, speed

len
gth en

d s
pe

ed

start position,
heading, speed

len
gth

radius

Figure 9. Parameterized elemental path segment
types

loss function given by

 1L v
v F

sum

J
L α

α
 

= − 
 

 (11)

where Jv is the individual vehicle objective function
which can be described similarly to the team
objective function given in Equation (10) as

1

TN

v i v
i

J R C
=

= −∑ (12)

Lα is a scaling factor, and F
sumα is defined by

 ,max
1 1

T TN N
F F v
sum i ij

i j

dα α
= =

= ∑ ∑ (13)

and

 { },max max (), 0,1, ,F F
i ik

k k Nα α= ∈ … (14)

where v
ijd is a task-level decision variable with

1v
ijd = if vehicle v plans to execute task i at

sequence number j, otherwise 0v
ijd = . ()F

i kα is a

time-dependent score weighting function of task i at
time step k. It is used to define a time window for
each task execution. This function adds a high
positive value during the time period in which the
task should be executed, and small or zero value

while the task does not contribute to mission
objectives.

If there is no task in its current task plan, the
loss function is given by

 1L v
v V

v

J
L α

α
 

= − 
 

 (15)

where V
vα is the vehicle cost weighting factor.

Given a task plan Dv and path Qv, the cost
function is a linear combination of the probability
of losing vehicles during the mission, ()V

v Nξ∆ ,
and the amount of fuel required to travel along the
path Fv(Qv). The cost function Cv(Dv,Qv) can be
expressed as

 (,) (()) ()V V Q
v v v v v v vC D Q N F Qα ξ α= ∆ + (16)

with

 () 1 ()v vF Q Fuel N= − (17)

where Fuel(N) is the fuel ratio remaining in the
vehicle. The weighting factors V

vα and Qα are
parameters set based on the assessment of the cost
of vehicle loss, and fuel consumption.

ECoPS generates new paths by combining
(crossover) two paths randomly selected from the
current population or by copying a path and altering
(mutating) it using one of the following mutation
mechanisms chosen at random.

• Crossover - takes the starting segments of
one path and the ending segments of another
and join the two sets.

• Mutate 1-Point - randomly changes the
parameters of one or more segments, and re-
locates the subsequent segments unchanged
to enforce the new end-point constraints.
The first segment to be mutated and the
number of segments to be mutated are
selected at random.

• Mutate 2-Point - randomly changes the
parameters of one or more segments,
computes their new end point and
reconnects to the start of another segment
further along the original path. The
segments are chosen at random.

• Mutate Expand - adds one or more randomly
created segments onto the end of the path.
All original parts of the path are left
untouched.

• Mutate Shrink - removes a random number
of segments from the end of the path.

Mutate 1-Point Mutate 2-Point

Crossover

Mutate Expand Mutate Shrink

Figure 10. Crossover and mutation mechanisms

In each evolution step, a portion of the
population of candidate-paths is selected using a q-
fold binary tournament selection scheme. The
procedures of the selection scheme can be described
as follows. Considering a total population of µ+λ
paths, for each individual path { }1, 2, ,i µ λ∈ +… :

1. Draw 2q ≥ paths randomly from the
population (excluding path i) with uniform
probability 1/(1)µ λ+ − . Denote these

competitors by the indices { }1 2, , , qi i i… .

2. Compare path i’s fitness against each of its
competitors ij, { }1, 2, ,j q∈ … . Whenever

the fitness of path i is not worse than that of
competitor ij , path i receives a point.

The score of each candidate-path is an integer in the
range [0, q]. After the scores of all path-candidates
are determined, the µ best paths are selected as the
parents for the next generation.

Simulation and Flight Test Results
Real-time simulation and flight testing

demonstrate that ECoPS generates flight plans
effectively and quickly adapts its guidance
commands to changes in the environment. The test
scenario includes two UAVs, three targets and three
obstacles. The mission objective is to visit all
targets, avoid obstacle areas, and stay within the
bounded operating field. The mission is initialized
by launching both UAVs and sending them into
holding patterns at different altitudes. The
autonomous mission is started with a command
transmitted by the flight operator.

Snapshots of a simulation run are shown in
Figure 11. Obstacle and operating field boundaries
are shown as dotted yellow lines. The crosshair-like
symbols marked with numbers represent targets.
Frame (a) in Figure 11 shows a set of flight plans of
the two UAVs generated while orbiting the first
waypoint prior to the start of the mission. The blue
and green solid lines are the flight plans of the blue
and green vehicles respectively. Targets are
efficiently assigned to the UAVs, and series of
waypoints are generated to guide the UAVs to the
target locations without flying through the obstacle
areas. Flight plans are updated periodically during
the operation to improve the initial plans. Frame (b)
shows the flight plans of the UAVs approaching
their first targets. The past trajectories of the two
vehicles are shown as light blue and light green
lines. The result shown in Frame (c) was captured
when the two vehicles reached the targets. Frame
(d) shows that both vehicles have successfully
flown to all targets and are returning to the home
location.

The scenario in Figure 12 is similar to the first
one, except that the UAVs are not aware of target 3
prior to the mission. The initial flight plans are
shown in Frame (a). Once the two vehicle are on

their way to the known targets, the information of
target 3 is transmitted to the vehicles. Frame (b)
shows that the green vehicle effectively adapts its
path to the new set of tasks which include the
popped-up target 3. In frame (c), the two UAVs
have visited targets 1 and 2. The green UAV is
heading to the last target and the blue UAV is
returning to the home location. Frame (d) shows
that the green vehicle has visited target 3 to
complete the mission.

Results from the flight test are shown in Figure
13. Because of mechanical difficulties and bad
weather during the flight operations, we were able
to run only a single vehicle mission. Frame (a)
shows the initial flight plan represented by the blue
line. Only the first ten waypoints of the flight plan
are shown. An improved flight plan generated after
the start of the mission is illustrated in frame (b).
Frame (c) shows the flight plan and the actual route
of the UAV, after it has flown to both targets 2 and
3. The route that is off the flight plan was caused by
a dropout of command data packet sent to the UAV,
which triggered a return to the home location. The
vehicle, however, returned to the commanded flight
path after the dropout. The mission was concluded
once the vehicle reached target 3.

Conclusion
This paper presents the Boeing Multi-Vehicle

UAV Testbed and Evolution-based Co-operative
Planning System developed by the University of
Washington. We demonstrate that the testbed
provides sufficient tools for developing effective
real-time planning and cooperation algorithms for
autonomous team decision making. We also
demonstrate how the planning system is capable of
coordinating a team to perform its mission
efficiently while adapting continuously to changes
in the environment.

Acknowledgments
This work is supported by the Boeing

Company in St. Louis, Missouri. The authors would
like to thank Michael Abraham and the Boeing
Phantom Works research team for supporting this
work.

 (a) (b) (c) (d)

Figure 11. Simulation results of a mission with two UAVs and three targets

 (a) (b) (c) (d)

Figure 12. Simulation results of a mission with a popped-up target

 (a) (b) (c)

Figure 13. Flight test results of a single vehicle mission

References
[1] Pongpunwattana, A., 2004, “Real-Time

Planning for Teams of Autonomous Vehicles in
Dynamic Uncertain Environments,” Ph.D.
Dissertation, University of Washing, Seattle,
WA.

[2] Ho, Y. C. and Chu, K. C., 1972, “Team
Decision Theory and information Structures in
Optimal Control Problems Part I,” IEEE
Transactions on Automatic Control, vol. 17, no.
1, pp. 15-22.

[3] Fogel, D. B., 2000, Evolutionary Computation:
Toward a New Philosophy of Machine
Intelligence, 2nd ed., Piscataway, NJ, IEEE
Press.

[4] Capozzi, B. J., 2001, “Evolution-based Path
Planning and Management for Autonomous
Vehicles,” Ph.D. Dissertation, University of
Washington, Seattle, WA.

