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Abstract 
During the spring and summer of 2005, the 

Autonomous Flight Systems Laboratory at the 
University of Washington1 and Boeing St. Louis 
developed and flight tested control software for the 
Boeing Multi-Vehicle UAV Testbed. The goal of 
this collaboration was to demonstrate the ability of 
a team of UAVs to autonomously allocate a set of 
targets among the team and fly to the targets while 
avoiding designated areas.  A distributed 
architecture was used maximizing the benefits of 
increased autonomy in the areas of task allocation 
and path planning.  The real-time decision making 
component consists of the Evolution-based 
Cooperative Planning System (ECoPS) developed 
under DARPA funding.  The approach was 
demonstrated in simulations and in a flight test at 
Fort Leonard Wood, Missouri. 

Introduction 
Unmanned Aerial Vehicles (UAVs) are 

valuable in many civil and military applications.  
Currently operational UAVs require a skilled team 
of technicians and engineers to closely monitor and 
control the system during the operation.  To 
increase autonomy, the UAVs must have the ability 
to navigate safely in a hostile environment and 
make decisions to perform the assigned tasks 
effectively. To demonstrate such capability, a 
research team at the Boeing Company in St. Louis, 
Missouri, developed the Multi-Vehicle UAV 
Testbed. This testbed provides a modular system for 
prototyping technologies for cooperative planning 
and control for a team of UAVs.   

Together with the Boeing St. Louis team, the 
Autonomous Flight Systems Laboratory at the 
University of Washington (UW) developed control 
software for the testbed.  The objective was to 
develop efficient real-time control and 
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communication software and to demonstrate its 
performance in flight.  The end product is a 
distributed control software with efficient 
algorithms for computation of cooperative 
trajectories for a team of UAVs to accomplish a 
common goal set. The algorithms must: 1) be 
suitable for real-time implementation onboard the 
UAVs, 2) adapt to changes in the environment, 3) 
avoid collisions, 4) generate feasible trajectories 
using uncertain information of the environment, and 
5) deal with moving and unexpected “pop-up” 
targets. The Evolution-based Cooperative Planning 
System (ECoPS) [1] is used as the real-time 
decision making component of the software. ECoPS 
is a distributed planning system for team 
coordination and path planning.  The planning 
algorithms are based on techniques from 
evolutionary computation and market strategies. 

 

Figure 1. BAT unmanned autonomous vehicle  
prepared for launch 

Multi-Vehicle Testbed 
The Boeing Multi-Vehicle UAV testbed 

consists of a fleet of UAVs and a communication 
and control infrastructure.  The aircraft are BAT 
UAVs manufactured by the MLB Company, Figure 
1. The six-foot wingspan UAV is equipped with an 
autopilot system which accepts navigation 
commands through radio communication. The 
aircraft have a gross weight of 15 lbs which 
includes a 4 lbs payload and have an endurance of 2  



 

Figure 2. Architecture of the Multi-Vehicle UAV Testbed 

to 2.5 hours flying at 25 to 50 mph. The aircraft 
payload consists of a geo-stabilized 3-axis nose-
mounted camera providing real-time video feed to a 
ground station.  

The testbed has a modular design for 
controlling both real and simulated UAVs 
simultaneously. Figure illustrates the architecture of 
the testbed and its components. The testbed consists 
of five main components: a simulated or real UAV, 
a multi-vehicle ground control station, an 
environment simulation, mission processor 
hardware, and a gateway controller. The simulated 
UAV is used for initial lab testing and participating 
along side real UAVs for large multi-vehicle 
experiments.  The Rapid Prototyping Groundstation 
(RPGStn) is a ground control station that allows the 
control of up to four real or simulated UAVs.  The 
environment simulation is a Boeing-developed 
software package that is used to create a multitude 
of interactive targets and threats.  It can also 
simulate on-board sensors to stimulate the rest of 
the testbed. The mission processor hardware is a 
platform for hosting experimental vehicle controller 
software. It provides access to telemetry downlink 
and control uplink. It also provides a method for 
multiple vehicles to interact with each other.  The 

final component is the gateway controller.  This is 
an application often hosted on the mission 
processor hardware that allows one or more 
controllers access to the real and simulated UAVs.  
This application allows the experimental 
controllers, the ground control station and back-up 
safety systems to all have access to the UAVs.  

The ground-based computing and 
communication infrastructure is based on the Open 
Control Platform (OCP). OCP is used as a software 
tool for developing control algorithms. It provides 
integration with design tools like 
MATLAB/SIMULINK in common operating 
systems (OS) and enables distributed simulation of 
multiple unmanned vehicles. OCP was developed 
by the Boeing Company as part of the Defense 
Advanced Research Projects Agency's “Software 
Enabled Control” research program. A major 
component of OCP is the object-oriented 
middleware called the Real-Time Common Object 
Request Broker Architecture (RT CORBA), which 
allows OCP to be used for developing distributed 
control and communication applications.  It 
provides computing services and an application 
program interface (API) with graphical tools for 
automatic code generation facilitating the 



development of real-time distributed software. 
Figure 3 shows the hierarchical components of 
OCP. 

Controls API

Middleware Services \ Wrappers

RT CORBA

OS (Windows, Linux, RTOS, etc.)
 

Figure 3. Open Control Platform’s components 

Control System 
Each vehicle is controlled by a mission 

processor/gateway controller which shares 
information with the ground station and other 
vehicle controllers via network communication. The 
vehicle team is provided a set of tasks at the 
beginning of a mission. Each vehicle's controller 
makes coordinated decisions in choosing its tasks 
and computing paths that support the completion of 
its tasks.  The computed paths are sent to the UAV 
in the form of waypoints and to the ground station 
for visualization and monitoring.  The controller 
autonomously adapts its task plan and paths to 
changes in the environment. 

Controller Behaviors 
The UW controller software is a multi-

threaded application created using OCP and 
consists of two sets of behaviors: 

1. Data-driven Behaviors: 

• decodes and processes incoming inter-
vehicle communication data. 

• decodes and processes incoming data 
received from the RPGStn. 

• formats incoming sensor data and 
updates target information. 

• sets initial flight plan and Home-
Waypoints. 

• updates vehicle position and ground 
speed. 

• updates vehicle altitude and air speed. 

2. Timer Behaviors: 

• 1 Hz:  

− controls the execution of the on- 
line planning process 

− controls the creation and 
transmission of waypoints to the 
vehicle and the RPGStn. 

• 5 Hz:  

− controls the off-line planning 
process. 

• 10 Hz: 

− processes inter-vehicle 
communication messages for team 
coordination. 

Waypoint Generation 
The waypoint generation and transmission is 

controlled within the controller's 1 Hz timer 
behavior which also governs the planning process.  
Planning occurs in two phases, off-line and on-line. 
Off-line planning executes prior to the start of the 
autonomous mission. On-line planning starts upon 
reception of an activation command from the 
RPGStn.  Once activated, a certain length of the 
path is committed to as the committed trajectory.  
The on-line planning process continues to adapt the 
path beyond the committed trajectory.  Segments of 
the evolving path are added to the committed 
trajectory continuously during the flight. 

A counter within the 1 Hz timer behavior 
controls creation and transmission of waypoints as 
follows: 

• counter < 40 

− The current position of the vehicle 
relative to the position of the next 
waypoint is compared. 

− If the vehicle is near the next waypoint, 
its waypoint data is updated. 

− New waypoint data is transmitted to the 
vehicle. 

− The counter is incremented. 



• counter >= 40 

− The evolving path is added to the 
section of committed trajectory to 
construct a total trajectory. 

− The total trajectory is discretized by 
normalization based on the size of the 
operational field area and a standard 
number of waypoints. 

− Trajectory discretization is done evenly 
in time. 

− Waypoint data is calculated at 
appropriate times. 

− Waypoint data is converted to the 
format used by the vehicle and the 
RPGStn. 

− Waypoint data is transmitted to the 
vehicle and the RPGStn. 

− The counter is reset to zero. 

Due to bandwidth limitation, a flight plan sent 
to the vehicle in each update is defined by only four 
waypoints sequentially listed as: 1) Home-
Waypoint 2) Current-Waypoint 3) Next-Waypoint 
and 4) Home-Waypoint.  Home-Waypoint is 
located at the ground station. Current-Waypoint is 
the first waypoint ahead of the vehicle at time of 
transmission. Home-Waypoint is added to the list at 
both the beginning and the end for fail-safe reasons. 

Planning System 
Most of the computation performed by each 

controller pertains to planning.  The function of the 
planning system is to schedule and allocate tasks to 
those vehicles that can achieve them optimally. A 
team objective function is formulated based on 
mission objectives and corresponding cost 
assessment, e.g. in terms of threat exposure, vehicle 
payload, endurance, and range. The planning 
system is based on a distributed market-protocol to 
optimize the team objective function, Figure 4. This 
scheme is motivated by the optimization process in 
market economies and team decision theory [2]. 
Under the market protocol, the vehicles choose 
their own tasks and plan their routes to benefit the 
team.  Completing tasks will bring reward to the 

team, which is weighed against the cost associated 
with the task and path execution. 
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Figure 4. Distributed market-protocol based 
planning system. 

The market-protocol based system considers 
the vehicles as participants in a market that trades in 
tasks.  In this system, vehicles buy or sell tasks 
through a coordinator agent that enable organized 
and efficient trading and facilitate human operator 
interaction with the system. Coordinator agents are 
implemented on each vehicle, but only one is active 
at any given time. The computational burden to run 
a coordinator agent is small relative to that for 
making trading decisions. A significant advantage 
of coordinator agents is the continuous, albeit low-
bandwidth, monitoring of team members and task 
allocation. If a vehicle is unable to communicate, 
the active coordinator agent will put its tasks up for 
auction. Conversely, if the active coordinator agent 
is damaged, a simple election mechanism 
designates a new coordinator agent from among the 
communicating team members. 

Vehicle Agents are key components of ECoPS 
containing a Planner and a Communicator which 
interact with the active coordinator agent.  The 
Planner serves as the brain of the vehicle agent, 
making trading decisions to obtain a set of tasks and 
computing the best task sequence and 
corresponding paths.  An Evolutionary 
Computation (EC) based technique is used to solve 
the optimization problems. 



Market-Based Algorithm for Task Allocation 
This section describes the task trading 

mechanism in ECoPS.  The details of each step are 
described in the next section and decision making 
algorithms can be found in [1].   Figure 5 illustrates 
the concept of the task trading.  Consider a system 
with NV vehicles and NT tasks at trading round n.  
Each vehicle i owns a set of tasks Ti. The task 
allocation A can be expressed as 

{ }1 2( ) ( ), ( ), , ( )VNn n n n=? T T T…  (1) 

The set of all tasks, T, is given by 
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where ( ) ( )i n n⊂T T . The task allocation 
optimization problem can be defined by 

 max ( )J
A

A  (3) 

where J is the team objective function. Vehicle i 
submits a set of tasks i iS ⊂ T  in a sell-bid at a 
price ( )iSπ . The set of all tasks submitted for sale 
is expressed as 
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The set of all possible tasks vehicle i can buy at 
trading round n is given by  
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Vehicle i bids on a set of task i iB ∈Φ  at a price 
( )iBπ . At the end of trading round n, the set of 

tasks owned by vehicle i is 

( 1) ( ) ( ) ( )i i i in n B n S n+ = ∪ −T T  (6) 

and the task allocation can be written as 

{ }1( 1) ( 1), , ( 1)VNn n n+ = + +A T T…  (7) 

The goal of task trading is to find A(n) such that 

 *lim ( )
n

n
→∞

=A A  (8) 

where A*  is the optimal solution of the task 
allocation problem, Equation (3). This goal can be 
accomplished if all vehicles make trading decisions 
such that  

{ }( ( 1)) ( ( )), 1,2,J n J n n+ > ∀ ∈A A …  (9) 
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Figure 5. Diagram illustrating the concept of 
task trading in market-based planning systems. 

The most significant part of the mission 
problem formulation is the definition of the team 
objective function.  In ECoPS, this function 
captures the dynamics and uncertainties associated 
with the mission.  The order of events and actions 
during the mission affect the function output 
continuously.  For a vehicle with multiple tasks, the 
cost assessment of the possible task execution 
sequences will include the level of threat exposure, 
chances of successful task completion, and time 
required for task execution.  The degree of certainty 
of information is also accounted for in the objective 
function, which is thus affected when new 
information becomes available. 

The team objective function J is composed of 
two main terms and can be written as: 
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The first term represents the expected mission score 
gained upon task completion. The second term is 



the expected total cost of task completion, which 
depends on the probability of survival and the 
amount of fuel used by all the vehicles. The 
probability of task completion depends on the 
probability of survival up to that time. Survivability 
is computed from the degree of intersection of 
vehicle paths with the distribution of possible 
obstacle locations. At each time step, the expected 
mission score is computed by summing the score of 
expected task completions. Therefore, a simulation 
is executed for each candidate plan to predict the 
value of all system states and the objective function. 
Details of the objective function are provided in [1]. 

ECoPS Task-Trading Communication 
Task trading in ECoPS is done by means of 

inter-vehicle communication, as described in this 
section.   The task allocation process is initialized as 
follows: 

• The active coordinator agent broadcasts all 
the unassigned tasks to the team. 

• Each vehicle agent submits a bid for a task. 

• The coordinator sends bidding results to all 
vehicle agents. 

• Each vehicle agent updates its task plan and 

• The active coordinator updates the task 
allocation table. 

These steps repeat until all the tasks are assigned. 
Then the main task trading starts. Figure 6 shows 
the task trading sequence in one round of trading 
which is composed of four main phases: selling, 
buying, confirming, and transferring: 

• The selling phase starts as the coordinator agent 
broadcast a request for sell bids to all the 
vehicle agents.  The request includes a response 
time limit.  The vehicle agents determine which 
of their tasks should be put up for sale, and 
transmit their sell bids to the coordinator agent.  
A sell bid consists of a trade item, in this case a 
set of tasks and its sell price. The sell price is 
the minimum bid price of the the buying phase, 
also referred to as the reserved price. 

• The buying phase starts when the time limit of 
the sell bid request expires, or when the 
coordinator receives sell bids from all the 

vehicle agents.  The coordinator agent gathers 
all the trading items and broadcasts a request 
for buy bids including a time limit. Each of the 
vehicle agents makes a decision to bid on one 
of the trading items and submits its buy bid to 
the coordinator agent. 

• The confirming phase is a part of the trading 
sequence to allow vehicle agents to retract their 
buy bids before the final trading results are 
announced. This phase starts when the time 
limit of the buy bid request expires, or when the 
coordinator receives buy bids from all the 
vehicle agents.  Given the submitted responses, 
the coordinator agent determines and broadcasts 
the initial trading results which indicate 
whether each bid will be accepted or rejected, 
again with a time limit for response.  Next, each 
vehicle agent decides to either retract or 
confirm the bid, and transmits that to the 
coordinator agent. 

• Lastly, the transferring phase starts when the 
time limit of the confirmation request expires, 
or when the coordinator agent receives 
confirmation messages from all the vehicles. 
The coordinator agent then finalizes the trading 
results and broadcast them to the vehicle 
agents. Finally, each vehicle agent updates its 
task plan accordingly to the received trading 
results. 
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Figure 6. Task trading sequence in one round of 
trading 



ECoPS Path Planning 
The path-planning process generates a vehicle 

motion plan in support of the execution of vehicle 
tasks. This process is composed of two intrinsically 
linked elements: task-sequencing and planning of 
an effective path between task locations. To allow 
the vehicle to respond effectively to changes in its 
environment, the path-planning process 
continuously generates and evaluates feasible paths 
through a sequence of task location waypoints up to 
its final goal location. 
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Figure 7. Diagram of EC-based path planning 
algorithm 

ECoPS is based on both Genetic Algorithms 
(GA) and Evolutionary Programming (EP) [3]. 
Work by Capozzi [4] suggests that combining 
features of both paradigms can improve the 
optimization process. An EC-based path planning 
algorithm comprises path encoding, fitness 
evaluation, selection scheme, and mutation 
mechanisms. Figure 7 illustrates the planning 
process of the algorithm. 

A path is encoded as a sequence of chained 
parameterized segments, Figure 8. The locations of 
the vehicle and the goal are shown as a blue triangle 
and a green circle respectively. In the application to 
the Boeing Multi-Vehicle UAV testbed, we 
considered two segment types: straight lines and 
constant radius curves, Figure 9.  The segment 
parameters are limited to keep motion within the 
vehicle capabilities.  Continuity is enforced 
between adjoining segments. At all times, each 
candidate path is extended to the goal location by 
addition of the necessary number of go-to-goal 
segments.  

The fitness function associates a value with 
each candidate path which captures the dynamics 
and uncertainties in the system. The fitness value is 
defined as the inverse of the expected value of the 

G

 

Figure 8. An encoded path composed of a chain 
of connected segments 
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Figure 9. Parameterized elemental path segment 
types 

loss function given by 

 1L v
v F

sum

J
L α

α
 

= − 
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 (11) 

where Jv is the individual vehicle objective function 
which can be described similarly to the team 
objective function given in Equation (10) as 
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Lα  is a scaling factor, and F
sumα  is defined by 
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and 

 { },max max ( ), 0,1, ,F F
i ik
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where v
ijd  is a task-level decision variable with 

1v
ijd =  if vehicle v plans to execute task i at 

sequence number j, otherwise 0v
ijd = .  ( )F

i kα  is a 

time-dependent score weighting function of task i at 
time step k.  It is used to define a time window for 
each task execution. This function adds a high 
positive value during the time period in which the 
task should be executed, and small or zero value 



while the task does not contribute to mission 
objectives.  

If there is no task in its current task plan, the 
loss function is given by 

 1L v
v V

v

J
L α

α
 

= − 
 

 (15) 

where V
vα  is the vehicle cost weighting factor. 

Given a task plan Dv and path Qv, the cost 
function is a linear combination of the probability 
of losing vehicles during the mission, ( )V

v Nξ∆ , 
and the amount of fuel required to travel along the 
path Fv(Qv). The cost function Cv(Dv,Qv) can be 
expressed as 

 ( , ) ( ( )) ( )V V Q
v v v v v v vC D Q N F Qα ξ α= ∆ +  (16) 

with 

 ( ) 1 ( )v vF Q Fuel N= −  (17) 

where Fuel(N) is the fuel ratio remaining in the 
vehicle. The weighting factors V

vα  and Qα  are 
parameters set based on the assessment of the cost 
of vehicle loss, and fuel consumption. 

ECoPS generates new paths by combining 
(crossover) two paths randomly selected from the 
current population or by copying a path and altering 
(mutating) it using one of the following mutation 
mechanisms chosen at random. 

• Crossover - takes the starting segments of 
one path and the ending segments of another 
and join the two sets. 

• Mutate 1-Point - randomly changes the 
parameters of one or more segments, and re-
locates the subsequent segments unchanged 
to enforce the new end-point constraints. 
The first segment to be mutated and the 
number of segments to be mutated are 
selected at random. 

• Mutate 2-Point - randomly changes the 
parameters of one or more segments, 
computes their new end point and 
reconnects to the start of another segment 
further along the original path. The 
segments are chosen at random. 

• Mutate Expand - adds one or more randomly 
created segments onto the end of the path. 
All original parts of the path are left 
untouched. 

• Mutate Shrink - removes a random number 
of segments from the end of the path. 

Mutate 1-Point Mutate 2-Point

Crossover

Mutate Expand Mutate Shrink  

Figure 10. Crossover and mutation mechanisms 

In each evolution step, a portion of the 
population of candidate-paths is selected using a q-
fold binary tournament selection scheme.  The 
procedures of the selection scheme can be described 
as follows. Considering a total population of µ+λ 
paths, for each individual path { }1, 2, ,i µ λ∈ +… : 

1. Draw 2q ≥  paths randomly from the 
population (excluding path i) with uniform 
probability 1/( 1)µ λ+ − . Denote these 

competitors by the indices { }1 2, , , qi i i… . 



2. Compare path i’s fitness against each of its 
competitors ij, { }1, 2, ,j q∈ … . Whenever 

the fitness of path i is not worse than that of 
competitor ij , path i receives a point. 

The score of each candidate-path is an integer in the 
range [0, q]. After the scores of all path-candidates 
are determined, the µ best paths are selected as the 
parents for the next generation. 

Simulation and Flight Test Results 
Real-time simulation and flight testing 

demonstrate that ECoPS generates flight plans 
effectively and quickly adapts its guidance 
commands to changes in the environment. The test 
scenario includes two UAVs, three targets and three 
obstacles. The mission objective is to visit all 
targets, avoid obstacle areas, and stay within the 
bounded operating field.  The mission is initialized 
by launching both UAVs and sending them into 
holding patterns at different altitudes.  The 
autonomous mission is started with a command 
transmitted by the flight operator. 

Snapshots of a simulation run are shown in 
Figure 11. Obstacle and operating field boundaries 
are shown as dotted yellow lines. The crosshair-like 
symbols marked with numbers represent targets. 
Frame (a) in Figure 11 shows a set of flight plans of 
the two UAVs generated while orbiting the first 
waypoint prior to the start of the mission. The blue 
and green solid lines are the flight plans of the blue 
and green vehicles respectively.  Targets are 
efficiently assigned to the UAVs, and series of 
waypoints are generated to guide the UAVs to the 
target locations without flying through the obstacle 
areas. Flight plans are updated periodically during 
the operation to improve the initial plans. Frame (b) 
shows the flight plans of the UAVs approaching 
their first targets. The past trajectories of the two 
vehicles are shown as light blue and light green 
lines. The result shown in Frame (c) was captured 
when the two vehicles reached the targets. Frame 
(d) shows that both vehicles have successfully 
flown to all targets and are returning to the home 
location. 

The scenario in Figure 12 is similar to the first 
one, except that the UAVs are not aware of target 3 
prior to the mission. The initial flight plans are 
shown in Frame (a). Once the two vehicle are on 

their way to the known targets, the information of 
target 3 is transmitted to the vehicles.  Frame (b) 
shows that the green vehicle effectively adapts its 
path to the new set of tasks which include the 
popped-up target 3. In frame (c), the two UAVs 
have visited targets 1 and 2. The green UAV is 
heading to the last target and the blue UAV is 
returning to the home location. Frame (d) shows 
that the green vehicle has visited target 3 to 
complete the mission. 

Results from the flight test are shown in Figure 
13.  Because of mechanical difficulties and bad 
weather during the flight operations, we were able 
to run only a single vehicle mission.  Frame (a) 
shows the initial flight plan represented by the blue 
line. Only the first ten waypoints of the flight plan 
are shown. An improved flight plan generated after 
the start of the mission is illustrated in frame (b). 
Frame (c) shows the flight plan and the actual route 
of the UAV, after it has flown to both targets 2 and 
3. The route that is off the flight plan was caused by 
a dropout of command data packet sent to the UAV, 
which triggered a return to the home location. The 
vehicle, however, returned to the commanded flight 
path after the dropout. The mission was concluded 
once the vehicle reached target 3. 

Conclusion 
This paper presents the Boeing Multi-Vehicle 

UAV Testbed and Evolution-based Co-operative 
Planning System developed by the University of 
Washington.  We demonstrate that the testbed 
provides sufficient tools for developing effective 
real-time planning and cooperation algorithms for 
autonomous team decision making. We also 
demonstrate how the planning system is capable of 
coordinating a team to perform its mission 
efficiently while adapting continuously to changes 
in the environment. 

Acknowledgments 
This work is supported by the Boeing 

Company in St. Louis, Missouri. The authors would 
like to thank Michael Abraham and the Boeing 
Phantom Works research team for supporting this 
work. 



       
               (a)                                      (b)                                         (c)                                        (d) 

Figure 11. Simulation results of a mission with two UAVs and three targets 

       
             (a)                                        (b)                                           (c)                                        (d) 

Figure 12. Simulation results of a mission with a popped-up target 

  
                           (a)                                                        (b)                                                        (c) 

Figure 13. Flight test results of a single vehicle mission 
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