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Abstract

Let C(K) be the K-points of a smooth projective curve C of genus
g > 1 and J(K) its Jacobian. Fixing a point on the curve one has a
canonical embedding of C(K) into J(K) with the point identified as 0
of the group. Consider 〈J(K); +, C(K)〉 as an abstract structure of a
group with a distiguished subset. Using model theory we prove that, for
K algebraically closed, one can recover from this data the field K and
the curve C, up to isomorphisms of fields and a bijective isogeny of J. In
characteristic 0 the bijective isogeny is just a regular isomorphism, and
in positive characteristic such an isogeny can be seen as a “Frobenius
twisting”. In such an interpretation our theorem, in particular, proves a
conjecture posed by F.Bogomolov, M.Korotaev and Yu.Tschinkel.

1 Introduction and preliminaries

1.1 Let C(K) be the K-points of a smooth projective curve C of genus
g > 1 and J(K) its Jacobian, the abelian group of degree 0 cycles on C.
We assume throughout that K is algebraically closed and denote k the
algebraic closure of the minimal field of definition of C.

We consider the structure on the set C(K) defined by the (4g+ 2)-ary
relation

R(u1, . . . , ug, ug+1, v1, . . . , vg, vg+1, t1, . . . , tg, s1, . . . , sg)

interpreted as

u1 + . . .+ug +ug+1 + s1, . . . , sg ≡linear v1 + . . .+ vg + vg+1 + t1 + . . .+ tg,

the linear equivalence of divisors. This relation can be written in the form

x1 + . . .+ xg + xg+1 = y1 + . . .+ yg

for 0-degree divisors of the form xi = [ui − vi], yj = [tj − sj ]. This
is sufficient for defining the relation z1 + z2 = z3 for arbitrary 0-cycles
zk = x1,k + . . .+ xg,k ∈ J, hence for defining the group structure (J,+).
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We denote the structure (C(K), R) by CJ(K) or simply CJ . We have
observed above that (J,+) is interpretable in CJ .

Fix a point c0 ∈ C(k) and let j : C(K) → J(K) be the embedding
j : x 7→ [x − c0]. We consider the pair (J(K), C(K)) as a structure with
the universe J(K), the group operation + and a unary predicate that
distingushes the subset j(C(K)) in J(K). We write it in a model-theretic
way as (J ;C,+). Clearly, (J ;C,+) is definable in CJ using the parameter
c0 and vice versa.

We study the situation when two such structures over corresponding
fields K1 and K2 are isomorphic via an isomorphism α,

CJ1 ∼=α C
J
2 . (1)

By the above this is equivalent to

(J1;C1,+) ∼=α (J2;C2,+) (2)

for some choices for c0 on the corresponding curves.

Examples. 1. Let K1
∼=β K2 be an isomorphism of fields, C1 a

smooth projective curve over k1, J1 its Jacobian and C2 a curve over k2
such that C2 = β(C1) by the induced bijection. It is easy to see that the
image J2 = β(J1) is the Jacobian of C2. In this situation we have (1).

2. Let K1 = K2 = K and C1, C2, J1, J2 be as above, and let ψ : J1 →
J2 be an isogeny with trivial kernel such that ψ(C1) = C2. Then we have
(1). (Here the kernel is trivial group-theoretically)

3. Clearly, the composition of β of example 1 and ψ of example 2
gives an example of an isomorphism α of (1). In particular, when β is of
the form Frobm, some m ∈ Z, then α is an isogeny J1 → J2 with trivial
kernel.

Remark. If charK = 0 then ψ in example 2 has to be an isomorphism
of the varieties. This follows from the more general facts in 2.3 below.

1.2 In the recent paper [1], F.Bogomolov, M.Korotaev anf Yu.Tschinkel
proved the following.

Theorem. Let K1 = K2 = Falgp be the algebraic closure of a field of
p elements, p > 3 and (1) holds. Then J1 and J2 are isogenous.

They also conjectured that under the above assumptions C1 and C2

are isomorphic as algebraic varieties, modulo Frobenius twisting.

The proof in [1] is specific to the situation in locally finite fields Falgp
and uses the theory of profinite groups of automorphisms.

Our goal is to give a model-theoretic proof of the following.

1.3 Theorem. For any algebraically closed fields K1 and K2, any in-
stance of (1) is as in example 3 above:

There is a field-isomorphism β : K1 → K2 inducing an isomorphism
of pairs, and a bijective isogeny ψ : β(J1)→ J2 such that

α = ψ ◦ β : (J1;C1,+)→ (J2;C2,+).
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The bijective isogeny ψ is a composition of a bijective morphism of
algebraic groups with a Frobenius isomorphism.

In particular, when K1 = K2 = K and C1 is defined over a finite field,
we have that β(J1) is isogenous to J1 via a map induced by Frobm, for
some m ∈ Z, and so J1 is bijectively isogenous to J2. In particular, C1 is
in bijective correspondence to β(C1) via a map induced by Frob−m, and
the regular morphism ψ sends β(C1) onto C2.

When the characteristic of the field is 0, the isogeny ψ is an isomor-
phism of algebraic varieties.

Remark. In [1] the authors do not make precise what an “isomor-
phism modulo Frobenius twisting” must be. Our theorem says that when
the field of definition is finite, J1 is isomorphic to J2 as abstract groups by
ψ ◦Frob−m, which is a composition of a bijective isogeny with a power of
Frobenius. A bijective isogeny between Jacobians (and the map induced
by it on the curves) is probably the best that can stand for an “isomor-
phism modulo Frobenius twisting”. For example, recall that it is possible
to have a split Jacobian for some curves C in positive characteristic (see
e.g. discussion in [2]). In particular, one can have a Jacobian of the form
J(C) = E1 ⊕ E2, the sum of two elliptic curves. One has an isogeny
ψ : E1 ⊕ E2 → E1 ⊕ E2 defined as an identity on E1, and as a power of
Frobenius on E2.

We must note that in this example we do not know whether the curve
C′ = ψ(C) is smooth, and whether J is the Jacobian variety for C′.

1.4 The proof of 1.3 follows the scheme outlined in [9], and is based on
the now well-known model-theoretic result, the Rabinovich theorem.

This technically hard theorem proved by E.Rabinovich [8], is a partial
answer to the Restricted Trichotomy Conjecture by the present author,
which states that assuming a strongly minimal structure M is interpretable
in an algebraically closed field K and M is not locally modular, a field iso-
morphic to K is interpretable in M. The Rabinovich theorem proves this
statement under additional assumption that M as a set can be identified
with C(K), for a rational curve C over K.

(Note that the case when M is locally modular is well-understood and
basically classifiable.)

Once we find that, by Rabinovich theorem, the field K is definable in
our structure CJ(K), we proceed to recover CJ(K) as a Jacobian variety
for a curve C. This provides the required isomorphism and the proof of
1.3.

This method is quite standard in model theory. E.g. we used it in [11]
to describe abstract automorphisms of G(K) for simple algebraic groups
G, without the use of the structural theory of such groups. Similar ideas
with a technically different analysis was adapted by Yu.Manin in [12].

The Rabinovich theorem and earlier attempts in this direction pre-
ceded and inspired the work [10], which introduced and classified Zariski
geometries. The latter had found many applications in Diophantine ge-
ometry, and in its extended versions has become one of the main tools of
the ”fine” classification theory.

It is therefore natural to aim for a new proof of Rabinovich’s theorem,
or even a full proof of the Restrited Trichotomy along the lines of the
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classification theorem of [10], or by other modern methods. This is a
challenge for the model-theoretic community.

2 Main Construction

2.1 We study here the structure CJ and the related structure (J ;C,+),
where C is defined over an algebraically closed field k, C = C(K).

We also use ”definable” as a model-theoretic term. We provide the
main definitions below, but recommend [3] for more detail and examples.

2.2 We say that a subset S ⊆Mn is definable in the structure (M ;L),
where L stands for a collection of relations on M, if there are parameters
a1, . . . , ak ∈ M and a first-order L-formula Φ(x1, . . . , xn, a1, . . . , ak) such
that

S = {〈b1, . . . , bn〉 ∈Mn : (M ;L) |= Φ(b1, . . . , bn, a1, . . . , ak)}.

In more precise terms, one says that S is definable in (M ;L) over
A = {a1, . . . , ak}, or simply A-definable.

One may also call such an S a definable n-ary relation on M.
More generally, we say that a set S is interpretable in (M ;L) if

there is a definable subset T ⊆ Mn, and a definable equivalence relation
E ⊂ T × T (so E ⊂M2n) and such that S = T/E.

An interpretation of S in (M ;L) is the pair of formulas that define
T and E.

The same definition is used for an interpretable (definable) structure,
which is an interpretable set with interpretable relations on it. An inter-
pretation of a structure (N ;LN ) in (M ;L) is the collection of formulas
used to interprete N along with the LN -relations on N.

We say 0-definable if no parameters are used.
Note that when (M ;L) is an algebraically closed field, being inter-

pretable is equivalent to being definable because of elimination of imagi-
naries in algebraically closed fields, see [3].

Following this terminology, CJ is k-defined in the field K (that is in
(K; +, ·)) via an interpretation i. We will write this fact as

K Aik C
J .

If we extend K to a larger algebraically closed field K∗ then we still
have

K∗ Aik C
J(K∗).

That is, the same interpretation i defines K∗-points of the curve and its
Jacobian. Moreover, since K 4 K∗ (as fields) the extention of the whole
structure (including the field K and the interpretation i) is elementary.

The main results of this section prove existence of certain definable
objects in CJ(K∗), and in the CJ(K∗) together with K∗. By elementary
equivalence these results pass to the original setting. So we simply assume
in this section, without loss of generality, that transcendence degree of K
over k is infinite.
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2.3 Lemma. Let f : Kn → K be a definable function. Then there is a
nonempty open set U ⊆ Kn such that:

i) If K has characteristic 0, then there is a rational function r such
that f|U = r.

ii) If K has characteristic p > 0, then there is a natural number m
and a rational function r such that f|U = Frob−m ◦ r, where Frob is the
Frobenious automorphism x 7→ xp.

This is a well-known corollary of quantifier-elimination for algebraically
closed fields. See [3], Theorem 1.11.�

Corollary. Let G1 and G2 be algebraic groups over K, and h : G1 →
G2 a definable bijection which is a group-isomorphism. Then there is
m ≥ 0, and a bijective morphism of algebraic groups h′ : G1 → Frobm(G2)
such that h = Frob−m ◦ h′.

If G1 and G2 are abelian varieties, then h is an isogeny.
If charK = 0, h is an isomorphism of algebraic groups.

Proof. By the Lemma above applied to each co-ordinate, there are
affine open subsets V1 ⊆ G1 and V2 ⊆ G2 and the restriction hV : V1 → V2

such that
hV = Frob−m ◦ rV , rV regular on V1,

for some m ≥ 0. Let G = Frobm(G2). Then rV : V1 → G is a regular
injective map defined on V1 satisfying

rV (x1·x2) = rV (x1)·rV (x2), rV (x−1
1 ) = rV (x1)−1, for a generic pair x1, x2 ∈ V1.

By Weil’s group chunk argument, rV can be uniquely extended to a mor-
phism h′ : G1 → G of algebraic groups that has to be bijective, since it is
bijective on an open set.

In case of abelian varieties, h′ and Frob−m are isogenies. �

3 The Rabinovich theorem and its corol-
laries

Theorem (E.D.Rabinovich [8]) Assume M is a strongly minimal struc-
ture definable in an algebraically closed field K in such a way that the
universe of M is a rational curve over K. Also assume that M is not
locally modular. Then a field F isomorphic to K is interpretable in M.

So the theorem settles the restricted trichotomy conjecture, under the
extra assumption of rationality of the curve on which M is defined. This
assumption can be weakened: it is enough to assume that a rational curve
M ′ is interpretable in M. Indeed, since the combinatorial geometry of M
is isomorphic to that of any strongly minimal set in M, we have that the
structure induced on M ′ from M is not locally modular. Finally, note
that by transitivity, a field F is interpretable in M ′, that is interpretable
in M.
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3.1 Lemma. In CJ , a set isomorphic (as algebraic variety) to the pro-
jective line P1 is definable.

Proof. Fix a class [D0] of a very ample effective divisor. The divisors
of [D0] form a complete linear system. Equivalently it corresponds to an
embedding C ⊂ Pn, with the property that divisors D ∈ [D0] correspond
to intersections D = C ∩H for hyperplanes H ⊂ Pn, and vice versa.

For a1, . . . , am ∈ C, denote by La1,...,am the set of hyperplanes in Pn

passing through a1, . . . , am. For m = 0, La1,...,am is the set of all hyper-
planes Ln, which is isomorphic to Pn. By definition, La1,...,am is a linear
subspace (the intersection of hyperplanes) of Ln, and dimLa1,...,am,am+1 <
dimLa1,...,am provided am+1 is not in the linear subspace of Pn spanned
by a1, . . . , am. The latter condition is satisfied for some am+1 ∈ C, as
long as the linear subspace of Pn spanned by a1, . . . , am is not the whole
Pn (note that by assumptions C * H for a hyperplane H ⊂ Pn ). It
follows that for some distinct a1, . . . , an−1 ∈ C, dimLa1,...,an−1 = 1, and
so it is isomorphic to P1 as algebraic variety. It remains to observe that
La1,...,an−1 can be identified with

{D ∈ [D0] : a1, . . . , an−1 ∈ D},

and the latter is equal to

{〈x1, . . . , xd−n+1〉 ∈ Cd−n+1 : a1 + . . .+ an−1 + x1 + . . .+ xd−n+1 = D0},

where + is the group operation on the Jacobian, d = degD0, and points
x on C are identified with j(x) as defined in subsection 1.1. These are
definable in CJ using the parameter c0, so P1 is definable in CJ using
parameters in C(k). �

3.2 Theorem. There exists an algebraically closed field F, C(k)-defined
in the structure CJ along with a non-constant C(k)-definable map h : C →
F. In other words,

K Ak CJ AhC(k) F.

Moreover, there is an isomorphism of fields φ : K → F, definable in
the field K. The isomorphism φ is determined uniquely up to Frobenius
automorphisms of K.

The map
φ−1h : C(K)→ K

coincides on an open subset of C with a rational map defined over k.

Proof. We claim that CJ is not locally modular. This is immediate
from the fact that in any group definable in a locally modular structure
any definable subset is a coset of a definable subgroup. See [4] for the
most general statement of this type. The subset C ⊂ J contradicts such
a condition.

Now the Rabinovich theorem along with Lemma 3.1, tells us that a
strongly minimal (and algebraically closed) field F is definable in CJ .

Next, we claim that there is a map h : C → F, definable in CJ

such that h is non-constant on any infinite subset of C. Indeed, since
F is non-orthogonal to C in the structure CJ , there is a finite-to-finite
correspondence S ⊂ C × F between C and F. Given a generic x ∈ C,
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we get y1, . . . , ym ∈ F corresponding to x via S. Let s1, . . . , sm be the
symmetric functions in m variables, and let hi(x) := si(y1, . . . , ym) for x
and the yk satisfying

∧
k S(x, yk). At least one of the functions has to be

non-constant since S is a finite-to-finite correspondence.
Note that the restriction of the structure to k-points is an elementary

substructure since k 4 K. It follows that we can choose F and h definable
using parameters in C(k) only.

The isomorphism φ is given by [5] (but is also implicit in the proof of
Rabinovich’s theorem).

Note that the map φ−1h is definable in the field K over k by construc-
tion. By 2.3, there exists a non-negative integer m such that the map
Frobmφ−1h is rational on an open subset of C. Redefining φ := φ◦Frob−m

we get the last statement. �

4 Representing the curve in F.

Below we continue to work in the structure CJ , or equivalently in (J ;C,+) .
We use the notion of dimension in the model-theretic sense, where dimS
is understood as the Morley rank of a definable (in CJ) set S, but note
that this notion of dimension coincides with that of algebraic geometry.
This follows easily from the fact that the universe C of the structure CJ

is 1-dimensional and irreducible in both senses.
We say that a tuple 〈s1, . . . sn〉 ∈ Sn is generic in an A-definable set S,

if every A-definable subset R ⊆ Sn containing 〈s1, . . . sn〉 is of dimension
equal to n · dimS.

The above is applicable to interpretable sets, and to tuples inside them
also.

4.1 Proposition. There exists n ∈ N, and a map f : J → Fn with
finite fibres, C(k)-definable in CJ with domain Dom f Zariski open in J.

Moreover, for any n the following two conditions are equivalent:

• one can choose f to be generically injective on J (i.e. injective on
an open subset J0 of J)

• one can choose f to be generically injective on the shift y0 + C of
the curve C, for some y0 ∈ J(k),

Proof. Once a point c0 ∈ C(k) is fixed, we may identify a point x ∈ C
with a point x− c0 ∈ J. Then a generic element y of J can be represented
as y = x1 + . . .+xg for some generic g-tuple x1, . . . , xg ∈ C, where g is the
genus of C. Moreover, this representation is unique up to the permutation
of the x1, . . . , xg.

We now have a well-defined map x1 + . . . + xg 7→ {h(x1), . . . , h(xg)},
from an open subset of J to F (g), the set of g-element subsets of F. On
the other hand, there is an injective map

F (g) → F g; {z1, . . . , zg} 7→ 〈s1(z1, . . . , zg), . . . , sg(z1, . . . , zg)〉,

where si are the symmetric functions in g variables. The composition of
these two maps is the required map associated with h.
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Now assume that f is injective on an open subset J0 of J. By dimen-
sional considerations, for some y0 ∈ J of the form y0 = x1 + . . . + xg−1,
up to finitely many points the curve y0 + C is a subset of J0. Since k is
algebraically closed we may choose y0 ∈ J(k). Hence, x 7→ f(y0 + x) is a
generically injective map f : C → Fn. �

4.2 Given f : J → Fn as in 4.1, define for y ∈ Dom f

fibreyf := {y′ ∈ J : f(y) = f(y′)}.

Let n0 ∈ N and f0 : J → Fn0 be such that for a generic y, fibreyf
0 is of

minimal size among the maps of 4.1.

Lemma. For every generic pair y, t ∈ J, and every y′ ∈ J

f0(y) = f0(y′)⇒ f0(y + t) = f0(y′ + t).

Proof. Choose an arbitrary a ∈ J(k) and consider the map f0
a :

J → Fn0 , y 7→ f0(y + a) along with the map 〈f0, f0
a 〉 : J → F 2n,

y 7→ 〈f0(y), f0
a (y)〉. Clearly

fibrey〈f0, f0
a 〉 = fibreyf

0 ∩ fibreyf
0
a .

By minimality we get fibreyf
0 = fibreyf

0
a . Hence, the statement holds for

t = a, for all a ∈ J(k). The lemma now follows since k is algebraically
closed.�

Consider the C(k)-definable equivalence relation on Dom f0,

y ∼ y′ ⇔ f0(y) = f0(y′).

Corollary. For any f : J → Fn as in 4.1, on an open subset of J
(depending on f),

y ∼ y′ ⇒ f(y) = f(y′).

4.3 Lemma. The set

A = {a ∈ J : f0(y + a) = f0(y) for all y in an open subset of J}

is a finite subgroup of J(k).
The generic fibre is a coset of A,

fibreyf
0 = y +A.

A is trivial iff f0 is generically injective.

Proof. Let Z = f0(J) ⊂ Fn and consider the map h : Z × J → Kn

defined on an open subset of Z × J as follows:

h(z, t) = w ⇔ ∃y ∈ J f0(y) = z &f0(y + t) = w.

By Lemma 4.2 this is well-defined.
Let t, t′ ∈ J, t generic over k, t ∼ t′ and fix z0 ∈ J generic over k(t, t′).

We have by the Corollary to Lemma 4.2 h(z0, t) = h(z0, t
′).
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It follows that for y0 ∈ J generic over k(t, t′), we have f0(y0 + t) =
f0(y0 + t′). This can be rewritten as

f0(y + a) = f0(y)

where a = t − t′ and y = y0 + t′. By genericity this holds for all y in an
open subset of J, and hence a belongs to the subgroup A.

Since the fibres of f0 are finite, A is finite, and so A ⊂ J(k). By
construction, every t′ in the equivalence class of t is of the form t+ a for
a ∈ A, so the f0-fibre containing t is of the form t+A. Hence all generic
fibres are of this form. �

4.4 Proposition. The A of 4.3 is trivial, f0 is injective on a C(k)-
definable open subset J0 of J, and there is a C(k)-definable h0 : C → Fn0

generically injective on C.
Proof. Aiming for a contradiction, assume that A is non-trivial. Then

by 4.3 f0 is not generically injective, and so by 4.1 f0 is not generically
injective on y0 + C ⊂ J0 (up to finitely many points), where J0 is the
domain of f0 and y0 ∈ J(k). So for some generic x ∈ C, there is x′ ∈ C,
x′ 6= x, f0(y0 + x) = f0(y0 + x′). It follows by 4.3 that for some non-zero
a ∈ A, x′ = x+ a ∈ C. Since x is generic, the latter holds for any x ∈ C,
i.e. a+C = C. But this is not possible unless a = 0, by Lemma 2.1 of [1].
�

4.5 Model-theoretic generalisation of Weil’s group chunk theo-
rem.

Consider again the definable injection

J0 →f0 Fn0

of an open definable subset J0 into the affine space Fn0 , and denote
G0 = f0(J0). The map f0 transfers the definable subsets and relations on
J0 to ones on G0. Note that (J0; +,−), where + is a the partial operation
on J0 induced from J, and − is the corresponding partial unary operation,
is Weil’s group chunk (a Weil pre-group) introduced in [6]. It follows that
its image (G0; +,−) is a definable group chunk. This means that + and
− are definable partial operations such that −z and z1 + z2 is defined for
any generic z and any generic pair z1, z2 in G0, and also for any generic
triple (z1 + z2) + z3 = z1 + (z2 + z3).

There have been various generalisations of Weil’s group chunk theorem
to the definable context, the most general one by E.Hrushovski, see a
detailed exposition of this in [7]. We need the following corollary of these
results.

Fact. There is a group G definable in CJ , and a definable injective
morphism of pre-groups f1 : G0 → G such that for a generic pair z1, z2 ∈
J0, f1(z1 + z2) = f1(z1) + f1(z2) and G0 generates G. Moreover, the
embedding

f1 ◦ f0 : J0 → G

can be extended to a definable isomorphism

j : J → G.
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5 Proof of the Main Theorem

5.1 We now come back to the assumption (1), and represent it using the
results of section 2 schematically as follows (dropping the assumption of
infinite transcendence degree K/k).

K1 Ai1k CJ1 A J1 →f0 Fn0
1 ; φ1 : K1 → F1

l α l ᾱ
K2 Ai2k CJ2 A J2 →f0 Fn0

2 ; φ2 : K2 → F2

Here, i1 and i2 are two interpretations of the curves and the Jacobians
in K1and K2, and f0 is the definable injective map of section 2 which is
defined by the same formula in both structures CJ1 and CJ2 . The map α
is the isomorophism given by (1) which induces via the interpretation h
of 3.2 an isomorphism ᾱ : F1 → F2 of fields. We apply the same notation
to the bijective map Fn0

1 → Fn0
2 defined as ᾱ coordinatewise.

In addition the picture also shows definable isomorphisms between
fields φ1 : K1 → F1 and φ2 : K2 → F2.

The data above implies

5.2 Claim 1. In (1) the fields are isomorphic,

α̌ : K1
∼= K2, where α̌ = φ−1

2 ᾱφ1.

In particular, when K1 = K2 = K we will have the following diagram

K Ai1k CJ1 A J1 →f0 Fn0
1 ; φ1 : K → F1

l α̌ l α l ᾱ
K Ai2k CJ2 A J2 →f0 Fn0

2 ; φ2 : K → F2

Claim 2. If α̌ = id then the structures CJ1 , C
J
2 , F1 and F2 are inter-

pretable in the field K, and ᾱ is a definable in the field K isomorphism of
fields.

Indeed, the interpretability of the structures is by interpretations i1, i2,
and the definability of ᾱ follows from the definability of φ1 and φ2 by
Claim 1.

5.3 Now we rewrite the diagram above, replacing the affine spaces Fn0
1

and Fn0
2 with (definably equivalent) groups G1 and G2, correspondingly

constructed in 4.5,

K Ai1k CJ1 A J1 →j1 G1(F1); φ1 : K → F1

l α̌ l α l α̂
K Ai2k CJ2 A J2 →j2 G2(F2); φ2 : K → F2

,

with the isomorphism α̂ between the definable groups induced by ᾱ. Here
j1 and j2 correspond to the definable isomorphism j established in the
Fact of 4.5.

5.4 Finally, we apply a transformation to the diagram 5.3 by applying
a field automorphism α̌−1 to the bottom-left field K. This automorphism
clearly induces an abstract isomorphism β : CJ2 → CJ3 onto a new curve
and its Jacobian. Set β̂ analogously to the isomorphism α̂ of 5.3. By
denoting β̌ := α̌−1, we get
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K Ai1k CJ1 A J1 →j1 G1(F1); φ1 : K → F1

l α̌ l α l α̂
K Ai2k CJ2 A J2 →j2 G2(F2); φ2 : K → F2

l β̌ l β l β̂
K Ai2k CJ3 A J3 →j3 G3(F3); φ3 : K → F3

Since α̌β̌ = id, by Claim 2 of 5.2 we have the chain of isomorphisms
definable in the field K of definable groups with distinguished curves

J1 →j1 G1(F1)→β̂◦α̂ G3(F3)→
j−1
3

J3.

Set
ψ = j−1

3 ◦ β̌ ◦ α̌ ◦ j1.
By Corollary 2.3 the definable isomorphism of abelian varieties is an
isogeny. Composing the isomorphisms we get a definable isomorphism,
so ψ is a bijective isogeny between J1 and J3 which also respects the
curves,

ψ : (J1;C1,+)→ (J3;C3,+).

Recall that J3 = β(J2), where β is induced by an isomorphism of fields.
This finishes the proof of the main part of the main theorem 1.3.

Consider now the case when the field of definition of C is finite, call
the field k0. Then β|k0 = Frobm for some m ∈ Z. Now we have J3 =
Frobm(J2), and by definition Frobm is an isogeny between J2 and J3. �
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