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Abstract

Hidden services were deployed on the Tor
anonymous communication network in 2004. An-
nounced properties include server resistance to dis-
tributed DoS. Both the EFF and Reporters Without
Borders have issued guides that describe using hid-
den services via Tor to protect the safety of dissi-
dents as well as to resist censorship.
We present fast and cheap attacks that reveal the lo-
cation of a hidden server. Using a single hostile Tor
node we have located deployed hidden servers in
a matter of minutes. Although we examine hidden
services over Tor, our results apply to any client us-
ing a variety of anonymity networks. In fact, these
are the first actual intersection attacks on any de-
ployed public network: thus confirming general ex-
pectations from prior theory and simulation.
We recommend changes to route selection design
and implementation for Tor. These changes require
no operational increase in network overhead and
are simple to make; but they prevent the attacks we
have demonstrated. They have been implemented.

1 Introduction

Tor is a distributed low-latency anonymous
communication network developed by the Naval
Research Laboratory and the Free Haven Project.
It is currently the largest anonymity network in ex-
istence, with about 450 server nodes around the

world at the time of writing. It is popular and highly
recommended: it was rated one of the hundred best
products of 2005 by PC World. Since 2004 Tor has
also been used to underly services offered from hid-
den locations. These were introduced [13] as resis-
tant to distributed DoS since they were designed
to require a DDoS attack on the entire Tor net-
work in order to attack a hidden server. Hidden
servers have also been recommended for preserving
the anonymity of the service offerer and to resist
censorship. Specifically Undergroundmedia.org
has published a guide to “Torcasting” (anonymity-
preserving and censorship-resistant podcasting).
And both the Electronic Frontier Foundation and
Reporters Without Borders have issued guides that
describe using hidden services via Tor to protect the
safety of dissidents as well as to resist censorship.
There have been several recent cases in the news in
which anonymous bloggers have or have not been
exposed and have or have not lost jobs, etc., as a re-
sult, depending on the policy of their ISP, the inter-
pretation of laws by various courts, and numerous
other factors. Recommendations for a technology
to protect anonymous bloggers and other publish-
ers, regardless of legal protection, would thus seem
to be timely and encouraging.

The Tor developers are careful, however, to warn
against using Tor in critical situations: upon startup
the Tor client announces, “This is experimental
software. Do not rely on it for strong anonymity.”
Nonetheless, with increasing high-profile recom-
mendations to use Tor’s hidden services for appli-
cations such as those above, it is important to assess
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the protection they afford. In this paper we demon-
strate attacks (not simulations) on the deployed Tor
network that reveal the location of a hidden server.
The attacks are cheap and fast: they use only a sin-
gle hostile Tor node and require from only minutes
to a few hours to locate a hidden server.

Although we examined hidden services on Tor,
our results are not limited in principle to either hid-
den services or to Tor. They should apply to the
hidden service design even if run on another under-
lying anonymity network and should apply to other
clients using an anonymity network, not just to hid-
den servers.

We believe that ours are the first attacks that lo-
cate hidden servers, whether on hidden services on
a deployed network or in simulation. Also, while
there have been simulations and analytic results, we
believe ours are the first published intersection at-
tacks carried out on a deployed anonymity network.

In Section 2, we review previous related work.
In Section 3, we describe the design of Tor’s hidden
services. In Section 4, we present various attacks
and the experimental results from running them.
In Section 5, we describe various countermeasures
that might be taken to our attacks and the effec-
tiveness of them. We also describe an implementa-
tion feature of Tor that our experiments uncovered
and how to change it to better resist the attacks.
In Section 6, we conclude with recommendations
for simple-to-implement design changes to hidden
services. These also should not add to the number
of hops or otherwise increase overhead to the de-
sign, but they should resist our attacks. We have
discussed both the implementation feature we un-
covered and our recommended design changes with
the Tor developers. As a result, the latest version of
Tor is resistant to the attacks we present herein. Fi-
nally, we discuss open problems and future work.

2 Previous Work on Hiding Services
and Anonymity

The earliest reference we can find to a system
that hides the location of a service from those using
it is Ross Anderson’s Eternity Service [2]. Therein
it is suggested that servers hold encrypted files, and

these files are to be accessed by anonymous com-
munication to prevent uncovering of the location
of a server from which the file is being retrieved.
Early presentations of onion routing from the same
era described the use of onion routing to hide the
location of an automated classification downgrader
so that users of the service would not be able to at-
tack it. Earlier still, Roger Needham noted the fun-
damental connection between anonymity and the
inability to selectively deny service [19, 20], which
was one of the motivating ideas in the Eternity Ser-
vice. The idea of hiding the location of a docu-
ment (or encrypted fragment of a document) also
underlies many censorship-resistant publishing de-
signs such as Free Haven [11] and Tangler [28].

Anonymous communication networks were in-
troduced by David Chaum [9]. He described a net-
work that distributes trust across multiple nodes
that carry the communication. The design is of
a public-key-based, high-latency anonymous com-
munication network such as might be appropriate
for email. It is not for use in bidirectional, low-
latency communication, such as web traffic, chat,
remote login, etc. Low-latency communication
anonymity was introduced for ISDN [22], but made
to anonymize within a group of users exchanging
fixed and equal bandwidth with a local telephone
switch rather than anonymizing within an Internet-
wide group with diverse bandwidth needs such as
occur in the just mentioned applications. The oldest
anonymous communication system for web traffic
is probably the Anonymizer [4]. Unlike the Chaum
design, all traffic passes through a single proxy,
making it a single point of failure and/or attack in
many ways. Also unlike Chaum mixes, it does not
actually delay and mix traffic. Traffic is processed
FIFO. The Anonymizer is also probably one of
the most widely used anonymization systems: they
claim to have millions of users.

The first published, as well as the first deployed,
distributed system for low-latency anonymous In-
ternet communication was onion routing [16] in
1996, followed by the Freedom Network [8] from
1999 to 2001. The current version of onion routing,
Tor [13], was deployed in late 2003, and hidden ser-
vices using Tor were deployed in early 2004.
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All of these low-latency anonymity systems
work by proxying communication through multi-
ple hops; at each hop the communication changes
its appearance by adding or removing a layer of en-
cryption (depending on whether it is traveling from
the circuit originator to responder or vice versa).
They all use public key cryptography to distribute
session keys to the nodes along a route, thus es-
tablishing a circuit. Each session key is shared be-
tween the circuit initiator (client) and the one node
that was given the key in establishing the circuit.
Data that passes along the circuit uses these ses-
sion keys. Both Freedom and Tor have a default
circuit length of three nodes. For more details con-
sult the above cited work. The Java Anon Proxy
(JAP)/Web MIXes [6] is another popular system for
diffused low-latency anonymity. However, unlike
the others mentioned here, it works by mixing and
by diffusing only trust and jurisdiction. It does not
hide where communication enters and leaves the
network. All communication that enters at one lo-
cation leaves together (now mixed) at another loca-
tion. As such it is not directly amenable to the hid-
den service design to be described presently. JAP
has been deployed since 2000.

Hidden services in Tor, as described in the next
section and in [13], rely on a rendezvous server,
which mates anonymous circuits from two princi-
pals so that each relies only on himself to build
a secure circuit. The first published design for a
rendezvous service was for anonymous ISDN tele-
phony [22] rather than Internet communication. As
such it had very different assumptions and require-
ments from the rendezvous servers we describe,
some of which we have already noted above. A ren-
dezvous server for IRC chat was mentioned in [16];
however, the first detailed design for a rendezvous
server for Internet communication was by Gold-
berg [15]. It differs in many ways from rendezvous
servers as used by Tor’s hidden services, but we
will not discuss Goldberg’s design further here.

There is much literature on attacking anony-
mous communication [3]. Rather than single out
any of it here, we cite the relevant prior literature
at appropriate points below. The current paper is
the first to focus specifically on attacks for locating

hidden services.

3 Location-hidden Services in Tor

One of the major vulnerabilities for a hidden ser-
vice in Tor is the server’s selection of the first and
last node in the communication path. To a first ap-
proximation, if an adversary can watch the edges of
a Tor circuit, then she can confirm who is commu-
nicating. This is because the low-latency require-
ments make it easy to confirm the timing signature
of traffic flowing (in both directions) over the cir-
cuit. This is true whether the adversary controls
the Tor nodes at the edges of the circuit or is just
observing the links from those nodes to the initia-
tor and responder. Actually, this vulnerability has
always been alleged and assumed but never previ-
ously demonstrated. A byproduct of our analysis of
hidden services is that we experimentally corrobo-
rate this traffic confirmation on Tor circuits. For
hidden services, this means that the service is vul-
nerable in every communication path it sets up with
a client if a member of the path can determine it is
being used by a hidden service and that it is the first
node in the path.

In order to see how our attacks that locate hid-
den servers are done we need to describe how the
hidden service communication works. Fig. 1 shows
a normal setup of this communication channel.

In the current implementation of Tor, a con-
nection to a hidden service involves five important
nodes in addition to the nodes used for basic anony-
mous communication over Tor.

• HS, the Hidden Server offering some kind of
(hidden) service to the users of the Tor net-
work, e.g. web pages, mail accounts, login
service, etc.

• C, the client connecting to the Hidden Server.

• DS, a Directory Server containing information
about the Tor network nodes and used as the
point of contact for information on where to
contact hidden services.

• RP, the Rendezvous Point is the only node in
the data tunnel that is known to both sides.
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Figure 1. Normal use of hidden ser-
vices and rendezvous servers

• IP, the Introduction Point where the Hidden
Server is listening for connections to the hid-
den service.

A normal setup of communication between a
client and a hidden service is done as shown
in Fig. 1. All the displayed message flows are
anonymized, i.e., they are routed through several
anonymizing nodes on their path towards the other
end, as described in Section 2. Every arrow and
connection in the figure represents an anonymous
channel consisting of at least two or more interme-
diate nodes. (Hereafter, we use ‘node’ to refer ex-
clusively to nodes of the underlying anonymization
network, sometimes also called ‘server nodes’. Al-
though we are considering the Tor network specif-
ically, the setup would apply as well if some other
anonymizing network were used to underly the
hidden service protocol. The only exceptions are
C and HS, which may be anonymization nodes
or they may be merely clients external to the
anonymization network.)

First the Hidden Server connects (1) to a node
in the Tor network and asks if it is OK for the node
to act as an Introduction Point for his service. If
the node accepts, we keep the circuit open and con-
tinue; otherwise HS tries another node until suc-
cessful. These connections are kept open forever,
i.e., until one of the nodes restarts or decides to

pull it down.1 Next, the Hidden Server contacts (2)
the Directory Server and asks it to publish the con-
tact information of its hidden service. The hidden
service is now ready to receive connection requests
from clients.

In order to retrieve data from the service the
Client connects (3) to DS and asks for the contact
information of the identified service and retrieves
it if it exists (including the addresses of Introduc-
tion Points). There can be multiple Introduction
Points per service. The Client then selects a node
in the network to act as a Rendezvous Point, con-
nects (4) to it and asks it to listen for connections
from a hidden service on C’s behalf. The Client re-
peats this until a Rendezvous Point has accepted,
and then contacts (5) the Introduction Point and
asks it to forward the information about the selected
RP.2 The Introduction Point forwards (6) this mes-
sage to the Hidden Server who determines whether
to connect to the Rendezvous Point or not.3 If OK,
the Hidden Server connects (7) to RP and asks to
be connected to the waiting rendezvous circuit, and
RP then forwards (8) this connection request to the
Client.

Now RP can start passing data between the two
connections and the result is an anonymous data
tunnel (9) from C to HS through RP.

From this we observe the following facts about
the nodes in the network:

• C does not know the location (IP address) of
HS, but knows the location of RP;

• HS does not know the location of C, but knows
the location of RP;

• RP does not know the location of either C or
HS, and he knows neither the service he is
serving nor the content of the messages re-
layed through him;

• there are multiple (currently three) nodes be-
tween HS and RP and two nodes between C

1In Tor, any node in a circuit can initiate a circuit teardown.
2Optionally, this could include authentication information

for the service to determine from whom to accept connections.
3This flow is over the same anonymous circuit as (1), simi-

larly for (4) and (8).
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Figure 2. Vulnerable location of At-
tacker in communication channel to
the Hidden Server

and RP, to hide traffic and create a degree of
anonymity on both ends; and

• any member of the network which claims to
offer stability can be used by HS to form an
anonymous tunnel to RP, including C if it is
a node in the anonymization network. This is
the basis of our attacks.

4 Attacks and Experimental Results

We have done experiments using multiple attack
methods in order to determine the IP address of the
Hidden Server. We will here first describe the setup
of the experiment and then four attack methods.
The attacks can be carried out by an adversary that
controls merely a single node in the network. Since
anyone can run a Tor node simply by volunteering,
this is trivial. (In fact the adversary need only run
a “middleman” node, which never lets circuits exit
the anonymization network. The burden of running
a middleman node is typically less than that of run-
ning an exit node. Of the roughly 250 nodes in the
Tor network at the time the experiments were done
only about 100 allowed exit to port 80.) At the end
we describe an accelerated attack using two com-
promised nodes.

Fig. 2 shows the scenarios that an attacker, here-
after Alice, wants to achieve in connections to the
Hidden Server. Alice controls the Client and one
node. Her goal is to control Node 1 of the circuit.
Certain circuits will yield a match of traffic pattern
with what is expected given when C sends to and
receives from HS. Alice will look for such pattern

matches among all active circuits through the node
she owns. If she finds a match, then her node has
been made part of the circuit between the Hidden
Server and the Rendezvous Point as Node 1, 2 or 3.
From this she will be able to determine a few facts.
First she will know when she has the node closest to
RP (Node 3) since she knows RP’s IP address, and
she can easily abandon the circuit and attack again.
Second, if her node has an unknown IP address on
both sides of the matching circuit, she knows she is
either Node 1 connected directly to HS or Node 2
in the circuit. This enables her to use timing or sta-
tistical methods to determine her position as will be
described later.

We will continue sampling data until we have
enough to determine when Alice is connecting to
the hidden service as Node 1 in the circuit to-
wards RP, at which point we will know the Hidden
Server’s IP address.

Our attack description is obviously based on
hidden services as deployed on Tor; however, the
basic approach will identify a client of a low-
latency, free-route anonymity network, not just hid-
den severs using Tor. These attacks should work on
networks such as Freedom [8] or Crowds [23], de-
spite their many differences from Tor. For systems
such as Web MIXes [6], it is difficult to briefly say
anything about either what a hidden service design
over such a system would look like or about the
relation to our attacks. On the one hand, becom-
ing a node in the network is tightly controlled, and
all circuits are through cascades (shared uniform
fixed routes). Thus, our attacks would simply not
be possible. On the other hand, much of the point
of the attacks is to determine the point where con-
nections enter and leave the anonymity network. In
Web MIXes, this information is given, so there is
no need to attack to obtain it.

4.1 Experimental Setup

Our experiments were conducted using two dif-
ferent hidden services running at client nodes con-
necting to the Tor network, one in Europe and one
in the US. The services offered a couple of web
pages and images, which were pulled down in dif-
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ferent ways and with different timing patterns. The
documents and images varied in size from 2KB to
120KB. The connection from the Client to the Hid-
den Server was done through a random Rendezvous
Point (cf. Section 4.6), and the connection from
the Client to the Rendezvous Point was shortened
down to a path length of one. (This will be de-
scribed more fully presently).

The Hidden Service was not offered, or known
to, any other node in the network except the direc-
tory service. Only the Client knew about how to
contact the service, so that all contact to and from
the Hidden Server was either caused by the Client,
or by the Hidden Server preparing to operate (mak-
ing circuits and downloading new updates from the
Directory Servers). This is not a limitation on the
implications of the experimental results for pub-
licly known and accessed hidden services: the tim-
ings of data are done with high enough precision
so the possibility of two identical patterns from the
same service routing through the same node at the
exact same time is negligible.4 No hidden server is
likely to get two specially designed requests (like
ours) from distinct clients and respond to them at
the exact same time. Thus a false positive in our
timing analysis is highly unlikely (Section 4.2).

The Client computer was also announced as a
middleman node, i.e. not having connections out
of the anonymity network, and this node is where
all Alice’s sampling of data takes place. By using
the node both as a server inside the network and as
the Client asking for the web pages from the Hid-
den Server, the attacker is able to get precise timing
without having to externally synchronize the time
with another node. This server node in the Tor net-
work had to use a logging mechanism when sam-
pling the active circuits during the attacks. In order
to avoid reference to the correct IP address during
the timing analysis we converted the IP addresses
by use of a simple prefix preserving scheme. If we
were to use permanent logging of data, we would

4One reason for not doing the experiment on a publicly
known server in the Tor network, is of course the possible le-
gal implications. In addition, not wanting to cause harm to
the project and its participants, we avoided announcementsuntil
there were countermeasures available and deployed.

use a better and more secure pseudonomizing IP
logging scheme [21].

The attacker must also make some minor
changes to the application code running at the
Client node in order to enable and strengthen the
attacks:

• Alice’s Client will connect directly, i.e. in one
hop, to the Rendezvous Point to shorten the
path and latency of traffic between the Client
and the Hidden Server, thereby making it eas-
ier to set up and correlate the traffic patterns.

• Alice’s Client will tear down the circuit to a
Hidden Server after each pattern is success-
fully communicated. This will disable reuse
of circuits and force the construction of a new
circuit on the next connection request.

• In addition to being the Client, Alice is also
running as a server middleman node partici-
pating in the network and carrying traffic for
the other nodes. She will maintain a list of
active circuits (routed connections) and try to
correlate the generated circuit data with all the
other circuits to find out if she is carrying the
same traffic data as both Client and as a server
node.

• Alice’s server node will report a false higher
uptime and the maximum network bandwidth
to the directory server in order for other nodes
to trust it for their circuits. This is still possible
as there is (yet) no method for keeping reliable
track of uptime at the different servers.

Once this is implemented, Alice is ready to use
the methods of attack described below.

4.2 Timing Analysis

The attacker uses the logged timing data and di-
rection information from the generated data set and
the sampled data set (from each circuit active in that
period of time) to accomplish two different things:

1. Positively identify that Alice’s node is made a
part of a circuit; and
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Figure 3. Example of data sets, match-
ing and response times

2. If (1) is true; determine at which position in
the circuit she is located.

To identify if the generated data is found within
one of the sampled data sets, Alice is faced with a
comparison of one sampled data set, the generated
set done by the Client, to all of the sampled data
sets done by the server. For all connections to the
Hidden Server there were a few hundred circuits
active at Alice’s Tor node during each of the sample
periods.

Our match confirmation is an extended version
of the packet counting attack described by Serjan-
tov and Sewell [24]. In addition to basic counting
of cells, we also make use of precise timing infor-
mation of when cells were received and transmit-
ted, and the direction of each individual cell pass-
ing in order to determine a circuit match. An exam-
ple is depicted in Fig. 3. Alice uses the direction of
traffic in addition to the timing of the cells’ arrival
to matchall outgoing and incoming traffic in the
generated data set. Notice that there is also noise
occurring in the sampled data set. We compare our
known data tooneother specific set at a time, and
our algorithm only checks if the generated datamay
be a part of the sampled data. Therefore, it makes
no estimate of how probable the match is.

Alice is also able to separate when there is a sin-
gle match and when there are multiple matches in
a data set. There is a potential for multiple matches
in a set, for example, if a circuit is carrying lots of
traffic in both directions, we will probably have a
timing “match” due to the data load. In the attack
Alice knows that only one attack circuit is set up

at a time, and each attack circuit is set up for only
Alice’s requests at that time. So, she can use the
amount of traffic relayed through the attack circuit
as a parameter. The small overhead and extra infor-
mation from setting up the tunnelled connections
etc., should not be more than a few cells, some-
thing our experiments confirm. Therefore the at-
tacker may discard the samples that are more than
a few percent5 larger than the generated set.

Multiple matches could also be a possible result
in a future scenario where the circuits may be used
to carry data for different clients. In this case the
attacker must try to retrieve a list of all possible
matches of the generated data within the sampled
set and should then be able to use correlation tech-
niques on the timing data to calculate a probability
of the best match. We have not tested this part as
it would require major changes in functionality for
the deployed Tor network.

4.3 Service Location Attack

First we look at two different situations, the
Server Scenarioand theClient Scenario, based on
whether the hidden service is located on a node
within the anonymity network, or on a client us-
ing the network but not participating as a network
node.

The Client Scenario is most often used when it is
desired that HS not be listed in the directory service
as a participating server node of the network. An-
other reason for this scenario is that the user may be
unable to set up a node directly reachable from the
Internet (e.g., it must be located behind a firewall)
but still wants to offer his service.

The Server Scenario is most often used to hide
the service traffic within all the other traffic running
through the server node. This is often regarded as
a reasonable effort to improve the cover of traffic
originating at the node.

A problem with the Server Scenario is that it is
possible to correlate information about availability
of a service and the availability of the nodes listed
in the Directory Service. E.g. we poll each listed

5Actually the overhead is normally less than 10 cells, but the
extra margin has not given any false positives yet.
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Table 1. Experimental results of our attacks.
Sample Time to Circuits Matched Largest Second

time first match completed circuits single IP largest
Server 1 7.8h 15 min 676 37 46% 5%
Server 1 6.8h 3 min 432 26 54% 7%
Server 2 4.9h 28 min 447 31 71% 3%
Server 2 10.6h 3 min 990 56 54% 7%

server every five minutes and correlate the lists of
active servers when we are able and unable to con-
tact the hidden service.

Our attack is based on the availability of a di-
rectory service containing a public list of all server
nodes in the anonymity network. From this list the
attacker will immediately be able to tell the differ-
ence between connections from mere clients and
connections from network nodes. If a service is lo-
cated at a client outside the anonymizing network,
Alice will know both this and the client’s IP ad-
dress, as soon as she has a positive match in the
timing analysis (Section 4.2) on a connection orig-
inating from outside of the currently listed server
nodes. There is no other way the hidden service can
communicate with the attacker’s node from outside
the Tor network unless this is the actual location of
the hidden service, or its point of contact, e.g., a
firewall hiding internal addresses, an IPSec tunnel
endpoint, etc.

Experimental Results: Our results confirmed
this by a simple matching of the IP addresses in the
sampled circuits against the list of known servers.
Both of our Hidden Servers were run on Client
nodes and were easily confirmed as the source of
the service. The time for the attack until success-
ful identification of the IP address in the four tests
of the experiment are shown in Table 1 under the
column ”Time to first match”.

So, if the hidden service is located at a client
of the anonymity network an attacker will find it
in a matter of minutesusing only one node in the
network, but if the service is located at a network
node we will have to use another method.

4.4 The Predecessor Attack

The current implementation of the network is
vulnerable to the predecessor attack [31]. This is
a form of intersection attack. Since intersection at-
tacks treat the intervening anonymity network as a
black box, they are a threat to any anonymity net-
work. Like other intersection attacks, the predeces-
sor attack has been shown to be devastating in the-
ory and simulation against various anonymity net-
works but has never before been demonstrated on a
live network. Roughly, the predecessor attack looks
at repeated connections suspected to be to (from)
the same correspondent and looks at intersections
of predecessor nodes to see which occurs most of-
ten. Our use of this attack is based on the assump-
tion that the attacker is able to positively identify
the actual streams of data to and from the client in
other circuits, e.g. by using the Timing Analysis
described in Section 4.2.

In the case of Hidden Servers and using our sce-
nario of attack, the Predecessor Attack becomes
trivial. Alice can now make statistics of the IP ad-
dresses that contacted the server in the cases where
a positive traffic-pattern match was found. By se-
lecting only circuits where there has been a match,
and using anm node path towards RP, one single
IP address will occur in around1

m
of these connec-

tions when HS is selecting its first node. The at-
tacker will then easily identify the IP address of the
Hidden Server as long asm is significantly smaller
than the number of nodes in the network.

Experimental Results: Our results confirmed
the theory of the predecessor paper [31]. Sorting
out the possible circuits based on timing informa-
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tion and then statistically examining the connecting
IP addresses we immediately found the expected
results from the predecessor attack. In every test6

we found that around 50%, or more, of all connec-
tions identified as a part of the stream were made
from a single IP address, as shown under “Largest
single IP” in Table 1.7

From the experimental results we can also con-
clude that we need far less data to pinpoint the lo-
cation of the Hidden Server than we gathered. A
rough estimate is that within the order of an hour or
two we should have a positive match of the location
of the hidden service using the predecessor attack.

4.5 Distance Attack

If there is no information in IP address statistics
(e.g., due to mixing of traffic or using other coun-
termeasures), an attacker must use other techniques
to locate the hidden service.

When Alice has a dataset that matches the gen-
erated set of data, she can look at the response
times in the communication with the service. The
attacker times the periods where the sampled data
switches from outgoing to incoming traffic,round
trip time, enabling the calculation of a rough esti-
mate measuring the distance to the Hidden Server.
These periods are marked in the example in Fig. 3,
with D for the Client’s response times andd for the
round trip time at the participating node. By group-
ing nodes based on measured round trip times, the
attacker is able to find some groups of nodes closer
to the Hidden Server than others.

Experimental Results: Our results confirmed
the assumptions of the distance attack. Using the
data from the experiment we could see a clear cor-
relation between the response times and the dis-
tance from the Hidden Server. When the Hidden
Server was local it was of course easy to find a

6This result is for every test running without the use of
“helper” guard nodes. Cf., Section 5.4.

7Given three nodes between HS and RP, we would expect
to find a common predecessor IP address in only about 33%
of matching connections. The discrepancy is due to an imple-
mentation feature of Tor uncovered by our experiments. Cf.,
Section 5.1.

Figure 4. Average round trip times at
seven locations in a sample of circuits

match showing the attacker’s node next to the ser-
vice (order of 100-1000 compared to the other con-
nections). But even when our service was located
on computers on the other side of the globe we
could still statistically observe when Alice was con-
necting directly to the Hidden Server. The round
trip times were an order of two or more larger for
the nodes not adjacent to the Hidden Server, as
shown in Fig. 4. The lower line represents the av-
erage response times for 52 samples of the nodes
closest to the Hidden Server, and the upper line is
for the other 35 samples in our set where Alice is
located at Node 2 in Fig. 2. Due to the previously
mentioned implementation feature of Tor we were
unable to find data when Alice is located as Node 3,
cf. Section 5.1.

4.6 Owning the Rendezvous Point

By extending adversary resources and using two
nodes in the network, it is possible for Alice to run
attacks where she owns the Rendezvous Point. This
will significantly enhance the attack.

Only knowing RP’s IP address will give the
attacker knowledge of when she is the last node
(Node 3 in Fig. 2) in the circuit out from the Hidden
Server. Selection of the Rendezvous Point is done
by the Client and enables Alice to choose one of
her nodes as RP, while still leaving her other node
free to be chosen by HS for the circuit to RP. This
allows Alice to tell when she is the second to last
node in the circuit as well (since both C and RP are
connected to the same node). This implies that if
the path length is three before connecting to HS (as
currently implemented) the attacker is able to deter-
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mine the instance where she is Node 1, thus directly
revealing the IP address of the Hidden Server. The
speed and accuracy of the attack is then greatly
improved, and the result will be as fast as in the
Service Location Attack—except that this own-the-
rendezvous attack will identify services located at
network servers as well as those located at clients.

5 Countermeasures: More Hidden
Services

5.1 Allowing Middleman nodes to
connect to Rendezvous Points

This first point is really about an implementation
feature of Tor’s hidden services that facilitates our
attacks rather than a limitation of the hidden ser-
vices system design. But since changing the feature
does slow down the attacks, we list it here.

To save time, all Tor clients (including hidden
servers) establish circuits offline, i.e., while await-
ing service requests. Upon receiving a rendezvous
request and an RP location, HS extends such cir-
cuits to RP. Tor clientsnotoperating as hidden ser-
vices typically will need circuits that terminate at
nodes that allow exit from the Tor network on com-
mon ports, such as those for http, ssh, and https.
Almost all of the new ”stand-by” circuits estab-
lished thus go to a node that allows such exit, which
seems quite reasonable considering normal client
use. A hidden server should similarly always have
at least one circuit available at a random node of the
network ready for connection to the Rendezvous
Point.

This creates an advantage for our attacker. By
running in middleman mode (never allowing cir-
cuits to exit the Tor network at that node) she both
reduces the overhead of running a node and guar-
antees that whenever her network node is used be-
tween HS and RP, it will almost8 always be in the
first or second position, which increases the effi-
ciency of her attack. Our experiments uncovered
this undocumented feature of the Tor implementa-
tion. It is a trivial change to allow the third node

8We had no occurrence of being Node 3 in the sample sets
described in this paper.

from HS to RP to be any node not just an exit node.
This has now been implemented by the Tor devel-
opers and is available in the latest versions.

5.2 Dummy traffic

In anonymous communication, dummy traffic
is a countermeasure to traffic analysis that is of-
ten initially suggested. However, dummy traffic
is expensive, and, despite research, it has yet to
be shown that dummy traffic defeats any active
attacks on low-latency systems unless the system
will also bring most or all of the network to a
stop in response to one non-sending client (as in
Pipenet [10]). Since this makes it trivial for any
user to bring down the network, it is generally seen
as a price few would pay for anonymity, which
means that even those who would pay it would
be hiding in a very small anonymity set [5, 1].
While some dummy traffic schemes have been pro-
posed [7, 17], that attempt to address some active
attacks, no fielded low-latency systems currently
use dummy traffic. In light of our attacks, we de-
scribe why dummy traffic would be an especially
ineffective countermeasure for hidden services.

In our attack scenario, Alice can develop a list of
candidate circuits by labeling any circuits through
her network node that show a response from the
server shortly after she sends a request with an
RP address to HS. This would potentially include
many false positives. She can then induce a tim-
ing signature in her network node on all responses
from a server on candidate circuits. This can be
done exactly in the manner of the timing signa-
ture used by Murdoch and Danezis [18], except that
our attacks do not require collusion by the exter-
nal server. Alice’s client then simply looks for the
same timing signature. The important thing to note
is that no dummy traffic scheme could prevent this.
If dummy traffic is sent all the way to the client,
Alice can of course detect it since she controls the
client. If dummy traffic is sent by HS to some node
between Alice’s node and Alice’s client, this will
result in some differences between the induced sig-
nature and the one seen by the client. Nonetheless,
for low-latency traffic this strong signature would
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clearly remain easily identifiable. In the experi-
ments of [18], the corrupt server would send for
between 10 and 25 seconds then stop sending for
between 30 and 75 seconds. This was detected in-
directly in those experiments by interference with
external probes of Tor nodes. In our case, Alice
would have direct access to the circuits. This also
means that the attack would scale to current net-
work sizes and beyond.9 Note also that no existing
dummy scheme would even affect the signature of
traffic sent from Alice’s client to the Hidden Server
through Alice’s node. While this traffic is typically
much lower volume it can still be used to identify
the circuit.

5.3 Extending the Path from Hid-
den Server to Rendezvous Point

As described in Section 4.6 and illustrated in
Fig. 2, if Alice owns at least two nodes she can have
her client name one of them as the Rendezvous
Point. If her other node is chosen by HS as Node 2,
then she will be able to confirm this immediately
with high confidence because both her nodes will
be connected to Node 3. And as before, if Alice
were connected as Node 3, then she would also
know this. This means that Alice can easily know
when she has a circuit match being Node 1, which
is especially significant if HS is configured as in the
server scenario of Section 4.3. However, this also
means that Alice can more quickly abandon circuits
when she does not have Node 1 position, speeding
up the attack. It also allows rapid identification of
guard nodes (cf., Section 5.4).

A simple countermeasure to this is to allow HS
to extend the path length,l, to RP by one hop. The
attacker owning the Rendezvous Point will now be
able to determine when she is located as Node 3 or
Node 4, but unable to differentiate between the po-
sitions 1 and 2, forcing Alice to use the predecessor
or service location attack. Extending the path will
also slow down the predecessor attack and the tim-

9The attacks of [18] required probing the entire network and
were done on a network an order of magnitude smaller than the
current Tor network. It is an open question whether they would
scale to the current one.

Figure 5. Use of Entry Guard Nodes

ing analysis by a factor of1/l since that is the fre-
quency with which Alice’s node will be chosen as
Node 1 within the matching circuits. So this coun-
termeasure only causes a minor effect on the speed
of the predecessor attack, and has no effect on the
location attack.

As an alternative, we could allow HS to choose
RP. This would be a minor code change to the Tor
hidden services protocol. Whether adding a node
before the Rendezvous Point or allowing HS to
choose RP, this would also seem to imply a longer
path between client and HS than the current default
Tor HS protocol, i.e., seven nodes vs. six. This
would also create an easier attack if our techniques
were used to locate the client, which would then
require its own countermeasure.

5.4 Using Entry Guard Nodes

All of our attacks rely on Alice being able to
force the Hidden Server to create new circuits until
she can cause it to create a circuit that first connects
directly to her node. What if this could never hap-
pen, or if the rotation of first nodes in the circuit
were slowed down? This would prevent or sub-
stantially slow our attacks. This is the motivation
behindentry guard nodes(or simplyentry guards)
a concept introduced by Wright et al. [30].10 That
work looked at attacks on various anonymous com-
munication systems, but it did not consider at all
the specific concerns of hidden services. The basic
idea of a helper node in [30] was to always choose a
single node as the first node in a communication. If
this is compromised, then that end of your circuit is

10Wright et al. named these nodeshelper nodes, which we
have found to be a too general expression.
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Table 2. Experimental results when Hidden Server is using Entry Guard Nodes.
Total circuits Matched Largest Second Third

completed circuits single IP largest largest
Test 1 292 8 7 1 0
Test 2 106 6 5 1 0
Test 3 296 13 12 1 0
Test 4 292 10 4 3 3

always compromised. However, if it is not compro-
mised, then the attacks we have described cannot
work because Alice will never own the node adja-
cent to HS on the rendezvous circuit. (For a circuit
initiator to better hide the responder, Wright et al.
also considered helper nodes as the last node in the
circuit as well as the first.)

Tor design has long allowed a specified list of
entry nodes (and exit nodes) which, when speci-
fied, will require all circuits to enter (resp. exit) the
network through nodes in that set, as illustrated in
Fig. 5. This can be set as either a preference request
or as a strict requirement [26]. The effectiveness of
using these as entry guard nodes to counter prede-
cessor attacks is noted by the Tor designers as an
open research problem [12].11 We now explore the
idea of using entry guard nodes specifically to im-
prove the protection of hidden servers.

There are several parameters and options possi-
ble in choosing entry guard nodes. The first param-
eter is theentry guard set size, i.e, the number of
nodes that HS will use as entry guards. The smaller
the set, the less risk that Alice owns a node in it;
however the greater the chance that all the nodes in
the set will be subjected to monitoring or unavail-
able from either failure or attack. As already noted,
entry guard nodes may bepreferredor strictly re-
quired. As a refinement, there may be a succes-
sively preferred set of entry guards. There may be
asingle layerof entry guard nodes, i.e., nodes cho-
sen to be immediately adjacent to HS, or they may
be layered, i.e., some guard nodes are chosen to
be used for the first hop, some for the second, and
possibly further. Finally, they may bechosen at

11It is also possible to set an exit node preference in the URL
for specific HTTP requests [27].

randomor chosen based on trust or performance.
Each of these choices is orthogonal, so each of

the combinations of choice will lead to systems
with different properties. For space, we will limit
discussion to some of the more salient combina-
tions.

Choosing a small set of entry guard nodes that
are both permanent and strictly required could lead
to a higher percentage of service failures, either
by accident or by design (assuming a very power-
ful adversary, with the capability to DoS all entry
guard nodes). If a permanent set is simply a prefer-
ence, then DoS of all entry guard nodes could lead
back to our attacks if the guard nodes can be kept
down long enough. Of course this assumes that en-
try guards can be identified by the attacker. We ran
our attacks on a hidden server that had chosen three
entry guard nodes.

Experiment - Attacking Entry Guard Nodes:
Letting the Hidden Service use three permanent,
preferred entry guards we found that these nodes
combined representedall identified connections
through Alice’s node, as shown in Table 2. A
quite unexpected result, but caused by the imple-
mentation feature in Tor described earlier: we were
never Node 3, only Node 2 (Node 1 being the entry
guard).

As in our previous experiments, identifying the
entry guard nodes through our attacks never took
more than a few hours.

Backup guard nodes: Suppose there is a short
list of entry guard nodes that is preferred (e.g., three
nodes) and a longer list of guard nodes to be used
as backup (e.g., nine) if those are not available. If
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Figure 6. Use of Layered Entry Guard
Nodes

the adversary has the capability of keeping say four
nodes at a time offline, then it can cause HS to use
other nodes in the Node 1 position than those on the
short list. But, all that will accomplish is causing
HS to rotate to three new nodes from the longer list
as primary guards. Alice can cause rotation of cir-
cuits but only through a still relatively small set of
entry guard nodes, and this only through sustained
attacking. We can however make it more difficult
for Alice to find the entry guard nodes at all via our
attacks.

Layering guard nodes: Suppose, e.g., that HS
has a set of three entry guard nodes from which to
choose Node 1, and for each of these has a set of
three guard nodes from which to choose Node 2,
as illustrated in Fig. 6. As before, Alice can only
successfully find HS if she owns one of these three
layer 1 entry guard nodes. But if she does not, in
order to even identify one of those layer 1 nodes to
attack she must own one of the three layer 2 guard
nodes associated with that node.

Layering guard nodes would require much more
substantial changes to the Tor code than the exper-
iments we have already run, albeit probably fairly
straightforward changes. We have thus not had a
chance to conduct experiments on either layering
or backup guard node configurations. However, a
version of backup guard nodes has recently been
implemented in Tor in response to our results. At
the time of writing, by default each client running
the latest Tor code chooses three nodes as initial
preferred entry guards. When the available entry
guard set shrinks below two nodes, two more nodes
are added to the set. However, the software keeps

track of when a node enters the set and prefers to
choose entry nodes for circuits that were in the set
sooner. Nodes are only deleted from the set when
they have been unreachable for an extended period
(currently one month).

Nonrandom choice of entry guard node sets:
To avoid circuit rotation simply from failed entry
guard nodes it might seem that it is best to choose
as guard nodes those that have the best uptime,
and perhaps bandwidth. This is, however, subject
to abuse since adversaries may run highly reliable,
highly performing nodes in order to increase their
chances of being chosen as entry guard nodes. And,
this is especially easy to abuse in the current Tor
directory statistics in which nodes report their own
performance. This is a specific instance of a more
general problem in trying to build reliable anony-
mous communication. One possible solution is to
order node performance and reliability but then to
choose from a large enough set in this order that
the adversary is unlikely to be able to substantially
alter the chances of being chosen as an entry guard
node. Dingledine and Syverson described this strat-
egy to form a reliable anonymous communication
network of mix cascades [14].

Another possibility is to choose entry guard
nodes based on trust in the node administrator. It
is difficult to attach probabilities to Alice’s being
trusted by the Hidden Server administrator, or per-
haps more likely, to compromise a node run by
someone trusted by the Hidden Server administra-
tor. (Trust in honesty should not be confused with
trust in competence.) Perhaps a greater concern
is that common properties of the administrators of
chosen entry guard nodes (e.g., they are all family
relatives) may lead an adversary to form a hypoth-
esis of who is running HS, which may then lead to
attacks unrelated to use of the network per se. Here
the layering approach described above may prove
useful. If the layer 1 nodes are personally trusted,
and the layer 2 nodes are chosen as random sets,
then it becomes more difficult for an adversary to
discover the set of entry guard nodes and thus to
correlate external properties.
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6 Conclusion

Our results show that Tor’s location-hidden
servers are not really hidden—or rather they were
not really hidden prior to the recent introduction
of guard nodes as countermeasures to our attacks.
Using our attacks, all an attacker needed was one
compromised node in the network and the “Hidden
Server” was identified.

We have demonstrated that an attack with one
compromised node in the anonymity network takes
only minutes if the service is located at a client, or a
couple of hours when located on a server node. By
using two nodes in the network it only takes min-
utes to find the Hidden Server regardless of where
it is located.

We have also argued that neither dummy traf-
fic nor extending the path length from the Hidden
Server to the Rendezvous Point will protect against
all of our attacks. However, requiring hidden ser-
vices to always use entry guard nodes, which are
currently available as a general option in the Tor
code, greatly reduces the probability of successful
attacks against a hidden service.

Using random entry guard nodes may still leave
the Hidden Server vulnerable to our attacks if the
attacker is powerful enough to completely deny ser-
vice to a small sets of nodes or to compromise them
by physical or other means. But, usingbackup
guard nodesand/orlayering guard nodeswill sig-
nificantly slow down even such an attacker.

Using random selection of backup and layering
entry guard nodes will be an improvement, but as in
all Tor circuits, someone connecting through ran-
dom nodes will always be compromised if an at-
tacker owns just two nodes [25]. Using the backup
and layering techniques in combination with a non-
random selection, e.g. based on some kind of trust,
or experience, with the nodes, may slow the attack
even more or may even prevent it entirely.

We have demonstrated attacks that surprisingly
require just one or two hostile nodes. What is pos-
sible by an adversary that controls several nodes,
or even, e.g., two percent of the network? We will
investigate this in future work. Other future work
includes testing implemented countermeasures for

vulnerabilities using the described attack scenarios,
as well as new ones. We will also be investigat-
ing improved performance by shrinking the path
length between the Client and the Hidden Server.
We speculate that it may be possible to do so with
adequate security when using our suggested coun-
termeasures, and possibly others. We will also turn
our attack on its head: testing to locate a client by
having an attractive hidden service.
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