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We develop a technique for generating a set of optimized local basis functions to solve
models in the Kohn–Sham density functional theory for both insulating and metallic sys-
tems. The optimized local basis functions are obtained by solving a minimization problem
in an admissible set determined by a large number of primitive basis functions. Using the
optimized local basis set, the electron energy and the atomic force can be calculated accu-
rately with a small number of basis functions. The Pulay force is systematically controlled
and is not required to be calculated, which makes the optimized local basis set an ideal tool
for ab initio molecular dynamics and structure optimization. We also propose a precondi-
tioned Newton–GMRES method to obtain the optimized local basis functions in practice.
The optimized local basis set is able to achieve high accuracy with a small number of basis
functions per atom when applied to a one dimensional model problem.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In scientific computation of systems with large number of degrees of freedom, an efficient choice of basis functions be-
comes desirable in order to reduce the computational cost. In this paper, we focus on the choice of efficient basis sets for the
Kohn–Sham density functional theory (KSDFT) [1,2], which is the most widely used electronic structure theory for con-
densed matter systems. The methods and concepts illustrated here are also useful for other applications.

In KSDFT, the quantities of interest are the electron energy E(R) and the atomic force F(R). Here we denote by
R ¼ ðR1;R2; . . . ;RNA Þ

T the atomic positions, where NA is the number of atoms. The atomic force is expressed in terms of the
derivatives of the electron energy with respect to the atomic positions as FðRÞ ¼ � @EðRÞ

@R . This is an important quantity in many
applications including structure optimization and first principle molecular dynamics. The electron energy is a functional of a
set of Kohn–Sham orbitals fwig

N
i¼1 where N is the number of electrons in the system. To illustrate the idea with minimal tech-

nicality, let us consider for the moment a system of non-interacting electrons at zero temperature. The energy functional for
non-interacting electrons takes the form
E fwiðxÞg
N
i¼1; R

� �
¼ 1

2
PN
i¼1

Z
jrwiðxÞj

2dxþ
Z

Vðx; RÞ
PN
i¼1
jwiðxÞj

2dx: ð1Þ
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The first term and the second term in (1) are the kinetic energy and the potential energy of the system, respectively. The
energy E(R) as a function of atomic positions is given by the following minimization problem
EðRÞ ¼ min
fwiðxÞgN

i¼1

E fwiðxÞg
N
i¼1; R

� �
;

s:t:
R

w�i ðxÞwjðxÞdx ¼ dij; i; j ¼ 1; . . . ;N:
ð2Þ
We denote by fwiðx; RÞgN
i¼1 the minimizer. It can be readily shown that fwiðx; RÞgN

i¼1 are the lowest N eigenfunctions of the
Hamiltonian operator H(R), which takes the form
HðRÞ ¼ �1
2

Dx þ Vðx; RÞ: ð3Þ
Using the Hamiltonian operator, the electron energy has an alternative expression without the explicit dependence on the
orbitals fwig

N
i¼1:
EðRÞ ¼ Tr½HðRÞvðHðRÞ � lðRÞÞ� � Tr½g0ðHðRÞÞ�; ð4Þ
where v(x) = 1 if x < 0 and is 0 otherwise. l(R) is the chemical potential, which takes value between the Nth and (N + 1)th
eigenvalues of H to control the number of electrons. Here we assume there is a positive gap between the Nth eigenvalue
and the N + 1th eigenvalue corresponding to the Hamiltonian H(R).

Since all the quantities depend on the atomic positions R, to simplify the notation we drop the dependence on R unless
otherwise specified. If we approximate the eigenfunctions fwig

N
i¼1 by linear combination of a set of basis functions

U ¼ ð/1; . . . ;/Nb
Þ, the Hamiltonian operator H is discretized into a finite dimensional matrix UTHU (here and in the following,

we will use the linear algebra notation: /T
i H/j ¼ h/ijHj/ji). The number of basis functions Nb is therefore called the discret-

ization cost. The electron energy and the force can be expressed in terms of the discretized Hamiltonian operator as
EU ¼ Tr g0 UTHU
� �� �

;

FU;I ¼ �
@EU

@RI
¼ �Tr g00 UTHU

� �
UT @H

@RI
U

� 	
� 2Tr g00 UTHU

� �
UTH

@U
@RI

� 	
: ð5Þ
FU,I is the Ith component of the force. In what follows the second equation in (5) is also written in a compact form as
FU ¼ �
@EU

@R
¼ �Tr g00 UTrHU

� �
UTr @H

@R
U

� 	
� 2Tr g00 UTrHU

� �
UTrH

@U
@R

� 	
: ð6Þ
Choosing basis functions U adaptively with respect to the atomic positions R has obvious computational advantages, as it
allows the possibility to reduce the discretization cost by a significant amount while maintaining the accuracy for the eval-
uation of the electron energy and atomic forces. Since the electron energy is defined variationally as in (2), an accurate basis
set should minimize the electron energy. However, choosing the basis functions adaptively gives rise to some difficulties in
the evaluation of the force (5) which requires the calculation of @U

@R. In electronic structure theory, the contribution from @U
@R is

referred to as the Pulay force [3]. We will henceforth adopt this terminology. The Pulay force originates from the incomplete-
ness of the basis set, and has been found to be important to obtain the force with reliable accuracy for structure optimization
or first principle molecular dynamics [3,4]. The calculation of the Pulay force can be quite expensive even if the basis func-
tions U have analytical expressions, and the calculation of the Pulay force becomes almost intractable if the basis functions
are defined implicitly such as in the adaptive mesh method [5–8]. We would like to systematically reduce the Pulay force so
that the approximation
@EU

@R
� Tr g00 UTHU

� �
UT @H

@R
U

� 	
ð7Þ
becomes adequate.
The key observation in this paper is that minimizing the electron energy and reducing the Pulay force can be simulta-

neously achieved by the following optimization procedure
min
U�V;UT U¼I

EU ¼ min
U�V;UT U¼I

Tr g0 UTHU
� �� �

: ð8Þ
Here V is an admissible subset of the space spanned by a set of primitive basis functions which are independent of R. Later V
will be referred to as the admissible set. We select from V a small number of R-dependent optimized basis functions
U ¼ ðU1; . . . ;UNb

Þwhich give rise to the lowest electron energy in V. The Euler–Lagrange equation for the minimization prob-
lem (8) reads
HUg00ðU
THUÞ ¼ UK;

UTU ¼ I;

(
ð9Þ
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where the matrix K is a Lagrangian multiplier and is symmetric. When the first optimality condition (9) is satisfied, we find
2Tr g00 UTHU
� �

UTH
@U
@R

� 	
¼ 2Tr KUT @U

@R

� 	
¼ Tr K

@ UTU
� �
@R

" #
¼ 0: ð10Þ
The last equality comes from the orthonormal constraint on the optimized basis functions U. The reason why (10) holds can
be understood from the variational structure of the original problem (8), which is related to the Hellmann–Feynman theorem
in quantum mechanics. As a result, the Pulay force vanishes in the atomic force even if the optimized basis functions are far
from being a complete basis set.

The choice of the primitive basis functions is crucial. Although the optimized basis functions are always incomplete due to
the small number of basis functions used, the primitive basis set should be systematically improvable towards a complete
basis set. Each primitive basis function should be local in order to be suitable for large scale parallel calculation. In our pre-
vious work [9], the primitive basis set is constructed using a discontinuous Galerkin (DG) framework. The DG primitive basis
set allows the usage of basis functions that are discontinuous across element surfaces. Each DG primitive basis function is
local in the real space, and thus gives full flexibility in the choice of the optimized basis functions. The locality constraint
in the real space can therefore be naturally applied to the optimized basis functions, giving rise to the optimized local basis
set.

We remark that a large primitive basis set also presents practical difficulties for the optimization procedure. In this paper
we propose a preconditioned Newton–GMRES method to obtain the optimized local basis functions. Numerical results using
a one dimensional model problem validate the performance of the optimized local basis functions: the electron energy and
the force can be accurately calculated along the trajectory of the molecular dynamics without systematic drift, using a very
small number of basis functions per atom.

Improving the quality of the basis functions via variational optimization has been previously studied in the electronic
structure theory. However, to the best of our knowledge all the optimized basis functions presented so far use atom-centered
primitive basis functions, such as atomic orbitals or Gaussian-type orbitals. Since atomic orbitals or Gaussian-type orbitals
depend on the atomic positions and do not form a complete basis set, the Pulay force never vanishes. The Pulay force of all
the primitive basis functions should be computed for each atomic configuration. Moreover, optimization for each atomic
configuration is generally considered to be an expensive procedure, and the optimized basis functions are usually obtained
for specific reference systems instead. For example, Junquera et al. [10] proposed to optimize the shape and cutoff radii of a
set of numerical atomic orbitals; Ozaki [11] proposed using the optimal linear combination of a set of numerical atomic orbi-
tals; Blum et al. [12] used a greedy method to select basis functions from a large pool of numerical atomic orbitals. The draw-
back of this procedure is that the quality of the basis functions depends heavily on the choice of the reference system. The
transferability of these basis sets obtained for specific reference systems should be tested carefully for a variety of systems.
Optimized basis functions without the choice of reference systems have also been studied before. Talman [13] proposed to
optimize a set of numerical atomic orbitals for all the atoms simultaneously. Rayson and Briddon [14] tried to find the opti-
mal linear combination of Gaussian-type orbitals, where the optimization process loops over each atom in the system. These
methods share similar spirit as the present work, and can be regarded as approximate strategies towards achieving optimal-
ity in practice.

Our current work avoids the subtle issue of transferability by means of an optimization procedure for any given system,
which could be advantageous for complex systems where manually constructed transferable basis functions are difficult to
be obtained. The DG primitive basis set is a complete basis set, and the optimized local basis functions are local by construc-
tion. The DG primitive basis set is independent of the atomic positions, and the Pulay force vanishes when the optimality
condition is reached.

The rest of the paper is organized as follows. In Section 2, we introduce the optimized local basis set for KSDFT. Numerical
examples are presented in Section 3, followed by discussion and conclusion in Section 4. To make the paper self-contained,
we briefly recall the finite temperature Kohn–Sham density functional theory in Appendix A.

2. Optimized local basis function

As introduced in our previous work [9], using a discontinuous Galerkin method (the interior penalty method [15,16]), the
effective energy functional in Kohn–Sham density functional theory is given by
FDG fwig; ffigð Þ ¼ 1
2
P

i
fihrwi;rwiiT �

P
i

fihffrwigg; switiS þ hVeff ;qiT þ a
P

i
fihswit; switiS þ

P
‘

c‘
P

i
fijhb‘;wiiT j

2

þ b�1P
i
ðfi ln fi þ ð1� fiÞ lnð1� fiÞÞ: ð11Þ
This is a discretization method for the Helmholtz free energy (A.18) for a system at temperature b�1, see Appendix A for de-
tails of formulation of Kohn–Sham density functional theory in finite temperature. Here T is a collection of quasi-uniform
rectangular partitions of the computational domain:
T ¼ fE1; E2; . . . ; EMg; ð12Þ
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and S be the collection of surfaces that correspond to T . h�; �iT and h�; �iS are inner products in the bulk and on the surface
respectively. The notations {{�}} and s �t are used for the standard average and jump operators across surfaces in the interior
penalty method. We refer to [9] for more details.

Let U be a chosen set of basis functions U ¼ fuk;jg
Jk
j¼1, where each uk,j is supported in Ek and Jk is the total number of basis

functions in Ek. The corresponding approximation space VU is given by
VU ¼ spanfuk;j; Ek 2 T ; j ¼ 1; . . . ; Jkg: ð13Þ
The approximated Kohn–Sham orbitals are the solutions to the minimization problem
min
fwig�VU ;ffig

FDG fwig; ffigð Þ;

s:t:
Z

w�i wjdx ¼ dij; i; j ¼ 1; . . . ; eN ; ð14Þ
where eN is chosen to be slightly larger than the number of electrons N in the system in order to compensate for the finite
temperature effect (see Appendix A for more detailed explanation). We propose the optimized local basis functions which
give rise to a specific choice of U, in order to achieve accuracy for both the Helmholtz free energy and the force while using
a small number of basis functions. Following the spirit of (8) introduced for the model problem in the introduction, the opti-
mized local basis function set U solves the following minimization problem
min
U�V;UT U¼I

min
fwig�VU ;ffig

FDG fwig; ffigð Þ; ð15Þ
where V is the admissible set. To define the admissible set, we take for each element Ek a set of basis functions
{uk, j,j = 1, . . . ,Jk}. Each uk,j is compactly supported in Ek, and they satisfy the orthonormality condition
huk0 ;j0 ;uk;jiT ¼ dkk0djj0 : ð16Þ
For example, {uk,j} can be polynomials restricted to the set Ek up to a certain order. Other forms of primitive basis functions
can be chosen as well, without changing the discussion that follows. The discretized Hamiltonian in the DG formulation
takes the form
Hk0 ;j0 ;k;j ¼
1
2
hruk0 ;j0 ;ruk;jiT �

1
2
hsuk0 ;j0t; ffruk;jggiS �

1
2
hffruk0 ;j0 gg; suk;jtiS þ ahsuk0 ;j0t; suk;jtiS þ huk0 ;j0 ;Veff uk;jiT

þ
P
‘

c‘huk0 ;j0 ; b‘iT hb‘; uk;jiT : ð17Þ
The optimized local basis functions should be local in the real space in order to facilitate large scale computation. Since {uk,j}
are compactly supported in Ek, the locality constraint on the optimized local basis functions is naturally imposed by requiring
each function in the admissible set to be linear combinations of {uk,j} for the same k, i.e.
V ¼
SM

k¼1
spanfuk;j; j ¼ 1; . . . ; Jkg; ð18Þ
where M is the number of elements.
Inside each element Ek, we select Nk optimized local basis functions from the admissible set. Nk is much smaller than Jk.

The optimized local basis functions are denoted by fUk;1; . . . ;Uk;Nk
g, and are represented by the linear combination of the

primitive basis functions
Uk;l ¼
PJk

j¼1

~Uk;l;juk;j; l ¼ 1; . . . ;Nk:
With slight abuse of notation, we use Uk,l also for the column vector of the coefficients in the primitive basis functions:
Uk;l ¼ ~Uk;l;1
~Uk;l;2 � � � ~Uk;l;JK

� �T
: ð19Þ
If we write
Uk ¼ Uk;1 Uk;2 � � � Uk;Nk

� �
; ð20Þ
the optimized local basis set U represented in the primitive basis set takes the form
U ¼ diagðU1;U2; . . . ;UMÞ: ð21Þ
Because of the block diagonal structure, the orthonormality constraint UTU = I is equivalent to the orthonormal constraint
for each Uk, i.e., UT

kUk ¼ Ik; k ¼ 1; . . . ;M. Here each block Ui is a rectangular matrix of size Ng 	 Nk, where Ng is the number of
grid points in the element, and Nk is the number of basis functions. Ik is an Nk 	 Nk identity matrix.

Under the basis set U, the discretized Hamiltonian becomes UTHU with H given by (17). The Helmholtz free energy can be
written without the explicit dependence on {wi} and {fi}:
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min
fwig�VU ;ffig

FDG fwig; ffigð Þ ¼ TrgðUTHUÞ þ lN; ð22Þ
where the function g, which is a finite temperature version of g0, is defined as
gðxÞ ¼ �b�1 lnð1þ expðbðl� xÞÞÞ: ð23Þ
Note that the derivative of g is the Fermi–Dirac function
g0ðxÞ ¼ 1þ expðbðx� lÞÞð Þ�1
: ð24Þ
Hence, the minimization problem (15) becomes
FDG ¼min
U�V

TrgðUTHUÞ þ lN
� �

;

s:t: UT
kUk ¼ Ik; k ¼ 1; . . . ;M:

ð25Þ
The atomic force is then given by
F ¼ � @FDG

@R
¼ �Tr qUUT @H

@R
U


 �
� 2Tr qUUTH

@U
@R


 �
¼ �Tr qUUT @H

@R
U


 �
; ð26Þ
where qU = g0(UTHU) is the single particle density matrix associated to the discretized Hamiltonian UTHU. qU can be eval-
uated using standard diagonalization techniques by computing the eigenvalues and eigenvectors of the reduced Hamiltonian
UTHU. This is asymptotically the most time consuming step which scales as O(N3) where N is the number of electrons in the
system. For the 1D system considered in this manuscript, qU is solved by the MATLAB diagonalization subroutine eig. For
systems of large size, the diagonalization routine can be replaced by the recently developed low order scaling selected inver-
sion methods [17,18] to reduce the computational cost. The Pulay force vanishes in the last equality when the first order
optimality of the optimization problem (25) is reached, following the same reasoning as in (10).

The Euler–Lagrange equation with respect to the minimization problem (25) reads
HUqU �UK ¼ 0;

UTU� I ¼ 0;

(
ð27Þ
where the K is a block diagonal matrix
K ¼ diagðK1;K2; . . . ;KMÞ;
which is the Lagrange multiplier for the orthonormal constraints. Due to the block diagonal structure of U, we can write the
first order optimality condition (27) as
P

j
HijUjqU;ji �UiKi ¼ 0; i ¼ 1; � � � ;M: ð28Þ
Define the remainder for the ith element as
RiðU;KÞ ¼

P
j

HijUjqU;ji �UiKi

I �UT
i Ui

0@ 1A: ð29Þ
We solve Ri(U,K) = 0 for i = 1,2, . . . ,M.
In order to solve the nonlinear system (27), we propose a preconditioned Newton–GMRES method as follows. Denote by J

the Jacobian matrix. At the lth iteration, the Newton step solves the following linear system for the correction term
JðlÞ
DUðlÞ

DKðlÞ

 !
¼ � HUg0ðUTHUÞ �UK

I �UTU

 !
: ð30Þ
To make the optimization feasible in practice, we take the following approximation. We neglect the derivative of qU = g0

(UTHU) with respect to U in the Jacobian. The most important reason for this approximation is that the numerical evaluation
of such derivative is quite expensive. In practice we find that the residue of the Euler–Lagrange equation decays fast in the
first few Newton iterations, and slows down when the residue becomes small, suggesting that the derivative of qU with re-
spect to the basis functions can be important especially for the small residue case. Numerical results indicate that the accu-
racy of the Helmholtz free energy and the force can already be improved by one order of magnitude after a few Newton
iterations. Further improvement that includes the approximate form of the derivative of qU will be considered in the future
work. Using this approximation, the correction equation (30) can be written explicitly as
P

j
HijðDUÞjqU;ji � ðDUÞiKi �UiðDKÞi

�UT
i ðDUÞi � ðDUÞTi Ui

0@ 1A ¼ �Ri; ð31Þ
for i = 1,2, . . . ,M.
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We solve the linear system (31) using a preconditioned GMRES method. The GMRES method [19] is a robust way for solv-
ing ill-conditioned linear equations. The preconditioner should give an approximate solution efficiently for the following
equation
P

j
HijðDUÞjqU;ji � ðDUÞiKi �UiðDKÞi

�UT
i ðDUÞi � ðDUÞTi Ui

0@ 1A ¼ � Bi

Ci


 �
ð32Þ
for any right hand side {Bi},{Ci}. To this end we first neglect the interaction between different elements:
HiiðDUÞiqU;ii � ðDUÞiKi �UiðDKÞi
�UT

i ðDUÞi � ðDUÞTi Ui

 !
¼ �

Bi

Ci


 �
: ð33Þ
The equations of (DU)i for different elements become decoupled. (33) can be therefore solved independently in each ele-
ment. Second, we note that there are degeneracy issues solving (33). This is because in the subspace spanned by the basis
VU, only the low-lying eigenfunctions of the discrete Hamiltonian affect the free energy much, while the eigenfunctions with
large eigenvalues do not contribute much due to small occupation number. Therefore, if we change the subspace VU in the
direction of these high energy eigenfunctions, it does not change much the energy, which causes degeneracy.

We propose the following pruning method to solve the degeneracy problem. Instead of solving (33), we restrict to the
basis functions contributed to the low-lying eigenfunctions by the following procedure. Given density matrix qU, for each
element Ei, we take a singular value decomposition of the diagonal block of qU,ii:
qU;ii ¼ UiSiU
T
i ; ð34Þ
with the singular values sorted in descending order. Then according to magnitude of the singular values, we write
Ui ¼ ðUh

i ;U
l
iÞ, where the singular vectors in Uh

i correspond to high singular values above a certain threshold, and the ones
in Ul

i correspond to low singular values below the threshold. The basis functions in the element can be separated into
two accordingly:
Uh
i ¼ UiU

h
i ; Ul

i ¼ UiU
l
i: ð35Þ
We now only update the correction term corresponding to the high singular values by solving
HiiðDUÞhi qh
U;ii � ðDUÞhi K

h
i �Uh

i ðDKÞhi

� Uh
i

� �T
ðDUhÞi � ðDUhÞTi U

h
i

0@ 1A ¼ � BiU
h
i

Uh
i

� �T
CiU

h
i

0@ 1A; ð36Þ
where
qh
U;ij ¼ Uh

i

� �T
qU;ijU

h
j :
The approximate solution of the preconditioning Eq. (32) is therefore given by
DUi ¼ DUh
i Uh

i

� �T
; DKi ¼ Uh

i DKh
i ðU

h
i Þ

T
: ð37Þ
As will be seen in the numerical examples in Section 3, the preconditioned Newton–GMRES method is able to obtain the
optimized local basis functions efficiently with a small number of iterations.

3. Numerical result

3.1. Setup

The accuracy and efficiency of the optimized local basis functions is illustrated using a one-dimensional model problem as
follows. The number of atoms in the one-dimensional model problem is denoted by NA, the positions of electrons by x, and
the positions of ions by R ¼ ðR1;R2; . . . ;RNA Þ

T . The electronic and ionic degrees of freedom are separated by the Born–Oppen-
heimer approximation. The effective Kohn–Sham Hamiltonian of the electrons for a given atomic configuration R is
HðRÞ ¼ �1
2

Dþ Vðx; RÞ: ð38Þ
The effective electron–ion interaction and electron–electron interaction is modeled by the summation of a series of Gaussian
functions
Vðx; RÞ ¼ � Affiffiffiffiffiffiffiffiffiffiffiffi
2pr2
p

PNA

I¼1
e�
ðx�RI Þ

2

2r2 : ð39Þ
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A and r characterize the height and the width of the potential well around each atom, respectively. For simplicity, the effec-
tive Hamiltonian does not depend on the electron density, and hence self-consistency iteration is not involved. The self-con-
sistent iteration will be added in the future work. The ion-ion interaction is modeled by a harmonic potential with periodized
nearest-neighbor interaction
VIIðRÞ ¼
1
2
PNA�1

I¼1
xðRI � RIþ1Þ2 þ

1
2
xðRNA � R1 � LÞ2; ð40Þ
with L being the length of the computational domain. The force on atom I is
FI ¼ �
@FDGðRÞ
@RI

� @VIIðRÞ
@RI

: ð41Þ
The finite temperature KSDFT is used here and the Helmholtz free energy for the electrons FDGðRÞ is given by (25). The finite
temperature effect is usually negligible in insulating systems with large band gap, but becomes important for the stability in
metallic systems with small or vanishing band gap.

The accuracy is measured in terms of the error of the Helmholtz free energy per atom and the error of the force. For a
given atomic configuration, the Helmholtz free energy per atom and the force are calculated independently using the opti-
mized local basis functions and the benchmark plane wave basis functions. Except for the unit of temperature which is Kel-
vin, atomic units are used throughout this section unless otherwise specified. In particular, the unit of energy is Hartree, the
unit of force is Hartree/Bohr, and the electron mass m, electron charge e and the Planck constant ⁄ are set to be unity. The
detailed choices of the parameters in the simulation are as follows. Except in the last example where we test for different
system sizes, the number of atom is taken to be NA = 8. The average distance between adjacent atoms is 10 au, and the size
of each element is also set to be 10 au. The initial guess of the optimized local basis functions uses the adaptive local basis
functions proposed in our previous work [9]. The adaptive local basis functions use a small buffer region outside each ele-
ment. The buffer size is 5 au in the present calculation. We compare the electron energy and the forces produced by the opti-
mized local basis functions with those obtained from a planewave calculation with kinetic energy cutoff at Ecut = 40 Ry, or 20
planewaves per atom. The change of the Helmholtz free energy and the force is less than 10�8 au if the kinetic energy cutoff
for the planewave calculation is further increased. Twenty-one Legendre–Gauss–Lobatto (LGL) grid points per element are
used to discretize the optimized local basis functions as well as the adaptive local basis functions. The change of the Helm-
holtz free energy and the force is less than 10�8 au if the number of LGL integration points is further increased. Therefore the
numerical integration error is negligible, and the error in the calculated Helmholtz free energy and the force faithfully rep-
resents the error due to the usage of adaptive local basis functions or optimized local basis functions. The electron temper-
ature is 2000 K. The penalty parameter a in the DG Hamiltonian is 40. The choice of parameters for the potential energy
surface is x = 0.03, A = 5.0, r = 4.0.

If one electron is assigned to each atom (spin degeneracy is neglected), then the band gap at the equidistant configuration
is around 14,000 K, which is much larger than the electron temperature (2000 K). In what follows this system is referred to as
the insulating system. If four electrons are assigned to each atom, the band gap is is essentially zero (0.5 K). The energy levels
around the Fermi surface are fractionally occupied due to the thermal effect. This system is referred to as the metallic system.

In the optimization of the local basis functions, the maximum number of Newton iterations is set to be 4, and the max-
imum number of iterations for the preconditioned GMRES solver for the Newton’s equation is set to be 30. We find that the
error for solving the linear system (31) using 30 preconditioned GMRES iterations is less than 10�4. The threshold value for
the significant part of the basis functions is set to be 10�7 to avoid degeneracy. The preconditioning step is solved by direct
LU decomposition method inside each element.

3.2. Static case

We first illustrate the performance of the optimized local basis set in the static case. 20 atomic configurations are gen-
erated from equidistant configuration with small random perturbations. The accuracy of using the optimized local basis
set is measured by the mean absolute value of the error (mean error) of the Helmholtz free energy per atom and the mean
error of the force of a fixed atom. Besides the optimized local basis functions, the error of using the adaptive local basis func-
tions [9] is presented as well to illustrate the effectiveness of the optimization procedure.

For the insulating system, the relative error of the force is already 0.5% with as small as 4 basis functions per atom using
the optimized local basis functions (Table 1). When compared to the adaptive local basis functions with the same number of
basis functions per atom, the error of the Helmholtz free energy per atom is reduced by 51 times, and the error of the force is
reduced by 14 times after the optimization procedure. It is illuminating to see the difference between the adaptive local basis
functions and the optimized local basis functions. Since any unitary transformation of the basis functions in each element
does not change the total energy of the system, the basis functions should first be rotated according a certain criterion. Here
we rotate the basis functions in an element according to the Ritz values of the Hamiltonian in the same element. Take the
first element for example, the Hamiltonian operator is denoted by H11, and the basis functions in the first element is denoted
by U1. We solve the following eigenvalue problem
UT
1H11U1

� �
C1 ¼ C1K1; ð42Þ



Table 1
Mean error of the Helmholtz free energy per atom, the absolute error of the force of the first atom, and
the relative error of the force of the first atom. This system is an insulating system with 1 electron per
atom (spin neglected). Four basis functions per atom are used for both the adaptive local basis functions
and the optimized local basis functions.

Method DFDG/atom Absolute DF Relative DF

Adaptive 5.7 	 10�5 6.8 	 10�5 4.5 	 10�3

Optimized 1.1 	 10�6 4.9 	 10�6 3.3 	 10�4
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where K1 is a diagonal matrix with values sorted in ascending order. Then we compare the rotated basis functions
Fig. 1.
basis fu
ascendi
U1C � ½u1; . . . ;uJ � ð43Þ
for adaptive and optimized local basis functions in Fig. 1. It is found that the optimized local basis functions are very close to
the adaptive local basis functions, indicating that the adaptive local basis functions is already very accurate in computing the
total energy of the system. The agreement between the adaptive local basis functions and the optimized local basis functions
is very well for basis functions of low energy (Fig. 1 (a)), and the difference enlarges for basis functions or higher energy. This
can be understood as that the adaptive local basis functions include contributions from unoccupied states with relatively
high energy level, while the optimized local basis functions reduce the contribution from such unoccupied states by the opti-
mization procedure.
Comparison of the adaptive and optimized local basis functions for an insulating system with 1 electron per atom (spin neglected). The adaptive local
nctions (red dashed line) and optimized local basis functions (blue solid line) are sorted according to the Ritz value of the local Hamiltonian in
ng order. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



Table 2
Mean error of the Helmholtz free energy per atom, the absolute error of the force of the first atom, and
the relative error of the force of the first atom. This system is a metallic system with 4 electrons per atom
(spin neglected). Eight basis functions per atom are used for both the adaptive local basis functions and
the optimized local basis functions.

Method DFDG/atom Absolute DF Relative DF

Adaptive 1.4 	 10�3 3.8 	 10�4 9.6 	 10�2

Optimized 1.7 	 10�4 4.5 	 10�6 1.6 	 10�3

Table 3
Mean error of the Helmholtz free energy per atom, the absolute error of the force of the first atom, and
the relative error of the force of the first atom. This system is a metallic system with 4 electrons per atom
(spin neglected). Twelve basis functions per atom are used for both the adaptive local basis functions and
the optimized local basis functions.

Method DFDG/atom Absolute DF Relative DF

Adaptive 3.4 	 10�5 1.9 	 10�7 1.1 	 10�4

Optimized 3.4 	 10�5 1.7 	 10�7 1.0 	 10�4

Table 4
Mean error of the Helmholtz free energy per atom, the absolute error of the force of the first atom, and
the relative error of the force of the first atom for a metallic system with a defect. Eight basis functions
per atom are used for both the adaptive local basis functions and the optimized local basis functions.

Method DFDG/atom Absolute DF Relative DF

Adaptive 1.3 	 10�3 1.1 	 10�4 6.3 	 10�2

Optimized 1.8 	 10�4 5.3 	 10�6 3.3 	 10�3
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Similar results are found for metallic systems (Table 2). More basis functions are needed in this case since there are more
electrons in the metallic system than those in the insulating system studied here. The relative error of the force is 0.2% with 8
basis functions per atom using the optimized local basis functions. When compared to the adaptive local basis functions
using the same number of basis functions, the error of the Helmholtz free energy per atom is reduced by 10 times and
the error of the force is reduced by 60 times using the optimized local basis functions. The optimized local basis functions
therefore greatly improve the accuracy with the same number of basis functions.

On the other hand, the accuracy of using the adaptive local basis functions can be systematically improved by increasing
the number of basis functions per atom. For example, if the number of basis functions per atom is increased from 8 to 12 for
the metallic system, the accuracy of using the adaptive local basis functions is comparable to that of using the optimized
local basis functions (Table 3). This finding is fully consistent with the previous work [9] that the adaptive local basis func-
tions also form an accurate and efficient local basis set for the electronic structure calculation. The mild increase of the num-
ber of basis functions indicates that the adaptive local basis functions are already very efficient at least for 1D or quasi-1D
systems. It is also found in the previous work that the number of adaptive local basis functions increases considerably from
quasi-1D systems to 3D bulk systems [9]. We expect that the number of basis functions can be reduced by a significant
amount using optimized local basis functions in 3D bulk systems.

We also test the optimized local basis functions on a system with local defects. The defect system is obtained by choosing
the parameter a at one atom in the potential (39) to be different from the parameters a of the rest of the atoms. The system
contains eight atoms with four electrons and eight basis functions per atom. The parameter a is set to be 5.0 for all atoms
except for the first atom which is set to be 3.0. The error of the Helmholtz free energy per atom and the error in the force of
the defect atom are comparable to those in the periodic case (Table 4).

Finally, we compare the performance of the adaptive local basis functions and the optimized local basis functions for sys-
tems of increasing size with 8, 16, 32, 128, 256 atoms, respectively. The system is randomly perturbed by 0.2 au from the
crystalline configuration, with a defect introduced at one atom of the potential. The computational time for constructing
the adaptive local basis functions (red dashed line with star) and for constructing the optimized local basis functions (blue
solid line with triangle) are compared in Fig. 2 (a) plotted in logarithmic scale. Five Newton steps and 30 GMRES iterations
are used for the outer iteration and the inner iteration respectively in the optimization procedure. Since the optimized local
basis functions use the adaptive local basis functions as an initial guess, the computational time for the optimized local basis
functions also includes that for the adaptive local basis functions. The computational time for constructing both the adaptive
local basis functions and the optimized local basis functions are linear thanks to the locality of the basis functions. The con-
struction of the optimized local basis functions is 6–9 times more expensive than the construction of the adaptive local basis
functions, indicating that the optimization procedure should be further improved in order to generate a practically efficient



Fig. 2. (a) The computational time for solving systems of various sizes using adaptive local basis functions (red dashed line) and optimized local basis
functions (blue solid line). (b) The error of the Helmholtz free energy per atom using adaptive local basis functions (red dashed line) and optimized local
basis functions (blue solid line). (c) The absolute error of the force for the first atom using adaptive local basis functions (red dashed line) and optimized
local basis functions (blue solid line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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optimized local basis set. The error of the Helmholtz free energy per atom and the error of the force on the first atom are
shown in Fig. 2 (b) and (c), respectively. It is found that the Helmholtz free energy obtained by the optimized local basis func-
tions is stably 8–9 times more accurate than that obtained by the adaptive local basis functions. The ratio of improvement of
the force has a much larger dependence on the realization of the atomic configuration which ranges from 5 to 170 times,
with the average ratio of improvement being around one order of magnitude.
3.3. Dynamic case

The optimized local basis set is able to accurately compute the electron energy and the force using a small number of
basis functions. Now we show that the optimized local basis functions can also be used in molecular dynamics. We illustrate
the performance of the optimized local basis functions for molecular dynamics using the same metallic system as in Section
3.2 with four electrons and eight basis functions per atom.

In the Born–Oppenheimer approximation, the equations of motion for atom I are given by
MI
€RI ¼ FI; I ¼ 1; . . . ;NA: ð44Þ
The mass of the ions MI is set to be 42,000 which is close the mass of sodium in the atomic unit. FI is the Hellman–Feynman
force in (41) for atom I. The equations of motion (44) conserve the total energy given by
EIC ¼
PNA

I¼1

MI
_R2

I

2
þ FDGðRÞ þ VIIðRÞ: ð45Þ
The numerical conservation of the total energy is quantified by the drift of EIC, which is defined as the relative difference of
EIC along the trajectory, i.e.
DriftðtÞ ¼ jEICðtÞ � EICð0Þj
jEICð0Þj

: ð46Þ
Velocity–Verlet scheme [20] is used to propagate the equations of motion for the atoms with the time step Dt = 1.21 fem-
toseconds (fs). The simulation length is 10,000 steps and the total length of the simulation is 12.1 picoseconds (ps). To ensure
the time-reversibility of the numerical scheme, the optimized local basis functions use the adaptive local basis functions as
the initial guess at every time step. However, this is not a necessary requirement and can be improved by other time-revers-
ible schemes such as the extended Lagrangian Born–Oppenheimer method [21]. The initial configurations of the atoms are
perturbed by 0.2 au away from the equilibrium equidistant configuration, and the initial kinetic energy of the atoms is
1000 K with the mean velocity of all atoms (i.e. the velocity of the centroid) being zero. The error of the force and the error
of the Helmholtz free energy per atom are well within 2.5 	 10�6 and 1.4 	 10�4, respectively (see Fig. 3 (a) and (b)), which is
consistent with the behavior of errors in the static calculation. The Helmholtz free energy obtained from the optimized local
basis functions is systematically higher than that in the benchmark planewave simulation. The sources of the systematic
shift are the penalty parameter a in the DG formulation, and that the minimization procedure is restricted to an admissible



(a) (b) (c)

Fig. 3. The error of the force of the first atom (a), the error of the Helmholtz free energy per atom (b) and the drift of the conserved quantity (c) along the
trajectory of the MD simulation plotted every 0.12 ps. The system is metallic with four electrons and eight basis functions per atom. The mean deviation of
the force is unbiased.

(a) (b)

(d) (c)

Fig. 4. The trajectory of the first atom (a), the number of atoms in the first element (b), the drift of the conserved quantity (c), and the error of the force of
the first atom (d) along the trajectory of the MD simulation plotted every 0.006 ps. The system is metallic with four electrons. Eight basis functions are used
per atom. The initial velocity of the centroid of mass is chosen to be 0.016 au, and hence the atoms keep crossing the boundary of the elements during the
simulation.
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set of the space spanned by the primitive functions. Nonetheless, the mean deviation of the force is unbiased, indicating that
the structure of the trajectory obtained using the optimized local basis functions is well preserved. The drift of the conserved
quantity (46) is also well controlled within 5 	 10�7 (Fig. 3 (c)).

Finally, we demonstrate that although the basis functions are discontinuous at the boundary of the elements, such dis-
continuity does not deteriorate the accuracy even in the case when atoms cross the boundary. To this end we assign the
velocity of the centroid of mass to be 0.016 au, which is large enough so that atoms keep crossing the boundary of elements.
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The system is metallic with four electrons. Eight basis functions are used per atom. The time duration of the simulation is
1.21 ps, and the length of the whole domain is 80 au. Fig. 4 (a) shows the trajectory of the first atom, which has crossed
the whole domain in the simulation (note the periodic boundary condition imposed). The number of atoms in the first ele-
ment is also fluctuating between 0 and 2 during the simulation, as shown in Fig. 4 (b). The drift of the conserved quantity as
in Fig. 4 (c) is well controlled during the simulation. Mild deviation of the conserved quantity is observed, but we expect that
such small deviation will not lead to observable effects during the molecular dynamics simulation, especially in the canon-
ical ensemble simulation with fixed temperature. Furthermore, Fig. 4 (d) shows that the error of the force is also controlled
within 4 	 10�5 au and is smooth during the simulation.

4. Conclusion

We have developed the optimized local basis set to solve models in the Kohn–Sham density functional theory for both
insulating and metallic systems. The optimized local basis functions form an accurate basis set for computing the electron
energy as well as the atomic force with a small number of basis functions per atom. When the optimality condition is
achieved, the optimized local basis functions give the lowest energy among all the basis functions in an admissible set deter-
mined by the primitive basis functions. The force is accurately described by the Hellmann–Feynman force, and the contri-
bution of the derivative of the basis functions (i.e. the Pulay force) vanishes automatically. The concept of the optimized
local basis functions is quite general, and the methods developed in this paper are useful for other problems such as selecting
basis functions and evaluating parameter-dependent functions as well.

To obtain the optimized local basis functions in practice, we proposed a preconditioned Newton–GMRES method. The
resulting optimized local basis functions are tested using a one-dimensional model problem. We find that the optimized lo-
cal basis functions accurately compute the Helmholtz free energy and the force using a very small number of basis functions
per atom for both insulating and metallic systems. When applied to the molecular dynamics simulation, the optimized local
basis functions do not exhibit any systematic drift in terms of the force or the total energy for the ionic degrees of freedom.
Therefore the optimized local basis functions are able to give the correct statistical and dynamical properties along the
molecular dynamics trajectory, and can be used for long time molecular dynamics simulation.

The optimized local basis set provides an implementable criterion to eliminate the artificial effect in the force due to the
change of the basis functions and to maintain a small set of basis functions, which makes the optimized local basis set an
ideal tool in the molecular dynamics simulation. However, the construction of the optimized local basis functions is found
to be already more expensive than other choices such as adaptive local basis functions, indicating that the optimization pro-
cedure should be further improved especially when applied to Kohn–Sham density functional theory in 3D. The more effi-
cient scheme may be achieved by including a feasible approximation of the derivative of the density matrix with respect to
the basis function, a more efficient preconditioner for the GMRES iteration, or even a more efficient gradient method instead
of a Newton-type method. These will be our future work.
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Appendix A. Finite temperature Kohn–Sham density functional theory

In this appendix, we briefly described the basic formulation of the Kohn–Sham density functional theory [1,2] and its fi-
nite temperature generalization. In the Kohn–Sham density functional theory, the ground state electron energy is written as
Etot ¼ EtotðfwigÞ ¼
1
2
PN
i¼1

Z
jrwij

2dxþ
Z

Vextqdxþ
P
‘

c‘
PN
i¼1

Z
b�‘widx





 



2 þ 1
2

Z Z
qðxÞqðyÞ
jx� yj dxdyþ

Z
�xc½qðxÞ�dx; ðA:1Þ
where the Kohn–Sham orbitals are the solutions to the minimization problem
min
fwigN

i¼1

EtotðfwigÞ;

s:t:
R

w�i wjdx ¼ dij; i; j ¼ 1; . . . ;N:
ðA:2Þ
With slight abuse of the notation, we denote by {wi} both the arguments in the minimization problem (A.2), and the solu-
tions to the minimization problem, i.e. the Kohn–Sham orbitals. The electron density is qðxÞ ¼

PN
i¼1jwiðxÞj

2. We have ne-
glected the spin degeneracy. The first term of (A.1) is the kinetic energy. The second and third terms come from pseudo-
potential, which we have taken the Kleinman–Bylander form [22]. The pseudopotential is given by
VPS ¼ Vext þ
P
‘

c‘jb‘ihb‘j:
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For each ‘, b‘ is a function supported locally in the real space around the position of one of the atoms, c‘ = +1 or �1, and we
have used the Dirac bra-ket notation. The fourth term is the Coulomb interaction between electrons, and the fifth term is the
exchange–correlation functional, for which the local density approximation (LDA) [23,24] is adopted. The proposed method
can also be used for more complicated exchange–correlation functionals such as the generalized gradient approximation
(GGA) functionals [25].

The ground state electron energy defined in (A.1) is applicable to insulating systems with large band gap, but is difficult to
evaluate for zero-gap metallic systems. For metallic system, finite temperature KSDFT becomes the standard tool [26], in
which the Helmholtz free energy is considered instead. For given finite temperature T > 0, the Helmholtz free energy is
given by
F tot ¼ F totðfwig; ffigÞ

¼ 1
2
P

i
fi

Z
rwij j2dxþ

Z
Vextqdxþ

P
‘

c‘
P

i
fi

Z
b�‘widx





 



2 þ 1
2

Z Z
qðxÞqðyÞ
jx� yj dxdyþ

Z
�xc½qðxÞ�dx

þ b�1P
i

fi ln fi þ ð1� fiÞ lnð1� fiÞð Þ: ðA:3Þ
Correspondingly {wi} and {fi} are the solutions to the minimization problem
min
fwig;ffig

F totðfwig; ffigÞ;

s:t:
Z

w�i wjdx ¼ dij; i; j ¼ 1; . . . ; eN: ðA:4Þ
Here b is the inverse temperature b = 1/kBT. The number of eigenstates eN is chosen to be slightly larger than the number of
electrons N in order to compensate for the finite temperature effect, following the criterion that the occupation number feN is
sufficiently small (less than 10�8). {fi} 2 [0,1] are the occupation numbers which add up to the total number of electrons
N ¼

PeN
i¼1fi, and the electron density q ¼

PeN
i¼1fijwij

2. Compared to (A.1), the only extra term is the last term, which character-
izes the entropic contribution.

The Kohn–Sham equation, or the Euler–Lagrange equation associated with (A.4) reads
H½q�wi ¼ �1
2

Dþ Veff ½q� þ
P
‘

c‘jb‘ihb‘j

 �

wi ¼ kiwi; ðA:5Þ
where the effective one-body potential Veff is given by
Veff ½q�ðxÞ ¼ VextðxÞ þ
Z

qðyÞ
jx� yjdyþ �0xc½qðxÞ�: ðA:6Þ
The occupation numbers are given by
fi ¼
1

1þ expðbðki � lÞÞ ; ðA:7Þ
which is the Fermi–Dirac distribution evaluated at ki. Here l is the chemical potential, which is chosen so that fi satisfies
P
i

fi ¼ N: ðA:8Þ
Note that (A.5) is a nonlinear eigenvalue problem, as Veff depends on q, which is in turn determined by {wi}. The electron
density is self-consistent if both (A.5) and (A.6) are satisfied. After obtaining the self-consistent electron density, the Helm-
holtz free energy can be expressed as
F tot ¼ F totðq;lÞ

¼
P

i
fiki þ b�1P

i
fi ln fi þ ð1� fiÞ lnð1� fiÞð Þ � 1

2

Z Z
qðxÞqðyÞ
jx� yj dxdyþ

Z
�xc½qðxÞ�dx�

Z
�0xc½qðxÞ�qðxÞdx: ðA:9Þ
The goal of finite temperature Kohn–Sham density functional theory is to calculate the free energy F tot, the self-consistent
electron density q and also the chemical potential l given the number of electrons, the temperature and the atomic config-
uration. The Helmholtz free energy F totðRÞ plays the role of the electron energy E(R) in Section 1, and the force is defined as
the negative gradient of the Helmholtz free energy FðRÞ ¼ � @F totðRÞ

@R . The Helmholtz free energy is applicable to both the insu-
lating and the metallic systems. As T ? 0, the Helmholtz free energy F tot reduces to the ground state electron energy Etot.
Therefore (A.1) is also called the zero temperature KSDFT.



4528 L. Lin et al. / Journal of Computational Physics 231 (2012) 4515–4529
As fi is given by the Fermi–Dirac distribution, we have
P
i

fiki ¼ Tr
H

1þ expðbðH � lÞÞ ; ðA:10Þ

P
i

fi ln fi ¼ Tr
1

1þ expðbðH � lÞÞ ln
1

1þ expðbðH � lÞÞ ; ðA:11Þ

P
i
ð1� fiÞ lnð1� fiÞ ¼ Tr

expðbðH � lÞÞ
1þ expðbðH � lÞÞ ln

expðbðH � lÞÞ
1þ expðbðH � lÞÞ : ðA:12Þ
Using these, we can rewrite (A.9) as (see e.g. [27])
F totðq;lÞ ¼ �b�1Tr lnð1þ expðbðl� H½q�ÞÞÞ þ lN � 1
2

Z Z
qðxÞqðyÞ
jx� yj dxdyþ

Z
�xc½qðxÞ�dx

�
Z
�0xc½qðxÞ�qðxÞdx: ðA:13Þ
One can verify by straightforward calculations that
dF totðq;lÞ
dq

¼ 0 ðA:14Þ
if q and l are the self-consistent solution of the Kohn–Sham equation (A.5). Taking derivative of (A.13) with respect to l, we
have
@F totðq;lÞ
@l

¼ �Tr
expðbðl� HÞÞ

1þ expðbðl� HÞÞ þ N ¼ 0: ðA:15Þ
Therefore, the atomic force takes the form
F ¼ �dF totðq;l;RÞ
dR

¼ � @F totðq;l;RÞ
@R

¼ �Tr
1

1þ expðbðH � lÞÞ
@H
@R

� 	
: ðA:16Þ
This is known as the Hellman–Feynman theorem at finite temperature.
The Kohn–Sham density functional theory is usually solved by using the self-consistent iteration, where at each iteration,

the electron density ~q is obtained from effective Hamiltonian Heff. Given an effective potential Veff, and hence the effective
Hamiltonian
Heff ¼ �
1
2

Dþ Veff þ
P
‘

c‘jb‘ihb‘j; ðA:17Þ
we find ~q from ~qðxÞ ¼
P

ifijwiðxÞj
2 where {wi}’s are eigenfunctions of Heff, and the definition of {fi} follows (A.7) and (A.8).

Note that the {wi} and {fi}’s minimize the variational problem
F effðfwig; ffigÞ ¼
1
2
P

i

Z
fijrwiðxÞj

2dxþ
Z

VeffðxÞqðxÞdxþ
P
‘

c‘
P

i
fijhb‘;wiij

2 þ b�1P
i

fi ln fi þ ð1� fiÞ lnð1� fiÞð Þ; ðA:18Þ
with the orthonormality constraints hwijwji = dij.
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