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Abstract: The paper is concerned with validating
a new form of transformer model aimed at effi-
cient and accurate representation of power trans-
formers in the calculation of electromagnetic
transients arising under service and test condi-
tions, where the duration of interest may be as
short as tens of microseconds or as long as 5 ms
or more. The principal concern is to confirm that
modal models, based on a modified theory of
modal analysis, retain their efficient structure
when proper account is taken of the effects of
transient-flux penetration into a practical core,
and consequent frequency dependence of inductive
and resistive parameters. This is done by model-
ling representative test windings on a commercial
laminated core and comparing computed results
with test results.

1 Introduction

A new form of transformer model, aimed at efficient and
accurate representation of power transformers under
general transient conditions, has been proposed in a com-
panion paper [1]. The advantage of the structure of this
form of model is that it offers opportunities for very large
reductions in computational requirements compared with
modelling on the basis of direct circuit analysis [2].
However, to realise the gains in full, it is essential that the
transformation and distribution matrixes of the modal
model may be treated as purely real and completely inde-
pendent of frequency.

In the companion paper it was shown that these
matrixes are always real and completely independent of
frequency in the idealised case of lossless transformers
with frequency-independent parameters. The present
paper investigates the extent to which this remains the
case in relation to practical transformers and also
demonstrates the nature of practical models.

To this end, the authors have modelled the behaviour
of test windings on a commercial 25 kVA core. Whilst
this core is small, it manifests all the essential character-
istics of transformer cores in general. In particular, the
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induction of eddy currents in the core gives rise to a
complex loss mechanism and, more significantly, to a fre-
quency dependence of all inductive couplings. There
seems little, if any, reason to suppose that these phenom-
enological effects are any less severe in a small trans-
former than in a larger transformer.

2 The test windings

Fig. 1 shows the topography of 16 disks which were
wound onto one of the outer limbs of a commercial
25 kVA core. Each disk has six turns of heavy strip. The
two ends of each disk are brought out to terminals on a
terminal board for connection either as a single winding
(eight disks of 12 turns) or as two windings (an inner
winding of eight six-turn disks and an outer winding of
eight six-turn disks). Details of the core are given in
Appendix 8.1.

Fig. 1 Test windings on the 25 kV A core (dimensions in mm)

The natural capacitances of the configuration (Fig. 1)
turn out to be rather low, resulting in much higher
natural resonant frequencies than would occur in large
transformers. To bring behaviour into line with condi-
tions obtaining in large transformers, external capa-
citances have been introduced. The external capacitance
network for the case where the disks are connected as a
single winding is shown in Fig. 2. The external capa-
citance network for the case where the disks form two

Fig. 2
configuration

Externally connected capacitance network for single-winding

513



windings is shown in Fig. 3. Capacitance values are given
in Appendix 8.2. In both cases, the introduced capa-
citances swamp the natural capacitances and bring the
dominant natural frequencies down into the range typical
of large transformers (i.e. ~20 kHz to ~200 kHz).

Fig. 3
figuration

Externally connected capacitance network for 2-winding con-

Accurate modelling of the system of coils shown in
Fig. 1, whether connected as in Fig. 2 or as in Fig. 3, calls
for accurate account of the role played by the induction
of eddy currents into the core. At high frequencies, eddy
currents largely inhibit flux penetration into the core and
inductive couplings are relatively weak (especially
between remote coils). As the frequency reduces, the
couplings become stronger until, eventually, a limiting
condition is reached where there is total flux penetration
into the core. The inductive couplings are thus quite
strongly frequency dependent and this frequency depend-
ence must be taken into account if the behaviour of the
model is to match that of its physical couterpart.

The frequency dependence is taken into account in
modelling the present test windings by employing a new
impedance formula [4]. This formula not only accounts
for the frequency dependence of the inductive couplings
but also accounts for damping effects caused by the eddy
currents. It is noteworthy that the formula only calls for
the topographical data given in Fig. 1 and the core data
given in Appendix 8.1. It is necessary, however, to correct
a typographical error in Reference 4. Eqn. 11 of Refer-
ence 4 should read

S(Bab) — (bo/t)f (L b)}
9(B,b) + (uo/u.) (T b)

It is also necessary to account for the impedance of the
copper strip of the windings, as this also affects damping.
This is done, when forming the modal model, by supple-
menting each self impedance term, ie. each term of the
form Z,(k, k), with the term z(k) given by

2400 = Rpci, k) + 22 \/ <&> @
gi(k) a

where Rpd, k) is the DC resistance of the kth coil of the
ith winding, g,(k) is the effective girth of the wire and x(k)
is its length. Values for these parameters are given in
Appendix 8.3. yo =4n x 1077 (the permeability of free
space) and ¢ = 5.81 x 107 (the conductivity of the copper
wire).

F,(B,b) = #o{ (1)

3 Modal model of the single-winding
configuration

This Section discusses the nature of the component
matrixes of the modal model (Fig. 4) for the single-
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winding configuration. These matrices were calculated as
detailed in Reference 1 using given data. The objective is
to show that the essential features of the modal model are
largely the same as those established [1] for lossless
transformers with frequency-independent parameters and
to clarify the nature of differences where they arise.

I ———
‘tronsiormot»on core of modal distribution

matrixes model matrixes
(Ml —

Fig. 4  Structure of the modal model

3.1 Modal-transformation matrix P,

The modal-transformation matrix P, transforms the
boundary voltages into modal voltages. For lossless
transformers with frequency-independent parameters, it
was found that P, was real and independent of frequency.
To retain the computational advantages of the modal
structure, it is desired that P, may also be taken as real
and independent of frequency in practical cases.

In the present practical case, it turns out (as expected)
that P, is neither real nor independent of frequency. It is
not practical to give a complete set of results for the
range from 100 Hz to 1 MHz. The following results are,
however, representative

P10 kHz)

[70.6225 — j0.0014
0.1262 + j0.0013

0.6225 — j0.0014 ]
~0.1262 — j0.0013

0.0056 + j0.0002 —0.0056 — j0.0002
| 0.0031 +0.0002  0.0031 + j0.0002_]
P,(100 kHz)

0.0551 + j0.0025
0.0205 -+ j0.0007
0.0134 + j0.0008

70.6225 — j0.0013
0.1310 + j0.0042
0.0552 + j0.0023
0.0214 + j0.0013
0.0135 + j0.0007
0.0058 + j0.0004

| 0.0032 + j0.0002

0.0551 + j0.0025
—0.0205 — j0.0007
0.0134 + j0.0008

0.6225 — j0.00137]

~0.1310 — j0.0042
0.0552 + j0.0023
—0.0214 — j0.0013
0.0135 + j0.0007
—0.0058 — j0.0004

0.0032 + j0.0002_]

Thus whilst P, is not strictly real or independent of fre-
quency, it is nearly so (in fact remarkably so, given that
account has been taken of frequency-dependent param-
eters and losses). The modal model (in its efficient form)
treats P, as purely real and independent of frequency. In
the present case it is taken to be given by

(062248 0.62248"]
0.12804 —0.12804
0.05522  0.05522
P, =| 002107 —0.02107 3
001347 001347
0.00577 —0.00577
| 000316  0.00316_
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In this approximation, the kth row has been chosen as
the real part of the kth row of P(jw,), i.e. the real part of
the kth row of P, when calculated at the kth resonant
frequency (the resonant frequencies are identified in the
next Section). The validity of this approximation is con-
firmed later.

3.2 Modal transfer functions

The nature of the seven modal transfer functions (the ele-
ments of the diagonal matrix 4 in the modal model) is
exemplified by h,(s) (the modal transfer function for
mode 1). The amplitude spectrum of h(s) is shown by the
full line in Fig. 5. Its character is identified as similar to
that of a transfer function of the form

—5(s + 26, w,)

Hy(s) = —o T u W
us) 52+ 28, wy s + wf

)

gain
I~
T
e

103 104 105 108
frequency, Hz

Fig. 5  Amplitude spectrum of the transfer function for mode |
calculated frequency response | h,(jw)|

approximated frequency response | h)(jw)|

This is confirmed by the broken line in Fig. 5 which
shows the spectrum of h(s) as calculated using the
parameters given in the first row of Table 1. These

0.1780  0.3412
03472 0.5024
04668  0.3622
0 =1]05098  0.0000
0.4668 —0.3622
03472 —0.5024
| 0.1780 —0.3412

parameters were obtained by a least-squares fit of h)(s) to
h,(s). Results for the other modes were similar, a good fit
being obtained in each case using the parameters given in
Table 1.

The nature of the modal transfer functions of the
model is thus consistent with that established in the com-

Table 1: Parameters of the modal transfer functions

Mode Resonant frequency  Damping
k ————————— ratio
fo (kHz) w, (radfs) &,

1 17.69 1112 x10° 0.0597
2 32.21 2.024 x 10° 0.0292
3 44 .39 2.789 x 10° 0.0221

4 53.26 3.346 x 10° 0.0216
5 60.52 3.802 x10° 0.0225
6 65.66 4125 x10° 0.0236
7 68.95 4.332 x10° 0.0244
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panion work for lossless transformers with frequency-
independent parameters. In particular, each modal
transfer function has an associated natural resonant fre-
quency. The main difference is that, on account of losses,
resonant peaks are now damped. The extent of the
damping associated with each modal transfer function is
indicated, as a damping ratio, in Table 1.

Whilst eqn. 4 has been useful, as an approximation, in
clarifying the nature of the modal transfer functions, it is
not needed as part of the present frequency-domain
model. Instead, the h,(s) are computed directly as numeri-
cal values at sample values of s, consistent with imple-
mentation of the numerical-Laplace-transform technique
[5]. Approximations of the sort indicated in eqn. 4 will
be considered in later work, notably in connection with
the development of time-domain models.

3.3 Modal transfer admittances

The modal transfer admittances are the elements of the
diagonal matrix ¢ in the modal model. In frequency-
domain models (the concern of the present work), these
elements are simply computed and stored at appropriate
sample values of s. The fact that the elements turn out to
be purely capacitive in nature will, however, be exploited
in future work concerned with the development of time-
domain models.

3.4 Modal distribution matrix Q

For lossless transformers with frequency-independent
parameters, Q was found to be purely real and independ-
ent of frequency. To be able to exploit fully the computa-
tional advantages of the modal method, it is required
that Q may also be taken as real and independent of fre-
quency in practical cases. For the present practical case,
the results given in Tables 2 and 3 are representative of
results within the range 100 Hz to 1 MHz. To a very
large extent, more so even than in the case of P,, Q is real
and independent of frequency. The modal model (in its
efficient form) treats it as purely real and completely
independent of frequency as given by

0.4635 0.5129 0.4970 0.3809 0.2154"]

0.4021 0.0420 —0.3032 —0.4862 —0.3500
—0.1381 —04850 —0.1879 0.3443 0.4610
—0.4573 —0.0000 0.5016 —0.0000 —0.4872 ()
—0.1381 0.4850 —0.1879 —0.3443 0.4610

0.4021 —0.0420 —-0.3032 04862 —0.3500

0.4635 —0.5129 0.4970 —0.3809 0.2154_]

where the kth column was chosen as the real part of the
kth column of Q(jw) when calculated at the kth resonant
frequency. The validity of this approximation is con-
firmed later.

The columns of @ (eqn. 5) distribute modal oscillations
to the internal nodes of the winding. For example, the
first column distributes mode-1 oscillations to the seven
internal nodes of Fig. 2. The nature of the distributions is
evident from Fig. 6 which shows the distributions for the
illustrative cases of modes 1, 2 and 3. Dots correspond to
numerical values taken from Q. Evidently, the distribu-
tions are quasisinusoidal, as expected from classical
theory. Note that each mode is formally identified by its
spatial distribution (the spatial distribution of each mode
being quite distinct from the spatial distributions of all
the other modes).

Computational note: Since Q is an eigenvector matrix
(obtained by diagonalisation of D), there is no guarantee
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Table 2: Columns of @ at 10 kHz

0.1780 —0.0024 0.3416 - j0.0023 0.4635 +;0.0005 0.5122 +;0.0028 0.4969 +;0.0048 0.3799 +;0.0036 0.2153 +,0.0027
0.3472 -0.0012 0.5023 +0.0004  0.4020 +;0.0074 0.0403 +;0.0071 —0.3035 +;0.0074 -0.4868 +70.0025 —0.3500 +;0.0012
0.4667 +/0.0008  0.3620+;0.0017 —0.1384 +0.0093 —0.4859 +;0.0035 -0.1879+;0.0023  0.3445-0.0005  0.4609 +,0.0005
0.5097 +,0.0017 0.0000 +0.0000 -—0.4575 +;0.0085 0.0000 +,0.0000  0.5015 +;0.0012 —0.0000 +;0.0000 -0.4872 +;0.0018
0.4667 +/0.0008 -0.3620 —0.0017 —0.1384 +;0.0093 0.4859 —j0.0036 —0.1879 +;0.0023 —0.3445 +;0.00056 0.4609 +;0.0005
0.3472-/0.0012 -0.5023 —;0.0004 0.4020 +0.0074 -0.0403 -0.0071 —0.3035 +,0.0074 0.4868 —0.0025 -0.3500 +,0.0012
0.1780 -j0.0024 —0.3416 +,;0.0023 0.4635 +;0.0005 -0.5122 -;0.0028 0.4969 +70.0048 -0.3799 —;0.0036 0.2153 +0.0027
Table 3: Columns of Q at 100 kHz

0.1779 - j0.0021 0.3407 —0.0026 0.4635 +,0.0006 0.5133 +,0.0031 0.4970 +,0.0041 0.3813 +,0.0039 0.2154 +;0.0023
0.3472 -0.0010 0.5025 +0.0004 0.4022 +;0.0066 0.0430 +;0.0077 —0.3032 +,0.0064 -0.4859 +;0.0027 -0.3500 +,0.0011
0.4668 +/0.0007  0.3626 +,0.0019 —0.1381 +/0.0084 —0.4846 +j0.0040 -0.1879 +;0.0022  0.3443 - /0.0004 0.4610 +0.0005
0.5098 +0.0015 0.0000 +70.0000 —0.4573 +/0.0077 0.0000 +,0.0000  0.5016 +;0.0012 ~0.0000 +;0.0000 —0.4872 +0.0015
0.4668 +;0.0007 —0.3626 ~;0.0019 -0.1381 +70.0084 0.4846 —j0.0040 —0.1879 +,0.0022 -0.3443 +;0.0004 0.4610 +0.0005
0.3472-/0.0010 -0.5025 —0.0004 0.4022 +j0.0066 —0.0430 —j0.0077 -—0.3032 +,0.0064 0.4859 —0.0027 -0.3500 +,0.0011
0.1779-/0.0021 —0.3407 +,0.0026 0.4635 +;0.0006 —0.5133 -0.0031 0.4970 +;0.0041 -0.3815—;0.0039 0.2154 +;0.0023
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a Mode 1
b Mode 2
¢ Mode 3

Modal distribution vectors

that the computation of Q using any practical algorithm
(such as the power method) will necessarily arrange the
columns of Q in the same order at all frequencies. It may
not therefore be taken for granted that the first column of
Q (as it emerges from the diagonalisation process) will
always correspond to the same mode at all frequencies. A
technique for ensuring that the columns of @ are always
arranged in the same modal order, at all frequencies, is
described in Appendix 8.4.

3.5 Distribution matrix C,

The distribution matrix C, gives the final, or low-
frequency, distribution of the boundary voltages to the
internal nodes of the winding. Theoretically, C is com-
pletely independent of frequency for lossless transformers
with frequency-independent parameters. In practice, rela-
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tive to the present test winding, it is found to be largely
independent of frequency — converging to the true final
distribution as the frequency tends to zero. In the model,
it is taken to be the real part of the distribution matrix at
100 Hz, i.e.

0.8757 0.12437]
0.7508 0.2492
0.6255 0.3745
C, = | 05000 0.5000 6)
0.3745 0.6255
02492 0.7508
0.1243 0.8757_]

The first column gives the distribution (relative to unit
input) when the remote end of the winding is short-
circuited whilst the second gives the distribution when
the local end is short-circuited. Evidently these
(quasifinal) distributions are very close to those expected
for a uniform winding (which is the present case).

4.6 Admittance matrix Y gg

The admittance matrix Ygy (given by eqn. 18 of the com-
panion paper) is independent of the process of modal
decomposition and lies outside the main structure of Fig.
4. In the present frequency-domain model there is no
requirement to establish its nature. It is simply calcu-
lated, as a frequency-dependent 2 x 2 matrix, at required
sample values of s.

4 Transient results for the single-winding
configuration

Fig. 7 shows the unit step response, half way down the
winding (node 4), predicted by the modal model for the

1.0
. 08
8,: 0.6[
S
5 04
>

0.2

0 | | ] | J
0 100 200 300 400 500
time, s

Fig. 7  Predicted step response halfway down winding (modal model)

(remote end grounded)

case where the remote-end terminal (node 8) is grounded.
For these results, P,, @ and C, were taken to be purely
real and independent of frequency (as specified by eqns. 3,
5 and 6, respectively). Fig. 8 shows' the result obtained
without approximations, i.e. Fig. 8 gives the result corres-
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ponding to direct circuit analysis. Evidently, to all practi-
cal purposes, the results are identical, helping to confirm
that the transformation and distribution matrices may be
taken as purely real and independent of frequency with
negligible effect on accuracy.

1.0

0.8

[ BN o]
~ D
[

voltage, V

o
)

0 1 i 1 1 J
0 100 200 300 400 500
time, ps

Fig. 8  Predicted step response halfway down winding (exact solution)
(remote end grounded)

Fig. 9 shows the oscillographic record of the actual
response. The degree of agreement is remarkable, and all
the more remarkable for the fact that the model was con-
structed entirely from drawing-board data and physical
constants. In particular, the model has predicted the
correct overshoot and the correct degree of damping.

0.8
>
g 0.6
2
s 0.4
>

0.2

04
0 100 200 300 400 500
time, ps

Fig. 9  Measured step response halfway down winding (remote end
grounded)

Fig. 10 shows the step response, again half way down
the winding (node 4), as predicted by the modal model
for the very different case where the remote-end terminal

1.6

1.4
1.2+

voltage, V
o

0 I ) ] I o
o] 1 2 3 4 5
time, ms

Fig. 10 Predicted step response halfway down winding (remote end
open circuit)

(node 8) is open circuit. Fig. 11 shows the actual
response. Again, the degree of agreement is remarkable.
It is particularly important to note that the dominant
resonant frequency when the winding is open circuit is
quite different from when it was short-circuited (the time
scales of Fig. 9 and 11 are not the same). The same model
has thus performed equally well in the two contrasting

IEE PROCEEDINGS-C, Vol. 139, No. 6, NOVEMBER 1992

cases (classical analysis called for separate models for the
two cases).

>
o

o

S

°

>

0 1 2 3 4 5
time, ms

Fig. 11 Measured step response halfway down winding (remote end
open circuit)

These results demonstrate, at least in a particular case,
that P,, Q@ and C; may be approximated as purely real
and independent of frequency in the modelling of single-
winding configurations.

5 Transient results for the 2-winding
configuration

Modified modal theory was used, as described in the
companion paper, to form a modal model for the 2-
winding configuration using given data. The matrixes P,,
Q and C; (which turn out to be nearly real and almost
independent of frequency) are taken to be purely real and
independent of frequency in the model and are specified
in Appendix 8.5. The validity of this approximation is
evidenced by the following comparative results.

Fig. 12a shows the predicted transient response
halfway down the primary winding (node 4 in Fig. 3) for
the case of a unit step applied at local end of the high-
voltage winding (all other terminals in Fig. 3 being open).
This is evidently in good agreement with the measured
result of Fig. 12b.

Results for the very different case where both ends of
the secondary winding are short-circuited (the remote
end of the high-voltage winding remaining open) are
shown in Fig. 13. Other results, representative of the per-
mutations of possibilities, are shown in Figs. 14 and 15.
In all cases, the unit step is applied at the local end of the
high-voltage winding. Fig. 15 relates to a case of surge
transfer (from high to low voltage).

6 Conclusions

The paper has demonstrated the nature of a modal trans-
former model in a practical case. It has been shown, at
least for the configurations considered, that the character
of a modal transformer model remains essentially
unchanged from that established in the companion work
for lossless transformers with frequency-independent
parameters when practical losses and frequency depend-
encies are taken into account. In particular, the modal
transfer functions at the core of a modal model retain a
simple resonant nature (but now damped on account of
losses).

It has been particularly important to have shown,
albeit only for particular test windings on a particular
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core, that the transformation and distribution matrices
remain, for all practical purposes, purely real and inde-
pendent of frequency in spite of taking accurate account
of frequency-dependent parameters and losses. The
importance of having real and frequency-independent
transformation and distribution matrices is that it con-
fines all frequency dependence to the core of the model.
This, and the fact that the n modal networks at the core

1.61
1.47T
1.2¢
>
z 1.04 o
o o
Sost 2
E E
0.61
0.44
0.2+
0 : - + + y
0 40 80 120 160 200
time, us
a
Fig. 12  Step response halfway down primary winding (all terminals open)
a Predicted b Measured
1.
1
1.67
1
147
1
1.2 >
> 1.0 gi 0.
- g
) Z,
3 08 5 0
£ 0.6 0
0.4 0.
0.2¢
0 + + + + 4
0 40 80 120 160 200
time, us
a
Fig. 13

a Predicted b Measured

of the modal model are completely decoupled from one
another, vastly reduce computational requirements, by a
factor of the order of n?, compared with direct applica-
tion of circuit-analysis methods (where n is the number of
internal nodes in the original lumped-parameter trans-
former representation).

Since a reasonably detailed representation of a power
transformer (including high-, medium- and low-voltage

0 40 80 120 160 200
time, ps
b

0 40 80 120 160 200

Step response halfway down primary winding (low-voltage winding grounded at both ends)

o4 . ; ; '

0 40 80 120 180 200
time, us
a

0 40 80 120 160 200
time s
b

Fig. 14  Step response halfway down primary winding (all terminals grounded except excited terminal)

a Predicted b Measured
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and tapping windings) would require n to be at least 28,
the computational savings in prospect are very large,
possibly reducing a computation time of many minutes

1.0
0.81

\

0.671
0. 41

voltage,

0.2

0 40 80 120 160 200
time, ps

a

voltage, V

1
0 40 80 120 160 200
time, ps
b
Fig. 15  Step response halfway down low-voltage winding (all remote
terminals grounded)
a Predicted
b Measured
to under 1s (excluding the once-off computation time
required to set up the modal model). This makes it pos-
sible to envisage including accurate transformer models
in the calculation of electromagnetic transients in power
networks (especially when interest centres on whether a
particular transformer would be vulnerable to internal
damage under specified transient conditions).

As an important side issue, the paper has shown that it
is possible to obtain highly accurate predictions of inter-
nal transients on the basis of drawing-board data (in con-
junction with certain physical constants). This success,
which does not appear to have been achieved previously,
owes itself very largely to the use of a new impedance
formula [4]. This formula takes accurate account of the
dynamic process of transient flux penetration into a prac-
tical core. The accuracy involved is made apparent by the
very close agreement between predicted transient wave-
shapes and experimental results.

Further work is in progress to convert the present
frequency-domain model into a time-domain counter-
part, with a view to eventual incorporation into the
industry-standard EMTP transients program.
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8 Appendixes

8.1 Details of the core

The 25 kVA core, made from ‘Unisil’ 27M4 0.27 mm
laminations, has the dimensions shown in Fig. 16. The
core parameters were chosen as p = 0.0103 Qm,
a=7x 1077 prel) = 843, u/u.=0.1 and Aefl) =
0.976 m, as determined experimentally (and defined) in
Reference 4.

| 470 ]
= 1
1
94
7_
453 265
1
94 94 94
$

Fig. 16  Dimensions of 25 kV A core, nm

8.2 Capacitance values
For the single-winding configuration:

Co = 0.050 uF
C, = 0328 uF
For the 2-winding configuration:

Co = 0.01 uF

C, =0.1 yF

C, =002 uF

Cy;=01uF

C, = 0.005 uF

8.3 Details of coils
Single-winding configuration:

x,(k)=6107Tm((k=1,2,...,8)

gk)=001"m(k=1,2,...,8)
Rpc(l,k)=03Q* (k=1,2,...,8)

2-winding configuration:

x,k)=322m(k=1,2,...,8)

Xyk)=2865m(kk=1,2,...,8)

gi(k) =g,(k)=001Tm (k=1,2,...,8)
Rpc(Lk)=03Q*(k=1,2,..., 8
Rpc(2,k)=03Q*(k=1,2,...,8)

* inclusive of resistance of connections
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84 Modal ordering technique

It has been shown, in Fig. 6, that the modal distribution
vectors (the columns of @), are quasisinusoidal. It may
also be confirmed that the columns of @ are quasi-
orthogonal. The proposed method is based on this pro-
perty. The first step is to calculate @ at some high
frequency (e.g. 1 MHz) and define this as Q. This estab-
lishes the modal order which is to be preserved at all
other frequencies.

Each time Q is computed thereafter, by diagonal-
isation of D, the matrix product Q,Qy = M is formed,
where Q, is the transpose of Q. If Q has the same modal
order as Q then M will approximate quite closely to a
diagonal matrix (on account of intrinsic orthogonality). If
not, then M will have the character of a diagonal matrix
but with the columns rearranged. A search is made for
the largest element in the first column of M. If this is
found to be in the kth position, then the first and kth
columns of Q are interchanged (or unaltered if k = 1),
with a corresponding interchange of the eigenvalues and
of the rows of @~ !. Rows 1 and k of M are also inter-
changed, after which a search is made for the largest
element in the second column of M. If this is found to be
in the mth position, then columns 2 and m of Q are inter-
changed (if m # 2), with corresponding reordering of the
eigenvalues, reordering of the rows of Q! and finally
reordering of the rows of M. It is then a matter of finding
the largest element in the third column of M, and so on.
The eventual modal order of @ will then be the same as
that of Qy.

8.5 Transformation and distribution matrixes used in
modal model of the 2-winding configuration
[ 0.18281 0.39759 0.18281 0.39759 ]
0.02896 0.07709 —0.02896 —0.07709
0.01962 0.02433 0.01962 0.02433
0.65092 —0.69564 0.65092 —0.69564
0.00602 0.01058 —0.00602 —0.01058
0.00521 0.00506 0.00521 0.00506
0.00175 0.00275 -0.00175 —0.00275

P=1| 000127 000111 000127 000111
0.18869 —0.20684 —0.18869  0.20684
007715 —0.08592 007715 —0.08592
0.03860 —0.04301 —0.03860  0.04301
0.02106 —002370 002106 —0.02370
0.01156 —001294 —001156  0.01294

| 000523 —0.00591  0.00523 —0.00591 |

[ 08753 00004  0.1247 —0.0004 |
0.7504 00004 02496 —0.0004
0.6252 00002 03748 —0.0002
0.5000 00000  0.5000  0.0000
03748 —0.0002  0.6252  0.0002
0.2496 —0.0004 07504  0.0004

c | 01247 00004 08753  0.0004

L 0.0003  0.8754 —0.0003  0.1246
00004 07504 —0.0004  0.2496
0.0002  0.6253 —0.0002  0.3747
0.0000  0.5000  0.0000  0.5000
—0.0002 03747 00002  0.6253
—0.0004 02496 00004  0.7404
| —0.0003  0.1246 00003  0.8754 |
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