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Detection and Removal of Limit Cycles in
Sigma Delta Modulators
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Abstract—Sigma delta modulation is a popular method for
converting signals from analog to digital and vice-versa. However,
sigma delta modulators (SDMs) may suffer from limit cycles,
where the output bits may enter a repeating pattern. Current
methods of preventing this phenomenon introduce unwanted
noise, do not always succeed, and are often implemented when
not needed. We present a more effective method for detecting and
removing unwanted limit cycles. This method includes adding
a small disturbance to the input, which destroys the periodicity
of sigma-delta analog-to-digital conversion (ADC) modulator’s
output sequence and thereby removes the limit cycles. Compared
with conventional methods this method is simpler to implement,
and the SDM has less signal-to-noise ratio (SNR) penalty and a
higher allowed input dynamic range. Various implementations of
the limit cycle detection and removal schemes are described for
feedforward SDMs. Results are reported which demonstrate the
success of these methods.

Index Terms—Analog-to-digital conversion (ADC), digital-
to-analog conversion (DAC), limit cycles, sigma delta modulation.

I. INTRODUCTION

S IGMA delta modulation is a popular method of converting
signals from analog to digital and vice-versa. It typically

involves converting a signal into a low-bit, highly oversampled
representation. It benefits greatly from the oversampling in that
a feedback path may be used to shape the quantization noise into
high frequencies where it is not noticeable. Due to its low circuit
complexity and robustness against circuit imperfections, low bit
sigma delta-based analog-to-digital and digital-to-analog con-
verters [(ADC) and (DAC)] are widely used in audio applica-
tions, such as cellular phone technology and high-end stereo
systems. However, sigma delta modulators (SDMs) suffer from
limit cycles, where the output bitstream may enter a repeating
pattern with frequency components that were not present in the
input signal.

Though limit cycle operation may be exploited to reduce
power consumption and design complexity [1], limit cycles are
generally unwanted since they result in frequency components
in the output bitstream which were not present in the input
signal [2]. Digital filters may be designed so as to minimize
the occurrence of limit cycles [3], but it is not yet clear if this
approach may be extended to limit cycles in SDMs. In practice,
limit cycle prevention is typically achieved by adding a random
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signal, with a uniform, triangular or spectrally shaped proba-
bility distribution, just prior to quantization [4], [5]. When this
“dithering” sequence is added, an output bit may be flipped
(output bit changed from to , or from to ), and
the periodic output pattern might be destroyed. However, the
dither decreases the signal-to-noise ratio (SNR), the stability,
and the dynamic range of the SDM. Furthermore, it is often
added when it is not needed, and in many situations may not
be sufficient to destroy a limit cycle. Dither is more effective
in the prevention of noise modulation, where its application
has a sound basis in theory [6]. Thus, the aim of this paper is
to exploit theoretical understanding of limit cycles in order to
devise a better method for their prevention.

Fundamental work on limit cycles in SDMs has usually been
constrained to low-order SDMs [7]–[9], and, hence, is of little
practical value to engineers who use high-order noise shaping
techniques. Recent work has significantly advanced the theory
of limit cycles in SDMs [2], [10]–[13]. Most notably, in [2],
results were derived concerning the character of limit cycles for
a general feedforward (also called interpolative) SDM, and on
their stability in particular. In [13], similar results were obtained
for feedback SDMs.

This understanding has been exploited to devise effective
methods for detecting and removing limit cycles [14]. Here,
we will describe full details of their implementation, provide
analytical justification for their effectiveness, and characterize
their behavior through theory and C source code simulations.
The paper is organized as follows. In Section II, the mathemat-
ical framework, based on a state space description of the SDM,
is presented. In Section III, methods are presented to detect
limit cycles in feedforward SDMs. Properties of the limit cycle
removal methods are also described in this section, such as the
time to detect a limit cycle and the probability of false detection.
In Section IV, the limit cycle removal method is described, and
a proof is provided which shows that this method is guaranteed
to remove limit cycles in traditional feedforward SDMs. Sec-
tion V discusses implementation details, including preferred
parameter settings and techniques for circuit implementation.
Finally, the conclusion summarizes the results, highlights the
key features of the technique and discusses how these methods
may be adapted to other types of SDM design.

II. STATE SPACE DESCRIPTION

For the analysis that follows, we will restrict ourselves to dis-
cussion of feedforward SDMs without resonator sections. The
limit cycle detection and removal mechanisms to be described in
later sections may also be valid for feedback designs, resonator
sections, and other modifications, but analysis of this design is
particularly tractable.
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Fig. 1. States in a fifth-order SDM.

A convenient way to describe the time domain behavior of an
SDM is the state space description. This represents the state of
the SDM at any time as a matrix operation applied to the state at
the previous clock cycle. The power of the state space descrip-
tion is that it allows us to create a very compact description of
the state of the SDM from time to time .

For an -order feedforward (or iterative) SDM

(1)

where is the input at iterate , and is the output, or ,
determined by

(2)

This description gives the state of the SDM in terms of a
transition matrix applied to the previous state vector, and a
vector applied to the scalar quantization error

.
Fig. 1 gives an example of a typical fifth-order SDM. The

coefficients determine the noise shaping characteristics, and
the loop around each delay represents an integrator.

For this fifth-order modulator, and the
transition matrix is

(3)

The compact representation gives the means to directly view
the consequences of a limit cycle. If the limit cycle has period

we have, by definition

(4)

An important assumption in earlier work [15] is that periodic
behavior in the output of the quantizer implies periodic behavior
in the state space variables. In [2], it was proven that, in general,
a limit cycle in the output bitstream exists if and only if there is a

limit cycle in the state space variables. That is, (4) is equivalent
to

(5)

Although in its pure definition, a limit cycle is a periodic pat-
tern of infinite duration, in practical situations finite duration
periodic sequences, as characterized in [10], can also be prob-
lematic. They cause unwanted peaks in the short time power
spectrum, and if persistent for significant duration, may cause
audible clicks when SDMs are used in audio applications [16].
Thus, a limit cycle detection and removal algorithm should be
successful even if (4) is only true for fixed duration, i.e., we must
be able to detect and remove limit cycles when (5) is approxi-
mately true for a finite time.

III. LIMIT CYCLE DETECTION

A. State Space-Based Limit Cycle Detection

Equation (5) provides a simple method of determining if a
limit cycle exists. At a given iterate which we set to 0, (0) may
be stored in a buffer. For each successive iterate, ,
up to some value, the buffer duration is computed. If
constant input is applied and, for some , then the
theorem described earlier guarantees that a limit cycle of period

exists.
This method, while exact, has three drawbacks. First, it re-

quires that a vector of size be stored. At each time iterate,
up to comparisons must be made. This is unnecessarily com-
plicated. Second, and more importantly, it does not allow for a
simple method of making approximate comparisons. When the
state space variables are very close to a limit cycle condition,
periodic output may be sustained long enough to be problem-
atic. An appropriate measure of the required proximity of the
state space variables needed for temporary limit cycle behavior
is not obvious and may not be simple to compute.

To alleviate these difficulties, we propose computing a single
scalar quantity at each iterate. Note that the effect of a small
change in the state space variables tends, over time, to yield a
larger change in the later state space variables. The cumulative
nature of the integrators implies that varies far more rapidly
than any other state space variable.

From (1), if a small perturbation is applied to the state
space variables at time 0, then that perturbation grows at a rate
given by . Repeated application of the transition
matrix yields the binomial coefficients [2]

if

otherwise. (6)

Thus, the terms of are given by

(7)

Authorized licensed use limited to: Queen Mary University of London. Downloaded on January 5, 2009 at 03:00 from IEEE Xplore.  Restrictions apply.



REISS AND SANDLER: LIMIT CYCLES IN SDMS 3121

Fig. 2. For a fifth-order SDM, given by (3), this depicts the growth of a distur-
bance to the state space variables as a function of the number of periods.

For lowpass SDMs, typically .
This implies that when the system is near a limit cycle,
there may be considerable variability in compared with

. As an example, consider the fifth-order SDM
given by [2]

(8)

For a sampling rate of 64 44.1 kHz, which is often used in
audio applications [17], this has a corner frequency of 80 kHz.

Fig. 2 depicts the growth of each variable for a small perturba-
tion away from a period 24 limit cycle. One can clearly
see the higher growth rate for the later state variables.

Note that this behavior is qualitatively independent of the
choice of the coefficients . The coefficients typi-
cally differ greatly in value. For a lowpass SDM,

. This also implies that may vary greatly with the
output bitstream unaffected.

Thus, when the system is near a limit cycle,
will vary almost periodically whereas will diverge away
from periodic behavior.

Furthermore, if we define then we
have

(9)

That is, a perturbation applied only to the last state variable
does not grow and does not affect the other state variables.

is, thus, ignored in computing whether we are near a limit
cycle. By not comparing , we can find short term limit cy-
cles where the state space variables are not exactly repeating
but the output bitstream may remain periodic long enough to be
problematic.

In order to have a scalar quantity for comparison, as well as
to take into account the differing sizes of the variables, we use
as our stored variable

(10)

Thus, if a limit cycle of period exists

(11)

In order to account for approximate limit cycles, we apply a
tolerance, . For an initial iterate, we store the value and
check each successive iterate to see whether (11) holds. Thus,
our condition for a limit cycle of period to be observed is

(12)

If it does, then we apply the limit cycle removal algorithm to
be described in Section IV. The tolerance only serves to detect
approximate limit cycles, but does not affect whether an ideal
limit cycle is detected.

After a number of iterates , we reset the buffer from
to . This allows one to identify limit cycles which ap-
pear at later iterates. However, it also implies that we may not
identify some limit cycles of period . The value of

is set quite high so as to identify long period limit cycles
with a fundamental frequency within the passband, but a max-
imal value should be only a small multiple of the oversampling
ratio for two reasons. First, it has been observed that the occur-
rence of long period limit cycles is exponentially rare relative
to the number of allowable period bit sequences of that same
length.[2]. Thus, limit cycles of a frequency much less than the
passband cut-off frequency can be safely ignored. Second, if

OSR then a limit cycle with period may some-
times persist for long enough to be problematic. Evidence of
the weak dependence of limit cycle detection on the choice of
this parameter setting is provided in Sections III-C–E, and un-
less stated otherwise, was used in the results
provided.

This limit cycle detection procedure may be continued indefi-
nitely. The method is robust to the choice of parameters and may
be used to detect any limit cycle. A block diagram depicting this
method is given in Fig. 3.

Returning to the fifth-order SDM given by (8), with an input
of 0.7 and initial conditions , it exhibits limit cycle be-
havior. Fig. 4 depicts a time series of the input to the quantizer.

Fig. 4 may be contrasted with Fig. 5, which depicts the
function , as defined in (10), as a function of the iterate. One
can see that, when approximate limit cycle behavior occurs,
although the quantizer input may drift (as in Fig. 4),
remains periodic.

In Fig. 5, the circled points represent those where limit cycle
behavior has been identified, according to (12) and the proce-
dure described earlier. The time lag between the start of the limit
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Fig. 3. Block diagram of a fifth-order SDM with a bitstream-based limit cycle detector.

Fig. 4. Plot of the input to the quantizer as a function of the iterate.

cycle and the identification of limit cycle behavior is due to the
choice of parameters in the detection method and due to the fact
that a limit cycle may be defined by its repetitive nature, which
is not observed until after several repetitions. In this particular
case, the limit cycle has been running for approximately 200 it-
erates before the buffer is reset to a value for which represents
the limit cycle.

B. Bitstream-Based Limit Cycle Detection

Shift registers and bit comparisons are often much easier to
implement than any circuitry (analog or digital) for comparison
of real numbers or voltages. Furthermore, one can conceive of
situations where it is easier to access the output bitstream than

Fig. 5. Plot of � as a function of the iterate. The circled points represent where
limit cycle behavior has been identified.

the state space variables. Thus, we must consider methods of
detecting limit cycles using bit comparisons alone.

A naïve approach would be to implement many shift registers,
each one representing periodic output for a different limit cycle.
The current output could then be compared with each shift reg-
ister to see if it appears that limit cycle behavior is occurring.
However, to identify all limit cycles of period this would re-
quire on the order of 2 shift registers, and 2 comparisons
[12].

Thus, an alternate approach is used which minimizes both
circuit complexity and the required number of operations. Since
a limit cycle represents a repeating pattern in the bitstream, it
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Fig. 6. Block diagram of a fifth-order SDM with a bitstream-based limit cycle detector.

suffices to identify bitstream repetition. To do this, we compare
two shift registers; one of the current bitstream output and one of
the bitstream output at a previous iterate. For this method, there
are two parameters, a shift register length and a shift
register duration or persistence (the number of iterates until the
stored shift register is reset) .

The algorithm is as follows:
• Keep a shift register of the last output

bits.
• After every iterates, copy the shift register SR into

the shift register .
• If, at any iterate, the samples stored in the two shift registers

exactly match, , then a limit cycle has
been detected.

A block diagram of the limit cycle detection system,
including the noise shaping, is given in Fig. 6. Note that com-
parison of bits in the shift register, as well as copying of bits
between shift registers, can be done in parallel. Thus, there
is no need for any operation to be performed faster than the
sampling frequency of the SDM.

C. Time to Detect a Limit Cycle

Of concern with both state space-based and bitstream-based
detection is the time it takes to detect a limit cycle from when it
first appears, and how frequently it is detected when we are oper-
ating in a limit cycle. The time to detect the limit cycle provides
a minimum amount of samples that the limit cycle is in exis-
tence, regardless of the removal mechanism, and how frequently
the limit cycle is detected provides information regarding when

and how often the removal method will be applied. We will con-
sider both time to detect and frequency of detection for both
techniques.

For state space-based detection, there are two parameters, the
buffer duration and the tolerance. If we are in a limit cycle
defined by (4) then (5) guarantees that the limit cycle is detected
for any value of the tolerance if the limit cycle has period

. Lets suppose we are in a limit cycle of length , where
. At some iterate the stored buffer is set. This value

will, thus, be in the current buffer next at time , but before
that can be identified, the buffer is reset at iterate .
Thus, limit cycles of period greater than the buffer duration will
not be detected.

For , exactly when the limit cycle is first detected
is determined by when the buffer is first reset. If the limit cycle
begins at iterate 1, then the buffer may be reset at any iterate
between 1 and . The limit cycle is then detected exactly

iterates later. So the time to detect a limit cycle of period ,
from the moment it first occurs, is within the range

(13)

For, the bitstream-based detection method, the shift register is
storing output entirely from the limit cycle only after
iterates. Limit cycles of a period longer than are still
identifiable, since this also requires matching of the recent bit-
stream with the stored values in the buffer. For a limit cycle
which begins at iterate 1, the current shift register is first in the
limit cycle at iterate . Ignoring false detections, the time
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Fig. 7. The probability of falsely detecting a limit cycle as a function of the
allowable error for state space-based detection.

to first detect is thus given as with the state space-based tech-
nique, but with an offset of iterates. Thus, the time
required to detect the limit cycle becomes

(14)

D. Frequency of Limit Cycle Detection

The frequency of limit cycle detection may be found in ex-
actly the same manner for both detection mechanisms. As we
shall see, it is dependent on only the period of the limit cycle
which is being detected, and the duration of the stored
buffer or shift register. Thus, the following discussion is equally
applicable to both situations and for the sake of simplicity we
will refer to the buffer and buffer duration.

Assume that we are in a limit cycle of length
and a limit cycle has been detected at iterate 0. If the buffer is
not reset over the next iterates, then the conditions for limit
cycle detection are next satisfied at iterate . If on the other
hand, the buffer is reset at some iterate to the current value
from iterate , then . So a limit cycle will
next be detected at iterate . Therefore, a limit
cycle is detected at most once per period, and at least once every
other buffer duration . In fact, it can be shown that if is
a divisor of , then the limit cycle is detected exactly once
every period. It is detected at least once per duration if the period
is less than the duration but not a divisor of the duration.

E. Probability of False Detection

1) False State-Space Based Detection: It is possible that (11)
may hold when limit cycle behavior is not happening, but would
be very rare. It occurs with probability on the order of the digital
precision of the hardware, e.g., if there are 2 bits precision and

ranges over values from to , then it would occur with
probability close to .

However, the tolerance in (12) provides a reasonable mea-
sure of how often false detections may occur in practice. In
Fig. 7, the probability of false detection is depicted as a func-
tion of the tolerance. Each data point was generated using 100

Fig. 8. Probability of falsely detecting a limit cycle as a function of shift register
length. In each case, the shift register duration was set equal to the shift register
length.

output bitstream sequences, each 1 million points long (after ini-
tial startup transients were removed), and where each sequence
has as input a sinusoid with a randomly generated frequency be-
tween 80 and 130 kHz, and random initial conditions. It can be
clearly seen that the probability of a false detection has a linear
dependence on the threshold . This implies that , as given by
(10), is approximately uniformly distributed over its full range
of allowable values. More aggressive noise shapers typically
have larger coefficients, and, thus, have a larger range of internal
integrator states. This accounts for the slightly lower probability
of false detection for the more aggressive noise shaping.

2) False Bitstream-Based Detection: For bitstream-based
SDM detection, false detections are very rare since this requires
an exact match over a large number of bits. If the output is
truly random, then false detections occur with a probability
2 . However, the output is far from random. This is
partly due to the fact that the input is not random (bandlim-
ited, with amplitude safely within stability limits), but also
because the sigma delta modulation prevents certain output bit
sequences from occurring, regardless of input [12].

Fig. 8 depicts false detections of limit cycle behavior as a
function of the shift register length, where shift register duration
was set equal to shift register length. Data were generated using
the same signals as used in Fig. 7 to determine the probability
of false state space-based detection. It can be clearly seen that,
though the probability of a false detection is far greater than
would be the case for a truly random sequence, it is still low
enough to be insignificant.

F. Detection Parameter Values

Thus far, we have two parameters for each detection method.
The goal is to set the parameters such that limit cycles are iden-
tified and removed as soon as possible, but at the same time
false detections are not so frequent as to become a serious issue.
The most significant parameter here is the duration of the buffer
or shift register, since it determines the maximal period limit
cycle that can be detected. This may be set to a small multiple of
the oversampling ratio, so that it may detect limit cycles which
exist in or near the bandpass region, but is still small enough
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Fig. 9. A block diagrams of a third-order SDM comparing the standard place-
ment of dither with the placement of the proposed limit cycle detector and
disturbance.

that no limit cycle lasts for a significant duration before it is de-
tected. Thus, for bitstream-based detection, is typically
set less than or equal to the value . The method is robust
both to the size of the shift register, and the choice of when the
shift register is reset.

For state space-based detection, the technique is highly robust
to the tolerance since, for SDMs of the form depicted in Fig. 1,
even short term limit cycles will be detected when tolerance is
set to zero. However, if resonator sections are used, then the
value may still drift in a short term limit cycle. In which case,
the tolerance may be set to any value which does not yield too
frequent false detections. Again, the oversampling ratio may be
used. If tolerance is set to the reciprocal of a multiple of the
oversampling ratio, then we may expect false detections to occur
much less than once per Nyquist period.

As an example, for an oversampling ratio of 64 and sample
rate of 64 44.1 kHz, we have set , allowing us to
detect limit cycles up to this period. Thus, the maximum time to
detect any limit cycle up to period 256, using state space-based
detection, from (13), is 512 samples or 0.18 ms. For bitstream-
based detection, may be set to 64, ensuring a proba-
bility of false detection on the order of 10 and a maximum
time to detect of approximately 2 ms. In both cases, if the limit
cycle is removed immediately upon detection, any artifacts re-
sulting from the limit cycle will become negligible.

IV. LIMIT CYCLE REMOVAL

In [2], it was shown that, the application of dither just before
the quantizer, as in Fig. 9, is a suboptimal form of limit cycle
removal. This is because it has no effect on the state space vari-
ables unless it results in a change to the output bitstream. On
the other hand, consider a disturbance applied at the input to the
SDM. This will affect all state space variables. So a limit cycle
may be removed by simply applying a single perturbation to the
internal integrator states of a SDM. We will now show that this
will always be the case for feedforward SDMs without resonator
sections.

From (1), growth of the state space variables due to disturbing
the input from to t time 0 is given by

(15)

If we are in a limit cycle of period

(16)

and a perturbation to the input at time 0 gives

(17)

Now, if the limit cycle had only one solution for (0), then
this perturbation would be guaranteed to break the limit cycle.
However, a classical SDM, as described above, has a line of
solutions. So the question is whether this perturbation results
in a new solution to (0), thus repeating the limit cycle.

From [2], all solutions to the limit cycle may be given in terms
of one known solution

(18)

where is the last column of in the singular value decompo-
sition (SVD) of

(19)

So the null space of is given by where

(20)

However, notice that has only zero terms on the diag-
onal and above. That is, it is a strictly lower triangular matrix.
Furthermore, all terms directly below the diagonal are nonzero.
The null space can then be solved directly, regardless of or
the matrix size .

(21)

Comparing (20) and (21) with the formula for the growth of
the perturbation, (17), we see that a limit cycle is maintained
only if there exists some such that

(22)

It can be seen immediately that the first term of the vector on
the left-hand side (LHS) of (22) is . Thus, the equality does not
hold and any perturbation to the input must break a limit cycle.

Thus, we recommend that a small disturbance be added to
the input of the SDM whenever a limit cycle has been detected.
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Fig. 10. A flowchart depicting the operation of a limit cycle detection and re-
moval for an arbitrary SDM.

A flow chart depicting this for state space-based detection and
removal is given in Fig. 10. If the buffer value is replaced
by the shift register, then this flowchart is also applicable to
bitstream-based detection.

Since this modification is both minimal and guaranteed to
work, it is preferable to the commonly used alternative of adding
dither to the input to the quantizer. When limit cycle removal is
used in conjunction with a detection method, the perturbation
only needs to be added when a limit cycle has been detected.
Furthermore, since the limit cycle is unstable, only a very small
perturbation needs to be added. However, dithering may still be
used in order to minimize noise modulation.

In Fig. 11, the power spectrum is depicted with and without
limit cycle removal. The SDM with an 80-kHz corner frequency,
as described in (8), is again used. Initial conditions were set to
0, input amplitude was constant at 0.5, and the sampling rate
was set to 64 44.1 kHz. As can be seen, the system exhibits
the expected noise shaping characteristics of a lowpass SDM,
even when operating under limit cycle conditions (further dis-
cussion of the effect of limit cycles on noise shaping is provided
in [10]). For limit cycle removal, the shift register length was

Fig. 11. The power spectrum of the output for a limit cycle (top) and after
detection and removal has been implemented (bottom).

set to 80 and a single perturbation of magnitude up to was
applied each time a limit cycle was identified according to the
bitstream-based detection technique. For input samples, the
perturbation is applied only 20 times. However, the sharp peaks
in the power spectrum due to the occurrence of the limit cycle
have been completely removed. The remaining peaks, occurring
at , and 3 , are due to the occurrence of an idle
tone and its aliasing, and remain in the spectrum independently
of any limit cycles [10].

A. Disturbance Amplitude

The amplitude of the disturbance applied to the input when
a limit cycle has been detected is the sole parameter used in
the limit cycle removal method. The choice of the amplitude of
this disturbance is a tradeoff between the reduction in SNR and
stability when a large disturbance is added, and the increased
amount of time it may take to destroy a limit cycle when a small
disturbance is added. However, this is a minor issue since within
a large range of disturbance amplitude, the disturbance has only
a minimal effect on the modulator’s performance and on the
time it takes to destroy the limit cycle.

Fig. 12 demonstrates how the size of the perturbation affects
the time it takes to destroy a limit cycle. All possible period 12
limit cycles were found, and the set of initial conditions which
exactly produce each limit cycle was determined. The SDM was
run with a single disturbance applied at time , and the output
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Fig. 12. For a fifth-order SDM with 100 kHz corner frequency, this depicts the
number of iterates before a period 12 limit cycle is removed as a function of
the size of the perturbation applied. The average limit cycle curve was found by
averaging over all initial conditions which would exactly produce a limit cycle.
For the worst case scenario, the initial conditions were chosen such that they
would produce the most stable limit cycle possible.

bitstream was monitored until it deviated from limit cycle be-
havior. For the average limit cycle, initial conditions producing
each limit cycle were selected at random, and the number of iter-
ates required to remove a limit cycle was averaged over all limit
cycles and all selected initial conditions. For the worst case sce-
nario, the initial conditions of the modulator were chosen such
that the most stable period 12 limit cycle was produced, and such
that the initial conditions were set as far as possible from those
that would produce a bit flip and thus destroy the limit cycle.
Nevertheless, even a disturbance on the order of (akin to a
change of less than dB) is sufficient to eliminate the limit
cycle long before it becomes problematic. The stability of limit
cycles, and the growth rate of a disturbance, is discussed in de-
tail in [2].

B. Comparison With Dither

Two aspects of the limit cycle detection and removal
methods described in this paper make them a strong alternative
to dithering the quantizer. First, the size of the perturbation
that is required to remove a limit cycle is arbitrarily small, and
hence can be made several orders of magnitude smaller than the
minimum width of the dither. Second, the limit cycle removal
method may be applied only when a limit cycle has been
detected, as opposed to dither which is applied continuously.
This is seen in Fig. 13, which depicts the number of iterations
required to remove a limit cycle for dithering the quantizer and
for a single perturbation applied to the input. Note also from
this figure that for dither amplitude less than 0.3, dither never
removes the limit cycle. The inability of low amplitude dither
to remove certain limit cycles was also investigated in [2].

Since the perturbation need only be applied once, and since it
can be several orders of magnitude smaller than dither, its effect
on the SNR is negligible. In order to provide a meaningful
depiction of the comparison between SNRs for the limit cycle
removal methods, we also consider continuously perturbing
the input. At large amplitude disturbance, this is equivalent to

Fig. 13. The number of iterations of the SDM required to remove the largest
limit cycle, as a function of the dither or perturbation width.

Fig. 14. SNR as a function of dither or perturbation to the input.

dithering the input signal. This is not recommended since it
results in significant input noise that is not moved away from
the passband.

The SNR as a function of the disturbance amplitude is
depicted in Fig. 14, where a sinusoidal input with amplitude
0.5 and period of 101 samples (approximately 2.17 kHz for a
sampling rate of 64 44.1 kHz) was chosen as input. Values
of SNR close to or below zero are indicative of unstable be-
havior. This agrees with previous work which noted that full
scale dither, whether of triangular or rectangular distribution,
will overload the quantizer in a 1–bit SDM [18] and result in
instability. Thus, smaller amplitude dither is recommended for
one bit SDMs [19], and this is the justification for analysis of
SNR, stability, and time to remove a limit cycle as a function
of dither amplitude.

As can be seen in Fig. 14, applying a single disturbance to the
input yields no noticeable drop in SNR. Dithering the quantizer
degrades the SNR slightly as can be established by theory [6].
Applying a continuous disturbance to the input leads to a rapid
drop in the SNR. However, this is misleading since, as men-
tioned previously, the disturbance need only be applied rarely,
regardless of whether the limit cycle detection method is used,
and the disturbance may be made extremely small.
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Fig. 15. SNR as a function of the number of iterations required to remove the
largest period 12 limit cycle for different limit cycle removal methods.

Fig. 16. Stability as a function of the number of iterations required to remove
the largest period 12 limit cycle for different limit cycle removal methods.

Thus, to investigate the behavior on a more realistic level, we
consider the SNR as a function of the time required to remove
a limit cycle, as shown in Fig. 15. When a disturbance on the
order of is continually applied to the input, corresponding
to roughly 75 iterations required to remove the limit cycle, then
the SNR performance is equivalent to dithering the quantizer.
The performance decays rapidly for large continuous perturba-
tions. However, when a small disturbance is applied, or when it
is applied infrequently (such as only when a limit cycle is de-
tected), then this technique yields higher SNR performance than
dithering.

Similar behavior can be seen in Fig. 16 which depicts the
largest possible constant input that will yield stable behavior
as a function of the number if iterations required to remove
the largest period 12 limit cycle, which in turn is a function of
the amplitude of the dither or disturbance applied. In this case,
any form of disturbing the input yields better stability perfor-
mance than dithering the quantizer. This is because when the
input signal is disturbed, the output is still an accurate represen-
tation of the recent inputs to the quantizer. However, dithering
the quantizer intentionally results in an output quantization that

does not represent recent inputs, and when this (incorrect) quan-
tization value is fed back to the input it pushes the integrator
states closer to instability.

V. IMPLEMENTATION

A. Implementation in Low-Order SDMs

Thus far, we have concentrated on fifth-order SDM designs.
The procedures for limit cycle detection and removal outlined
in Sections III and IV are independent of the SDM order with
one notable exception. For a first-order SDM, any constant ra-
tional input results in a limit cycle, independent of the integrator
states [9]. Hence, a perturbation to the input, even if it breaks the
limit cycle, will result in the SDM immediately returning to that
same limit cycle. Therefore, there is no noticeable benefit to im-
plementation of this technique in first order SDMs.

B. Circuit Implementation

The method of detection and removal of limit cycles can be
implemented in digital or analog circuitry. Detection of limit
cycles is performed either on the output bitstream (wholly dig-
ital—for both ADCs and DACs) or on the internal states of the
SDM (digitally in a DAC, or analog in an ADC).

For analog detection using internal states, a single voltage
value, which is already available internally, is stored. This can
be stored on a capacitor. Leakage is not a major issue since the
value is stored for short duration. A simple, low bit counter is
used to determine when this value is updated. This stored value
is compared with a new value at each iterate. The comparison
may be made with a simple window comparator.

For digital detection using internal states, a single storage reg-
ister is used, which need only be (at most) up to the internal
resolution of the SDM. Again, a counter and logic gate are de-
ployed, as with the analog implementation.

Limit cycle detection using the output bitstream is a digital
process. It requires the implementation of 2 shift registers
storing output bits and as with analog detection, a low bit
counter. Bit comparisons are performed in parallel and a multi-
input AND gate is used to test equivalence of shift registers.

For removal of limit cycles in ADC, almost any analog source
capable of producing low voltage output may be deployed. For
instance, one may use a zener diode noise source. Other simple
implementations are available. For removal in a DAC, a low
complexity pseudorandom number generator may be used to
modify the least significant bits of a signal. If deployed only
when limit cycles are detected, a logic gate is used to turn it on.
There are no requirements that the disturbance be close to ideal
noise, and simply flipping the least significant bit may suffice
and will result in the smallest disturbance possible.

Note that all methods of detection are simple to implement,
operate at the sampling frequency, and do not require major
modifications to the design of an SDM. Additional hardware
complexity is very small, and far less than other control methods
which improve the performance of SDMs [20].
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VI. CONCLUSION

In this paper, we have described some of the properties of
limit cycle detection and removal schemes which have been im-
plemented for feedforward SDMs. These methods successfully
detect any limit cycle up to a given period and may remove any
limit cycle. They have a very low probability of false detection,
are easy to implement, and outperform current techniques such
as dithering. It is hoped that these methods may soon be realized
in commercial SDMs.

The state space-based limit cycle detection method relies on
calculation of a single scalar quantity. It allows one to find short-
term limit cycles. This quantity (10) is easily found from the
operation of the SDM and the decision to ignore allows us
to find all limit cycles that occur up to a given period, as well as
short term limit cycles which repeat for only a small number of
periods. It is robust to the choice of parameter settings, and may
detect limit cycles which occur at any time during the operation
of the SDM, Furthermore, it is independent of the order of the
SDM, its noise shaping characteristics, and independent of the
input to the SDM and its initial conditions. The mechanism of
limit cycle detection operates at the speed of the SDM, and may
be used in tandem with any limit cycle removal method.

The output bitstream-based limit cycle detection method,
using only two shift registers, will find all possible limit cycles
up to a given period which may be larger than the shift register
length). It has all the advantages of the state space-based
method. Furthermore, it is robust against any additional param-
eters (such as shift register length) and easy to implement.

Either of the two limit cycle detection methods may be com-
bined with the limit cycle removal method to yield a highly ef-
fective technique for limit cycle removal which does not require
continual dithering.

The limit cycle removal method may be applied continuously,
or only when a limit cycle has been detected. If used in tandem
with a limit cycle detection mechanism, it is independent of the
choice of detection method. It is guaranteed to remove any limit
cycle, and is independent of SDM characteristics. Its effect on
the SDM (other than removing limit cycles) is minimal. It is
robust to the choice of parameter settings, such as the size of
the disturbance and the exact moment at which it is applied.

These methods may also be applied to other SDM designs.
For instance, a popular alternative design to the feedforward,
SDM, is the feedback SDM. This is often used when a superior
antialiasing effect of the signal transfer function is required [13],
[21]. For both designs, the placement of the transition matrix
in the state space equations is identical. However, for feedback
designs, the coefficient vector acts as a constant that is added or
subtracted from the state space variables every iteration. Here,
short period limit cycles are very rare. Minor modifications must
be made in limit cycle detection and removal mechanisms. For
state variable-based detection, we do not need to identify limit
cycles using anything other than the quantizer input. For bit-
stream-based detection, the algorithm is exactly the same as that
described in Section III-B. Limit cycle removal may be imple-
mented by adding a disturbance either to the system input, or

to the system output just prior to feedback. Detailed discussions
of how to apply limit cycle detection and removal to this and
other alternative SDM designs, and practical circuit realizations
of these methods, remain topics for future work.
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