Computer Networking
Principles
Protocols

and
Pracuce

Computer Networking : Principles,

Protocols and Practice
Release 0.25

Olivier Bonaventure

October 30, 2011

Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

PR Coordinator
Cross-Out

Computer Networking: Principles, Protocols, and Practice was written by Dr. Olivier Bonaventure of the
Université catholique de Louvain for teaching Local Area Networks. After The Saylor Foundation accepted
his submission to Wave I of the Open Textbook Challenge, this textbook was relicensed as CC-BY 3.0.

Information on The Saylor Foundation’s Open Textbook Challenge can be found at www.saylor.org/otc/.

Computer Networking: Principles, Protocols and Practices © October 31, 2011 by Olivier Bonaventure, is
licensed under a Creative Commons Attribution (CC BY) license made possible by funding from The Saylor
Foundation's Open Textbook Challenge in order to be incorporated into Saylor.org's collection of open courses
available at: http://www.saylor.org. Full license terms may be viewed at: http://creativecommons.org/licenses/

by/3.0/legalcode

Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text
Information on The Saylor Foundation’s Open Textbook Challenge can be found at www.saylor.org/otc/.

PR Coordinator
Typewritten Text
Computer Networking: Principles, Protocols, and Practice was written by Dr. Olivier Bonaventure of the Université catholique de Louvain for teaching Local Area Networks. After The Saylor Foundation accepted his submission to Wave I of the Open Textbook Challenge, this textbook was relicensed as CC-BY 3.0.

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text
Computer Networking: Principles, Protocols and Practices © October 31, 2011 by Olivier Bonaventure, is licensed under a Creative Commons Attribution (CC BY) license made possible by funding from The Saylor Foundation's Open Textbook Challenge in order to be incorporated into Saylor.org's collection of open courses available at: http://www.saylor.org. Full license terms may be viewed at: http://creativecommons.org/licenses/by/3.0/legalcode

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

PR Coordinator
Typewritten Text

Contents

1 Preface

2 Introduction

2.1 Servicesand protocols
2.2 Thereferencemodels
2.3 Organisationof thebook

3 The application Layer

3.1 Principles
3.2 Application-level protocols
3.3 Writing simple networked applications
34 Summary L. e e e
35 EXercises i i i e e e

4 The transport layer

4.1 Principles of a reliable transport protocol
4.2 The User Datagram Protocol
4.3 The Transmission Control Protocol
44 Summary . . oL a s e e e
45 EXerciSes

5 The network layer

5.1 Principles e
5.2 Internet Protocol
5.3 RoutinginIPnetworks
54 Summary
5.5 EXercises o it e e e

6 The datalink layer and the Local Area Networks

6.1 Principles

6.2 Medium AccessControl

6.3 Datalink layer technologies

6.4 Summary e e

6.5 EXercises e e
7 Glossary

8 Bibliography

127

.................... 127
.................... 140
.................... 170
.................... 195
.................... 195

211

.................... 211
.................... 214
.................... 228
.................... 246
.................... 246

249

255

Saylor URL: http://www.saylor.org/courses/cs402/
[@her |

i
The Saylor Foundation

9 Indices and tables 257

Bibliography 259
Index 273
i

Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation

(co) T

Computer Networking : Principles, Protocols and Practice, Release 0.25

Computer Networking

Principles

Protocols — —

and

Practice
Contents 1
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation

e |

Computer Networking : Principles, Protocols and Practice, Release 0.25

2 Contents
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

CHAPTER 1

Preface

This textbook came from a frustration of its main author. Many authors chose to write a textbook because there
are no textbooks in their field or because they are not satisfied with the existing textbooks. This frustration
has produced several excellent textbooks in the networking community. At a time when networking textbooks
were mainly theoretical, Douglas Comer chose to write a textbook entirely focused on the TCP/IP protocol suite
[Comer1988], a difficult choice at that time. He later extended his textbook by describing a complete TCP/IP
implementation, adding practical considerations to the theoretical descriptions in [Comer1988]. Richard Stevens
approached the Internet like an explorer and explained the operation of protocols by looking at all the packets
that were exchanged on the wire [Stevens1994]. Jim Kurose and Keith Ross reinvented the networking textbooks
by starting from the applications that the students use and later explained the Internet protocols by removing one
layer after the other [KuroseRoss09].

The frustrations that motivated this book are different. When I started to teach networking in the late 1990s,
students were already Internet users, but their usage was limited. Students were still using reference textbooks and
spent time in the library. Today’s students are completely different. They are avid and experimented web users
who find lots of information on the web. This is a positive attitude since they are probably more curious than
their predecessors. Thanks to the information that is available on the Internet, they can check or obtain additional
information about the topics explained by their teachers. This abundant information creates several challenges for
a teacher. Until the end of the nineteenth century, a teacher was by definition more knowledgeable than his students
and it was very difficult for the students to verify the lessons given by their teachers. Today, given the amount
of information available at the fingertips of each student through the Internet, verifying a lesson or getting more
information about a given topic is sometimes only a few clicks away. Websites such as wikipedia provide lots of
information on various topics and students often consult them. Unfortunately, the organisation of the information
on these websites is not well suited to allow students to learn from them. Furthermore, there are huge differences
in the quality and depth of the information that is available for different topics.

The second reason is that the computer networking community is a strong participant in the open-source move-
ment. Today, there are high-quality and widely used open-source implementations for most networking protocols.
This includes the TCP/IP implementations that are part of linux, freebsd or the ulP stack running on 8bits con-
trollers, but also servers such as bind, unbound, apache or sendmail and implementations of routing protocols such
as xorp or quagga . Furthermore, the documents that define almost all of the Internet protocols have been devel-
oped within the Internet Engineering Task Force (IETF) using an open process. The IETF publishes its protocol
specifications in the publicly available RFC and new proposals are described in Internet drafts.

This open textbook aims to fill the gap between the open-source implementations and the open-source network
specifications by providing a detailed but pedagogical description of the key principles that guide the operation of
the Internet. The book is released under a creative commons licence. Such an open-source license is motivated
by two reasons. The first is that we hope that this will allow many students to use the book to learn computer
networks. The second is that I hope that other teachers will reuse, adapt and improve it. Time will tell if it is
possible to build a community of contributors to improve and develop the book further. As a starting point, the
first release contains all the material for a one-semester first upper undergraduate or a graduate networking course.

As of this writing, most of the text has been written by Olivier Bonaventure. Laurent Vanbever, Virginie Van den

3
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.cs.purdue.edu/people/comer
http://www.kohala.com/
http://www-net.cs.umass.edu/personnel/kurose.html
http://cis.poly.edu/~ross/
http://wikipedia.org
http://www.linux.org
http://www.freebsd.org
http://www.sics.se/~adam/uip/index.php/Main_Page
https://www.isc.org/software/bind
http://www.unbound.net
http://www.apache.org
http://www.sendmail.org
http://www.xorp.org
http://www.quagga.net
http://www.ietf.org
http://www.ietf.org/rfc.html
http://www.ietf.org/id-info/
http://creativecommons.org/licenses/by-sa/3.0/
http://inl.info.ucl.ac.be/obo
http://inl.info.ucl.ac.be/lvanbeve
http://inl.info.ucl.ac.be/vvandens
http://inl.info.ucl.ac.be/vvandens

Computer Networking : Principles, Protocols and Practice, Release 0.25

Schriek, Damien Saucez and Mickael Hoerdt have contributed to exercises. Pierre Reinbold designed the icons
used to represent switches and Nipaul Long has redrawn many figures in the SVG format. Stephane Bortzmeyer
sent many suggestions and corrections to the text. Additional information about the textbook is available at
http://inl.info.ucl.ac.be/CNP3

4 Chapter 1. Preface
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://inl.info.ucl.ac.be/vvandens
http://inl.info.ucl.ac.be/vvandens
http://inl.info.ucl.ac.be/dsaucez
http://inl.info.ucl.ac.be/mhoerdt
http://inl.info.ucl.ac.be/CNP3

CHAPTER 2

Introduction

When the first computers were built during the second world war, they were expensive and isolated. However,
after about twenty years, as their prices gradually decreased, the first experiments began to connect computers
together. In the early 1960s, researchers including Paul Baran, Donald Davies or Joseph Licklider independently
published the first papers describing the idea of building computer networks [Baran] [Licklider1963] . Given
the cost of computers, sharing them over a long distance was an interesting idea. In the US, the ARPANET
started in 1969 and continued until the mid 1980s [LCCDO09]. In France, Louis Pouzin developed the Cyclades
network [Pouzin1975]. Many other research networks were built during the 1970s [Moore]. At the same time,
the telecommunication and computer industries became interested in computer networks. The telecommunication
industry bet on the X25. The computer industry took a completely different approach by designing Local Area
Networks (LAN). Many LAN technologies such as Ethernet or Token Ring were designed at that time. During
the 1980s, the need to interconnect more and more computers led most computer vendors to develop their own
suite of networking protocols. Xerox developed [XNS], DEC chose DECNet [Malamud1991] , IBM developed
SNA [McFadyen1976] , Microsoft introduced NetBIOS [Winston2003] , Apple bet on Appletalk [SAO1990] . In
the research community, ARPANET was decommissioned and replaced by TCP/IP [LCCDO09] and the reference
implementation was developed inside BSD Unix [McKusick1999]. Universities who were already running Unix
could thus adopt TCP/IP easily and vendors of Unix workstations such as Sun or Silicon Graphics included TCP/IP
in their variant of Unix. In parallel, the /SO, with support from the governments, worked on developing an open
! Suite of networking protocols. In the end, TCP/IP became the de facto standard that is not only used within the
research community. During the 1990s and the early 2000s, the growth of the usage of TCP/IP continued, and
today proprietary protocols are seldom used. As shown by the figure below, that provides the estimation of the
number of hosts attached to the Internet, the Internet has sustained large growth throughout the last 20+ years.

Internet Domain Survey Host Count
600,000,000
500,000,000 +
400,000,000
300,000,000
200,000,000 +

100.000.000 4

0=

Jan-94
Jan-95 4
Jan-96
Jan-98 -
Jan-93
Jan-00
Jan-01 4
Jan-02
n-03
Jan-04
Jan-05
Jan-06 -
Jar-07

r~
T
L
]]
= =
o

Source: Internet Systems Consortium [www.isc.oral

Figure 2.1: Estimation of the number of hosts on the Internet

! Open in ISO terms was in contrast with the proprietary protocol suites whose specification was not always publicly available. The US
government even mandated the usage of the OSI protocols (see RFC 1169), but this was not sufficient to encourage all users to switch to the
OSI protocol suite that was considered by many as too complex compared to other protocol suites.

5
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://en.wikipedia.org/wiki/Paul_Baran
http://en.wikipedia.org/wiki/Donald_Davies
http://en.wikipedia.org/wiki/J._C._R._Licklider
http://conferences.sigcomm.org/sigcomm/1999/pouzin.html
http://en.wikipedia.org/wiki/X.25
http://tools.ietf.org/html/rfc1169.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

Recent estimations of the number of hosts attached to the Internet show a continuing growth since 20+ years.
However, although the number of hosts attached to the Internet is high, it should be compared to the number
of mobile phones that are in use today. More and more of these mobile phones will be connected to the Inter-
net. Furthermore, thanks to the availability of TCP/IP implementations requiring limited resources such as ulP
[Dunkels2003], we can expect to see a growth of TCP/IP enabled embedded devices.

3.000

[® Milions GSM worldwide | ./

2250 ad

1.500 ¥

750
/'/
//
e
ce—o —o—F%

1994 1995 1996 1998 2001 2002 2003 2004 2005 2006 2007

Figure 2.2: Estimation of the number of mobile phones

Before looking at the services provided by computer networks, it is useful to agree on some terminology that
is widely used in networking literature. First of all, computer networks are often classified in function of the
geographical area that they cover

e LAN : alocal area network typically interconnects hosts that are up to a few or maybe a few tens of kilome-
ters apart.

e MAN : a metropolitan area network typically interconnects devices that are up to a few hundred kilometers
apart

» WAN : a wide area network interconnect hosts that can be located anywhere on Earth *

Another classification of computer networks is based on their physical topology. In the following figures, physical
links are represented as lines while boxes show computers or other types of networking equipment.

Computer networks are used to allow several hosts to exchange information between themselves. To allow any
host to send messages to any other host in the network, the easiest solution is to organise them as a full-mesh, with
a direct and dedicated link between each pair of hosts. Such a physical topology is sometimes used, especially
when high performance and high redundancy is required for a small number of hosts. However, it has two major
drawbacks :

* for a network containing n hosts, each host must have n-1 physical interfaces. In practice, the number of
physical interfaces on a node will limit the size of a full-mesh network that can be built

* for a network containing n hosts, W links are required. This is possible when there are a few nodes

in the same room, but rarely when they are located several kilometers apart

The second possible physical organisation, which is also used inside computers to connect different extension
cards, is the bus. In a bus network, all hosts are attached to a shared medium, usually a cable through a single
interface. When one host sends an electrical signal on the bus, the signal is received by all hosts attached to the bus.
A drawback of bus-based networks is that if the bus is physically cut, then the network is split into two isolated
networks. For this reason, bus-based networks are sometimes considered to be difficult to operate and maintain,
especially when the cable is long and there are many places where it can break. Such a bus-based topology was
used in early Ethernet networks.

A third organisation of a computer network is a star topology. In such topologies, hosts have a single physical
interface and there is one physical link between each host and the center of the star. The node at the center of
the star can be either a piece of equipment that amplifies an electrical signal, or an active device, such as a piece

2 In this book, we focus on networks that are used on Earth. These networks sometimes include satellite links. Besides the network
technologies that are used on Earth, researchers develop networking techniques that could be used between nodes located on different planets.
Such an Inter Planetary Internet requires different techniques than the ones discussed in this book. See RFC 4838 and the references therein
for information about these techniques.

6 Chapter 2. Introduction
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.sics.se/~adam/uip/index.php/Main_Page
http://tools.ietf.org/html/rfc4838.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

Figure 2.3: A Full mesh network

£y £

Figure 2.4: A network organised as a Bus

of equipment that understands the format of the messages exchanged through the network. Of course, the failure
of the central node implies the failure of the network. However, if one physical link fails (e.g. because the cable
has been cut), then only one node is disconnected from the network. In practice, star-shaped networks are easier
to operate and maintain than bus-shaped networks. Many network administrators also appreciate the fact that
they can control the network from a central point. Administered from a Web interface, or through a console-like
connection, the center of the star is a useful point of control (enabling or disabling devices) and an excellent

observation point (usage statistics).

="

=

Figure 2.5: A network organised as a Star

&

A fourth physical organisation of a network is the Ring topology. Like the bus organisation, each host has a single
physical interface connecting it to the ring. Any signal sent by a host on the ring will be received by all hosts
attached to the ring. From a redundancy point of view, a single ring is not the best solution, as the signal only
travels in one direction on the ring; thus if one of the links composing the ring is cut, the entire network fails. In
practice, such rings have been used in local area networks, but are now often replaced by star-shaped networks.
In metropolitan networks, rings are often used to interconnect multiple locations. In this case, two parallel links,
composed of different cables, are often used for redundancy. With such a dual ring, when one ring fails all the
traffic can be quickly switched to the other ring.

A fifth physical organisation of a network is the tree. Such networks are typically used when a large number of
customers must be connected in a very cost-effective manner. Cable TV networks are often organised as trees.

In practice, most real networks combine part of these topologies. For example, a campus network can be organised
as a ring between the key buildings, while smaller buildings are attached as a tree or a star to important buildings.

7
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

=

iy

="

Figure 2.6: A network organised as a Ring

="
="
=7 =7

Figure 2.7: A network organised as a Tree

&

8 Chapter 2. Introduction
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

Or an ISP network may have a full mesh of devices in the core of its network, and trees to connect remote users.

Throughout this book, our objective will be to understand the protocols and mechanisms that are necessary for a
network such as the one shown below.

Figure 2.8: A simple internetwork

The figure above illustrates an internetwork, i.e. a network that interconnects other networks. Each network is
illustrated as an ellipse containing a few devices. We will explain throughout the book the different types of
devices and their respective roles enabling all hosts to exchange information. As well as this, we will discuss how
networks are interconnected, and the rules that guide these interconnections. We will also analyse how the bus,
ring and mesh topologies are used to build real networks.

The last point of terminology we need to discuss is the transmission modes. When exchanging information through
a network, we often distinguish between three transmission modes. In TV and radio transmission, broadcast is
often used to indicate a technology that sends a video or radio signal to all receivers in a given geographical area.
Broadcast is sometimes used in computer networks, but only in local area networks where the number of recipients
is limited.

The first and most widespread transmission mode is called unicast . In the unicast transmission mode, information
is sent by one sender to one receiver. Most of today’s Internet applications rely on the unicast transmission mode.
The example below shows a network with two types of devices : hosts (drawn as computers) and intermediate
nodes (drawn as cubes). Hosts exchange information via the intermediate nodes. In the example below, when
host S uses unicast to send information, it sends it via three intermediate nodes. Each of these nodes receives the
information from its upstream node or host, then processes and forwards it to its downstream node or host. This
is called store and forward and we will see later that this concept is key in computer networks.

A second transmission mode is multicast transmission mode. This mode is used when the same information must
be sent to a set of recipients. It was first used in LANs but later became supported in wide area networks. When
a sender uses multicast to send information to N receivers, the sender sends a single copy of the information and
the network nodes duplicate this information whenever necessary, so that it can reach all recipients belonging to
the destination group.

To understand the importance of multicast transmission, consider source S that sends the same information to
destinations A, C and E. With unicast, the same information passes three times on intermediate nodes / and 2 and
twice on node 4. This is a waste of resources on the intermediate nodes and on the links between them. With
multicast transmission, host S sends the information to node / that forwards it downstream to node 2. This node
creates a copy of the received information and sends one copy directly to host £ and the other downstream to node
4. Upon reception of the information, node 4 produces a copy and forwards one to node A and another to node
C. Thanks to multicast, the same information can reach a large number of receivers while being sent only once on
each link.

9
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

Figure 2.9: Unicast transmission

Figure 2.10: Multicast transmission

10 Chapter 2. Introduction
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

The last transmission mode is the anycast transmission mode. It was initially defined in RFC 1542. In this
transmission mode, a set of receivers is identified. When a source sends information towards this set of receivers,
the network ensures that the information is delivered to one receiver that belongs to this set. Usually, the receiver
closest to the source is the one that receives the information sent by this particular source. The anycast transmission
mode is useful to ensure redundancy, as when one of the receivers fails, the network will ensure that information
will be delivered to another receiver belonging to the same group. However, in practice supporting the anycast
transmission mode can be difficult.

Figure 2.11: Anycast transmission

In the example above, the three hosts marked with * are part of the same anycast group. When host S sends
information to this anycast group, the network ensures that it will reach one of the members of the anycast group.
The dashed lines show a possible delivery via nodes /, 2 and 4. A subsequent anycast transmission from host
S to the same anycast group could reach the host attached to intermediate node 3 as shown by the plain line.
An anycast transmission reaches a member of the anycast group that is chosen by the network in function of the
current network conditions.

2.1 Services and protocols

An important aspect to understand before studying computer networks is the difference between a service and a
protocol.

In order to understand the difference between the two, it is useful to start with real world examples. The traditional
Post provides a service where a postman delivers letters to recipients. The Post defines precisely which types of
letters (size, weight, etc) can be delivered by using the Standard Mail service. Furthermore, the format of the
envelope is specified (position of the sender and recipient addresses, position of the stamp). Someone who wants
to send a letter must either place the letter at a Post Office or inside one of the dedicated mailboxes. The letter
will then be collected and delivered to its final recipient. Note that for the regular service the Post usually does
not guarantee the delivery of each particular letter, some letters may be lost, and some letters are delivered to the
wrong mailbox. If a letter is important, then the sender can use the registered service to ensure that the letter will
be delivered to its recipient. Some Post services also provide an acknowledged service or an express mail service
that is faster than the regular service.

In computer networks, the notion of service is more formally defined in [X200] . It can be better understood by
considering a computer network, whatever its size or complexity, as a black box that provides a service to users ,
as shown in the figure below. These users could be human users or processes running on a computer system.

Many users can be attached to the same service provider. Through this provider, each user must be able to
exchange messages with any other user. To be able to deliver these messages, the service provider must be able
to unambiguously identify each user. In computer networks, each user is identified by a unique address, we will
discuss later how these addresses are built and used. At this point, and when considering unicast transmission, the
main characteristic of these addresses is that they are unique. Two different users attached to the network cannot
use the same address.

2.1. Services and protocols 11
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc1542.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

User A User B
Service Access Point

l + l ! Primitives

Service provider ("the network")

Figure 2.12: Users and service provider

Throughout this book, we will define a service as a set of capabilities provided by a system (and its underlying
elements) to its user. A user interacts with a service through a service access point. Note that as shown in the figure
above, users interact with one service provider. In practice, the service provider is distributed over several hosts,
but these are implementation details that are not important at this stage. These interactions between a user and a
service provider are expressed in [X200] by using primitives, as show in the figure below. These primitives are
an abstract representation of the interactions between a user and a service provider. In practice, these interactions
could be implemented as system calls for example.

User A User B

X.requestl + X.confirm X.responsel+ X.indication

'1--v..,,,Servicé bf&vider ('.'i:lh'é.hetwork'.').

Figure 2.13: The four types of primitives

Four types of primitives are defined :
* X.request. This type of primitive corresponds to a request issued by a user to a service provider

* X.indication. This type of primitive is generated by the network provider and delivered to a user (often
related to an earlier and remote X.request primitive)

* X.response. This type of primitive is generated by a user to answer to an earlier X.indication primitive

* X.confirm. This type of primitive is delivered by the service provide to confirm to a user that a previous
X.request primitive has been successfully processed.

Primitives can be combined to model different types of services. The simplest service in computer networks is
called the connectionless service 3. This service can be modelled by using two primitives :

* Data.request(source,destination,SDU). This primitive is issued by a user that specifies, as parameters, its
(source) address, the address of the recipient of the message and the message itself. We will use Service
Data Unit (SDU) to name the message that is exchanged transparently between two users of a service.

* Data.indication(source,destination,SDU). This primitive is delivered by a service provider to a user. It
contains as parameters a Service Data Unit as well as the addresses of the sender and the destination users.

When discussing the service provided in a computer network, it is often useful to be able to describe the inter-
actions between the users and the provider graphically. A frequently used representation is the time-sequence
diagram. In this chapter and later throughout the book, we will often use diagrams such as the figure below. A
time-sequence diagram describes the interactions between two users and a service provider. By convention, the
users are represented in the left and right parts of the diagram while the service provider occupies the middle of the
diagram. In such a time-sequence diagram, time flows from the top, to the bottom of the diagram. Each primitive

3 This service is called the connectionless service because there is no need to create a connection before transmitting any data in contrast
with the connection-oriented service.

12 Chapter 2. Introduction
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

is represented by a plain horizontal arrow, to which the name of the primitive is attached. The dashed lines are
used to represent the possible relationship between two (or more) primitives. Such a diagram provides information
about the ordering of the different primitives, but the distance between two primitives does not represent a precise
amount of time.

The figure below provides a representation of the connectionless service as a time-sequence diagram. The user on
the left, having address S, issues a Data.request primitive containing SDU M that must be delivered by the service
provider to destination D. The dashed line between the two primitives indicates that the Data.indication primitive
that is delivered to the user on the right corresponds to the Data.request primitive sent by the user on the left.

Source Provider Destination

—»1{.

DATA.request(S, D, "M")

DATA.indication(S, D, "M")

Time

Figure 2.14: A simple connectionless service

There are several possible implementations of the connectionless service, which we will discuss later in this book.
Before studying these realisations, it is useful to discuss the possible characteristics of the connectionless service.
A reliable connectionless service is a service where the service provider guarantees that all SDUs submitted in
Data.requests by a user will eventually be delivered to their destination. Such a service would be very useful for
users, but guaranteeing perfect delivery is difficult in practice. For this reason, computer networks usually support
an unreliable connectionless service.

An unreliable connectionless service may suffer from various types of problems compared to a reliable connec-
tionless service. First of all, an unreliable connectionless service does not guarantee the delivery of all SDUs.
This can be expressed graphically by using the time-sequence diagram below.

In practice, an unreliable connectionless service will usually deliver a large fraction of the SDUs. However, since
the delivery of SDUs is not guaranteed, the user must be able to recover from the loss of any SDU.

A second imperfection that may affect an unreliable connectionless service is that it may duplicate SDUs. Some
unreliable connectionless service providers may deliver an SDU sent by a user twice or even more. This is
illustrated by the time-sequence diagram below.

Finally, some unreliable connectionless service providers may deliver to a destination a different SDU than the
one that was supplied in the Data.request. This is illustrated in the figure below.

When a user interacts with a service provider, it must precisely know the limitations of the underlying service to
be able to overcome any problem that may arise. This requires a precise definition of the characteristics of the
underlying service.

Another important characteristic of the connectionless service is whether it preserves the ordering of the SDUs
sent by one user. From the user’s viewpoint, this is often a desirable characteristic. This is illustrated in the figure
below.

However, many connectionless services, and in particular the unreliable services, do not guarantee that they will
always preserve the ordering of the SDUs sent by each user. This is illustrated in the figure below.

2.1. Services and protocols 13
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

Source Provider Destination

DATA.request(S, D, "Msg")' B

Timey

Figure 2.15: An unreliable connectionless service may loose SDUs

Source Provider Destination

DATA.request(S, D, "Msg") |

DATA.indication(S, D, "Msg")

DATA.indication(S, D, "Msg")

Time'v

Figure 2.16: An unreliable connectionless service may duplicate SDUs

14 Chapter 2. Introduction
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

Source

Provider

DATA.request(S, D, "Msg") ’

Time

Destination

>

DATA.indication(S, D, "XYZ")

Figure 2.17: An unreliable connectionless service may deliver erroneous SDUs

Source

Provider

DATA.request(S,D,"A")

DATA.request(S,D,"B")

Time

Destination

DATA.indication(S,D,"A")

DATA.indication(S,D,"B")

Figure 2.18: A connectionless service that preserves the ordering of SDUs sent by a given user

Source

DATA.request(S, D, "A")

>

DATA.request(S, D, "B")

Time

Provider

......

Destination

>

DATA.indication(S, D, "B")

DATA.indication(S, D, "A")

Figure 2.19: A connectionless service that does not preserve the ordering of SDUs sent by a given user

2.1. Services and protocols

Saylor URL: http://www.saylor.org/courses/cs402/

(co) T

15
The Saylor Foundation

Computer Networking : Principles, Protocols and Practice, Release 0.25

The connectionless service is widely used in computer networks as we will see later in this book. Several variations
to this basic service have been proposed. One of these is the confirmed connectionless service. This service uses
a Data.confirm primitive in addition to the classical Data.request and Data.indication primitives. This primitive
is issued by the service provider to confirm to a user the delivery of a previously sent SDU to its recipient. Note
that, like the registered service of the post office, the Data.confirm only indicates that the SDU has been delivered
to the destination user. The Data.confirm primitive does not indicate whether the SDU has been processed by the
destination user. This confirmed connectionless service is illustrated in the figure below.

Source Provider Destination

DATA.request(S, D, "M")

DATA.indication(S, D, "M")

DATA.confirm

Time

Figure 2.20: A confirmed connectionless service

The connectionless service we have described earlier is frequently used by users who need to exchange small
SDUs. Users needing to either send or receive several different and potentially large SDUs, or who need structured
exchanges often prefer the connection-oriented service.

An invocation of the connection-oriented service is divided into three phases. The first phase is the establishment
of a connection. A connection is a temporary association between two users through a service provider. Several
connections may exist at the same time between any pair of users. Once established, the connection is used to
transfer SDUs. Connections usually provide one bidirectional stream supporting the exchange of SDUs between
the two users that are associated through the connection. This stream is used to transfer data during the second
phase of the connection called the data transfer phase. The third phase is the termination of the connection. Once
the users have finished exchanging SDUs, they request to the service provider to terminate the connection. As we
will see later, there are also some cases where the service provider may need to terminate a connection itself.

The establishment of a connection can be modelled by using four primitives : Connect.request, Connect.indication,
Connect.response and Connect.confirm. The Connect.request primitive is used to request the establishment of a
connection. The main parameter of this primitive is the address of the destination user. The service provider
delivers a Connect.indication primitive to inform the destination user of the connection attempt. If it accepts to
establish a connection, it responds with a Connect.response primitive. At this point, the connection is considered
to be open and the destination user can start sending SDUs over the connection. The service provider processes
the Connect.response and will deliver a Connect.confirm to the user who initiated the connection. The delivery
of this primitive terminates the connection establishment phase. At this point, the connection is considered to be
open and both users can send SDUs. A successful connection establishment is illustrated below.

The example above shows a successful connection establishment. However, in practice not all connections are
successfully established. One reason is that the destination user may not agree, for policy or performance reasons,
to establish a connection with the initiating user at this time. In this case, the destination user responds to the
Connect.indication primitive by a Disconnect.request primitive that contains a parameter to indicate why the
connection has been refused. The service provider will then deliver a Disconnect.indication primitive to inform
the initiating user. A second reason is when the service provider is unable to reach the destination user. This
might happen because the destination user is not currently attached to the network or due to congestion. In these

16 Chapter 2. Introduction
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

Source Provider Destination

CONNECT.request

CONNECT.indication

................... CONNECT.response

E:ONNECT,confirm Destination considers
connection open

Source considers
connection open

Time
Figure 2.21: Connection establishment
cases, the service provider responds to the Connect.request with a Disconnect.indication primitive whose reason
parameter contains additional information about the failure of the connection.

Source Provider Destination

CONNECT.request

CONNECT.indication

......... : DISCONNECT.request

I;ISCONNECT.indication Connection rejected by destination

CONNECT.request

DISCONNECT.indication

Connection rejected
by provider

Time

Figure 2.22: Two types of rejection for a connection establishment attempt

Once the connection has been established, the service provider supplies two data streams to the communicating
users. The first data stream can be used by the initiating user to send SDUs. The second data stream allows
the responding user to send SDUs to the initiating user. The data streams can be organised in different ways. A
first organisation is the message-mode transfer. With the message-mode transfer, the service provider guarantees
that one and only one Data.indication will be delivered to the endpoint of the data stream for each Data.request
primitive issued by the other endpoint. The message-mode transfer is illustrated in the figure below. The main
advantage of the message-transfer mode is that the recipient receives exactly the SDUs that were sent by the other
user. If each SDU contains a command, the receiving user can process each command as soon as it receives a
SDU.

Unfortunately, the message-mode transfer is not widely used on the Internet. On the Internet, the most popular
connection-oriented service transfers SDUs in stream-mode. With the stream-mode, the service provider supplies a
byte stream that links the two communicating users. The sending user sends bytes by using Data.request primitives
that contain sequences of bytes as SDUs. The service provider delivers SDUs containing consecutive bytes to the
receiving user by using Data.indication primitives. The service provider ensures that all the bytes sent at one end

2.1. Services and protocols 17
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

Source Provider Destination

CONNECT.request

CONNECT.indication

................. CONNECT.response

CONNECT.confirm

DATA.request("A") | ...

—> L DATA.indication("A")
DATA.request("BCD") | "~ Crceee.

S DATA.indication("BCD")
DATA.request("EF") | Uil

DATA.indication("EF")

Time

Figure 2.23: Message-mode transfer in a connection oriented service

of the stream are delivered correctly in the same order at the other endpoint. However, the service provider does
not attempt to preserve the boundaries of the SDUs. There is no relation enforced by the service provider between
the number of Data.request and the number of Data.indication primitives. The stream-mode is illustrated in the
figure below. In practice, a consequence of the utilisation of the stream-mode is that if the users want to exchange
structured SDUSs, they will need to provide the mechanisms that allow the receiving user to separate successive
SDUs in the byte stream that it receives. As we will see in the next chapter, application layer protocols often use
specific delimiters such as the end of line character to delineate SDUs in a bytestream.

Source Provider Destination

CONNECT.request

CONNECT.indication

>

___________________ CONNECT.response

<

CONNECT.confirm

DATA.request("AB") TR

g DATA.indication("A")
DATA.request("CD") ellrel,

-~V

i RET DATA.indication("B"
DATA.request("EF")

DATA.indication("C':)

DATA.indication("DéF")

Time

Figure 2.24: Stream-mode transfer in a connection oriented service

The third phase of a connection is when it needs to be released. As a connection involves three parties (two users
and one service provider), any of them can request the termination of the connection. Usually, connections are
terminated upon request of one user once the data transfer is finished. However, sometimes the service provider
may be forced to terminate a connection. This can be due to lack of resources inside the service provider or
because one of the users is not reachable anymore through the network. In this case, the service provider will issue
Disconnect.indication primitives to both users. These primitives will contain, as parameter, some information
about the reason for the termination of the connection. Unfortunately, as illustrated in the figure below, when a

18 Chapter 2. Introduction
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

service provider is forced to terminate a connection it cannot guarantee that all SDUs sent by each user have been
delivered to the other user. This connection release is said to be abrupt as it can cause losses of data.

Source Provider Destination

Connection opened Connection opened

DATA.request("A")

DATA.request("B")

DATA.indication("A")

e | DATA.indication("C")

< >

DISCONNECT.indication DISCONNECT.indication

Time

Figure 2.25: Abrupt connection release initiated by the service provider
An abrupt connection release can also be triggered by one of the users. If a user needs, for any reason, to terminate
a connection quickly, it can issue a Disconnect.request primitive and to request an abrupt release. The service
provider will process the request, stop the two data streams and deliver the Disconnect.indication primitive to the

remote user as soon as possible. As illustrated in the figure below, this abrupt connection release may cause losses
of SDUs.

Source Provider Destination

Connection opened Connection opened

DATA.request("A")

DATA.request("B")

DATA.indication("A")

DISCONNECT.req(abrupt)| ""*-... RS DATA.request("C")

>

DISCONNECT.indication

Time? v

Figure 2.26: Abrupt connection release initiated by a user

To ensure a reliable delivery of the SDUs sent by each user over a connection, we need to consider the two streams
that compose a connection as independent. A user should be able to release the stream that it uses to send SDUs
once it has sent all the SDUs that it planned to send over this connection, but still continue to receive SDUs over
the opposite stream. This graceful connection release is usually performed as shown in the figure below. One user
issues a Disconnect.request primitive to its provider once it has issued all its Data.request primitives. The service
provider will wait until all Data.indication primitives have been delivered to the receiving user before issuing the
Disconnnect.indication primitive. This primitive informs the receiving user that it will no longer receive SDUs
over this connection, but it is still able to issue Data.request primitives on the stream in the opposite direction.
Once the user has issued all of its Data.request primitives, it issues a Disconnnect.request primitive to request the
termination of the remaining stream. The service provider will process the request and deliver the corresponding
Disconnect.indication to the other user once it has delivered all the pending Data.indication primitives. At this

2.1. Services and protocols 19
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

point, all data has been delivered and the two streams have been released successfully and the connection is
completely closed.
Source Provider Destination

Connection opened Connection opened

DATA.request("A")

DATA.request("B") g . DATA.request("C")

DISCONNECT.req(graceful) | DATA.indication("A")

Source -> Destination DATA.indication("B")
connection closed .

DISCONNECT.ind(graceful)

DATA.indication("C")

DATA.request("D")

DATA.indication("D")

.................... DISCONNECT.req(graceful)

DISCONNECT.ind(graceful)

Connection closed Connection closed
Time

Figure 2.27: Graceful connection release

Note: Reliability of the connection-oriented service

An important point to note about the connection-oriented service is its reliability. A connection-oriented service
can only guarantee the correct delivery of all SDUs provided that the connection has been released gracefully. This
implies that while the connection is active, there is no guarantee for the actual delivery of the SDUs exchanged as
the connection may need to be released abruptly at any time.

2.2 The reference models

Given the growing complexity of computer networks, during the 1970s network researchers proposed various
reference models to facilitate the description of network protocols and services. Of these, the Open Systems
Interconnection (OSI) model [Zimmermann80] was probably the most influential. It served as the basis for the
standardisation work performed within the /SO to develop global computer network standards. The reference
model that we use in this book can be considered as a simplified version of the OSI reference model *.

2.2.1 The five layers reference model

Our reference model is divided into five layers, as shown in the figure below.

Starting from the bottom, the first layer is the Physical layer. Two communicating devices are linked through a
physical medium. This physical medium is used to transfer an electrical or optical signal between two directly
connected devices. Several types of physical mediums are used in practice :

* electrical cable. Information can be transmitted over different types of electrical cables. The most common
ones are the twisted pairs that are used in the telephone network, but also in enterprise networks and coaxial
cables. Coaxial cables are still used in cable TV networks, but are no longer used in enterprise networks.
Some networking technologies operate over the classical electrical cable.

* optical fiber. Optical fibers are frequently used in public and enterprise networks when the distance be-
tween the communication devices is larger than one kilometer. There are two main types of optical fibers
: multimode and monomode. Multimode is much cheaper than monomode fiber because a LED can be

4 An interesting historical discussion of the OSI-TCP/IP debate may be found in [Russel06]

20 Chapter 2. Introduction
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

Application

Transport

Network

Datalink

Physical

]
Physical transmission medium

Figure 2.28: The five layers of the reference model

used to send a signal over a multimode fiber while a monomode fiber must be driven by a laser. Due to the
different modes of propagation of light, monomode fibers are limited to distances of a few kilometers while
multimode fibers can be used over distances greater than several tens of kilometers. In both cases, repeaters
can be used to regenerate the optical signal at one endpoint of a fiber to send it over another fiber.

* wireless. In this case, a radio signal is used to encode the information exchanged between the communi-
cating devices. Many types of modulation techniques are used to send information over a wireless channel
and there is lot of innovation in this field with new techniques appearing every year. While most wireless
networks rely on radio signals, some use a laser that sends light pulses to a remote detector. These optical
techniques allow to create point-to-point links while radio-based techniques, depending on the directionality
of the antennas, can be used to build networks containing devices spread over a small geographical area.

An important point to note about the Physical layer is the service that it provides. This service is usually an
unreliable connection-oriented service that allows the users of the Physical layer to exchange bits. The unit of
information transfer in the Physical layer is the bit. The Physical layer service is unreliable because :

* the Physical layer may change, e.g. due to electromagnetic interferences, the value of a bit being transmitted
* the Physical layer may deliver more bits to the receiver than the bits sent by the sender
* the Physical layer may deliver fewer bits to the receiver than the bits sent by the sender

The last two points may seem strange at first glance. When two devices are attached through a cable, how is it
possible for bits to be created or lost on such a cable ?

This is mainly due to the fact that the communicating devices use their own clock to transmit bits at a given bit
rate. Consider a sender having a clock that ticks one million times per second and sends one bit every tick. Every
microsecond, the sender sends an electrical or optical signal that encodes one bit. The sender’s bit rate is thus 1
Mbps. If the receiver clock ticks exactly ° every microsecond, it will also deliver 1 Mbps to its user. However, if
the receiver’s clock is slightly faster (resp. slower), than it will deliver slightly more (resp. less) than one million
bits every second. This explains why the physical layer may lose or create bits.

Note: Bit rate

In computer networks, the bit rate of the physical layer is always expressed in bits per second. One Mbps is one
million bits per second and one Gbps is one billion bits per second. This is in contrast with memory specifica-
tions that are usually expressed in bytes (8 bits), KiloBytes (1024 bytes) or MegaBytes (1048576 bytes). Thus
transferring one MByte through a 1 Mbps link lasts 8.39 seconds.

5 Having perfectly synchronised clocks running at a high frequency is very difficult in practice. However, some physical layers introduce a
feedback loop that allows the receiver’s clock to synchronise itself automatically to the sender’s clock. However, not all physical layers include
this kind of synchronisation.

2.2. The reference models 21
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

Bit rate Bits per second
1 Kbps 103

1 Mbps | 106

1 Gbps 10°

1 Tbps 1012

« Bits
01010010100010101001010

Physical layer Physical layer

Physical transmission medium

Figure 2.29: The Physical layer

The physical layer allows thus two or more entities that are directly attached to the same transmission medium to
exchange bits. Being able to exchange bits is important as virtually any information can be encoded as a sequence
of bits. Electrical engineers are used to processing streams of bits, but computer scientists usually prefer to deal
with higher level concepts. A similar issue arises with file storage. Storage devices such as hard-disks also store
streams of bits. There are hardware devices that process the bit stream produced by a hard-disk, but computer
scientists have designed filesystems to allow applications to easily access such storage devices. These filesystems
are typically divided into several layers as well. Hard-disks store sectors of 512 bytes or more. Unix filesystems
group sectors in larger blocks that can contain data or inodes representing the structure of the filesystem. Fi-
nally, applications manipulate files and directories that are translated in blocks, sectors and eventually bits by the
operating system.

Computer networks use a similar approach. Each layer provides a service that is built above the underlying layer
and is closer to the needs of the applications.

The Datalink layer builds on the service provided by the underlying physical layer. The Datalink layer allows
two hosts that are directly connected through the physical layer to exchange information. The unit of information
exchanged between two entities in the Datalink layer is a frame. A frame is a finite sequence of bits. Some
Datalink layers use variable-length frames while others only use fixed-length frames. Some Datalink layers
provide a connection-oriented service while others provide a connectionless service. Some Datalink layers provide
reliable delivery while others do not guarantee the correct delivery of the information.

An important point to note about the Datalink layer is that although the figure below indicates that two entities
of the Datalink layer exchange frames directly, in reality this is slightly different. When the Datalink layer entity
on the left needs to transmit a frame, it issues as many Data.request primitives to the underlying physical layer
as there are bits in the frame. The physical layer will then convert the sequence of bits in an electromagnetic
or optical signal that will be sent over the physical medium. The physical layer on the right hand side of the
figure will decode the received signal, recover the bits and issue the corresponding Data.indication primitives to
its Datalink layer entity. If there are no transmission errors, this entity will receive the frame sent earlier.

Datalink —Frames—— Datalink

Physical Physical
[J

Figure 2.30: The Datalink layer

The Datalink layer allows directly connected hosts to exchange information, but it is often necessary to exchange
information between hosts that are not attached to the same physical medium. This is the task of the network
layer. The network layer is built above the datalink layer. Network layer entities exchange packets. A packet is
a finite sequence of bytes that is transported by the datalink layer inside one or more frames. A packet usually

22 Chapter 2. Introduction
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

contains information about its origin and its destination, and usually passes through several intermediate devices
called routers on its way from its origin to its destination.

Network

—Packets—

Datalink

Netwo

«—Packets—

Physical layer

Datalink

Network

Physical layer

Datalink

Physical layer

I I T

Figure 2.31: The network layer

Most realisations of the network layer, including the internet, do not provide a reliable service. However, many
applications need to exchange information reliably and so using the network layer service directly would be
very difficult for them. Ensuring the reliable delivery of the data produced by applications is the task of the
transport layer. Transport layer entities exchange segments. A segment is a finite sequence of bytes that are
transported inside one or more packets. A transport layer entity issues segments (or sometimes part of segments)
as Data.request to the underlying network layer entity.

There are different types of transport layers. The most widely used transport layers on the Internet are 7CP
,that provides a reliable connection-oriented bytestream transport service, and UDP ,that provides an unreliable
connection-less transport service.

Transport Segments Transport
Network Netwk/ Network
Datalink Datalink Datalink
Physical layer Physical layer Physical layer
|

Figure 2.32: The transport layer

The upper layer of our architecture is the Application layer. This layer includes all the mechanisms and data
structures that are necessary for the applications. We will use Application Data Unit (ADU) to indicate the data
exchanged between two entities of the Application layer.

Application ADU Application
Transport Transport
Network etwo Network
Datalink Datalink Datalink

Physical layer Physical layer Physical layer
T T

Figure 2.33: The Application layer

2.2.2 The TCP/IP reference model

In contrast with OSI, the TCP/IP community did not spend a lot of effort defining a detailed reference model; in
fact, the goals of the Internet architecture were only documented after TCP/IP had been deployed [Clark88]. RFC
1122 , which defines the requirements for Internet hosts, mentions four different layers. Starting from the top,
these are :

* an Application layer
* a Transport layer
* an Internet layer which is equivalent to the network layer of our reference model

* aLink layer which combines the functionalities of the physical and datalink layers of our five-layer reference
model

Besides this difference in the lower layers, the TCP/IP reference model is very close to the five layers that we use
throughout this document.

23
The Saylor Foundation

2.2. The reference models
Saylor URL: http://www.saylor.org/courses/cs402/
() T

http://tools.ietf.org/html/rfc1122.html
http://tools.ietf.org/html/rfc1122.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

2.2.3 The OSI reference model

Compared to the five layers reference model explained above, the OSI reference model defined in [X200] is
divided in seven layers. The four lower layers are similar to the four lower layers described above. The OSI
reference model refined the application layer by dividing it in three layers :

* the Session layer. The Session layer contains the protocols and mechanisms that are necessary to organize
and to synchronize the dialogue and to manage the data exchange of presentation layer entities. While one
of the main functions of the transport layer is to cope with the unreliability of the network layer, the session’s
layer objective is to hide the possible failures of transport-level connections to the upper layer higher. For
this, the Session Layer provides services that allow to establish a session-connection, to support orderly data
exchange (including mechanisms that allow to recover from the abrupt release of an underlying transport
connection), and to release the connection in an orderly manner.

* the Presentation layer was designed to cope with the different ways of representing information on comput-
ers. There are many differences in the way computer store information. Some computers store integers as
32 bits field, others use 64 bits field and the same problem arises with floating point number. For textual
information, this is even more complex with the many different character codes that have been used °. The
situation is even more complex when considering the exchange of structured information such as database
records. To solve this problem, the Presentation layer contains provides for a common representation of the
data transferred. The ASN./ notation was designed for the Presentation layer and is still used today by some
protocols.

* the Application layer that contains the mechanisms that do not fit in neither the Presentation nor the Session
layer. The OSI Application layer was itself further divided in several generic service elements.

Note: Where are the missing layers in TCP/IP reference model ?

The TCP/IP reference places the Presentation and the Session layers implicitly in the Application layer. The
main motivations for simplifying the upper layers in the TCP/IP reference model were pragmatic. Most Internet
applications started as prototypes that evolved and were later standardised. Many of these applications assumed
that they would be used to exchange information written in American English and for which the 7 bits US-ASCII
character code was sufficient. This was the case for email, but as we’ll see in the next chapter, email was able to
evolve to support different character encodings. Some applications considered the different data representations
explicitly. For example, fip contained mechanisms to convert a file from one format to another and the HTML
language was defined to represent web pages. On the other hand, many ISO specifications were developed by
committees composed of people who did not all participate in actual implementations. ISO spent a lot of effort
analysing the requirements and defining a solution that meets all of these requirements. Unfortunately, some of the
specifications were so complex that it was difficult to implement them completely and the standardisation bodies
defined recommended profiles that contained the implemented sets of options...

Application ADU Application
Presentation Presentation
Session Session
Transport Transport
Network etwo Network
Datalink Datalink Datalink
Physical layer Physical layer Physical layer

Figure 2.34: The seven layers of the OSI reference model

6 There is now a rough consensus for the greater use of the Unicode character format. Unicode can represent more than 100,000 different
characters from the known written languages on Earth. Maybe one day, all computers will only use Unicode to represent all their stored
characters and Unicode could become the standard format to exchange characters, but we are not yet at this stage today.

24 Chapter 2. Introduction
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://en.wikipedia.org/wiki/Unicode

Computer Networking : Principles, Protocols and Practice, Release 0.25

2.3 Organisation of the book

This document is organised according to the TCP/IP reference model and follows a top-down approach. Most
of the classical networking textbooks chose a bottom-up approach, i.e. they first explained all the electrical and
optical details of the physical layer then moved to the datalink layer. This approach worked well during the infancy
of computer networks and until the late 1990s. At that time, most students were not users of computer networks
and it was useful to explain computer networks by building the corresponding protocols from the simplest, in the
physical layer, up to the application layer. Today, all students are active users of Internet applications, and starting
to learn computer networking by looking at bits is not very motivating. Starting from [KuroseRoss09], many
textbooks and teachers have chosen a top-down approach. This approach starts from applications such as email
and web that students already know and explores the different layers, starting from the application layer. This
approach works quite well with today’s students. The traditional bottom-up approach could in fact be considered
as an engineering approach as it starts from the simple network that allows the exchange of bits, and explains how
to combine different protocols and mechanisms to build the most complex applications. The top-down approach
could on the other hand be considered as a scientific approach. Like biologists, it starts from an existing (man-
built) system and explores it layer by layer.

Besides the top-down versus bottom-up organisation, computer networking books can either aim at having an
in-depth coverage of a small number of topics, or at having a limited coverage of a wide range of topics. Covering
a wide range of topics is interesting for introductory courses or for students who do not need a detailed knowledge
of computer networks. It allows the students to learn a litfle about everything and then start from this basic
knowledge later if they need to understand computer networking in more detail. This books chose to cover, in
detail, a smaller number of topics than other textbooks. This is motivated by the fact that computer networks often
need to be pushed to their limits. Understanding the details of the main networking protocols is important to be

able to fully grasp how a network behaves or extend it to provide innovative services ’.

The book is organised as follows: We first describe the application layer in chapter The application Layer. Given
the large number of Internet-based applications, it is of course impossible to cover them all in detail. Instead we
focus on three types of Internet-based applications. We first study the Domain Name System (DNS) and then
explain some of the protocols involved in the exchange of electronic mail. The discussion of the application layer
ends with a description of the key protocols of the world wide web.

All these applications rely on the transport layer that is explained in chapter The transport layer. This is a key
layer in today’s networks as it contains all the mechanisms necessary to provide a reliable delivery of data over an
unreliable network. We cover the transport layer by first developing a simple reliable transport layer protocol and
then explain the details of the TCP and UDP protocols used in TCP/IP networks.

After the transport layer, we analyse the network layer in chapter The network layer. This is also a very important
layer as it is responsible for the delivery of packets from any source to any destination through intermediate routers.
In the network layer, we describe the two possible organisations of the network layer and the routing protocols
based on link-state and distance vectors. Then we explain in detail the IPv4, IPv6, RIP, OSPF and BGP protocols
that are actually used in today’s Internet.

The last chapter of the book is devoted to the datalink layer. In chapter The datalink layer and the Local Area
Networks, we begin by explaining the principles of the datalink layers on point-to-point links. Then, we focus on
the Local Area Networks. We first describe the Medium Access Control algorithms that allow multiple hosts to
share one transmission medium. We consider both opportunistic and deterministic techniques. We then explain in
detail two types of LANs that are important from a deployment viewpoint today : Ethernet and WiFi.

7 A popular quote says, the devil is in the details. This quote reflects very well the operation of many network protocols, where the change
of a single bit may have huge consequences. In computer networks, understanding a/l the details is sometimes necessary.

2.3. Organisation of the book 25
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://en.wikipedia.org/wiki/The_Devil_is_in_the_details

Computer Networking : Principles, Protocols and Practice, Release 0.25

26 Chapter 2. Introduction
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

CHAPTER 3

The application Layer

The Application Layer is the most important and most visible layer in computer networks. Applications reside in
this layer and human users interact via those applications through the network.

In this chapter, we first briefly describe the main principles of the application layer and focus on the two most
important application models : the client-server and the peer-to-peer models. Then, we review in detail two
families of protocols that have proved to be very useful in the Internet : electronic mail and the protocols that
allow access to information on the world wide web. We also describe the Domain Name System that allows
humans to use user-friendly names while the hosts use 32 bits or 128 bits long IP addresses.

3.1 Principles

The are two important models used to organise a networked application. The first and oldest model is the client-
server model. In this model, a server provides services to clients that exchange information with it. This model is
highly asymmetrical : clients send requests and servers perform actions and return responses. It is illustrated in
the figure below.

Queries
Client erver

{ + Responses + {

‘ Service provider (“the network™)

Figure 3.1: The client-server model

The client-server model was the first model to be used to develop networked applications. This model comes
naturally from the mainframes and minicomputers that were the only networked computers used until the 1980s.
A minicomputer is a multi-user system that is used by tens or more users at the same time. Each user interacts
with the minicomputer by using a terminal. Those terminals, were mainly a screen, a keyboard and a cable directly
connected to the minicomputer.

There are various types of servers as well as various types of clients. A web server provides information in
response to the query sent by its clients. A print server prints documents sent as queries by the client. An
email server will forward towards their recipient the email messages sent as queries while a music server will
deliver the music requested by the client. From the viewpoint of the application developer, the client and the
server applications directly exchange messages (the horizontal arrows labelled Queries and Responses in the
above figure), but in practice these messages are exchanged thanks to the underlying layers (the vertical arrows in
the above figure). In this chapter, we focus on these horizontal exchanges of messages.

27
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://en.wikipedia.org/wiki/Minicomputer

Computer Networking : Principles, Protocols and Practice, Release 0.25

Networked applications do not exchange random messages. In order to ensure that the server is able to understand
the queries sent by a client, and also that the client is able to understand the responses sent by the server, they must
both agree on a set of syntactical and semantic rules. These rules define the format of the messages exchanged as
well as their ordering. This set of rules is called an application-level profocol.

An application-level protocol is similar to a structured conversation between humans. Assume that Alice wants
to know the current time but does not have a watch. If Bob passes close by, the following conversation could take
place :

* Alice : Hello

* Bob: Hello

* Alice : What time is it ?
* Bob: 11:55

e Alice : Thank you

* Bob : You're welcome

Such a conversation succeeds if both Alice and Bob speak the same language. If Alice meets Tchang who only
speaks Chinese, she won’t be able to ask him the current time. A conversation between humans can be more
complex. For example, assume that Bob is a security guard whose duty is to only allow trusted secret agents to
enter a meeting room. If all agents know a secret password, the conversation between Bob and Trudy could be as
follows :

* Bob : What is the secret password ?
e Trudy : 1234
e Bob : This is the correct password, you're welcome
If Alice wants to enter the meeting room but does not know the password, her conversation could be as follows :
* Bob : What is the secret password ?
e Alice: 3.1415
e Bob : This is not the correct password.

Human conversations can be very formal, e.g. when soldiers communicate with their hierarchy, or informal such
as when friends discuss. Computers that communicate are more akin to soldiers and require well-defined rules to
ensure an successful exchange of information. There are two types of rules that define how information can be
exchanged between computers :

* syntactical rules that precisely define the format of the messages that are exchanged. As computers only
process bits, the syntactical rules specify how information is encoded as bit strings

* organisation of the information flow. For many applications, the flow of information must be structured and
there are precedence relationships between the different types of information. In the time example above,
Alice must greet Bob before asking for the current time. Alice would not ask for the current time first and
greet Bob afterwards. Such precedence relationships exist in networked applications as well. For example,
a server must receive a username and a valid password before accepting more complex commands from its
clients.

Let us first discuss the syntactical rules. We will later explain how the information flow can be organised by
analysing real networked applications.

Application-layer protocols exchange two types of messages. Some protocols such as those used to support
electronic mail exchange messages expressed as strings or lines of characters. As the transport layer allows hosts
to exchange bytes, they need to agree on a common representation of the characters. The first and simplest method
to encode characters is to use the ASCI/ table. RFC 20 provides the ASCII table that is used by many protocols
on the Internet. For example, the table defines the following binary representations :

* A:1000011b
* 0:0110000b
e z:1111010b

28 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc20.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

e @ : 1000000b
* space : 0100000b

In addition, the ASCII table also defines several non-printable or control characters. These characters were de-
signed to allow an application to control a printer or a terminal. These control characters include CR and LF, that
are used to terminate a line, and the Bell character which causes the terminal to emit a sound.

e carriage return (CR) : 0001101b
¢ line feed (LF) : 0001010b
e Bell: 0000111b

The ASCII characters are encoded as a seven bits field, but transmitted as an eight-bits byte whose high order bit
is usually set to 0. Bytes are always transmitted starting from the high order or most significant bit.

Most applications exchange strings that are composed of fixed or variable numbers of characters. A common
solution to define the character strings that are acceptable is to define them as a grammar using a Backus-Naur
Form (BNF) such as the Augmented BNF defined in RFC 5234. A BNF is a set of production rules that generate
all valid character strings. For example, consider a networked application that uses two commands, where the
user can supply a username and a password. The BNF for this application could be defined as shown in the figure
below.

g gworcommand
CRLF
mmand E 2 ord CRLF

Figure 3.2: A simple BNF specification

The example above defines several terminals and two commands : usercommand and passwordcommand. The
ALPHA terminal contains all letters in upper and lower case. In the ALPHA rule, %x41 corresponds to ASCII
character code 41 in hexadecimal, i.e. capital A. The CR and LF terminals correspond to the carriage return and
linefeed control characters. The CRLF rule concatenates these two terminals to match the standard end of line
termination. The DIGIT terminal contains all digits. The SP terminal corresponds to the white space characters.
The usercommand is composed of two strings separated by white space. In the ABNF rules that define the
messages used by Internet applications, the commands are case-insensitive. The rule “user” corresponds to all
possible cases of the letters that compose the word between brackets, e.g. user, uSeR, USER, usER, ... A username
contains at least one letter and up to 8 letters. User names are case-sensitive as they are not defined as a string
between brackets. The password rule indicates that a password starts with a letter and can contain any number of
letters or digits. The white space and the control characters cannot appear in a password defined by the above rule.

Besides character strings, some applications also need to exchange 16 bits and 32 bits fields such as integers. A
naive solution would have been to send the 16- or 32-bits field as it is encoded in the host’s memory. Unfortunately,
there are different methods to store 16- or 32-bits fields in memory. Some CPUs store the most significant byte
of a 16-bits field in the first address of the field while others store the least significant byte at this location. When
networked applications running on different CPUs exchange 16 bits fields, there are two possibilities to transfer
them over the transport service :

* send the most significant byte followed by the least significant byte
* send the least significant byte followed by the most significant byte

The first possibility was named big-endian in a note written by Cohen [Cohen1980] while the second was named
little-endian. Vendors of CPUs that used big-endian in memory insisted on using big-endian encoding in net-
worked applications while vendors of CPUs that used litfle-endian recommended the opposite. Several studies
were written on the relative merits of each type of encoding, but the discussion became almost a religious issue
[Cohen1980]. Eventually, the Internet chose the big-endian encoding, i.e. multi-byte fields are always transmit-
ted by sending the most significant byte first, RFC 791 refers to this encoding as the network-byte order. Most

3.1. Principles 29
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc5234.html
http://tools.ietf.org/html/rfc791.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

libraries ' used to write networked applications contain functions to convert multi-byte fields from memory to the
network byte order and vice versa.

Besides 16 and 32 bit words, some applications need to exchange data structures containing bit fields of various
lengths. For example, a message may be composed of a 16 bits field followed by eight, one bit flags, a 24 bits
field and two 8 bits bytes. Internet protocol specifications will define such a message by using a representation
such as the one below. In this representation, each line corresponds to 32 bits and the vertical lines are used to
delineate fields. The numbers above the lines indicate the bit positions in the 32-bits word, with the high order bit
at position 0.

[+] 1 2 3
0123456789 0123456789012345686789%01
$ohabahodahatohohabadodihabadodababohohabohohohabokrdhahadohohahad
| Firat field (16 bitsl |A|B|C|D|E|F|G|H| gecond

R LI R EE AL EEEE T " b
| field (24 bits) | First Byte | Second Byte
#ohohododopogododohahodgohahododohohododapahogohohohodohogododopasp

Figure 3.3: Message format

The message mentioned above will be transmitted starting from the upper 32-bits word in network byte order. The
first field is encoded in 16 bits. It is followed by eight one bit flags (A-H), a 24 bits field whose high order byte is
shown in the first line and the two low order bytes appear in the second line followed by two one byte fields. This
ASCII representation is frequently used when defining binary protocols. We will use it for all the binary protocols
that are discussed in this book.

We will discuss several examples of application-level protocols in this chapter.

3.1.1 The peer-to-peer model

The peer-to-peer model emerged during the last ten years as another possible architecture for networked appli-
cations. In the traditional client-server model, hosts act either as servers or as clients and a server serves a large
number of clients. In the peer-to-peer model, all hosts act as both servers and clients and they play both roles.
The peer-to-peer model has been used to develop various networked applications, ranging from Internet telephony
to file sharing or Internet-wide filesystems. A detailed description of peer-to-peer applications may be found in
[BYL2008]. Surveys of peer-to-peer protocols and applications may be found in [AS2004] and [LCP2005].

3.1.2 The transport services
Networked applications are built on top of the transport service. As explained in the previous chapter, there are
two main types of transport services :

¢ the connectionless or datagram service

¢ the connection-oriented or byte-stream service

The connectionless service allows applications to easily exchange messages or Service Data Units. On the Internet,
this service is provided by the UDP protocol that will be explained in the next chapter. The connectionless transport
service on the Internet is unreliable, but is able to detect transmission errors. This implies that an application will
not receive an SDU that has been corrupted due to transmission errors.

The connectionless transport service allows networked application to exchange messages. Several networked
applications may be running at the same time on a single host. Each of these applications must be able to exchange
SDUs with remote applications. To enable these exchanges of SDUs, each networked application running on a
host is identified by the following information :

* the host on which the application is running

* the port number on which the application listens for SDUs

! For example, the htonl (3) (resp. ntohl (3)) function the standard C library converts a 32-bits unsigned integer from the byte order
used by the CPU to the network byte order (resp. from the network byte order to the CPU byte order). Similar functions exist in other
programming languages.

30 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

On the Internet, the port number is an integer and the host is identified by its network address. As we will see in
chapter The network layer there are two types of Internet Addresses :

e [P version 4 addresses that are 32 bits wide
e [P version 6 addresses that are 128 bits wide

IPv4 addresses are usually represented by using a dotted decimal representation where each decimal number
corresponds to one byte of the address, e.g. 203.0.113.56. IPv6 addresses are usually represented as a set of
hexadecimal numbers separated by semicolons, e.g. 2001:db8:3080:2:217:f2ff:fed6:65c0. Today, most Internet
hosts have one IPv4 address. A small fraction of them also have an IPv6 address. In the future, we can expect that
more and more hosts will have IPv6 addresses and that some of them will not have an IPv4 address anymore. A
host that only has an IPv4 address cannot communicate with a host having only an IPv6 address. The figure below
illustrates two that are using the datagram service provided by UDP on hosts that are using [Pv4 addresses.

Applic. Applic.
1 2

_® t

/ Datagram service

]

Identification: Identification

IP address : 130.104.32.107 IP address : 139.165.16.12
Protocol : UDP Protocol : UDP

Port : 1234 Port : 53

Figure 3.4: The connectionless or datagram service

The second transport service is the connection-oriented service. On the Internet, this service is often called the
byte-stream service as it creates a reliable byte stream between the two applications that are linked by a transport
connection. Like the datagram service, the networked applications that use the byte-stream service are identified
by the host on which they run and a port number. These hosts can be identified by an IPv4 address, an IPv6
address or a name. The figure below illustrates two applications that are using the byte-stream service provided
by the TCP protocol on IPv6 hosts. The byte stream service provided by TCP is reliable and bidirectional.

Applic. Applic.
1 2

¢

Byte-stream service

Identification:
IP address : 2001:6a8:3080:2:217:f2ff:fed6:65c0
Protocol : TCP
Port : 1234
Identification
IP address : 2001:4860:a005::68
Protocol : TCP
Port : 53

Figure 3.5: The connection-oriented or byte-stream service

3.1. Principles 31
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

3.2 Application-level protocols

Many protocols have been defined for networked applications. In this section, we describe some of the important
applications that are used on the Internet. We first explain the Domain Name System (DNS) that enables hosts to
be identified by human-friendly names instead of the IPv4 or IPv6 addresses that are used by the network. Then,
we describe the operation of electronic mail, one of the first killer applications on the global Internet, and the
protocols used on world wide web.

3.2.1 The Domain Name System

In the early days of the Internet, there were only a few number of hosts (mainly minicomputers) connected to the
network. The most popular applications were remote login and file transfer. By 1983, there were already five
hundred hosts attached to the Internet. Each of these hosts were identified by a unique IPv4 address. Forcing
human users to remember the IPv4 addresses of the remote hosts that they want to use was not user-friendly.
Human users prefer to remember names, and use them when needed. Using names as aliases for addresses is a
common technique in Computer Science. It simplifies the development of applications and allows the developer
to ignore the low level details. For example, by using a programming language instead of writing machine code,
a developer can write software without knowing whether the variables that it uses are stored in memory or inside
registers.

Because names are at a higher level than addresses, they allow (both in the example of programming above, and on
the Internet) to treat addresses as mere technical identifiers, which can change at will. Only the names are stable.
On today’s Internet, where switching to another ISP means changing your IP addresses, the user-friendliness of
domain names is less important (they are not often typed by users) but their stability remains a very important,
may be their most important property.

The first solution that allowed applications to use names was the hosts.zxt file. This file is similar to the symbol
table found in compiled code. It contains the mapping between the name of each Internet host and its associated IP
address *. It was maintained by SRI International that coordinated the Network Information Center (NIC). When
a new host was connected to the network, the system administrator had to register its name and IP address at the
NIC. The NIC updated the hosts.txt file on its server. All Internet hosts regularly retrieved the updated /hosts.txt
file from the server maintained by SRI. This file was stored at a well-known location on each Internet host (see
RFC 952) and networked applications could use it to find the IP address corresponding to a name.

A hosts.txt file can be used when there are up to a few hundred hosts on the network. However, it is clearly not
suitable for a network containing thousands or millions of hosts. A key issue in a large network is to define a
suitable naming scheme. The ARPANet initially used a flat naming space, i.e. each host was assigned a unique
name. To limit collisions between names, these names usually contained the name of the institution and a suffix to
identify the host inside the institution (a kind of poor man’s hierarchical naming scheme). On the ARPANet few
institutions had several hosts connected to the network.

However, the limitations of a flat naming scheme became clear before the end of the ARPANet and RFC 819
proposed a hierarchical naming scheme. While RFC 819 discussed the possibility of organising the names as a
directed graph, the Internet opted eventually for a tree structure capable of containing all names. In this tree, the
top-level domains are those that are directly attached to the root. The first top-level domain was .arpa . This
top-level name was initially added as a suffix to the names of the hosts attached to the ARPANet and listed in
the hosts.txt file. In 1984, the .gov, .edu, .com, .mil and .org generic top-level domain names were added and
RFC 1032 proposed the utilisation of the two letter /SO-3166 country codes as top-level domain names. Since
1SO-3166 defines a two letter code for each country recognised by the United Nations, this allowed all countries
to automatically have a top-level domain. These domains include .be for Belgium, .fr for France, .us for the USA,
.ie for Ireland or .fv for Tuvalu, a group of small islands in the Pacific and .rm for Turkmenistan. Today, the set
of top-level domain-names is managed by the Internet Corporation for Assigned Names and Numbers (/CANN).
Recently, [CANN added a dozen of generic top-level domains that are not related to a country and the .cat top-level
domain has been registered for the Catalan language. There are ongoing discussions within /CANN to increase
the number of top-level domains.

2 The hosts.txt file is not maintained anymore. A historical snapshot retrieved on April 15th, 1984 is available from
http://ftp.univie.ac.at/netinfo/netinfo/hosts.txt
3 See http://www.donelan.com/dnstimeline.html for a time line of DNS related developments.

32 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.sri.com
http://tools.ietf.org/html/rfc952.html
http://tools.ietf.org/html/rfc819.html
http://tools.ietf.org/html/rfc819.html
http://tools.ietf.org/html/rfc1032.html
http://ftp.univie.ac.at/netinfo/netinfo/hosts.txt
http://www.donelan.com/dnstimeline.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

Each top-level domain is managed by an organisation that decides how sub-domain names can be registered. Most
top-level domain names use a first-come first served system, and allow anyone to register domain names, but
there are some exceptions. For example, .gov is reserved for the US government, .int is reserved for international
organisations and names in the .ca are mainly reserved for companies or users who are present in Canada.

www info math fsa

Figure 3.6: The tree of domain names

RFC 1035 recommended the following BNF for fully qualified domain names, to allow host names with a syntax
which works with all applications (the domain names themselves have a much richer syntax).

Figure 3.7: BNF of the fully qualified host names

This grammar specifies that a host name is an ordered list of labels separated by the dot (.) character. Each label
can contain letters, numbers and the hyphen character (-) *. Fully qualified domain names are read from left to
right. The first label is a hostname or a domain name followed by the hierarchy of domains and ending with the
root implicitly at the right. The top-level domain name must be one of the registered TLDs °. For example, in the
above figure, www.whitehouse.gov corresponds to a host named www inside the whitehouse domain that belongs
to the gov top-level domain. info.ucl.ac.be corresponds to the info domain inside the ucl/ domain that is included
in the ac sub-domain of the be top-level domain.

This hierarchical naming scheme is a key component of the Domain Name System (DNS). The DNS is a dis-
tributed database that contains mappings between fully qualified domain names and IP addresses. The DNS uses
the client-server model. The clients are hosts that need to retrieve the mapping for a given name. Each nameserver
stores part of the distributed database and answers the queries sent by clients. There is at least one nameserver that
is responsible for each domain. In the figure below, domains are represented by circles and there are three hosts
inside domain dom (hi, h2 and h3) and three hosts inside domain a.sdomi.dom. As shown in the figure below, a
sub-domain may contain both host names and sub-domains.

|

(dom)
2R

h1 h2 h3

h1 h2 h

Figure 3.8: A simple tree of domain names

4 This specification evolved later to support domain names written by using other character sets than us-ASCII RFC 5890. This extension
is important to support languages other than English, but a detailed discussion is outside the scope of this document.

3 The official list of top-level domain names is maintained by :term:‘TANA at http:/data.iana.org/TLD/tlds-alpha-by-domain.txt Additional
information about these domains may be found at http://en.wikipedia.org/wiki/List_of Internet_top-level _domains

3.2. Application-level protocols 33
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://en.wikipedia.org/wiki/.ca
http://tools.ietf.org/html/rfc1035.html
http://tools.ietf.org/html/rfc5890.html
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://en.wikipedia.org/wiki/List_of_Internet_top-level_domains

Computer Networking : Principles, Protocols and Practice, Release 0.25

A nameserver that is responsible for domain dom can directly answer the following queries :
e the IP address of any host residing directly inside domain dom (e.g. h2.dom in the figure above)

* the nameserver(s) that are responsible for any direct sub-domain of domain dom (i.e. sdoml.dom and
sdom2.dom in the figure above, but not z.sdomlI.dom)

To retrieve the mapping for host h2.dom, a client sends its query to the name server that is responsible for domain
.dom. The name server directly answers the query. To retrieve a mapping for h3.a.sdoml.dom a DNS client first
sends a query to the name server that is responsible for the .dom domain. This nameserver returns the nameserver
that is responsible for the sdoml.dom domain. This nameserver can now be contacted to obtain the nameserver
that is responsible for the a.sdom1.dom domain. This nameserver can be contacted to retrieve the mapping for the
h3.a.sdomi.dom name. Thanks to this organisation of the nameservers, it is possible for a DNS client to obtain the
mapping of any host inside the .dom domain or any of its subdomains. To ensure that any DNS client will be able
to resolve any fully qualified domain name, there are special nameservers that are responsible for the root of the
domain name hierarchy. These nameservers are called roof nameserver. There are currently about a dozen root

nameservers 6 .

Each root nameserver maintains the list 7 of all the nameservers that are responsible for each of the top-level
domain names and their IP addresses ®. All root nameservers are synchronised and provide the same answers.
By querying any of the root nameservers, a DNS client can obtain the nameserver that is responsible for any
top-level-domain name. From this nameserver, it is possible to resolve any domain name.

To be able to contact the root nameservers, each DNS client must know their IP addresses. This implies, that
DNS clients must maintain an up-to-date list of the IP addresses of the root nameservers 9. Without this list, it
is impossible to contact the root nameservers. Forcing all Internet hosts to maintain the most recent version of
this list would be difficult from an operational point of view. To solve this problem, the designers of the DNS
introduced a special type of DNS server : the DNS resolvers. A resolver is a server that provides the name
resolution service for a set of clients. A network usually contains a few resolvers. Each host in these networks is
configured to send all its DNS queries via one of its local resolvers. These queries are called recursive queries as
the resolver must recurse through the hierarchy of nameservers to obtain the answer.

DNS resolvers have several advantages over letting each Internet host query directly nameservers. Firstly, regular
Internet hosts do not need to maintain the up-to-date list of the IP addresses of the root servers. Secondly, regular
Internet hosts do not need to send queries to nameservers all over the Internet. Furthermore, as a DNS resolver
serves a large number of hosts, it can cache the received answers. This allows the resolver to quickly return
answers for popular DNS queries and reduces the load on all DNS servers [JSBM2002].

The last component of the Domain Name System is the DNS protocol. The DNS protocol runs above both the
datagram service and the bytestream services. In practice, the datagram service is used when short queries and
responses are exchanged, and the bytestream service is used when longer responses are expected. In this section,
we will only discuss the utilisation of the DNS protocol above the datagram service. This is the most frequent
utilisation of the DNS.

DNS messages are composed of five parts that are named sections in RFC 1035. The first three sections are
mandatory and the last two sections are optional. The first section of a DNS message is its Header. It contains
information about the type of message and the content of the other sections. The second section contains the
Question sent to the name server or resolver. The third section contains the Answer to the Question. When a client
sends a DNS query, the Answer section is empty. The fourth section, named Authority, contains information about
the servers that can provide an authoritative answer if required. The last section contains additional information
that is supplied by the resolver or server but was not requested in the question.

The header of DNS messages is composed of 12 bytes and its structure is shown in the figure below.

The ID (identifier) is a 16-bits random value chosen by the client. When a client sends a question to a DNS server,
it remembers the question and its identifier. When a server returns an answer, it returns in the /D field the identifier

6 There are currently 13 root servers. In practice, some of these root servers are themselves implemented as a set of distinct physical
servers. See http://www.root-servers.org/ for more information about the physical location of these servers.

7 A copy of the information maintained by each root nameserver is available at http://www.internic.net/zones/root.zone

8 Until February 2008, the root DNS servers only had IPv4 addresses. IPv6 addresses were added to the root DNS servers slowly to
avoid creating problems as discussed in http://www.icann.org/en/committees/security/sac018.pdf In 2010, several DNS root servers are still
not reachable by using IPv6.

9 The current list of the IP addresses of the root nameservers is maintained at http://www.internic.net/zones/named.root . These IP addresses
are stable and root nameservers seldom change their IP addresses. DNS resolvers must however maintain an up-to-date copy of this file.

34 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc1035.html
http://www.root-servers.org/
http://www.internic.net/zones/root.zone
http://www.icann.org/en/committees/security/sac018.pdf
http://www.internic.net/zones/named.root

Computer Networking : Principles, Protocols and Practice, Release 0.25

o1 2 3 4 &5 6 7 8 9 0 i 4 05
LR EEE TR PR TR SR L EEE SR TR TR ERE PR PEL TEE TR TR
I o |
LR EEE TR PR TR SR L EEE SR TR TR ERE PR PEL TEE TR TR
| OR | Opcode |AA|TC|RD|RA| A | RCODE |
LR EEE TR PR TR SR L EEE SR TR TR ERE PR PEL TEE TR TR
| QDCOUNT |
LR EEE TR PR TR SR L EEE SR TR TR ERE PR PEL TEE TR TR
| ANCOUNT |
LR EEE TR PR TR SR L EEE SR TR TR ERE PR PEL TEE TR TR
| NSCOUNT |
LR EEE TR PR TR SR L EEE SR TR TR ERE PR PEL TEE TR TR
| ARCOUNT |
LR EEE TR PR TR SR L EEE SR TR TR ERE PR PEL TEE TR TR

Figure 3.9: DNS header

chosen by the client. Thanks to this identifier, the client can match the received answer with the question that it
sent.

The OR flag is set to 0 in DNS queries and / in DNS answers. The Opcode is used to specify the type of query.
For instance, a standard query is when a client sends a name and the server returns the corresponding data and an
update request is when the client sends a name and new data and the server then updates its database.

The AA bit is set when the server that sent the response has authority for the domain name found in the question
section. In the original DNS deployments, two types of servers were considered : authoritative servers and non-
authoritative servers. The authoritative servers are managed by the system administrators responsible for a given
domain. They always store the most recent information about a domain. Non-authoritative servers are servers or
resolvers that store DNS information about external domains without being managed by the owners of a domain.
They may thus provide answers that are out of date. From a security point of view, the authoritative bit is not an
absolute indication about the validity of an answer. Securing the Domain Name System is a complex problem that
was only addressed satisfactorily recently by the utilisation of cryptographic signatures in the DNSSEC extensions
to DNS described in RFC 4033. However, these extensions are outside the scope of this chapter.

The RD (recursion desired) bit is set by a client when it sends a query to a resolver. Such a query is said to be
recursive because the resolver will recurse through the DNS hierarchy to retrieve the answer on behalf of the client.
In the past, all resolvers were configured to perform recursive queries on behalf of any Internet host. However,
this exposes the resolvers to several security risks. The simplest one is that the resolver could become overloaded
by having too many recursive queries to process. As of this writing, most resolvers '° only allow recursive queries
from clients belonging to their company or network and discard all other recursive queries. The RA bit indicates
whether the server supports recursion. The RCODE is used to distinguish between different types of errors. See
RFC 1035 for additional details. The last four fields indicate the size of the Question, Answer, Authority and
Additional sections of the DNS message.

The last four sections of the DNS message contain Resource Records (RR). All RRs have the same top level format
shown in the figure below.

In a Resource Record (RR), the Name indicates the name of the node to which this resource record pertains. The
two bytes Type field indicate the type of resource record. The Class field was used to support the utilisation of the
DNS in other environments than the Internet.

The TTL field indicates the lifetime of the Resource Record in seconds. This field is set by the server that returns
an answer and indicates for how long a client or a resolver can store the Resource Record inside its cache. A long
TTL indicates a stable RR. Some companies use short 77L values for mobile hosts and also for popular servers.

10 Some DNS resolvers allow any host to send queries. OpenDNS and GoogleDNS are example of open resolvers.

3.2. Application-level protocols 35
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc4033.html
http://tools.ietf.org/html/rfc1035.html
http://www.opendns.com/
http://code.google.com/speed/public-dns/docs/using.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

R LR TR I ST S R R A I T R IR I R SR
I |
! !
/ NAME /
I |
R LR TR I ST S R R A I T R IR I R SR
| TYPE |
R LR TR I ST S R R A I T R IR I R SR
| CLASS |
R LR TR I ST S R R A I T R IR I R SR
| TTL |
I |
R LR TR I ST S R R A I T R IR I R SR
| RDLENGTH |
L e ek LR R T TR TR R TR PR TEE T T
/ RDATA !
! !
R LR TR I ST S R R A I T R IR I R SR

Figure 3.10: DNS Resource Records

For example, a web hosting company that wants to spread the load over a pool of hundred servers can configure
its nameservers to return different answers to different clients. If each answer has a small T7TL, the clients will be
forced to send DNS queries regularly. The nameserver will reply to these queries by supplying the address of the
less loaded server.

The RDLength field is the length of the RData field that contains the information of the type specified in the Type
field.

Several types of DNS RR are used in practice. The A type is used to encode the IPv4 address that corresponds to
the specified name. The AAAA type is used to encode the IPv6 address that corresponds to the specified name. A
NS record contains the name of the DNS server that is responsible for a given domain. For example, a query for
the A record associated to the www.ietf.org name returns the following answer.

This answer contains several pieces of information. First, the name www.ietf.org is associated to IP address
64.170.98.32. Second, the ietf.org domain is managed by six different nameservers. Three of these nameservers
are reachable via IPv4 and IPv6. Two of them are not reachable via IPv6 and nsO.ietf.org is only reachable
via IPv6. A query for the AAAA record associated to www.ietf.org returns 2001:1890:1112:1::20 and the same
authority and additional sections.

CNAME (or canonical names) are used to define aliases. For example www.example.com could be a CNAME for
pcl2.example.com that is the actual name of the server on which the web server for www.example.com runs.

Note: Reverse DNS and in-addr.arpa

The DNS is mainly used to find the IP address that correspond to a given name. However, it is sometimes useful
to obtain the name that corresponds to an IP address. This done by using the PTR (pointer) RR. The RData part
of a PTR RR contains the name while the Name part of the RR contains the IP address encoded in the in-addr.arpa
domain. IPv4 addresses are encoded in the in-addr.arpa by reversing the four digits that compose the dotted
decimal representation of the address. For example, consider IPv4 address /92.0.2.11. The hostname associated
to this address can be found by requesting the PTR RR that corresponds to /1.2.0.192.in-addr.arpa. A similar
solution is used to support IPv6 addresses, see RFC 3596.

36 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc3596.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

1800 IN A 64.,170.98.22

Figure 3.11: Query for the A record of www.ietf.org

An important point to note regarding the Domain Name System is its extensibility. Thanks to the Type and
RDLength fields, the format of the Resource Records can easily be extended. Furthermore, a DNS implementation
that receives a new Resource Record that it does not understand can ignore the record while still being able to
process the other parts of the message. This allows, for example, a DNS server that only supports IPv4 to ignore
the IPv6 addresses listed in the DNS reply for www.ietf.org while still being able to correctly parse the Resource
Records that it understands. This extensibility allowed the Domain Name System to evolve over the years while
still preserving the backward compatibility with already deployed DNS implementations.

3.2.2 Electronic mail

Electronic mail, or email, is a very popular application in computer networks such as the Internet. Email appeared
in the early 1970s and allows users to exchange text based messages. Initially, it was mainly used to exchange
short messages, but over the years its usage has grown. It is now not only used to exchange small, but also long
messages that can be composed of several parts as we will see later.

Before looking at the details of Internet email, let us consider a simple scenario illustrated in the figure below,
where Alice sends an email to Bob. Alice prepares her email by using an email clients and sends it to her email
server. Alice’s email server extracts Bob’s address from the email and delivers the message to Bob’s server. Bob
retrieves Alice’s message on his server and reads it by using his favourite email client or through his webmail
interface.

| . .-
ey __ I ~—

n //I o i (]

emails server email server
Alice@a.net Bob@b.net

Alice sends her emall Bob retrieves message
to local mail forwarder from his server

Alice’s server sends email
to b.net’s MX

Figure 3.12: Simplified architecture of the Internet email
The email system that we consider in this book is composed of four components :

* a message format, that defines how valid email messages are encoded

e protocols, that allow hosts and servers to exchange email messages

3.2. Application-level protocols 37
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://openmap.bbn.com/~tomlinso/ray/firstemailframe.html
http://en.wikipedia.org/wiki/Comparison_of_email_clients
http://en.wikipedia.org/wiki/Comparison_of_mail_servers

Computer Networking : Principles, Protocols and Practice, Release 0.25

* client software, that allows users to easily create and read email messages
* software, that allows servers to efficiently exchange email messages

We will first discuss the format of email messages followed by the protocols that are used on today’s Internet to
exchange and retrieve emails. Other email systems have been developed in the past [Bush1993] [Genilloud1990]
[GC2000], but today most email solutions have migrated to the Internet email. Information about the software
that is used to compose and deliver emails may be found on wikipedia among others, for both email clients and
email servers. More detailed information about the full Internet Mail Architecture may be found in RFC 5598.

Email messages, like postal mail, are composed of two parts :
* a header that plays the same role as the letterhead in regular mail. It contains metadata about the message.
* the body that contains the message itself.

Email messages are entirely composed of lines of ASCII characters. Each line can contain up to 998 characters
and is terminated by the CR and LF control characters RFC 5322. The lines that compose the header appear
before the message body. An empty line, containing only the CR and LF characters, marks the end of the header.
This is illustrated in the figure below.

From:
g}ﬁl;qoct: Hello Header
Date : 27 Sept. 1999 0901

Dear Sir,

Bla Bla Bla...

Message
body

Figure 3.13: The structure of email messages

The email header contains several lines that all begin with a keyword followed by a colon and additional informa-
tion. The format of email messages and the different types of header lines are defined in RFC 5322. Two of these
header lines are mandatory and must appear in all email messages :

* The sender address. This header line starts with From:. This contains the (optional) name of the sender
followed by its email address between < and >. Email addresses are always composed of a username
followed by the @ sign and a domain name.

* The date. This header line starts with Date:. RFC 5322 precisely defines the format used to encode a date.

Other header lines appear in most email messages. The Subject: header line allows the sender to indicate the topic
discussed in the email. Three types of header lines can be used to specify the recipients of a message :

11

* the To: header line contains the email addresses of the primary recipients of the message Several

addresses can be separated by using commas.

¢ the cc: header line is used by the sender to provide a list of email addresses that must receive a carbon copy
of the message. Several addresses can be listed in this header line, separated by commas. All recipients of
the email message receive the To: and cc: header lines.

e the bcc: header line is used by the sender to provide a list of comma separated email addresses that must
receive a blind carbon copy of the message. The bce: header line is not delivered to the recipients of the
email message.

A simple email message containing the From:, To:, Subject: and Date: header lines and two lines of body is shown
below.

! Tt could be surprising that the To: is not mandatory inside an email message. While most email messages will contain this header line an
email that does not contain a 7o: header line and that relies on the bcc: to specify the recipient is valid as well.

38 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://en.wikipedia.org
http://en.wikipedia.org/wiki/Comparison_of_email_clients
http://en.wikipedia.org/wiki/Comparison_of_mail_servers
http://tools.ietf.org/html/rfc5598.html
http://tools.ietf.org/html/rfc5322.html
http://tools.ietf.org/html/rfc5322.html
http://tools.ietf.org/html/rfc5322.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

From: Bob Smith <Bob@machine.example>

To: Alice Doe <alice@example.net>, Alice Smith <Alice@machine.example>
Subject: Hello

Date: Mon, 8 Mar 2010 19:55:06 -0600

This is the "Hello world" of email messages.
This is the second line of the body

Note the empty line after the Date: header line; this empty line contains only the CR and LF characters, and marks
the boundary between the header and the body of the message.

Several other optional header lines are defined in RFC 5322 and elsewhere '>. Furthermore, many email clients
and servers define their own header lines starting from X-. Several of the optional header lines defined in RFC
5322 are worth being discussed here :

* the Message-Id: header line is used to associate a “unique” identifier to each email. Email identifiers are
usually structured like string @domain where string is a unique character string or sequence number chosen
by the sender of the email and domain the domain name of the sender. Since domain names are unique,
a host can generate globally unique message identifiers concatenating a locally unique identifier with its
domain name.

* the In-reply-to: is used when a message was created in reply to a previous message. In this case, the end of
the In-reply-to: line contains the identifier of the original message.

¢ the Received: header line is used when an email message is processed by several servers before reaching its
destination. Each intermediate email server adds a Received: header line. These header lines are useful to
debug problems in delivering email messages.

The figure below shows the header lines of one email message. The message originated at a host named
wira.firstpr.com.au and was received by smip3.sgsi.ucl.ac.be. The Received: lines have been wrapped for read-
ability.

Received: from smtp3.sgsi.ucl.ac.be (Unknown [10.1.5.37)
by mmp.sipr-dc.ucl.ac.be
(Sun Java (tm) System Messaging Server 7u3-15.01 64bit (built Feb 12 2010))
with ESMTP id <0OKYYOOL85LIS5JLEO@mmp.sipr—-dc.ucl.ac.be>; Mon,
08 Mar 2010 11:37:17 +0100 (CET)
Received: from mail.ietf.org (mail.ietf.org [64.170.98.32])
by smtp3.sgsi.ucl.ac.be (Postfix) with ESMTP id B92351C60D7; Mon,
08 Mar 2010 11:36:51 +0100 (CET)

Received: from [127.0.0.1]1 (localhost [127.0.0.11) by core3.amsl.com (Postfix)
with ESMTP id FO066A3A68B9; Mon, 08 Mar 2010 02:36:38 —-0800 (PST)
Received: from localhost (localhost [127.0.0.117) by core3.amsl.com (Postfix)

with ESMTP id AlE6C3A681B for <rrg@core3.amsl.com>; Mon,
08 Mar 2010 02:36:37 -0800 (PST)

Received: from mail.ietf.org ([64.170.98.32])
by localhost (core3.amsl.com [127.0.0.1]) (amavisd-new, port 10024)
with ESMTP id erw8ih2v8VQa for <rrglcore3.amsl.com>; Mon,
08 Mar 2010 02:36:36 —-0800 (PST)

Received: from gair.firstpr.com.au (gair.firstpr.com.au [150.101.162.123])
by core3.amsl.com (Postfix) with ESMTP id O03E893A67ED for <rrg@irtf.org>; Mon,
08 Mar 2010 02:36:35 -0800 (PST)

Received: from [10.0.0.6] (wira.firstpr.com.au [10.0.0.6])
by gair.firstpr.com.au (Postfix) with ESMTP id DO0A49175B63; Mon,
08 Mar 2010 21:36:37 +1100 (EST)

Date: Mon, 08 Mar 2010 21:36:38 +1100

From: Robin Whittle <rw@firstpr.com.au>

Subject: Re: [rrg] Recommendation and what happens next

In-reply-to: <C7B9C21A.4FAB%tony.liQtony.1li>

To: RRG <rrglirtf.org>

Message—-id: <4B94D336.7030504Q@firstpr.com.au>

12 The list of all standard email header lines may be found at http://www.iana.org/assignments/message-headers/message-header-index.html

3.2. Application-level protocols 39
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc5322.html
http://tools.ietf.org/html/rfc5322.html
http://tools.ietf.org/html/rfc5322.html
http://www.iana.org/assignments/message-headers/message-header-index.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

Message content removed

Initially, email was used to exchange small messages of ASCII text between computer scientists. However, with
the growth of the Internet, supporting only ASCII text became a severe limitation for two reasons. First of all,
non-English speakers wanted to write emails in their native language that often required more characters than
those of the ASCII character table. Second, many users wanted to send other content than just ASCII text by
email such as binary files, images or sound.

To solve this problem, the IETF developed the Multipurpose Internet Mail Extensions (MIME). These extensions
were carefully designed to allow Internet email to carry non-ASCII characters and binary files without breaking
the email servers that were deployed at that time. This requirement for backward compatibility forced the MIME
designers to develop extensions to the existing email message format RFC 822 instead of defining a completely
new format that would have been better suited to support the new types of emails.

RFC 2045 defines three new types of header lines to support MIME :

* The MIME-Version: header indicates the version of the MIME specification that was used to encode the
email message. The current version of MIME is 1.0. Other versions of MIME may be defined in the future.
Thanks to this header line, the software that processes email messages will be able to adapt to the MIME
version used to encode the message. Messages that do not contain this header are supposed to be formatted
according to the original RFC 822 specification.

* The Content-Type: header line indicates the type of data that is carried inside the message (see below)

e The Content-Transfer-Encoding: header line is used to specify how the message has been encoded. When
MIME was designed, some email servers were only able to process messages containing characters encoded
using the 7 bits ASCII character set. MIME allows the utilisation of other character encodings.

Inside the email header, the Content-Type: header line indicates how the MIME email message is structured. RFC
2046 defines the utilisation of this header line. The two most common structures for MIME messages are :

» Content-Type: multipart/mixed. This header line indicates that the MIME message contains several inde-
pendent parts. For example, such a message may contain a part in plain text and a binary file.

* Content-Type: multipart/alternative. This header line indicates that the MIME message contains several
representations of the same information. For example, a multipart/alternative message may contain both a
plain text and an HTML version of the same text.

To support these two types of MIME messages, the recipient of a message must be able to extract the different
parts from the message. In RFC 822, an empty line was used to separate the header lines from the body. Using an
empty line to separate the different parts of an email body would be difficult as the body of email messages often
contains one or more empty lines. Another possible option would be to define a special line, e.g. *-LAST_LINE-*
to mark the boundary between two parts of a MIME message. Unfortunately, this is not possible as some emails
may contain this string in their body (e.g. emails sent to students to explain the format of MIME messages). To
solve this problem, the Content-Type: header line contains a second parameter that specifies the string that has
been used by the sender of the MIME message to delineate the different parts. In practice, this string is often
chosen randomly by the mail client.

The email message below, copied from RFC 2046 shows a MIME message containing two parts that are both in
plain text and encoded using the ASCII character set. The string simple boundary is defined in the Content-Type:
header as the marker for the boundary between two successive parts. Another example of MIME messages may
be found in RFC 2046.

Date: Mon, 20 Sep 1999 16:33:16 +0200

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned@innosoft.com>

Subject: Test

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="simple boundary"

preamble, to be ignored

—-—-simple boundary
Content-Type: text/plain; charset=us—-ascii

40 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.ietf.org
http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc2046.html
http://tools.ietf.org/html/rfc2046.html
http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc2046.html
http://tools.ietf.org/html/rfc2046.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

First part

--simple boundary
Content-Type: text/plain; charset=us—-ascii

Second part
--simple boundary

The Content-Type: header can also be used inside a MIME part. In this case, it indicates the type of data placed
in this part. Each data type is specified as a type followed by a subtype. A detailed description may be found in
RFC 2046. Some of the most popular Content-Type: header lines are :

* text. The message part contains information in textual format. There are several subtypes : text/plain for
regular ASCII text, text/html defined in RFC 2854 for documents in HTML format or the text/enriched
format defined in RFC 1896. The Content-Type: header line may contain a second parameter that specifies
the character set used to encode the text. charset=us-ascii is the standard ASCII character table. Other
frequent character sets include charset=UTF8 or charset=iso-8859-1. The list of standard character sets is
maintained by JANA

* image. The message part contains a binary representation of an image. The subtype indicates the format of
the image such as gif, jpg or png.

* audio. The message part contains an audio clip. The subtype indicates the format of the audio clip like wav
or mp3

* video. The message part contains a video clip. The subtype indicates the format of the video clip like avi or
mp4

* application. The message part contains binary information that was produced by the particular application
listed as the subtype. Email clients use the subtype to launch the application that is able to decode the
received binary information.

Note: From ASCII to Unicode

The first computers used different techniques to represent characters in memory and on disk. During the 1960s,
computers began to exchange information via tape or telephone lines. Unfortunately, each vendor had its own
proprietary character set and exchanging data between computers from different vendors was often difficult. The
7 bits ASCII character table RFC 20 set was adopted by several vendors and by many Internet protocols. However,
ASCII became a problem with the internationalisation of the Internet and the desire of more and more users to use
character sets that support their own written language. A first attempt at solving this problem was the definition
of the ISO-8859 character sets by /SO. This family of standards specified various character sets that allowed the
representation of many European written languages by using 8 bits characters. Unfortunately, an 8-bits character
set is not sufficient to support some widely used languages, such as those used in Asian countries. Fortunately, at
the end of the 1980s, several computer scientists proposed to develop a standard that supports all written languages
used on Earth today. The Unicode standard [Unicode] has now been adopted by most computer and software
vendors. For example, Java uses Unicode natively to manipulate characters, Python can handle both ASCII and
Unicode characters. Internet applications are slowly moving towards complete support for the Unicode character
sets, but moving from ASCII to Unicode is an important change that can have a huge impact on current deployed
implementations. See for example, the work to completely internationalise email RFC 4952 and domain names
RFC 5890.

The last MIME header line is Content-Transfer-Encoding:. This header line is used after the Content-Type: header
line, within a message part, and specifies how the message part has been encoded. The default encoding is to use
7 bits ASCII. The most frequent encodings are quoted-printable and Base64. Both support encoding a sequence
of bytes into a set of ASCII lines that can be safely transmitted by email servers. quoted-printable is defined in
RFC 2045. We briefly describe base64 which is defined in RFC 2045 and RFC 4648.

Base64 divides the sequence of bytes to be encoded into groups of three bytes (with the last group possibly being
partially filled). Each group of three bytes is then divided into four six-bit fields and each six bit field is encoded
as a character from the table below.

3.2. Application-level protocols 41
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc2046.html
http://tools.ietf.org/html/rfc2854.html
http://tools.ietf.org/html/rfc1896.html
http://www.iana.org/assignments/character-sets
http://en.wikipedia.org/wiki/Graphics_Interchange_Format
http://en.wikipedia.org/wiki/Jpeg
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/Wav
http://en.wikipedia.org/wiki/Mp3
http://en.wikipedia.org/wiki/Audio_Video_Interleave
http://en.wikipedia.org/wiki/Mp4
http://tools.ietf.org/html/rfc20.html
http://en.wikipedia.org/wiki/ISO_8859
http://tools.ietf.org/html/rfc4952.html
http://tools.ietf.org/html/rfc5890.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc4648.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

Value | Encoding | Value | Encoding | Value | Encoding | Value | Encoding

0 A 17 R 34 i 51 z

1 B 18 S 35 j 52 0

2 C 19 T 36 k 53 1

3 D 20 U 37 1 54 2

4 E 21 A% 38 m 55 3

5 F 22 \Y 39 n 56 4

6 G 23 X 40 0 57 5

7 H 24 Y 41 p 58 6

8 I 25 Z 42 q 59 7

9 J 26 a 43 r 60 8

10 K 27 b 44 S 61 9

11 L 28 c 45 t 62 +

12 M 29 d 46 u 63 /

13 N 30 e 47 \

14 0] 31 f 48 w

15 P 32 g 49 X

16 Q 33 h 50 y

The example below, from RFC 4648, illustrates the Base64 encoding.

Input data | 0x14fb9c03d97e
8-bit 00010100 11111011 10011100 00000011 11011001 01111110
6-bit 000101 001111 101110 011100 000000 111101 100101 111110

Decimal 51546280613762
Encoding | FPucA91+

The last point to be discussed about base64 is what happens when the length of the sequence of bytes to be
encoded is not a multiple of three. In this case, the last group of bytes may contain one or two bytes instead of
three. Base64 reserves the = character as a padding character. This character is used twice when the last group
contains two bytes and once when it contains one byte as illustrated by the two examples below.

Input data | Ox14

8-bit 00010100
6-bit 000101 000000
Decimal 50

Encoding | FA==

Input data | 0x14b9

8-bit 00010100 11111011
6-bit 000101 001111 101100
Decimal 51544

Encoding | FPs=

Now that we have explained the format of the email messages, we can discuss how these messages can be ex-
changed through the Internet. The figure below illustrates the protocols that are used when Alice sends an email
message to Bob. Alice prepares her email with an email client or on a webmail interface. To send her email to
Bob, Alice‘s client will use the Simple Mail Transfer Protocol (SMTP) to deliver her message to her SMTP server.
Alice‘s email client is configured with the name of the default SMTP server for her domain. There is usually at
least one SMTP server per domain. To deliver the message, Alice‘s SMTP server must find the SMTP server that
contains Bob‘s mailbox. This can be done by using the Mail eXchange (MX) records of the DNS. A set of MX
records can be associated to each domain. Each MX record contains a numerical preference and the fully qualified
domain name of a SMTP server that is able to deliver email messages destined to all valid email addresses of this
domain. The DNS can return several MX records for a given domain. In this case, the server with the lowest
preference is used first. If this server is not reachable, the second most preferred server is used etc. Bob‘s SMTP
server will store the message sent by Alice until Bob retrieves it using a webmail interface or protocols such as the
Post Office Protocol (POP) or the Internet Message Access Protocol (/MAP).

42 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc4648.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

.-"--’"1+| TEawg

—
— SMTP U= gy — " Email -
. |, retrieval- HE
a.net's b.net's SMTP
- SMTP server server T

ice@a.ne
Alice@a.net Bob@b.net

Figure 3.14: Email delivery protocols

The Simple Mail Transfer Protocol

The Simple Mail Transfer Protocol (SMTP) defined in RFC 5321 is a client-server protocol. The SMTP specifi-
cation distinguishes between five types of processes involved in the delivery of email messages. Email messages
are composed on a Mail User Agent (MUA). The MUA is usually either an email client or a webmail. The MUA
sends the email message to a Mail Submission Agent (MSA). The MSA processes the received email and forwards
it to the Mail Transmission Agent (MTA). The MTA is responsible for the transmission of the email, directly or
via intermediate MTAs to the MTA of the destination domain. This destination MTA will then forward the mes-
sage to the Mail Delivery Agent (MDA) where it will be accessed by the recipient’s MUA. SMTP is used for the
interactions between MUA and MSA '3, MSA-MTA and MTA-MTA.

SMTP is a text-based protocol like many other application-layer protocols on the Internet. It relies on the byte-
stream service. Servers listen on port 25. Clients send commands that are each composed of one line of ASCII
text terminated by CR+LF. Servers reply by sending ASCII lines that contain a three digit numerical error/success
code and optional comments.

The SMTP protocol, like most text-based protocols, is specified as a BNF. The full BNF is defined in RFC 5321.
The main SMTP commands are defined by the BNF rules shown in the figure below.

Domain CRLF
" Path

agterd®” Domain ">" / “"<pPogtmaster>" [Path } CRLF

JATA"™ CRLF

quit GQUITH CRLF

Figure 3.15: BNF specification of the SMTP commands

In this BNF, atext corresponds to printable ASCII characters. This BNF rule is defined in RFC 5322. The five
main commands are EHLO, MAIL FROM:, RCPT TO:, DATA and QUIT '*. Postmaster is the alias of the system
administrator who is responsible for a given domain or SMTP server. All domains must have a Postmaster alias.

The SMTP responses are defined by the BNF shown in the figure below.

Greeting = "220 " Domain [SP textstring] CRLF

textstring = l*atext

Reply-line *{ Reply-code "-" [textstring] CRLF)
Reply-code [SP textstring] CRLF

Reply-code = %x32-35 %x30-35 %x30-39

Figure 3.16: BNF specification of the SMTP responses

SMTP servers use structured reply codes containing three digits and an optional comment. The first digit of

13 During the last years, many Internet Service Providers, campus and enterprise networks have deployed SMTP extensions RFC 4954 on
their MSAs. These extensions force the MUAS to be authenticated before the MSA accepts an email message from the MUA.

14 The first versions of SMTP used HELO as the first command sent by a client to a SMTP server. When SMTP was extended to support
newer features such as 8 bits characters, it was necessary to allow a server to recognise whether it was interacting with a client that supported
the extensions or not. EHLO became mandatory with the publication of RFC 2821.

3.2. Application-level protocols 43
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc5321.html
http://tools.ietf.org/html/rfc5321.html
http://tools.ietf.org/html/rfc5322.html
http://tools.ietf.org/html/rfc4954.html
http://tools.ietf.org/html/rfc2821.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

the reply code indicates whether the command was successful or not. A reply code of 2xy indicates that the
command has been accepted. A reply code of 3xy indicates that the command has been accepted, but additional
information from the client is expected. A reply code of 4xy indicates a transient negative reply. This means that
for some reason, which is indicated by either the other digits or the comment, the command cannot be processed
immediately, but there is some hope that the problem will only be transient. This is basically telling the client to
try the same command again later. In contrast, a reply code of 5xy indicates a permanent failure or error. In this
case, it is useless for the client to retry the same command later. Other application layer protocols such as FTP
RFC 959 or HTTP RFC 2616 use a similar structure for their reply codes. Additional details about the other reply
codes may be found in RFC 5321.

Examples of SMTP reply codes include the following :

500 Syntax error, command unrecognized

501 Syntax error in parameters or arguments

502 Command not implemented

503 Bad sequence of commands

220 <domain> Service ready

221 <domain> Service closing transmission channel

421 <domain> Service not available, closing transmission channel
250 Requested mail action okay, completed

450 Requested mail action not taken: mailbox unavailable
452 Requested action not taken: insufficient system storage
550 Requested action not taken: mailbox unavailable

354 Start mail input; end with <CRLF>.<CRLF>

The first four reply codes correspond to errors in the commands sent by the client. The fourth reply code would
be sent by the server when the client sends commands in an incorrect order (e.g. the client tries to send an email
before providing the destination address of the message). Reply code 220 is used by the server as the first message
when it agrees to interact with the client. Reply code 227 is sent by the server before closing the underlying
transport connection. Reply code 421 is returned when there is a problem (e.g. lack of memory/disk resources)
that prevents the server from accepting the transport connection. Reply code 250 is the standard positive reply that
indicates the success of the previous command. Reply codes 450 and 452 indicate that the destination mailbox
is temporarily unavailable, for various reasons, while reply code 550 indicates that the mailbox does not exist or
cannot be used for policy reasons. Reply code 354 indicates that the client can start transmitting its email message.

The transfer of an email message is performed in three phases. During the first phase, the client opens a transport
connection with the server. Once the connection has been established, the client and the server exchange greetings
messages (EHLO command). Most servers insist on receiving valid greeting messages and some of them drop the
underlying transport connection if they do not receive a valid greeting. Once the greetings have been exchanged,
the email transfer phase can start. During this phase, the client transfers one or more email messages by indicating
the email address of the sender (MAIL FROM: command), the email address of the recipient (RCPT TO: command)
followed by the headers and the body of the email message (DATA command). Once the client has finished sending
all its queued email messages to the SMTP server, it terminates the SMTP association (QUIT command).

A successful transfer of an email message is shown below

220 smtp.example.com ESMTP MTA information
EHLO mta.example.org

250 Hello mta.example.org, glad to meet you
MAIL FROM:<alice@example.org>

250 Ok

RCPT TO:<boblexample.com>

250 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

From: "Alice Doe" <alicelexample.org>

To: Bob Smith <bobGexample.com>

Date: Mon, 9 Mar 2010 18:22:32 +0100
Subject: Hello

Hello Bob
This is a small message containing 4 lines of text.
Best regards,

QOO0 nnQnn Qn

44 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc959.html
http://tools.ietf.org/html/rfc2616.html
http://tools.ietf.org/html/rfc5321.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

C: Alice

C: .

S: 250 Ok: queued as 12345
C: QUIT

S: 221 Bye

In the example above, the MTA running on mta.example.org opens a TCP connection to the SMTP server on host
smtp.example.com. The lines prefixed with S: (resp. C:) are the responses sent by the server (resp. the commands
sent by the client). The server sends its greetings as soon as the TCP connection has been established. The client
then sends the EHLO command with its fully qualified domain name. The server replies with reply-code 250 and
sends its greetings. The SMTP association can now be used to exchange an email.

To send an email, the client must first provide the address of the recipient with RCPT TO:. Then it uses the MAIL
FROM: with the address of the sender. Both the recipient and the sender are accepted by the server. The client
can now issue the DATA command to start the transfer of the email message. After having received the 354 reply
code, the client sends the headers and the body of its email message. The client indicates the end of the message
by sending a line containing only the . (dot) character '°. The server confirms that the email message has been
queued for delivery or transmission with a reply code of 250. The client issues the QUIT command to close the
session and the server confirms with reply-code 221, before closing the TCP connection.

Note: Open SMTP relays and spam

Since its creation in 1971, email has been a very useful tool that is used by many users to exchange lots of
information. In the early days, all SMTP servers were open and anyone could use them to forward emails towards
their final destination. Unfortunately, over the years, some unscrupulous users have found ways to use email for
marketing purposes or to send malware. The first documented abuse of email for marketing purposes occurred in
1978 when a marketer who worked for a computer vendor sent a marketing email to many ARPANET users. At
that time, the ARPANET could only be used for research purposes and this was an abuse of the acceptable use
policy. Unfortunately, given the extremely low cost of sending emails, the problem of unsolicited emails has not
stopped. Unsolicited emails are now called spam and a study carried out by ENISA in 2009 reveals that 95% of
email was spam and this number seems to continue to grow. This places a burden on the email infrastructure of
Internet Service Providers and large companies that need to process many useless messages.

Given the amount of spam messages, SMTP servers are no longer open RFC 5068. Several extensions to SMTP
have been developed in recent years to deal with this problem. For example, the SMTP authentication scheme
defined in RFC 4954 can be used by an SMTP server to authenticate a client. Several techniques have also been
proposed to allow SMTP servers to authenticate the messages sent by their users RFC 4870 RFC 4871 .

The Post Office Protocol

When the first versions of SMTP were designed, the Internet was composed of minicomputers that were used by
an entire university department or research lab. These minicomputers were used by many users at the same time.
Email was mainly used to send messages from a user on a given host to another user on a remote host. At that
time, SMTP was the only protocol involved in the delivery of the emails as all hosts attached to the network were
running an SMTP server. On such hosts, an email destined to local users was delivered by placing the email in a
special directory or file owned by the user. However, the introduction of personal computers in the 1980s, changed
this environment. Initially, users of these personal computers used applications such as zelnet to open a remote
session on the local minicomputer to read their email. This was not user-friendly. A better solution appeared
with the development of user friendly email client applications on personal computers. Several protocols were
designed to allow these client applications to retrieve the email messages destined to a user from his/her server.
Two of these protocols became popular and are still used today. The Post Office Protocol (POP), defined in RFC
1939, is the simplest one. It allows a client to download all the messages destined to a given user from his/her
email server. We describe POP briefly in this section. The second protocol is the Internet Message Access Protocol
(IMAP), defined in RFC 3501. IMAP is more powerful, but also more complex than POP. IMAP was designed to
allow client applications to efficiently access in real-time to messages stored in various folders on servers. IMAP

15 This implies that a valid email message cannot contain a line with one dot followed by CR and LF. If a user types such a line in an email,
his email client will automatically add a space character before or after the dot when sending the message over SMTP.

3.2. Application-level protocols 45
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.templetons.com/brad/spamreact.html#msg
http://www.enisa.europa.eu/act/res/other-areas/anti-spam-measures
http://www.enisa.europa.eu/
http://tools.ietf.org/html/rfc5068.html
http://tools.ietf.org/html/rfc4954.html
http://tools.ietf.org/html/rfc4870.html
http://tools.ietf.org/html/rfc4871.html
http://tools.ietf.org/html/rfc1939.html
http://tools.ietf.org/html/rfc1939.html
http://tools.ietf.org/html/rfc3501.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

assumes that all the messages of a given user are stored on a server and provides the functions that are necessary
to search, download, delete or filter messages.

POP is another example of a simple line-based protocol. POP runs above the bytestream service. A POP server
usually listens to port 110. A POP session is composed of three parts : an authorisation phase during which
the server verifies the client’s credential, a transaction phase during which the client downloads messages and an
update phase that concludes the session. The client sends commands and the server replies are prefixed by +OK
to indicate a successful command or by -ERR to indicate errors.

When a client opens a transport connection with the POP server, the latter sends as banner an ASCII-line starting
with +OK. The POP session is at that time in the authorisation phase. In this phase, the client can send its
username (resp. password) with the USER (resp. PASS) command. The server replies with +OK if the username
(resp. password) is valid and -ERR otherwise.

Once the username and password have been validated, the POP session enters in the transaction phase. In this
phase, the client can issue several commands. The STAT command is used to retrieve the status of the server.
Upon reception of this command, the server replies with a line that contains +OK followed by the number of
messages in the mailbox and the total size of the mailbox in bytes. The RETR command, followed by a space and
an integer, is used to retrieve the nth message of the mailbox. The DELE command is used to mark for deletion
the nth message of the mailbox.

Once the client has retrieved and possibly deleted the emails contained in the mailbox, it must issue the QUIT
command. This command terminates the POP session and allows the server to delete all the messages that have
been marked for deletion by using the DELE command.

The figure below provides a simple POP session. All lines prefixed with C: (resp. S:) are sent by the client (resp.
server).

+0OK POP3 server ready

USER alice

+0K

PASS 12345pass

+0OK alice’s maildrop has 2 messages (620 octets)
STAT

+0OK 2 620

LIST

+OK 2 messages (620 octets)
1 120

2 500

RETR 1
+0OK 120 octets
<the POP3 server sends message 1>

DELE 1

+0OK message 1 deleted

QUIT

+OK POP3 server signing off (1 message left)

N QO QLN nn OQnn nnOQOnQnOQn OQon

In this example, a POP client contacts a POP server on behalf of the user named alice. Note that in this example,
Alice’s password is sent in clear by the client. This implies that if someone is able to capture the packets sent by
Alice, he will know Alice’s password '°. Then Alice’s client issues the STAT command to know the number of
messages that are stored in her mailbox. It then retrieves and deletes the first message of the mailbox.

3.2.3 The HyperText Transfer Protocol

In the early days of the Internet was mainly used for remote terminal access with telnet, email and file transfer.
The default file transfer protocol, FTP, defined in RFC 959 was widely used and FTP clients and servers are still
included in most operating systems.

16
RFC 1939 defines the APOP authentication scheme that is not vulnerable to such attacks.

46 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://en.wikipedia.org/wiki/Telnet
http://tools.ietf.org/html/rfc959.html
http://tools.ietf.org/html/rfc1939.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

Many FTP clients offer a user interface similar to a Unix shell and allow the client to browse the file system on
the server and to send and retrieve files. FTP servers can be configured in two modes :

* authenticated : in this mode, the ftp server only accepts users with a valid user name and password. Once
authenticated, they can access the files and directories according to their permissions

* anonymous : in this mode, clients supply the anonymous userid and their email address as password. These
clients are granted access to a special zone of the file system that only contains public files.

ftp was very popular in the 1990s and early 2000s, but today it has mostly been superseded by more recent
protocols. Authenticated access to files is mainly done by using the Secure Shell (ssh) protocol defined in RFC
4251 and supported by clients such as scp or sftp. Nowadays, anonymous access is mainly provided by web
protocols.

In the late 1980s, high energy physicists working at CERN had to efficiently exchange documents about their
ongoing and planned experiments. Tim Berners-Lee evaluated several of the documents sharing techniques that
were available at that time [B1989]. As none of the existing solutions met CERN’s requirements, they choose to
develop a completely new document sharing system. This system was initially called the mesh, but was quickly
renamed the world wide web. The starting point for the world wide web are hypertext documents. An hypertext
document is a document that contains references (hyperlinks) to other documents that the reader can immediately
access. Hypertext was not invented for the world wide web. The idea of hypertext documents was proposed in
1945 [Bush1945] and the first experiments were done during the 1960s [Nelson1965] [Myers1998] . Compared to
the hypertext documents that were used in the late 1980s, the main innovation introduced by the world wide web
was to allow hyperlinks to reference documents stored on remote machines.

Server wow.machinbe

T - Sarvar www true.fr
Quary i

" Information

'I!J 7
Client — .

{browser)

Server www. stutf.com

Figure 3.17: World-wide web clients and servers

A document sharing system such as the world wide web is composed of three important parts.
1. A standardised addressing scheme that allows unambiguous identification of documents
2. A standard document format : the HyperText Markup Language

3. A standardised protocol that facilitates efficient retrieval of documents stored on a server

Note: Open standards and open implementations

Open standards have, and are still playing a key role in the success of the world wide web as we know it to-
day. Without open standards, the world wide web would never have reached its current size. In addition to open
standards, another important factor for the success of the web was the availability of open and efficient imple-
mentations of these standards. When CERN started to work on the web, their objective was to build a running
system that could be used by physicists. They developed open-source implementations of the first web servers and
web clients. These open-source implementations were powerful and could be used as is, by institutions willing to

3.2. Application-level protocols 47
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://en.wikipedia.org/wiki/Secure_Shell
http://tools.ietf.org/html/rfc4251.html
http://tools.ietf.org/html/rfc4251.html
http://www.openssh.org
http://www.openssh.org
http://www.cern.ch
http://www.w3.org/People/Berners-Lee/
http://www.w3.org/MarkUp
http://www.w3.org/Daemon/
http://www.w3.org/Library/Activity.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

share information on the web. They were also extended by other developers who contributed to new features. For
example, NCSA added support for images in their Mosaic browser that was eventually used to create Netscape
Communications.

The first components of the world wide web are the Uniform Resource Identifiers (URI), defined in RFC 3986. A
URI is a character string that unambiguously identifies a resource on the world wide web. Here is a subset of the
BNF for URIs

URI = scheme ":" "//" authority path ["?" query] ["#" fragment]
scheme = ALPHA =« (ALPHA / DIGIT / "+" / "-" / " ")

authority = [userinfo "@"] host [":" port]

query = *(pchar / "/" / "?")

fragment = % (pchar / "/" / "2")

pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

query = % (pchar / "/" / "2?2")

fragment = x(pchar / "/"™ / "?")

pct—encoded = "%" HEXDIG HEXDIG

unreserved = ALPHA / DIGIT / "-" ,/ "W ,"m / " ™ / w.n

reserved = gen-delims / sub-delims

gen—-delims ARV A A VAR

sub-delims S ALY AL A LN AR LA A A S AL

The first component of a URI is its scheme. A scheme can be seen as a selector, indicating the meaning of the
fields after it. In practice, the scheme often identifies the application-layer protocol that must be used by the client
to retrieve the document, but it is not always the case. Some schemes do not imply a protocol at all and some
do not indicate a retrievable document '”. The most frequent scheme is http that will be described later. A URI
scheme can be defined for almost any application layer protocol [#furilist]_. The characters : and // follow the
scheme of any URI.

The second part of the URI is the authority. With retrievable URI, this includes the DNS name or the IP address
of the server where the document can be retrieved using the protocol specified via the scheme. This name can
be preceded by some information about the user (e.g. a user name) who is requesting the information. Earlier
definitions of the URI allowed the specification of a user name and a password before the @ character (RFC
1738), but this is now deprecated as placing a password inside a URI is insecure. The host name can be followed
by the semicolon character and a port number. A default port number is defined for some protocols and the port
number should only be included in the URI if a non-default port number is used (for other protocols, techniques
like service DNS records are used).

The third part of the URI is the path to the document. This path is structured as filenames on a Unix host (but
it does not imply that the files are indeed stored this way on the server). If the path is not specified, the server
will return a default document. The last two optional parts of the URI are used to provide a query and indicate a
specific part (e.g. a section in an article) of the requested document. Sample URIs are shown below.

http://tools.ietf.org/html/rfc3986.html

mailto:infobot@example.com?subject=current-issue
http://docs.python.org/library/basehttpserver.html?highlight=http#BaseHTTPServer.BaseHTTPRequestH
telnet://[2001:6a8:3080:3::2]:80/
ftp://cnn.example.com&story=breaking_news@10.0.0.1/top_story.htm

The first URI corresponds to a document named rfc3986.html that is stored on the server named fools.ietf.org and
can be accessed by using the http protocol on its default port. The second URI corresponds to an email message,
with subject current-issue, that will be sent to user infobot in domain example.com. The mailto: URI scheme is
defined in RFC 6068. The third URI references the portion BaseHTTPServer. BaseHITPRequestHandler of the
document basehttpserver.html that is stored in the library directory on server docs.python.org. This document can
be retrieved by using the http protocol. The query highlight=http is associated to this URI The fourth example is a
server that operates the telnet protocol, uses IPv6 address 2001:6a8:3080:3::2 and is reachable on port 80. The last
URI is somewhat special. Most users will assume that it corresponds to a document stored on the cnn.example.com

17" An example of a non-retrievable URI is urn:isbn:0-380-81593-1 which is an unique identifier for a book, through the urn scheme
(see RFC 3187). Of course, any URI can be make retrievable via a dedicated server or a new protocol but this one has no explicit proto-
col. Same thing for the scheme tag (see RFC 4151), often used in Web syndication (see RFC 4287 about the Atom syndication format).
Even when the scheme is retrievable (for instance with http®), it is often used only as an identifier, not as a way to get a resource. See
http://norman.walsh.name/2006/07/25/names AndAddresses for a good explanation.

48 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.ncsa.illinois.edu
http://en.wikipedia.org/wiki/Mosaic_(web_browser)
http://en.wikipedia.org/wiki/Netscape
http://en.wikipedia.org/wiki/Netscape
http://tools.ietf.org/html/rfc3986.html
http://tools.ietf.org/html/rfc1738.html
http://tools.ietf.org/html/rfc1738.html
http://tools.ietf.org/html/rfc6068.html
http://en.wikipedia.org/wiki/Telnet
http://tools.ietf.org/html/rfc3187.html
http://tools.ietf.org/html/rfc4151.html
http://tools.ietf.org/html/rfc4287.html
http://norman.walsh.name/2006/07/25/namesAndAddresses

Computer Networking : Principles, Protocols and Practice, Release 0.25

server. However, to parse this URI, it is important to remember that the @ character is used to separate the user
name from the host name in the authorisation part of a URI. This implies that the URI points to a document named
top_story.htm on host having IPv4 address 70.0.0.1. The document will be retrieved by using the ftp protocol with
the user name set to cnn.example.com&story=breaking news.

The second component of the word wide web is the HyperText Markup Language (HTML). HTML defines the
format of the documents that are exchanged on the web. The first version of HTML was derived from the Standard
Generalized Markup Language (SGML) that was standardised in 1986 by /SO. SGML was designed to allow
large project documents in industries such as government, law or aerospace to be shared efficiently in a machine-
readable manner. These industries require documents to remain readable and editable for tens of years and insisted
on a standardised format supported by multiple vendors. Today, SGML is no longer widely used beyond specific
applications, but its descendants including H7ML and XML are now widespread.

A markup language is a structured way of adding annotations about the formatting of the document within the
document itself. Example markup languages include troff, which is used to write the Unix man pages or Latex.
HTML uses markers to annotate text and a document is composed of HTML elements. Each element is usually
composed of three items: a start tag that potentially includes some specific attributes, some text (often including
other elements), and an end tag. A HTML tag is a keyword enclosed in angle brackets. The generic form of a
HTML element is

<tag>Some text to be displayed</tag>

More complex HTML elements can also include optional attributes in the start tag

<tag attributel="valuel" attribute2="value2">some text to be displayed</tag>

The HTML document shown below is composed of two parts : a header, delineated by the <head> and </head>
markers, and a body (between the <body> and </body> markers). In the example below, the header only contains
a title, but other types of information can be included in the header. The body contains an image, some text and a
list with three hyperlinks. The image is included in the web page by indicating its URI between brackets inside the
 marker. The image can, of course, reside on any server and the client will automatically download
it when rendering the web page. The <h/>...</hl> marker is used to specify the first level of headings. The
marker indicates an unnumbered list while the </i> marker indicates a list item. The text
indicates a hyperlink. The fexr will be underlined in the rendered web page and the client will fetch the specified
URI when the user clicks on the link.

<HTML>

<HEAD>
Header | <TITLE>HTML test page</TITLE>
</HEAD>

Image on remote server
<BODY> _ /

<Hl>Some web servers</Hl>
<HR> ——First level title

»<XA HREF="!

Ex>

<LI»<h HREF=" working Lab
BOdy

</BODY>

</HTML>
\ External hypertext link

Figure 3.18: A simple HTML page

Additional details about the various extensions to HTML may be found in the official specifications maintained
by W3C.

The third component of the world wide web is the HyperText Transport Protocol (HTTP). HTTP is a text-based
protocol, in which the client sends a request and the server returns a response. HTTP runs above the bytestream
service and HTTP servers listen by default on port 80. The design of HTTP has largely been inspired by the
Internet email protocols. Each HTTP request contains three parts :

* amethod , that indicates the type of request, a URI, and the version of the HTTP protocol used by the client

3.2. Application-level protocols 49
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
http://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
http://en.wikipedia.org/wiki/Troff
http://en.wikipedia.org/wiki/Latex
http://www.w3.org/MarkUp/
http://www.w3.org

Computer Networking : Principles, Protocols and Practice, Release 0.25

* a header , that is used by the client to specify optional parameters for the request. An empty line is used to
mark the end of the header

* an optional MIME document attached to the request
The response sent by the server also contains three parts :
* astatus line , that indicates whether the request was successful or not

* a header , that contains additional information about the response. The response header ends with an empty
line.

¢ a MIME document

ET
POST
Header contains additional information
about requast sent by client

Method ‘

Header

CRLF
- MIME Document
& — o L
2 —
J.} — |
e =
=

Client *— Status line
Header Server
CRLF T
MIME Document Swccess or fallure

Header contains information about server
and optional parameters specific to response

Figure 3.19: HTTP requests and responses

Several types of method can be used in HTTP requests. The three most important ones are :

e the GET method is the most popular one. It is used to retrieve a document from a server. The
GET method is encoded as GET followed by the path of the URI of the requested document and
the version of HTTP used by the client. For example, to retrieve the http://www.w3.org/MarkUp/
URI, a client must open a TCP on port 80 with host www.w3.org and send a HTTP request
containing the following line

GET /MarkUp/ HTTP/1.0

e — the HEAD method is a variant of the GET method that allows the retrieval of the header
lines for a given URI without retrieving the entire document. It can be used by a client to
verify if a document exists, for instance.

* the POST method can be used by a client to send a document to a server. The sent document is
attached to the HTTP request as a MIME document.

HTTP clients and servers can include many different HTTP headers in HTTP requests and responses. Each HTTP
header is encoded as a single ASCII-line terminated by CR and LF. Several of these headers are briefly described
below. A detailed discussion of all standard headers may be found in RFC 1945. The MIME headers can appear
in both HTTP requests and HTTP responses.

o the Content-Length: header is the MIME header that indicates the length of the MIME document in bytes.

* the Content-Type: header is the MIME header that indicates the type of the attached MIME document.
HTML pages use the text/html type.

e the Content-Encoding: header indicates how the MIME document has been encoded. For example, this
header would be set to x-gzip for a document compressed using the gzip software.

RFC 1945 and RFC 2616 define headers that are specific to HTTP responses. These server headers include :

50 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.w3.org/MarkUp/
http://tools.ietf.org/html/rfc1945.html
http://www.gzip.org
http://tools.ietf.org/html/rfc1945.html
http://tools.ietf.org/html/rfc2616.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

¢ the Server: header indicates the version of the web server that has generated the HTTP response. Some
servers provide information about their software release and optional modules that they use. For security
reasons, some system administrators disable these headers to avoid revealing too much information about
their server to potential attackers.

¢ the Date: header indicates when the HTTP response has been produced by the server.

* the Last-Modified: header indicates the date and time of the last modification of the document attached to
the HTTP response.

Similarly, the following header lines can only appear inside HTTP requests sent by a client :

o the User-Agent: header provides information about the client that has generated the HTTP request. Some
servers analyse this header line and return different headers and sometimes different documents for different
user agents.

* the If-Modified-Since: header is followed by a date. It enables clients to cache in memory or on disk the
recent or most frequently used documents. When a client needs to request a URI from a server, it first checks
whether the document is already in its cache. If it is, the client sends a HTTP request with the If-Modified-
Since: header indicating the date of the cached document. The server will only return the document attached
to the HTTP response if it is newer than the version stored in the client’s cache.

* the Referrer: header is followed by a URL. It indicates the URI of the document that the client visited before
sending this HTTP request. Thanks to this header, the server can know the URI of the document containing
the hyperlink followed by the client, if any. This information is very useful to measure the impact of
advertisements containing hyperlinks placed on websites.

* the Host: header contains the fully qualified domain name of the URI being requested.

Note: The importance of the Host: header line

The first version of HTTP did not include the Host: header line. This was a severe limitation for web host-
ing companies. For example consider a web hosting company that wants to serve both web.example.com and
www.example.net on the same physical server. Both web sites contain a /index.html document. When a client
sends a request for either http://web.example.com/index.html or http://www.example.net/index.html, the HTTP 1.0
request contains the following line :

GET /index.html HTTP/1.0

By parsing this line, a server cannot determine which index.html file is requested. Thanks to the
Host: header line, the server knows whether the request is for http://web.example.com/index.html or
http://www.dummy.net/index.html. Without the Host: header, this is impossible. The Host: header line allowed
web hosting companies to develop their business by supporting a large number of independent web servers on the
same physical server.

The status line of the HTTP response begins with the version of HTTP used by the server (usually HTTP/1.0
defined in RFC 1945 or HTTP/I.1 defined in RFC 2616) followed by a three digit status code and additional
information in English. HTTP status codes have a similar structure as the reply codes used by SMTP.

» All status codes starting with digit 2 indicate a valid response. 200 Ok indicates that the HTTP request was
successfully processed by the server and that the response is valid.

* All status codes starting with digit 3 indicate that the requested document is no longer available on the
server. 301 Moved Permanently indicates that the requested document is no longer available on this server.
A Location: header containing the new URI of the requested document is inserted in the HTTP response.
304 Not Modified is used in response to an HTTP request containing the If-Modified-Since: header. This
status line is used by the server if the document stored on the server is not more recent than the date indicated
in the If-Modified-Since: header.

 All status codes starting with digit 4 indicate that the server has detected an error in the HTTP request sent
by the client. 400 Bad Request indicates a syntax error in the HTTP request. 404 Not Found indicates that
the requested document does not exist on the server.

3.2. Application-level protocols 51
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc1945.html
http://tools.ietf.org/html/rfc2616.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

 All status codes starting with digit 5 indicate an error on the server. 500 Internal Server Error indicates that
the server could not process the request due to an error on the server itself.

In both the HTTP request and the HTTP response, the MIME document refers to a representation of the document
with the MIME headers indicating the type of document and its size.

As an illustration of HTTP/1.0, the transcript below shows a HTTP request for http://www.ietf.org and the corre-
sponding HTTP response. The HTTP request was sent using the curl command line tool. The User-Agent: header
line contains more information about this client software. There is no MIME document attached to this HTTP
request, and it ends with a blank line.

GET / HTITP/1.0
User—-Agent: curl/7.19.4 (universal-apple-darwinl0.0) libcurl/7.19.4 OpenSSL/0.9.81 zlib/1.2.3
Host: www.ietf.org

The HTTP response indicates the version of the server software used with the modules included. The Last-
Modified: header indicates that the requested document was modified about one week before the request. A
HTML document (not shown) is attached to the response. Note the blank line between the header of the HTTP
response and the attached MIME document. The Server: header line has been truncated in this output.

HTTP/1.1 200 OK

Date: Mon, 15 Mar 2010 13:40:38 GMT

Server: Apache/2.2.4 (Linux/SUSE) mod_ssl/2.2.4 OpenSSL/0.9.8e (truncated)
Last-Modified: Tue, 09 Mar 2010 21:26:53 GMT

Content-Length: 17019

Content-Type: text/html

<!DOCTYPE HTML PUBLIC .../HTML>

HTTP was initially designed to share self-contained text documents. For this reason, and to ease the implemen-
tation of clients and servers, the designers of HTTP chose to open a TCP connection for each HTTP request.
This implies that a client must open one TCP connection for each URI that it wants to retrieve from a server as
illustrated on the figure below. For a web page containing only text documents this was a reasonable design choice
as the client usually remains idle while the (human) user is reading the retrieved document.

Client Server
CONNEGTrequest CONNECT.indication
CONNECT.response
CONNECT.confirm
DATA request(Request) e . DATA.ind(Request)

DATA req(Response)

DATA.ind(Response)
DISCONNECT.ind
DISCONNECT.req

DISCONNECT.req
i | DISCONNECT.ind

Figure 3.20: HTTP 1.0 and the underlying TCP connection

However, as the web evolved to support richer documents containing images, opening a TCP connection for each
URI became a performance problem [Mogull1995]. Indeed, besides its HTML part, a web page may include
dozens of images or more. Forcing the client to open a TCP connection for each component of a web page
has two important drawbacks. First, the client and the server must exchange packets to open and close a TCP
connection as we will see later. This increases the network overhead and the total delay of completely retrieving
all the components of a web page. Second, a large number of established TCP connections may be a performance
bottleneck on servers.

This problem was solved by extending HTTP to support persistent TCP connections RFC 2616. A persistent
connection is a TCP connection over which a client may send several HTTP requests. This is illustrated in the
figure below.

52 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.ietf.org
http://curl.haxx.se/
http://tools.ietf.org/html/rfc2616.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

J!} =

Client ‘ Server

CONNECT.request COMMECT.indication

4
EGNNECT.confirm COMMECT.respanse

GET /HTTPL.1

u.:.rmmrmm.: Kaop-Alive HTTP/L.1 200 OK

Keap-Alive: timesut=1%, max=100
Connection: Keep-alive
GET imagesiloga.gif HTTPL.1
Connection: Keep-Alive N
HTTP/L.1 200 OK
Keep-alive: timeout=15, max=99
Connection: Keap-Alive

| " DISCONNECT.req
DISCONNECT.ing

DISCONNECT.req + DISCOMNECT.ind

Figure 3.21: HTTP 1.1 persistent connections

To allow the clients and servers to control the utilisation of these persistent TCP connections, HTTP 1.1 RFC
2616 defines several new HTTP headers :

* The Connection: header is used with the Keep-Alive argument by the client to indicate that it expects the
underlying TCP connection to be persistent. When this header is used with the Close argument, it indicates
that the entity that sent it will close the underlying TCP connection at the end of the HTTP response.

* The Keep-Alive: header is used by the server to inform the client about how it agrees to use the persistent
connection. A typical Keep-Alive: contains two parameters : the maximum number of requests that the
server agrees to serve on the underlying TCP connection and the timeout (in seconds) after which the server
will close an idle connection

The example below shows the operation of HTTP/1.1 over a persistent TCP connection to retrieve three URIs
stored on the same server. Once the connection has been established, the client sends its first request with the
Connection: keep-alive header to request a persistent connection.

GET / HTITP/1.1

Host: www.kame.net

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_2; en-us)
Connection: keep-alive

The server replies with the Connection: Keep-Alive header and indicates that it accepts a maximum of 100 HTTP
requests over this connection and that it will close the connection if it remains idle for 15 seconds.

HTTP/1.1 200 OK

Date: Fri, 19 Mar 2010 09:23:37 GMT

Server: Apache/2.0.63 (FreeBSD) PHP/5.2.12 with Suhosin-Patch
Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Length: 3462

Content-Type: text/html

<html>... </html>

The client sends a second request for the style sheet of the retrieved web page.

GET /style.css HTTP/1.1

Host: www.kame.net

Referer: http://www.kame.net/

User—-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac 0S X 10_6_2; en-us)
Connection: keep-alive

3.2. Application-level protocols 53
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc2616.html
http://tools.ietf.org/html/rfc2616.html

Computer Networking : Principles, Protocols and Practice, Release 0.25

The server replies with the requested style sheet and maintains the persistent connection. Note that the server only
accepts 99 remaining HTTP requests over this persistent connection.

HTTP/1.1 200 OK

Date: Fri, 19 Mar 2010 09:23:37 GMT

Server: Apache/2.0.63 (FreeBSD) PHP/5.2.12 with Suhosin-Patch
Last-Modified: Mon, 10 Apr 2006 05:06:39 GMT

Content-Length: 2235

Keep-Alive: timeout=15, max=99

Connection: Keep-Alive

Content-Type: text/css

Then the client automatically requests the web server’s icon '® , that could be displayed by the browser. This server
does not contain such URI and thus replies with a 404 HTTP status. However, the underlying TCP connection is
not closed immediately.

GET /favicon.ico HTTP/1.1

Host: www.kame.net

Referer: http://www.kame.net/

User—-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_2; en-us)
Connection: keep-alive

HTTP/1.1 404 Not Found

Date: Fri, 19 Mar 2010 09:23:40 GMT

Server: Apache/2.0.63 (FreeBSD) PHP/5.2.12 with Suhosin-Patch
Content-Length: 318

Keep-Alive: timeout=15, max=98

Connection: Keep-Alive

Content-Type: text/html; charset=1s0-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTIML 2.0//EN">

As illustrated above, a client can send several HTTP requests over the same persistent TCP connection. However,
it is important to note that all of these HTTP requests are considered to be independent by the server. Each HTTP
request must be self-contained. This implies that each request must include all the header lines that are required
by the server to understand the request. The independence of these requests is one of the important design choices
of HTTP. As a consequence of this design choice, when a server processes a HTTP request, it doesn’t’ use any
other information than what is contained in the request itself. This explains why the client adds its User-Agent:
header in all of the HTTP requests it sends over the persistent TCP connection.

However, in practice, some servers want to provide content tuned for each user. For example, some servers
can provide information in several languages or other servers want to provide advertisements that are targeted to
different types of users. To do this, servers need to maintain some information about the preferences of each user
and use this information to produce content matching the user’s preferences. HTTP contains several mechanisms
that enable to solve this problem. We discuss three of them below.

A first solution is to force the users to be authenticated. This was the solution used by FTP to control the files that
each user could access. Initially, user names and passwords could be included inside URIs RFC 1738. However,
placing passwords in the clear in a potentially publicly visible URI is completely insecure and this usage has now
been deprecated RFC 3986. HTTP supports several extension headers RFC 2617 that can be used by a server
to request the authentication of the client by providing his/her credentials. However, user names and passwords
have not been popular on web servers as they force human users to remember one user name and one password
per server. Remembering a password is acceptable when a user needs to access protected content, but users will
not accept the need for a user name and password only to receive targeted advertisements from the web sites that
they visit.

A second solution to allow servers to tune that content to the needs and capabilities of the user is to rely on
the different types of Accept-* HTTP headers. For example, the Accept-Language: can be used by the client to

18 Favorite icons are small icons that are used to represent web servers in the toolbar of Internet browsers. Microsoft added this feature
in their browsers without taking into account the W3C standards. See http://www.w3.0rg/2005/10/howto-favicon for a discussion on how to
cleanly support such favorite icons.

54 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://tools.ietf.org/html/rfc1738.html
http://tools.ietf.org/html/rfc3986.html
http://tools.ietf.org/html/rfc2617.html
http://www.w3.org/2005/10/howto-favicon

Computer Networking : Principles, Protocols and Practice, Release 0.25

indicate its preferred languages. Unfortunately, in practice this header is usually set based on the default language
of the browser and it is not possible for a user to indicate the language it prefers to use by selecting options on
each visited web server.

The third, and widely adopted, solution are HTTP cookies. HTTP cookies were initially developed as a private
extension by Netscape. They are now part of the standard RFC 6265. In a nutshell, a cookie is a short string that
is chosen by a server to represent a given client. Two HTTP headers are used : Cookie: and Set-Cookie:. When a
server receives an HTTP request from a new client (i.e. an HTTP request that does not contain the Cookie: header),
it generates a cookie for the client and includes it in the Ser-Cookie: header of the returned HTTP response. The
Set-Cookie: header contains several additional parameters including the domain names for which the cookie is
valid. The client stores all received cookies on disk and every time it sends a HTTP request, it verifies whether
it already knows a cookie for this domain. If so, it attaches the Cookie: header to the HTTP request. This is
illustrated in the figure below with HTTP 1.1, but cookies also work with HTTP 1.0.

Client Servar

GET { HTTP1.1

HTTP/1.0 200 OK
Set-Cookie: machin

-
Browser saves cookie
Hormal response

GET fdoc HTTPL.1
Cookie: machin

-

GET /images/t.gif HTTP1.1

MTTF/1.1 200 OK

Response is function
of URL and cookie

Cookie: machi

Browser sends cookie in all
requests sent to server

Figure 3.22: HTTP cookies

Note: Privacy issues with HTTP cookies

The HTTP cookies introduced by Netscape are key for large e-commerce websites. However, they have also
raised many discussions concerning their potential misuses. Consider ad.com, a company that delivers lots of
advertisements on web sites. A web site that wishes to include ad.com‘s advertisements next to its content will
add links to ad.com inside its HTML pages. If ad.com is used by many web sites, ad.com could be able to track the
interests of all the users that visit its client websites and use this information to provide targeted advertisements.
Privacy advocates have even sued online advertisement companies to force them to comply with the privacy
regulations. More recent related technologies also raise privacy concerns

3.3 Writing simple networked applications

Networked applications were usually implemented by using the socker API. This API was designed when TCP/IP
was first implemented in the Unix BSD operating system [Sechrest] [LFJLMT], and has served as the model for
many APIs between applications and the networking stack in an operating system. Although the socket API is
very popular, other APIs have also been developed. For example, the STREAMS API has been added to several
Unix System V variants [Rago1993]. The socket API is supported by most programming languages and several
textbooks have been devoted to it. Users of the C language can consult [DC2009], [Stevens1998], [SFR2004] or
[Kerrisk2010]. The Java implementation of the socket API is described in [CD2008] and in the Java tutorial. In
this section, we will use the python implementation of the socket API to illustrate the key concepts. Additional
information about this API may be found in the socket section of the python documentation .

3.3. Writing simple networked applications 55
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://en.wikipedia.org/wiki/Netscape
http://tools.ietf.org/html/rfc6265.html
http://en.wikipedia.org/wiki/Netscape
http://www.nytimes.com/2001/09/04/technology/04COOK.html
http://epic.org/privacy/internet/cookies/
http://www.eff.org/deeplinks/2009/09/new-cookie-technologies-harder-see-and-remove-wide
http://en.wikipedia.org/wiki/Berkeley_Software_Distribution
http://java.sun.com/docs/books/tutorial/networking/sockets/index.html
http://www.python.org
http://en.wikipedia.org/wiki/Berkeley_sockets
http://docs.python.org/library/socket.html
http://docs.python.org/

Computer Networking : Principles, Protocols and Practice, Release 0.25

The socket API is quite low-level and should be used only when you need a complete control of the network
access. If your application simply needs, for instance, to retrieve data with HTTP, there are much simpler and
higher-level APIs.

A detailed discussion of the socket API is outside the scope of this section and the references cited above provide
a detailed discussion of all the details of the socket API. As a starting point, it is interesting to compare the
socket API with the service primitives that we have discussed in the previous chapter. Let us first consider the
connectionless service that consists of the following two primitives :

* DATA.request(destination,message) is used to send a message to a specified destination. In this socket API,
this corresponds to the send method.

* DATA.indication(message) is issued by the transport service to deliver a message to the application. In the
socket API, this corresponds to the return of the recv method that is called by the application.

The DATA primitives are exchanged through a service access point. In the socket API, the equivalent to the service
access point is the socket. A socket is a data structure which is maintained by the networking stack and is used by
the application every time it needs to send or receive data through the networking stack. The socket method in the
python API takes two main arguments :

* an address family that specifies the type of address family and thus the underlying networking
stack that will be used with the socket. This parameter can be either socket.AF_INET or
socket .AF_INET6. socket.AF_INET, which corresponds to the TCP/IPv4 protocol stack is the
default. socket .AF_INET6 corresponds to the TCP/IPv6 protocol stack.

* a type indicates the type of service which is expected from the networking stack. socket . STREAM (the
default) corresponds to the reliable bytestream connection-oriented service. socket . DGRAM corresponds
to the connectionless service.

A simple client that sends a request to a server is often written as follows in descriptions of the socket API.

A simple client of the connectionless service
import socket

import sys

HOSTIP=sys.argv([l]

PORT=int (sys.argv([2])

MSG="Hello, World!"

s = socket.socket (socket.AF_INET, socket.SOCK_DGRAM)
s.sendto (MSG, (HOSTIP, PORT))

A typical usage of this application would be

python client.py 127.0.0.1 12345

where 127.0.0.1 is the IPv4 address of the host (in this case the localhost) where the server is running and
12345 the port of the server.

The first operation is the creation of the socket. Two parameters must be specified while creating a socket.
The first parameter indicates the address family and the second the socket type. The second operation is the
transmission of the message by using sendto to the server. It should be noted that sendto takes as arguments
the message to be transmitted and a tuple that contains the IPv4 address of the server and its port number.

The code shown above supports only the TCP/IPv4 protocol stack. To use the TCP/IPv6 protocol stack the
socket must be created by using the socket .AF_INET6 address family. Forcing the application devel-
oper to select TCP/IPv4 or TCP/IPv6 when creating a socket is a major hurdle for the deployment and usage
of TCP/IPv6 in the global Internet [Cheshire2010]. While most operating systems support both TCP/IPv4 and
TCP/IPv6, many applications still only use TCP/IPv4 by default. In the long term, the socket API should be
able to handle TCP/IPv4 and TCP/IPv6 transparently and should not force the application developer to always
specify whether it uses TCP/IPv4 or TCP/IPv6.

Another important issue with the socket API as supported by python is that it forces the application to deal with
IP addresses instead of dealing directly with domain names. This limitation dates from the early days of the
socket API in Unix 4.2BSD. At that time, the DNS was not widely available and only IP addresses could be
used. Most applications rely on DNS names to interact with servers and this utilisation of the DNS plays a very
important role to scale web servers and content distribution networks. To use domain names, the application needs

56 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.python.org
http://www.python.org

Computer Networking : Principles, Protocols and Practice, Release 0.25

to perform the DNS resolution by using the getaddrinfo method. This method queries the DNS and builds
the sockaddr data structure which is used by other methods of the socket API. In python, getaddrinfo takes
several arguments :

* a name that is the domain name for which the DNS will be queried
* an optional port number which is the port number of the remote server

e an optional address family which indicates the address family used for the DNS request.
socket .AF_INET (resp. socket .AF_INET6) indicates that an IPv4 (IPv6) address is expected. Fur-
thermore, the python socket API allows an application to use socket .AF_UNSPEC to indicate that it is
able to use either IPv4 or IPv6 addresses.

* an optional socket type which can be either socket . SOCK_DGRAM or socket . SOCK_STREAM

In today’s Internet hosts that are capable of supporting both IPv4 and IPv6, all applications should be
able to handle both IPv4 and IPv6 addresses. When used with the socket .AF_UNSPEC parameter, the
socket .getaddrinfo method returns a list of tuples containing all the information to create a socket.

import socket
socket.getaddrinfo (' www.example.net’, 80, socket .AF_UNSPEC, socket .SOCK_STREAM)
[(30, 1, 6, "', ("2001:dp8:3080:3::2", 80, 0, 0)),

(2, 1, 6, "', (7203.0.113.225", 80))]1

In the example above, socket . getaddrinfo returns two tuples. The first one corresponds to the sockaddr
containing the IPv6 address of the remote server and the second corresponds to the IPv4 information. Due to some
peculiarities of IPv6 and IPv4, the format of the two tuples is not exactly the same, but the key information in
both cases are the network layer address (2001 : db8:3080:3::2and 203.0.113.225) and the port number
(80). The other parameters are seldom used.

socket .getaddrinfo can be used to build a simple client that queries the DNS and contact the server by
using either IPv4 or IPv6 depending on the addresses returned by the socket .getaddrinfo method. The
client below iterates over the list of addresses returned by the DNS and sends its request to the first destination
address for which it can create a socket. Other strategies are of course possible. For example, a host running in
an IPv6 network might prefer to always use IPv6 when IPv6 is available '°. Another example is the happy eyeballs
approach which is being discussed within the IETF [WY2011]. For example, [WY2011] mentions that some web
browsers try to use the first address returned by socket .getaddrinfo. If there is no answer within some
small delay (e.g. 300 milliseconds), the second address is tried.

import socket

import sys

HOSTNAME=sys.argv|[1l]

PORT=int (sys.argv([2])

MSG="Hello, World!"

for a in socket.getaddrinfo (HOSTNAME, PORT, socket.AF_UNSPEC, socket.SOCK_DGRAM, 0, socket.AI_PASST
address_family, sock_type,protocol, canonicalname, sockaddr=a

try:

s = socket.socket (address_family, sock_type)
except socket.error:

s = None

print "Could not create socket"
continue
if s is not None:
s.sendto (MSG, sockaddr)
break

Now that we have described the utilisation of the socket API to write a simple client using the connectionless
transport service, let us have a closer look at the reliable byte stream transport service. As explained above, this
service is invoked by creating a socket of type socket . SOCK_STREAM. Once a socket has been created, a
client will typically connect to the remote server, send some data, wait for an answer and eventually close the
connection. These operations are performed by calling the following methods :

19 Most operating systems today by default prefer to use IPv6 when the DNS returns both an IPv4 and an IPv6 address for a name. See
http://ipv6int.net/systems/ for more detailed information.

3.3. Writing simple networked applications 57
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.python.org
http://www.python.org
http://www.ietf.org
http://ipv6int.net/systems/

Computer Networking : Principles, Protocols and Practice, Release 0.25

* socket.connect : this method takes a sockaddr data structure, typically returned by
socket .getaddrinfo, as argument. It may fail and raise an exception if the remote server cannot
be reached.

* socket.send: this method takes a string as argument and returns the number of bytes that were actually
sent. The string will be transmitted as a sequence of consecutive bytes to the remote server. Applications
are expected to check the value returned by this method and should resend the bytes that were not send.

* socket.recv: this method takes an integer as argument that indicates the size of the buffer that has been
allocated to receive the data. An important point to note about the utilisation of the socket . recv method
is that as it runs above a bytestream service, it may return any amount of bytes (up to the size of the buffer
provided by the application). The application needs to collect all the received data and there is no guarantee
that some data sent by the remote host by using a single call to the socket . send method will be received
by the destination with a single call to the socket . recv method.

* socket.shutdown : this method is used to release the underlying connection. On some platforms, it is
possible to specify the direction of transfer to be released (e.g. socket . SHUT_WR to release the outgoing
direction or socket . SHUT_RDWR to release both directions).

* socket.close: this method is used to close the socket. It calls socket . shutdown if the underlying
connection is still open.

With these methods, it is now possible to write a simple HTTP client. This client operates over both IPv6 and IPv4
and writes the homepage of the remote server on the standard output. It also reports the number of socket . recv
calls that were used to retrieve the homepage ** .

#!/usr/bin/python
A simple http client that retrieves the first page of a web site

import socket, sys

if len(sys.argv) !=3 and len(sys.argv) !=2:
print "Usage : ",sys.argv[0]," hostname [port]"

hostname = sys.argv([1l]
if len(sys.argv)==
port=int (sys.argv[2])
else:
port = 80

READBUF=16384 # size of data read from web server
s=None

for res in socket.getaddrinfo (hostname, port, socket.AF_UNSPEC, socket.SOCK_STREAM) :
af, socktype, proto, canonname, sa = res
create socket
try:
s = socket.socket (af, socktype, proto)
except socket.error:
s = None
continue
connect to remote host
try:
print "Trying "+sal[0]
s.connect (sa)
except socket.error, msg:
socket failed
s.close ()
s = None
continue
if s

20 Experiments with the client indicate that the number of socket.recv calls can vary at each run. There are various factors that influence
the number of such calls that are required to retrieve some information from a server. We’ll discuss some of them after having explained the
operation of the underlying transport protocol.

58 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

print "Connected to "+sal[0]
s.send ('GET / HTTP/1.1\r\nHost:’ +hostname+’ \r\n\r\n’)
finished=False
count=0
while not finished:
data=s.recv (READBUF)
count=count+1
if len(data) !=0:
print repr (data)
else:
finished=True
s.shutdown (socket . SHUT_WR)
s.close ()
print "Data was received in ",count," recv calls"
break

As mentioned above, the socket API is very low-level. This is the interface to the transport service. For a common
and simple task, like retrieving a document from the Web, there are much simpler solutions. For example, the
python standard library includes several high-level APIs to implementations of various application layer protocols
including HTTP. For example, the httplib module can be used to easily access documents via HTTP.

#!/usr/bin/python
A simple http client that retrieves the first page of a web site, using
the standard httplib library

import httplib, sys
if len(sys.argv) !=3 and len(sys.argv) !=2:

print "Usage : ",sys.argv[0]," hostname [port]"
sys.exit (1)

path = 7/’

hostname = sys.argv[1l]
if len(sys.argv)==

port = int(sys.argv[2])
else:

port = 80

conn = httplib.HTTPConnection (hostname, port)
conn.request ("GET", path)

r = conn.getresponse ()

print "Response is ()" % (r.status, r.reason)
print r.read()

Another module, urllib2 allows the programmer to directly use URLs. This is much more simpler than directly
using sockets.

But simplicity is not the only advantage of using high-level libraries. They allow the programmer to manipulate
higher-level concepts (e.g. I want the content pointed by this URL) but also include many features such as
transparent support for the utilisation of 7LS or IPv6.

The second type of applications that can be written by using the socket API are the servers. A server is typically
runs forever waiting to process requests coming from remote clients. A server using the connectionless will
typically start with the creation of a socket with the socket .socket. This socket can be created above the
TCP/IPv4 networking stack (socket .AF_INET) or the TCP/IPv6 networking stack (socket .AF_INET6),
but not both by default. If a server is willing to use the two networking stacks, it must create two threads, one to
handle the TCP/IPv4 socket and the other to handle the TCP/IPv6 socket. It is unfortunately impossible to define
a socket that can receive data from both networking stacks at the same time with the python socket APL

A server using the connectionless service will typically use two methods from the socket API in addition to those
that we have already discussed.

* socket.bind is used to bind a socket to a port number and optionally an IP address. Most servers will
bind their socket to all available interfaces on the servers, but there are some situations where the server

3.3. Writing simple networked applications 59
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.python.org
http://docs.python.org/library/
http://docs.python.org/library/httplib.html
http://docs.python.org/library/urllib2.html
http://www.python.org

Computer Networking : Principles, Protocols and Practice, Release 0.25

may prefer to be bound only to specific IP addresses. For example, a server running on a smartphone might
want to be bound to the IP address of the WiFi interface but not on the 3G interface that is more expensive.

* socket.recvfrom is used to receive data from the underlying networking stack. This method returns
both the sender’s address and the received data.

The code below illustrates a very simple server running above the connectionless transport service that simply
prints on the standard output all the received messages. This server uses the TCP/IPv6 networking stack.

import socket, sys

PORT=int (sys.argv([1l])
BUFF_LEN=8192

s=socket .socket (socket .AF_INET6, socket.SOCK_DGRAM)
s.bind(("’,PORT,0,0))
while True:
data, addr = s.recvfrom(BUFF_LEN)
if data=="STOP"
print "Stopping server"
sys.exit (0)
print "received from ", addr, " message:", data

A server that uses the reliable byte stream service can also be built above the socket API. Such a server starts
by creating a socket that is bound to the port that has been chosen for the server. Then the server calls the
socket . listen method. This informs the underlying networking stack of the number of transport connection
attempts that can be queued in the underlying networking stack waiting to be accepted and processed by the
server. The server typically has a thread waiting on the socket . accept method. This method returns as soon
as a connection attempt is received by the underlying stack. It returns a socket that is bound to the established
connection and the address of the remote host. With these methods, it is possible to write a very simple web server
that always returns a 404 error to all GET requests and a 501 errors to all other requests.

An extremely simple HITP server
import socket, sys, time

Server runs on all IP addresses by default
HOST=""
8080 can be used without root priviledges
PORT=8080
BUFLEN=8192 # buffer size
s =
try:
print "Starting HTTP server on port ", PORT
s.bind ((HOST,PORT, 0,0))
except socket.error
print "Cannot bind to port :",PORT
sys.exit (-1)

socket .socket (socket .AF_INET6, socket.SOCK_STREAM)

s.listen(10) # maximum 10 queued connections

while True:
a real server would be multithreaded and would catch exceptions

conn, addr = s.accept ()

print "Connection from ", addr

data=""

while not ’'\n’ in data : # wait until first line has been received

data = data+conn.recv (BUFLEN)
if data.startswith (’GET’) :
GET request
conn.send (’HTTP/1.0 404 Not Found\r\n’)
a real server should serve files
else:

60 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

Computer Networking : Principles, Protocols and Practice, Release 0.25

other type of HTTP request
conn.send ('HTTP/1.0 501 Not implemented\r\n’)

now = time.strftime ("%a, $b %Y $H:%M:%S", time.localtime())
conn.send (’Date: ' + now +’\r\n’)

conn.send(’ Server: Dummy-HTTP-Server\r\n’)

conn.send (" \r\n’)

conn.shutdown (socket . SHUT_RDWR)

conn.close ()

This server is far from a production-quality web server. A real web server would use multiple threads and/or
non-blocking IO to process a large number of concurrent requests >' . Furthermore, it would also need to handle
all the errors that could happen while receiving data over a transport connection. These are outside the scope
of this section and additional information on more complex networked applications may be found elsewhere.
For example, [RG2010] provides an in-depth discussion of the utilisation of the socket API with python while
[SFR2004] remains an excellent source of information on the socket API in C.

3.4 Summary

In this chapter, we began by describing the client-server and peer-to-peer models. We then described, in detail,
three important families of protocols in the application layer. The Internet identifies hosts by using 32 bits IPv4
or 128 bits [Pv6. However, using these addresses directly inside applications would be difficult for the humans
that use them. We have explained how the Domain Name System allows the mapping of names to corresponding
addresses. We have described both the DNS protocol that runs above UDP and the naming hierarchy. We have
then discussed one of the oldest applications on the Internet : electronic mail. We have described the format of
email messages and described the SMTP protocol that is used to send email messages as well as the POP protocol
that is used by email recipients to retrieve their email messages from their server. Finally, we have explained the
protocols that are used in the world wide web and the HyperText Transfer Protocol in particular.

3.5 Exercises

This section contains several exercises and small challenges about the application layer protocols.

3.5.1 The Domain Name System

The Domain Name System (DNS) plays a key role in the Internet today as it allows applications to use fully
qualified domain names (FQDN) instead of IPv4 or IPv6 addresses. Many tools allow to perform queries through
DNS servers. For this exercise, we will use dig which is installed on most Unix systems.

A typical usage of dig is as follows

dig @server -t type fqgdn

where
e server is the IP address or the name of a DNS server or resolver

* type is the type of DNS record that is requested by the query such as NS for a nameserver, A for an IPv4
address, AAAA for an IPv6 address, MX for a mail relay, ...

* fqdn is the fully qualified domain name being queried

1. What are the IP addresses of the resolvers that the dig implementation you are using relies on > ?

21 There are many production quality web servers software available. apache is a very complex but widely used one. thttpd and lighttpd are
less complex and their source code is probably easier to understand.
22 On a Linux machine, the Description section of the dig manpage tells you where dig finds the list of nameservers to query.

3.4. Summary 61
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://linux.die.net/man/1/dig
http://en.wikipedia.org/wiki/Comparison_of_web_server_software
http://www.apache.org
http://www.acme.com/software/thttpd/
http://www.lighttpd.net/

Computer Networking : Principles, Protocols and Practice, Release 0.25

2. What is the IP address that corresponds to inl.info.ucl.ac.be 7 Which type of DNS query does dig send to
obtain this information ?

3. Which type of DNS request do you need to send to obtain the nameservers that are responsible for a given
domain ?

4. What are the nameservers that are responsible for the be top-level domain ? Where are they located ? Is it
possible to use IPv6 to query them ?

5. When run without any parameter, dig queries one of the root DNS servers and retrieves the list of the the
names of all root DNS servers. For technical reasons, there are only 13 different root DNS servers. This
information is also available as a text file from http://www.internic.net/zones/named.root What are the IP
addresses of all these servers. Can they be queried by using IPv6 ** ?

6. Assume now that you are residing in a network where there is no DNS resolver and that you need to start
your query from the DNS root.

» Use dig to send a query to one of these root servers to find the IP address of the DNS server(s) (NS
record) responsible for the org top-level domain

* Use dig to send a query to one of these DNS servers to find the IP address of the DNS server(s) (NS
record) responsible for root-servers.org*

* Continue until you find the server responsible for www.root-servers.org
* What is the lifetime associated to this IP address ?

7. Perform the same analysis for a popular website such as www.google.com. What is the lifetime associated
to this IP address ? If you perform the same request several times, do you always receive the same answer
? Can you explain why a lifetime is associated to the DNS replies ?

8. Use dig to find the mail relays used by the uclouvain.be and gmail.com domains. What is the TTL of these
records (use the +##lid option when using dig) ? Can you explain the preferences used by the MX records.
You can find more information about the MX records in RFC 974

9. Use dig to query the IPv6 address (DNS record AAAA) of the following hosts
* wWww.sixxs.net
* www.google.com
* ipv6.google.com

10. When dig is run, the header section in its output indicates the id the DNS identifier used to send the query.
Does your implementation of dig generates random identifiers ?

dig -t MX gmail.com

; <<>> DiG 9.4.3-P3 <<>> -t MX gmail.com

;7 global options: printcmd

;; Got answer:

; ;7 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 25718

11. A DNS implementation such as dig and more importantly a name resolver such as bind or unbound, always
checks that the received DNS reply contains the same identifier as the DNS request that it sent. Why is this
so important ?

* Imagine an attacker who is able to send forged DNS replies to, for example, associate
www.bigbank.com to his own IP address. How could he attack a DNS implementation that

— sends DNS requests containing always the same identifier
— sends DNS requests containing identifiers that are incremented by one after each request

— sends DNS requests containing random identifiers

23 You may obtain additional information about the root DNS servers from http:/www.root-servers.org

62 Chapter 3. The application Layer
Saylor URL: http://www.saylor.org/courses/cs402/ The Saylor Foundation
() T

http://www.internic.net/zones/named.root
http://tools.ietf.org/html/rfc974.html
https://www.isc.org/software/bind
http://www.unbound.net
http://www.root-servers.org

Computer Networking : Principles, Protocols and Practice, Release 0.25

12. The DNS protocol can run over UDP and over TCP. Most DNS servers prefer to use UDP because it
consumes fewer resources on the server. However, TCP is useful when a large answer is expected or when
a large answer must. You can force the utilisation of TCP by using dig +cp. Use TCP and UDP to query a
root DNS server. Is it faster to receive an answer via TCP or via UDP ?

3.5.2 Internet email protocols

Many Internet protocols are ASCII-based protocols where the client sends requests as one line of ASCII text
terminated by CRLF and the server replies with one of more lines of ASCII text. Using such ASCII messages has
several advantages compared to protocols that rely on binary encoded messages

* the messages exchanged by the client and the server can be easily understood by a developer or network
engineer by simply reading the messages

* it is often easy to write a small prototype that implements a part of the protocol

* it is possible to test a server manually by using telnet Telnet is a protocol that allows to obtain a terminal on
a remote server. For this, telnet opens a TCP connection with the remote server on port 23. However, most
telnet implementations allow the user to specify an alternate port as telnet hosts port When used with a port
number as parameter, felnet opens a TCP connection to the remote host on the specified port. felnet can
thus be used to test any server using an ASCII-based protocol on top of TCP. Note that if you need to stop
a running telnet session, Ctrl-C will not work as it will be sent by felnet to the remote host over the TCP
connection. On many felnet implementations you can type Ctrl-] to freeze the TCP connection and return
to the telnet interface.

1. Assume that Alice sends an email from her alice @yahoo.com account to Bob who uses bob@yahoo.com.
Which protocols are involved in the transmission of this email ?

2. Same question when Alice sends an email to her friend Trudy, trudy @ gmail.com.

3. Before the advent of webmail and feature rich mailers, email was written and read by using command line
tools on servers. Using your account on sirius.info.ucl.ac.be use the /bin/mail command line tool to send
an email to yourself on this host. This server stores local emails in the /var/mail directory with one file per
user. Check with /bin/more the content of your mail file and try to understand which lines have been added
by the server in the header of your email.

4. Use your preferred email tool to send an email message to yourself containing a single line of text. Most
email tools have the ability to show the source of the message, use this function to look at the message that
you sent and the message that you received. Can you find an explanation for all the lines that have been
added to your single line email >* ?

5. The first version of the SMTP protocol was defined in RFC 821. The current standard for SMTP is defined
in RFC 5321 Considering only RFC 821 what are the main commands of the SMTP protocol *° ?

6. When using SMTP, how do you recognise a positive reply from a negative one ?

7. A SMTP server is a daemon process that can fail due to a bug or lack of resources (e.g. memory). Network
administrators often install tools %° that regularly connect to their servers to check that they are operating
correctly. A simple solution is to open a TCP connection on port 25 to the SMTP server’s host >/ . If the
connection is established, this implies that there is a process listening. What is the reply sent by the SMTP
server when you type the following command ?

telnet cnp3.info.ucl.ac.be 25

24 Since RFC 821, SMTP has evolved a lot due notably to the growing usage of email and the need to protect the email system against
spammers. It is unlikely that you will be able to explain all the additional lines that you will find in email headers, but we’ll discuss them
together.

25 A shorter description of the SMTP protocol may be found on wikipedia at http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

26 There are many monitoring tools available. nagios is a very popular open source monitoring system.

27 Note that using relnet to connect to a remote host on port 25 may not work in all networks. Due to the spam problem, many ISP networks
do not allow their customers to