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Abstract. In 1857, Cayley showed that certain sequences, now called Cayley com-
positions, are equinumerous with certain partitions into powers of 2. In this paper we
give a simple bijective proof of this result and a geometric generalization to equality
of Ehrhart polynomials between two convex polytopes. We then apply our results
to give a new proof of Braun’s conjecture proved recently by the authors [KP2].

Introduction and main results

Partition Theory is a classical field with a number of advanced modern results and
applications. Its long and tumultuous history left behind a number of beautiful
results which are occasionally brought to light to wide acclaim. The story of the so
called Cayley compositions is a prime example of this. Introduced and studied by
Cayley in 1857 [Cay], they were rediscovered by Minc [Minc], and remained largely
forgotten until Andrews, Paule, Riese and Strehl [APRS] resurrected and christened
them in 2001. This is when things became really interesting.

Theorem 1 (Cayley, 1857). The number of integer sequences (a1, . . . , an) such that
1 ≤ a1 ≤ 2, and 1 ≤ ai+1 ≤ 2ai for 1 ≤ i < n, is equal to the total number of
partitions of integers N ∈ {0, 1, . . . , 2n − 1} into parts 1, 2, 4, . . . , 2n−1.

Our first result is a long elusive bijective proof of Cayley’s theorem, and its several
extensions. Our bijection construction is geometric, based on our approach in [P1].

Denote by An the set of sequences (a1, . . . , an) satisfying the conditions of the
theorem, which are called Cayley compositions. Denote by Bn the set of partitions
into powers of 2 as in the theorem, which we call Cayley partitions. Now Theorem 1
states that |An| = |Bn|. For example,

A2 =
{
(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4)

}
, B2 =

{
21, 2, 13, 12, 1, ∅

}
,

so |A2| = |B2| = 6. Following [BBL], define the Cayley polytope An to be the convex
hull of all Cayley compositions (a1, . . . , an) ∈ Rn.

The main result of this paper is the following geometric extension of Theorem 1.
Recall that the Ehrhart polynomial EP (t) of a lattice polytope P ⊂ Rn is defined by

EP (k) = # {k P ∩ Zn} ,
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where kP denotes the k-fold dilation of P , k ∈ N (see e.g. [Bar]).

Theorem 2. Let Bn be the set of Cayley partitions, where a partition of the form
(2n−1)m1(2n−2)m2 . . . 1mn is identified with an integer point (m1,m2, . . . ,mn) ∈ Rn.
Now let Bn = convBn. Then EAn(t) = EBn(t).

In particular, when t = 1, we obtain Cayley’s theorem. Our proof is based on an
explicit volume-preserving map φ : Bn → An, which satisfies a number of interest-
ing properties. In particular, when restricted to integer points, this map gives the
bijection φ : Bn → An mentioned above (see Proposition 6).

In [BBL], Ben Braun made an interesting conjecture about the volume ofAn, which
was recently proved by the authors [KP2]. Denote by Cn the set of connected graphs
on n nodes, and let Cn =

∣∣Cn∣∣.
Theorem 3 ([KP2], formerly Braun’s conjecture). Let An ⊂ Rn be the set of Cayley
compositions, and let An = convAn be the Cayley polytope. Then volAn = Cn+1/n!.

Combined with Theorem 2, we immediately have volBn = volAn, and conclude:

Corollary 4. Let Bn be the polytope defined above. Then volBn = Cn+1/n!.

Curiously, one can also use volBn = volAn in reverse, and derive Theorem 3 from
Theorem 2 and known results on Stanley-Pitman polytopes (see below).

The rest of this paper is structured as follows. In Section 1 we prove Theorems 1
and 2 using an explicit bijection φ. Some applications are given in Section 2, followed
by a new proof of Theorem 3 in Section 3. We finish with final remarks in Section 4.

1. Bijection construction

Recall from [BBL, KP2] (or observe directly from the definition) that Cayley polytope
An ⊂ Rn is defined by the following inequalities:

1 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 2x1 , . . . , 1 ≤ xn ≤ 2xn−1 .

Consider a basis

e1 = (1, 2, 4, . . . , 2n−1), e2 = (0, 1, 2, . . . , 2n−2), . . . , en = (0, 0, . . . , 1),

and a map φ : Rn → Rn defined as follows:

φ(b1, b2, . . . , bn) = (2, 4, . . . , 2n) −
n∑

i=1

bie i .

Now observe that φ−1
(
An

)
is a polytope defined by the following inequalities:

y1 ≤ 1, 2y1 + y2 ≤ 3, 4y1 + 2y2 + y3 ≤ 7, . . . , 2n−1y1 + . . .+ 2yn−1 + yn ≤ 2n − 1

and y1, y2, . . . , yn ≥ 0.

Denote this polytope Yn, and by Yn the set of integer points in Yn.

Lemma 5. Polytope Bn = convBn coincides with Yn = φ−1
(
An

)
.
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First proof. Observe that Bn contains Yn, by construction of integer points in Rn

corresponding to partitions into powers of 2 as in Theorem 2, and the last (long)
inequality defining φ−1(An). On the other hand, observe that the first (n − 1) in-
equalities on Yn hold for Cayley partitions Bn by integrality. On the other hand,
since φ is an affine lattice-preserving linear transformation, all integer points in An

are mapped into integer points in Yn. Thus all vertices of Yn are integer points. This
immediately implies that Yn = convBn. �

Second proof. As in the previous proof, vertices of Yn must be integral and thus lie
in Bn from the long inequality. It now follows from Theorem 1 that An (and thus
Yn) has the same number of points as Bn. Therefore, Yn has no integer points other
than those in Bn, which implies that Yn is a convex hull of the whole Bn. �

The second proof is shorter as it allows one to avoid checking the first n − 1
inequalities, but it relies on Cayley’s theorem. Of course, to obtain a new bijective
proof of Theorem 1 we would need to go with the first proof.

Proposition 6. Map φ : Bn → An is an affine volume-preserving map. Furthermore,
when restricted to integer points, φ : Bn → An is a bijection. More generally, when
restricted to lattice Zn/k and then dilated by k, the map kφ is a bijection between
{kBn ∩ Zn} and {kAn ∩ Zn}, for all k ∈ N.

The proposition immediately implies both Theorems 1 and 2. For example, bijec-
tion φ : B2 → A2 is given as follows:

21 = (1, 1) → (1, 1), 2 = (1, 0) → (1, 2), 13 = (0, 3) → (2, 1),

12 = (0, 2) → (2, 2), 1 = (0, 1) → (2, 3), ∅ = (0, 0) → (2, 4).

Proof of Proposition 6. The affine map φ is well defined by Lemma 5. After a shift,
map φ is a unimodular with integer coefficients. This implies that it is volume-
preserving, and maps lattice Zn/k into itself, which implies the result. �

2. Three quick applications

Here are some interesting consequences of the bijection φ defined above.

Proposition 7. Bijection φ maps Cayley partitions in Bn with one part of size 2n−1

into Cayley compositions (a1, . . . , an) ∈ An, such that a1 = 1.

The proof is trivial, and the numerical result implied by the proposition is simply
Theorem 1 for n− 1.

Corollary 8. The number of Cayley partitions of m in Bn is equal to the number of
Cayley compositions (a1, . . . , an) ∈ An, such that an = 2n −m.

Proof. First, observe by induction, that we can write φ−1 : An → Bn as

φ−1 : (a1, a2, a3, . . .) → (2− a1, 2a1 − a2, 2a2 − a3, . . .).
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Now observe that the size of the partition in this notation is given by

m =2n−1b1 + 2n−2b2 + . . .+ bn = 2n−1(2− a1) + 2n−2(2a1 − a2)

+ 2n−3(2a2 − a3) + . . .+ (2an−1 − an) = 2n − an ,

as desired. �
Corollary 9. For any integer k, 1 ≤ k ≤ n, the number of Cayley partitions in Bn

with no part of size 2k is equal to the number of Cayley compositions (a1, . . . , an) ∈ An,
such that ak = 2ak−1 for k ≥ 2, and a1 = 2 for k = 1.

The corollary follows immediately from the explicit formula for map φ−1 given in
the proof above.

3. Stanley-Pitman polytopes

In this section we give a new proof of Theorem 3, via the polytopes defined by Pitman
and Stanley [SP] as follows.

Fix c1, . . . , cn > 0. Define Πn(c1, . . . , cn) ⊂ Rn by the following inequalities:

xi ≥ 0, x1 + . . .+ xi ≤ c1 + . . .+ ci, for all i = 1..n.

Theorem 10 ([SP]). We have:

n! volΠn

(
1, q . . . , qn−1

)
= q(

n
2) Invn+1

(
1

q

)
,

where Invn(t) is the inversion polynomial (see e.g. [GJ]).

The proof of the theorem given in [SP] is highly non-trivial, and is based on trian-
gulations of certain cones, and the properties of parking functions. However, we can
now use Theorem 10 and Lemma 5 to obtain a new proof of Theorem 3, completely
circumventing the original proof given in [KP2].

Proof of Theorem 3. Take q = 1
2
in Theorem 10, and recall that Invn(2) = Cn,

see [GJ, MR]. Now, in the definition above, take xi = yi/2
i−1, and check that the

inequalities definingΠn in this case coincide with those definingYn = Bn (see above).
We conclude:

n! volBn =
(
1 · 2 · 22 · · · 2n−1

)
· n! volΠn

(
1,

1

2
, . . . ,

1

2n−1

)
= 2(

n
2) ·

(
1

2

)(n2)
Invn+1(2) = Cn+1 ,

as desired. �

4. Final remarks and open problems

4.1. Cayley’s original statement in [Cay] (see also [APRS]) is somewhat different
from Theorem 1, but easily equivalent (simply remove all parts 1′). It also has the
second part which follows along similar lines. Let us mention that Cayley’s original
proof uses only basic generating functions and is relatively short.
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4.2. After reading the elementary bijection φ construction above, the reader may
conclude that Cayley’s theorem (Theorem 1) is completely straightforward. This is
perhaps in sharp contrast with the first impression of Cayley’s theorem, which (at
least to us) appears very surprising. The explanation is as much mathematical as it
is semantic. The apparently difficult structure of Cayley compositions is immediately
clear from the definition: they are integer points in a difficult to describe polytopeAn,
combinatorially (but not metrically!) equivalent to a cube [KP2]. On the other hand,
the elementary description of Cayley partitions, defined as partitions into certain
parts, evokes the image of a simplex Qn, defined by the inequalities

2n−1z1 + 2n−2z2 + . . .+ 2zn−1 + zn ≤ 2n − 1, and z1, . . . , zn ≥ 0.

(cf. the definition of Yn in Section 1). The problem, however, is that integer points
in Qn are exactly those in Bn, while polytopes An and Bn are equally complicated.
The moral of the story can be summarized as follows: the inherent complexity of
integer points in polyhedra can obscure a natural bijections between such sets. We
refer to [Bar] for an introduction to integer points in polytopes, and further references.

4.3. In the past decade, fueled by several beautiful applications such as lecture
hall partition identities [BE1, BE2, Yee] and Cayley compositions, there has been
a number of studies of partitions and compositions defined by inequalities (see e.g.
[And, CS, CSW, P1]). Along the way a number of interesting proofs and extensions
of Theorem 1 were also established [APRS, BBL, CLS2, CLS1]. Although many of
these results follow directly from the structure of bijection φ, we decided not to pursue
them. Let us single out [CLS1], where the authors obtain a special case of Corollary 8
using different tools.
A referee pointed out a mysterious connection between the Cayley polytopes and

the (2n, 2n−1, . . . , 2)-lecture hall polytope whose volume is 2(
n+2
2 )/n!, the total number

of graphs on n+ 1 vertices. It would be interesting if φ applies in this case.
Note that the geometric approach to the construction of combinatorial bijections

via integer points in polytopes was previously explored in [P1, PV]. This approach
was also used by the authors in [KP1] to analyze the complexity of a bijection whose
original definition was non-geometric. We refer to [P2] for a broad survey of partitions
bijections and further references.

4.4. The sequence for the number Cn of connected labeled graphs on n nodes, n =
1, 2, . . . is A001187 in the Encyclopedia of Integer Sequences [Slo]. It begins

1, 1, 4, 38, 728, 26704, 1866256, 251548592, 66296291072, 34496488594816, . . .

and is well studied in the enumerative combinatorics literature. For example, as
mentioned in the proof of Theorem 3 (see Section 3), we have Cn = Invn(2). Similarly,
Cn = TKn(0, 2), where TG(x, y) is the Tutte polynomial of a graph G. We refer
to [Ges, GJ, PPR, MR, Tut] for an explicit form (exponential) generating functions
for numbers Cn, polynomials Invn(t) and Tn(q, t).
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4.5. Let us mention that Theorem 3 is one of the many results in [SP] on the Stanley–
Pitman polytopes. In a different direction, it was generalized by the authors to
what we call Tutte polytopes and general values of the Tutte polynomials of complete
graphs [KP2]. It would be interesting to see how far the results of this paper can be
extended in this direction.
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