
Gleason’s Theorem for non-separable Hilbert

spaces: Extended abstract

R. M. Solovay

May 2, 2009

1 Introduction: Statement of Results

The probelm of generalizing Gleason’s theorem to the non separable case
arose in correspondence with Paul Chernoff. I am very grateful to him for
suggesting this charming problem to me.

Let H be a Hilbert space. The coefficient field K of H can be either
the reals or the complexes. We let P(H) denote the collection of all closed
subspaces of H. A Gleason measure on H is a map µ : P(H) → [0, 1]
satisfying the following conditions:

• µ({0}) = 0; µ(H) = 1.

• Let 〈Mi | i ∈ ω〉 be a pairwise orthogonal sequence of subspaces of H
with sum M . Then

µ(M) =
∞∑
i=0

µ(Mi)

We follow the general convention that if M [possibly decorated with sub-
scripts or superscripts] is a closed subspace of H then P [with the same
decoration] is the corresponding projection.

One way to get such a Gleason measure is as follows. Let A be a positive
self-adjoint trace class operator whose trace is 1. Set

µ(M) = trace(AP ) (1)

Then µ is easily checked to be a Gleason measure.
In [2] the following remarkable theorem is proved:
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Theorem 1.1 (Gleason). Let H be separable and of dimension unequal to 2.
Then every Gleason measure arises from precisely one positive self-adjoint
operator, A, of trace 1 in the manner just described.

As Gleason remarks in [2], the restrictions to dimensions other than 2 is
essential to the validity of the theorem. In this paper, we completely analyze
the generalization of Gleason’s theorem to non-separable Hilbert spaces. We
find that the naive generalization is false, but that a more refined general-
ization is valid. Before stating our precise results we need some preliminary
definitions.

Let X be a set. Then a measure on X is a map ν from the power set of
X, P(X), to the interval [0, 1] such that:

• ν(∅) = 0; ν(X) = 1.

• if 〈Ai | i ∈ ω〉 is a pairwise disjoint sequence of subsets of X with union
A, then

ν(A) =
∞∑
i=0

ν(Ai)

The reader should note the analogy with our definition of a Gleasom
measure. Note also, that contrary to the usual definitions in analysis, we
require that our measure be defined on every subset of X.

A measure ν is continuous if it vanishes on one point sets. It is a conse-
quence of Gödel’s theorem that one cannot prove from the usual axioms of
set-theory that there are continuous measures.

Whether or not a set X carries a continuous measure clearly depends
only on the cardinality of X. A cardinal κ is real-valued measurable if there
is a continuous measure ν defined on all the subsets of κ which is κ-additive
in the sense that the union of fewer than κ sets of ν-measure zero again
has ν-measure zero. It is a standard and easy fact that the existence of a
real-valued measurable cardinal is equivalent to the existence of a continuous
measure. Moreover the least cardinal to support a continuous measure is a
real-valued measurable cardinal.

Definition 1.2. A Gleason measure is exotic if it does not arise from a
positive trace class operator of trace 1 (in the manner described above).

Theorem 1.3. Let H be a non-separable Hilbert space of dimension λ. Then
the following are equivalent:
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• There is a real-valued measurable cardinal κ with κ ≤ λ.

• There is an exotic Gleason measure on H .

Hence the following are equivalent:

• There is a real-valued measurable cardinal.

• There is an exotic Gleason measure.

Remark: This theorem is independently due to Dvurecenskij [1].

1.1 Our main theorem describes how to construct all the Gleason measures
on a non-separable Hilbert space. (The analogous result for separable Hilbert
spaces of dimension unequal to 2 follows from Theorem 1.1.) We also have a
result which gives a “complete system of invariants” for a Gleason measure
which we formulate in section 1.5.

Let H be a non-separable Hilbert space and let Y be an orthonormal
basis of H. Let µ be a measure on Y . To the data Y and µ we shall associate
a Gleason measure ν on H as follows.

Let M be a closed subspace of H, and let P be the projection associated
to M . Then

ν(M) =

∫
Y

(Py, y) dµ(y) (2)

Theorem 1.4 (Main Theorem). Let H be a non-separable Hilbert space and
let ν be a Gleason measure on H. Then there is an orthonormal basis Y of H,
and a measure µ on Y such that ν is defined from this data as in equation 2.

The proof of the main theorem involves a substantial amount of set theory.
We do wish to emphasize that all our results are provable in ZFC and that
they do not require any extra “large cardinal” hypotheses.

Here is a very brief outline of how the proof of our main theorem proceeds.
We are given a Gleason measure ν on a non-separable Hilbert space H. From
ν we shall define [in a non-canonical fashion] an ordinary measure µ0 [defined
on the subsets of X0 say] with a technical property called “purity”. Let B
be the measure algebra of the measure µ0. In the Boolean valued universe,

V B, we define a Gleason measure, ν1, on the Hilbert space ℓ2. In V B all the
theorems of ZFC are available. In particular we can apply the usual version
of Gleason’s theorem to ν1 getting a positive trace class operator of trace 1

in V B, A1.
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We now apply the machinery of Boolean valued ultraproducts. A1 deter-
mines a map from X0 to the trace class operators on ℓ2 back in V . With a
little massaging, this gives a map from X0 to the trace class operators on H.
Let this final map be noted x −→ Ax.

For M a closed subspace of H let P be the corresponding projection. It
will turn out that we have the integral representation:

ν(M) =

∫
X0

trace(PAx) dµ0(x) (3)

However the proof of the validity of this representation requires a delicate
argument.

1.2 Exotic Gleason measures In this section, we briefly list some conse-
quences of Theorem 1.3.

1.2.1 First some applications of Gödel’s theorems:

1. If ZFC is consistent, then ZFC does not prove the existence of an exotic
Gleason measure.

2. If ZFC is arithmetically sound [i.e. ZFC proves no false arithmetic
statement] then ZFC does not prove the assertion: If ZFC is consistent,
then so is the theory ZFC + “There is an exotic Gleason measure”.

1.2.2 To get the consistency of the existence of an exotic Gleason measure
we need a strong large cardinal consistency assertion. Suppose then that the
theory ZFC + “There is a measurable cardinal” is consistent. Then the
following assertions are consistent with ZFC:

1. There is an exotic Gleason measure on a Hilbert space of dimension
c = 2ℵ0 .

2. The continuum hypothesis holds but there is an exotic Gleason measure
on a Hilbert space of strongly inaccessible dimension.

1.3 Finally, the following results say that the dimension of a Hilbert space
that carries an exotic Gleason measure must be very large.

We shall need the notation of the iα’s:
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1. i0 = ℵ0;

2. iα+1 = 2iα;

3. For λ a limit ordinal iλ = sup{iα | α < λ}.

Then we have the following results:

1. If there is an exotic Gleason measure on a Hilbert space of dimension
at most c then there is a weakly inaccessible cardinal less than c. In
particular c is greater than the least κ such that κ = ℵκ.

2. Suppose that there is no exotic Gleason measure on any space of dimen-
sion at most c. [By the preceding remark, this holds if the continuum
hypothesis is true, or even if c is at most the least κ such that κ = ℵκ.]
Then if a Hilbert space H supports an exotic Gleason measure, its di-
mension is at least as large as the first strongly inaccessible cardinal.
In particular, it is larger than the least κ such that κ = iκ.

1.4 Purity If f is a function and A is a subset of its domain then we let
f [A] denote the direct image:

f [A] = {f(x) | x ∈ A}

Let µ be a measure on the set X. A partial equivalence f for µ is a
function such that:

1. f has domain a subset A of X.

2. f has range a subset B of X.

3. f is a bijection.

4. Let A′ be any subset of A and let B′ = f [A′]. Then µ(A′) = 0 iff
µ(B′) = 0.

A partial equivalence f is trivial if for almost all x in its domain f(x) = x.
The measure µ is pure if every partial equivalence f for µ is trivial.
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1.5 Uniqueness The purpose of this section is to give a different integral
representation of a Gleason measure for which we will be able to provide a
canonical choice.

Let H be a Hilbert space whose dimension is uncountable. Let T be the
set of positive trace class operators on H of trace 1.

Suppose now that µ is a measure on T . Then we associate to µ a Gleason
measure on H by the following prescription:

ν(M) =

∫
T

trace(PA) dµ(A) (4)

Theorem 1.5. Every Gleason measure on H arises from a measure on T in
this way.

If A ∈ T , then the support of A is the orthogonal complement of the
nullspace of A. The support of A is a subspace of H of at most countable
dimension.

If µ is a measure on T we say that µ is separated if there is a set Y

of µ measure 1 such that if A1 and A2 are distinct members of Y then the
supports of A1 and A2 are orthogonal.

Theorem 1.6 (Uniqueness). If ν is a Gleason measure on H, then ν arises
from precisely one pure separated measure on T by the prescription of 4.

1.6 Comments

1. The theorems announced in this abstract have been “in my desk drawer”
for some time. For example, I talked about these results at U. C. L. A.
in May 1992.

2. This abstract has been extracted (at the request of Paul Chernoff)
from an incomplete draft of a manuscript which will eventually present
complete proofs of the results referred to.
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