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Abstract: This paper studies finite word-length effects on two different VLSI 
architectures of integer discrete wavelet transforms (DWT). The two DWT architectures 
representing two extreme cases are Scheme 1: basis correlation, and Scheme 2: pyramidal 
algorithm. For signal-to-noise ratio (SNR) evaluations, we consider various values of the 
length of integer word (W). Our experiments show that W is critical for both schemes, 
although both schemes perform almost equivalently. We also show that Scheme 1 and 
Scheme 2 have computational complexities ܱሺܰଶሻ and O(N), respectively. The paper 
concludes that the word length W has similar critical impacts on the quality of integer 
DWT of both Schemes, hence Scheme 2 should be used based on lower computational 
complexity reason. 
Keywords: VLSI Architecture, word-length effects, DWT, Pyramidal Algorithm. 
 

1. Introduction 
 This paper studies finite word-length effects on two different VLSI architectures for integer 
discrete wavelet transforms (DWT).  The DWT has become increasingly important in fields 
such as digital signal processing, speech and audio processing, and image and video processing 
[1], to provide multi-scale temporal-spectral analysis.  Consequently, VLSI implementations 
are often required.  
 This work is a part of our design of a DWT processor for a speech compression scheme 
described in [2].  The design uses VHDL and high-level synthesis as design tools, with field-
programmable gate array (FPGA) as the target technology [3].  The designed is constrained to 
the more-efficient integer multipliers.  Using iterative array of cells for partial products 
reduction, a 16×16-bit multiplier requires four 8×8-bit multipliers such as 74S557 [4]. 
In our design, we consider of using the usual pyramidal algorithm. However since it is 
recursive in nature, we concern the impact of using finite integer on its performance. In 
specific, computational errors introduced by finite data word lengths may propagate 
recursively. As a result, the quality of DWT may deteriorate rapidly, causing the results to be 
unusable. We should then study the impact of finite word lengths on pyramidal algorithm and 
compare the results with those of a non-recursive DWT algorithm. 
 We consider two DWT algorithms representing two extreme cases: (i) basis correlation, and 
(ii) pyramidal algorithm [5], [6].  The basis correlation scheme (Scheme 1) produces DWT 
results from inner-products of the input vector with a set of wavelet basis signals, while the 
pyramidal scheme (Scheme 2) obtains the results by recursively filtering the input signal using 
wavelet and scaling filters.  The basis signals and the filter’s impulse responses come from a 
wavelet prototype. 
 This paper, expanding a description of our work reported in [7], is organized as follow. 
First, Section  II  describes  DWT  algorithms,  defines  both  Scheme  1  and  Scheme  2, and  
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showing that Scheme 2 is recursive in nature. Section III presents the experiments of integer 
word-length impacts on algorithms’ quality, showing that both schemes behave similarly under 
various computational conditions. Section IV discusses results of complexity analysis of both 
schemes, shows the benefits of Scheme 2, and finally concludes that Scheme 2 should be used 
as the basic algorithm for DWT VLSI architectures. 
 
2. The DWT Algorithms 
 In a usual vector setting, a signal can be represented by a vector x in a Euclidean vector 
space. If the vector space is M-dimensional, having orthonormal basis vectors ሼܝଵ, ڮ ,  ெሽ, theܝ
signal can be representated by 
ܠ  ൌ ∑ ௜ܝ௜ߙ

ெ
௜ୀଵ  (1) 

 
Where the coefficients ߙ௜ are obtained using an inner product 
௜ߙ  ൌ ,ܠۃ  (2) ۄ௜ܝ
 
In a case of digital signals ݔሾ݊ሿ defined in a ݈ଶ vector space, we have orthonormal basis signals 
 ሼݑଵሾ݊ሿ, ڮ ,  ெሾ݊ሿሽ such thatݑ
ሾ݊ሿݔ  ൌ ∑ ௜ሾ݊ሿெݑ௜ߙ

௜ୀଵ  (3) 
 
If ݑ௜

 ௜ሾ݊ሿ, the inner product is obtained using a form of basisݑ ሾ݊ሿ is the complex-conjugate ofכ
correlation 
௜ߙ  ൌ ∑ ௜ݑሾ݊ሿݔ

ሾ݊ሿேכ
௡ୀଵ  (4) 

 
Now we can apply the concept to understand the basis correlation algorithm of DWT. 
 
A. The Basis Correlation DWT Algorithm 
 For a given mother wavelet ሼ߶ሾ݊ሿ, ߰ሾ݊ሿሽ, one can define a set of scaling and wavelet 
functions recursively [8], namely 
 ߶௝,௞ሾ݊ሿ ൌ √2ି௝߶ሾ2ି௝݊ െ ݇ሿ 
 ߰௝,௞ሾ݊ሿ ൌ √2ି௝߰ሾ2ି௝݊ െ ݇ሿ (5) 
 
 Let us define ݆ ൌ 1, ڮ , ܬ where ,ܬ ൌ ሺlogଶ ܰሻ െ 1, and k depends on j, i.e.,                  
݇ሺ݆ሻ ൌ 0, ڮ , 2ି௝ܰ െ 1. There will be ܯ െ 1 wavelet functions {߰௝,௞ሺ௝ሻሾ݊ሿ} and one scaling 
function ሼ߶௃,௞ሺ௃ሻሾ݊ሿሽ. We can then combine {߰௝,௞ሺ௝ሻሾ݊ሿ} and ሼ߶௃,௞ሺ௃ሻሾ݊ሿሽ as a set of 
orthonormal basis signals, in which there is a one-to-one mapping ൫݆, ݇ሺ݆ሻ൯ ՞ ݅, such that the 
set of all ߰௝,௞ሺ௝ሻሾ݊ሿ corresponds toሼݑଵሾ݊ሿ, ڮ , ெሾ݊ሿݑ ெିଵሾ݊ሿሽ andݑ ൌ ߶௃,௞ሺ௃ሻሾ݊ሿ. 
 For a given set of input samples ݔሾ݊ሿ, ݊ ൌ 0, ڮ , ܰ െ 1, we can define DWT to be a set of 
coefficients ൛ ௝ܿ,௞ሺ௝ሻ, ݀௃,௞ሺ௃ሻൟ according to Eq. (4): 
 ௝ܿ,௞ሺ௝ሻ ൌ ∑ ሾ݊ሿ߰௝,௞ሺ௝ሻݔ

כ ሾ݊ሿேିଵ
௡ୀ଴  

 ݀௃,௞ሺ௃ሻ ൌ ∑ ሾ݊ሿ߶௝,௞ሺ௝ሻݔ
כ ሾ݊ሿேିଵ

௡ୀ଴  (6) 
such that 
ሾ݊ሿݔ  ൌ ∑ ∑ ௝ܿ,௞ሺ௝ሻ߰௝,௞ሺ௝ሻሾ݊ሿଶషೕேିଵ

௞ሺ௝ሻୀ଴
௃
௝ୀଵ ൅ ∑ ݀௃,௞ሺ௃ሻ߶௝,௞ሺ௃ሻሾ݊ሿଶష಻ேିଵ

௞ୀ଴  (7) 
 Scheme 1 computes wavelet coefficients൛ ௝ܿ,௞ሺ௝ሻ, ݀௃,௞ሺ௃ሻൟ directly using Eq (6). Here we 
constructs N basis signals consisting of {߰௝,௞ሺ௝ሻሾ݊ሿ} and ሼ߶௃,௞ሺ௃ሻሾ݊ሿሽ. Implementing Eq. 4, Eq. 
(6) defines inner-product of signal input samples ݔሾ݊ሿ with those basis signals. Consequently, 
Eq. (7) implements Eq. (1). 
 
B. Pyramidal DWT Algorithm 
 It is well known that for orthonormal wavelet, both signals ሼ߶ሾ݊ሿ, ߰ሾ݊ሿሽ are closely related. 
Consider for example Daubechies wavelets [9]. Table I shows scaling coefficients ߶ሾ݊ሿ for 
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Daubechies wavelets of lengths L = 4, 12, and 20. Corresponding wavelet coefficients are 
derived from the scaling coefficients according to 

߰ሾ݊ሿ ൌ ሺെ1ሻି௡߶ሾܮ െ 1 െ ݊ሿ    (8) 
 This relation in Eq. (8) ensures the basis signals are orthonormal, and both {߰௝,௞ሺ௝ሻሾ݊ሿ} and 
ሼ߶௃,௞ሺ௃ሻሾ݊ሿሽ  can be derived from ߶ሾ݊ሿ in Table I using Eq. (5).  Figure 1 shows mother 
wavelets ߰ሾ݊ሿ for L = 4, 12, and 20. 
 

Table 1 
Scaling Coefficients of Daubechies Wavelets [9]. 

n Scaling Coefficients ࣘሾ࢔ሿfor Various L 
L = 4 L = 12 L = 20 

0 0.6830127 0.15774243 0.03771716 
1 1.1830127 0.69950381 0.26612218 
2 0.3169873 1.06226376 0.74557507 
3 -0.1830127 0.44583132 0.97362811 
4  -0.31998660 0.39763774 
5  -0.18351806 -0.35333620 
6  0.13788809 -0.27710988 
7  0.03892321 0.18012745 
8  -0.04466375 0.13160299 
9  7.83251152e-4 -0.10096657 

10  6.75606236e-3 -0.04165925 
11  -1.52353381e-3 0.04696981 
12   5.10043697e-3 
13   -0.01517900 
14   1.97332536e-3 
15   2.81768659e-3 
16   -9.69947840e-4 
17   -1.64709006e-4 
18   1.32354367e-4 
19   -1.875841e-5 

 

 
Figure 1. Daubechies mother wavelets ߰ሾ݊ሿ, for (a) L = 4, (b) L = 12, and (c) L = 20. 

 
 As a result of such a close relationship in Eq. (8), Eq (6) can be implemented in a pyramidal 
structure of filterbanks, having impulse responses corresponding to wavelet and scaling 
functions. There are two filters: highpass filter (HPF) and lowpass filter (LPF). Both the HPF 
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and LPF are of finite impulse response (FIR), having impulse responses corresponding to 
scaling coefficients and wavelet coefficients, respectively.  
 Scheme 2 has the following algorithm shown a pseudocode in Figure1. At the first phase, j 
= 1, those N input samples x[n] are passed through a HPF and an LPF, simultaneously, 
resulting in N samples ݕ௛ሾ݊ሿand ݕ௟ሾ݊ሿ, respectively (see also Fig 3). The scheme subsamples-
by-2 the ݕ௛ሾ݊ሿ to be ܿଵ,௞, i.e., ܿଵ,௞ = ݕ௛ሾ2݇ ൅ 1ሿ. Furthermore, ݀ଵ,௞= ݕ௟ሾ2݇ ൅ 1ሿ. Thus there are 
N/2 samples of ܿଵ,௞ and ݀ଵ,௞. 
 
 
(1) INITIALIZE݀଴,௞ሾ݊ሿ ൌ ݊  ሾ݊ሿ, FORݔ ൌ 0, ڮ , ܰ െ 1 

(2) SET ܬ ൌ ሺlogଶ ܰሻ െ 1; K = N; 
(3) FOR j =1 TO J, DO LOOP 1 
(4)  K = K / 2; 
(5)  FOR k = 0 TO K – 1, DO LOOP 2 
(6)   

௝ܿ,௞ ൌ ෍ሺെ1ሻ௜߶௅ିଵି௜ ௝݀ିଵ,ଶ௞ା௜

௅ିଵ

௜ୀ଴

 

(7)   
௝݀,௞ ൌ ෍ሺെ1ሻ௜߶௜ ௝݀ିଵ,ଶ௞ା௜

௅ିଵ

௜ୀ଴

 

(8)  END LOOP 2 
(9) END LOOP 1 
 

Figure 2. A pseudocode of the DWT pyramidal algorithm for L point wavelet. 
 
 Now, for the second phase, j = 2, the scheme repeats the process. It takes N/2 samples ݀ଵ,௞ 
to be used as input of the HPF and LPF, simultaneously, resulting in N/2 samples ݕ௛ሾ݊ሿ and 
 = ௛ሾ݊ሿ to be ܿଶ,௞, i.e., ܿଶ,௞ݕ ௟ሾ݊ሿ, respectively. The scheme then subsamples-by-2 the theݕ
௛ሾ2݇ݕ ൅ 1ሿ. Furthermore ݀ଶ,௞= ݕ௟ሾ2݇ ൅ 1ሿ. Thus there are N/4 values of ܿଶ,௞ and ݀ଶ,௞.  
The process is repeated for the next j until j = J, where at each stage j, the input is ܰ/ሺ2௝ାଵሻ 
samples ௝݀ିଵ,௞ to both HPF and LPF, simultaneously, to produce ܰ/ሺ2௝ାଵሻ samples ݕ௛ሾ݊ሿ and 
௛ሾ2݇ݕ = ௛ሾ݊ሿ to be ௝ܿ,௞, i.e., ௝ܿ,௞ݕ ௟ሾ݊ሿ (see Figure3).  It then subsamples-by-2 theݕ ൅ 1ሿ. 
Furthermore ௝݀,௞= ݕ௟ሾ2݇ ൅ 1ሿ. At the end of the algorithm, after j = J, we have all wavelet 
coefficients ൛ ௝ܿ,௞, ݀௃,௞ൟ as desired. 
 

 
 

Figure 3. Filtering for the pyramidal algorithm at phase j. 
 

 To illustrate the use of filtering in Figure3 for DWT, consider a sample signal ݔሾ݊ሿ, shown 
in Figure4. Here we use N = 64. As a result, J = 5, and we have five recursive filtering phases 
݆ ൌ 1, ڮ ,5. The first phase results in two signals: wavelet highpass signals at j = 1 (see Fig 
5.a), and scaling low pass signal at j = 1. This scaling low pass signal is used as the input for 
the next phase j = 2, resulting in wavelet high pass signals at j = 2 (see Fig 5.b), and scaling 
low pass signal at j = 2. This scaling low pass signal becomes the next phase input (j = 3), 

HPF

LPF
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resulting in wavelet high pass signals at j = 3 (see Fig 5.c), and scaling low pass signal at j = 3. 
Similar filtering at j = 4, resulting in resulting in wavelet high pass signals at j = 4 (see Fig 5.d), 
and scaling low pass signal at  j = 4. Finally, filtering of the scaling lowpass signal at j = 5, 
resulting in wavelet high pass signals at j = 5 (see Fig 5.e), and scaling low pass signal at j = 5 
(see Fig 5.f). It should be noted that if we sum all these filtering signals (Fig 5.a to f), we will 
have exactly ݔሾ݊ሿ in Figure 4. 
 

 
Figure 4. An 8-ms block of sample signal ݔሾ݊ሿ. 
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Figure 5. An 8-ms block of wavelet filtering results of sample signal ݔሾ݊ሿ in Figure1, where (a) 

wavelet high pass at j = 1, (b) wavelet high pass at j = 2, (c) wavelet high pass at j = 3, (d) 
wavelet high pass at j = 4, (e) wavelet high pass at j = 5, and (f) scaling low pass at j = 5. 
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3. Word Length Effects 
 We expect the computational structure of pyramidal algorithm is more efficient comparing 
to that of basis correlation scheme. As a result, Scheme 2 should be the choice of VLSI 
architecture. However an efficient VLSI architecture requires integer implementations. In 
general the quality of integer architecture is sensitive to word length. Our concern with Scheme 
2 is it involves a pyramidal structure, hence it is recursive. In recursive cases, the arithmetic 
word-length becomes an important issue. 
 We then study the performance of both Scheme 1 and Scheme 2 under integer arithmetics. 
The performance of the schemes is evaluated according to the length of integer word (W), at 
specified length of input samples (N) and the length of wavelet prototype (L).  Notice that N 
represents the number of input samples, taking integer values of power of 2.  We limit L to 4, 
12, and 20, to cover Daubechies prototype wavelets of length 4, 12, and 20 [9] (see also 
Figure1).  Finally, W should cover the usual integer word lengths of 8, 14, 16, 24, and 32.  For 
completeness, W is varied from 4 to 32 . 
 Here as shown in Figure6, we first apply uniformly distributed random samples as input 
signal ݔሾ݊ሿ to both schemes, resulting in respective coefficients ൛ ௝ܿ,௞ሾ݊ሿ, ݀௃,௞ሾ݊ሿൟ. We then 
apply both results independently to an inverse DWT to produce reconstructed signals ݔොሾ݊ሿ. 
Finally we compare the resulting signals ݔොሾ݊ሿ with the original ones ݔሾ݊ሿ, and measure the 
signal-to-noise ratio (SNR) of the re-synthesized signals, according to 
 

 ܴܵܰ ൌ 10 logଵ଴
∑ |௫ሾ௡ሿ|మಿషభ

೙సబ
∑ |௫ොሾ௡ሿି௫ሾ௡ሿ|మಿషభ

೙సబ
 (4) 

 
 

 
Figure 6. Measuring quality of the Schemes. 

 
  
 Table II shows the SNR as a function of W. Our experiments to assess round-off effects 
show that W is critical for both schemes. Changing W will change the SNR dramatically (see 
Figure7). In some signal applications, an SNR level of 30dB is considered minimal. Thus an 
integer DWT must use at least W = 12 bits. For word length of 16 bit, the SNR is already at an 
excellent level of 61 dB. And the integer DWT at 32 bit performs overwhelmingly well.  
However notice that both schemes perform almost equivalently, and in most cases Scheme 2 
seems to outperform Scheme 1, illustrated in Figure7.  It seems that the recursive nature of the 
pyramidal algorithm does not propagate round-off errors. The two schemes behave similarly 
due to round-off effects. The most important point is that this means there is no advantage in 
SNR of using Scheme 1. It should be noted that in our experiment N and L have no significant 
effects on the SNR. 
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Table I 
Effect of word length W to SNR, for N = 1024 and L = 20. 

W Signal to Noise Ratio (dB) 
Scheme 1 Scheme 2 

4 1.60 1.48 
8 16.27 16.76 
12 37.77 38.98 
14 49.23 50.93 
16 61.36 62.71 
24 108.94 111.27 
32 157.24 159.58 

 

 
Figure 7. Critical impacts of word length W to the quality. 

 
4. Discussions and Concluding Remarks 
 We have compared two different algorithm candidates of VLSI architectures for integer 
DWT, namely basis correlation (Scheme 1) and pyramidal algorithm (Scheme 2).  Scheme 1 
has a direct relationship with the DWT definition, hence it is expected to perform well in SNR 
using integer computations. On the other hand Scheme 2 is of recursive nature, resulting in 
potential accumulating computational error propagations. 
 However, our experiments show that Scheme 2 is as computationally good as Scheme 1, 
i.e., SNRs for various word lengths are comparable. Furthermore, the behavior of both scheme 
are comparable for various sample lengths or wavelet prototype lengths. This means Scheme 1 
has no advantages over Scheme 2. 
 Scheme 1 has a computational structure directly following Eq (2), hence it has a simpler 
and straightforward control structure. However by observing the equation, we conclude that for 
each coefficient in Eq. (6) there are N multiplications and N-1 accumulations to be made. Since 
there are N coefficients to be produced, we can say that the complexity of Scheme 1 is ܱሺܰଶሻ. 
In fact, the total computation is found to be ܰଶ ൅ ܰ logଶሺܰ/ܮሻ ൅ ܰ െ  .ܮ
 As expected, Scheme 2 requires fewer computational operations (i.e., multiplication and 
addition). In particular each coefficient requires L multiplications and L-1 accumulations 
because of LPF and HPF. Furthermore, there are N coefficients to be produced by HPF and N 

2 4 8 16 32

W

20

40

60

80

100

120

140

160

SNR (dB)

Scheme 1

Scheme 2

0

Armein Z. R. Langi

266



 

coefficien
to  
 Thus 
512 opera
elements 
2 has inh
complexit
of Schem
 In con
on both a
architectu
 
Acknowl
 This w
on ICT. 
 
Referenc
[1] W.  

Proc
[2] A. Z

ITB 
[3] S. J.

Norw
[4] S. W

York
[5] G. K

vol. 
[6] O. 

trans
1992

[7] A.Z
Tran
and 

[8] A. Z
Scie

[9] I. Da
 
 
 

nts by LPF. He
in Scheme 1. 
for a typical N
ations, respect
(multiply and 

herent speed li
ty, Scheme 2 o

me 1 for a typica
nclusion, finite
algorithms. W
ure of choice in

edgment 
work and paper

ces 
Kinsner and 

c.  IEEE WESC
Z. R. Langi, “A

Journal of Eng
 Brown, R. J. F
wel, Mass.: Kl

Waser and M. F
k, NY: CBS C

Knowles, “VLS
26, no. 26, 19t
Rioul and P.
sforms,” IEEE
2, pp. 569-586
.R. Langi, “A 
nsforms”, Proc
Informatics, 1

Z. R. Langi, “A
ence, Vol. 40, N
aubechies.  Ten

Arme
Engin
Electr
gradua
Techn
interna

 

ence, Scheme 2

N and L of 64 
tively. It shoul
accumulate) a

imitation due 
outperforms Sc
al sample lengt
e word length o

We can also co
n our DWT VL

r was supporte

A. Langi, “Sp
CANEX ‘93, (S
Application of W
gineering Scien
Francis, J. Ros
luwer, 1992, 20
Flynn.  Introdu
ollege Publishi
SI architecture
th July 1990, p
 Duhamel, “F

E Trans. Inform
. 
Comparison o

ceedings of 20
7-19 July 2011

An LPC Excitat
No. 2, Novemb
n Lectures on W

ein Z. R. Lang
eering, Unive
ical and Com
ated 1992. Ir 

nology (ITB), 
ational and nat

 

2 has 2NL tota

and 4, respect
ld be noted th

and can lead to
to its recursiv

cheme 1 as exp
th and a protot
of data has sim

onclude that S
LSI design base

ed in part by R

peech and ima
SK, Canada), IE
Wavelet LPC E
nce, Vol. 40, N
se, and Z. G. V
06 pp 
uction to Arith
ing, 1982, 308

e for the discre
pp.1184-1185.
Fast algorithm
mation Theory

of Two VLSI A
011 Internation
1, (Bandung, In
tion Model usi

ber 2008, p. 79-
Wavelets.  Phil

gi, lecturer at ST
rsity of Mani

mputer Engine
(B.Sc.) in Ele
Indonesia, gra
tional publicati

al computation

ively, Scheme
hat Scheme 1 u
o very fast, par
ve nature. Thu
pected. Its com
type length. 
milar critical im
cheme 2 shou
ed on computin

Riset Unggulan 

age signal com
EEE 93CH331
Excitation Mod

No. 1, July 200
Vranesic. Field-

metic for Digi
 pp. 

ete wavelet tran

ms for discre
y, IEEE-0018-

Architectures f
nal Conferenc
ndonesia), (acc
ing Wavelets”,
-90, ISSN 197
ladelphia, Penn

TEI-ITB. Ph.D
itoba, Canada,
eering, Univer
ectrical Engine
aduated 1987. 
ion.  

n, or simply O(

s 1 and 2 resu
uses very simp
allel schemes, 

us in terms of 
mplexity is only

mpact on DWT
uld be selected
ng complexity 

ITB at ITB Re

mpression with
7-5, pp. 368-3
del for speech 
8, p. 1-11, ISS
-Programmabl

tal Systems De

nsform”, Elect

te and contin
-9448, vol 38,

for Integer Dis
ce on Electrica
cepted paper). 
, ITB Journal o
8-3051. 
n.: SIAM, 1992

D. in Electrical 
, graduated 19
rsity of Mani
eering, Bandun
He has paper

(N) as opposed

ult in 3900 and
ple processing
while Scheme
computational

y 13.1% of that

T performance
d as the VLSI
reason.  

esearch Center

h wavelets,” in
75, 1993. 
compression”,

SN 1978-3051
le Gate Arrays

esigners.  New

tronics Letters,

nuous wavelet
 No 2, March

screte Wavelet
al Engineering

of Engineering

2, 357 pp. 

and Computer
996. M.Sc. in
itoba, Canada,
ng Institute of
rs published in

d 

d 
g 
e 
l 
t 

e 
I 

r 

n 

, 

.  

w 

, 

t 
h 

t 
g 

g 

r 
n 
, 
f 
n 

Finite Word Length Effects on Two Integer Discrete

267

My Computer
Text Box
 O(N)2




