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Abstract: This paper studies finite word-length effects on two different VLSI
architectures of integer discrete wavelet transforms (DWT). The two DWT architectures
representing two extreme cases are Scheme 1: basis correlation, and Scheme 2: pyramidal
algorithm. For signal-to-noise ratio (SNR) evaluations, we consider various values of the
length of integer word (W). Our experiments show that W is critical for both schemes,
although both schemes perform almost equivalently. We also show that Scheme 1 and
Scheme 2 have computational complexities 0(N?2) and O(N), respectively. The paper
concludes that the word length W has similar critical impacts on the quality of integer
DWT of both Schemes, hence Scheme 2 should be used based on lower computational
complexity reason.
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1. Introduction

This paper studies finite word-length effects on two different VLSI architectures for integer
discrete wavelet transforms (DWT). The DWT has become increasingly important in fields
such as digital signal processing, speech and audio processing, and image and video processing
[1], to provide multi-scale temporal-spectral analysis. Consequently, VLSI implementations
are often required.

This work is a part of our design of a DWT processor for a speech compression scheme

described in [2]. The design uses VHDL and high-level synthesis as design tools, with field-
programmable gate array (FPGA) as the target technology [3]. The designed is constrained to
the more-efficient integer multipliers. Using iterative array of cells for partial products
reduction, a 16x16-bit multiplier requires four 8x8-bit multipliers such as 745557 [4].
In our design, we consider of using the usual pyramidal algorithm. However since it is
recursive in nature, we concern the impact of using finite integer on its performance. In
specific, computational errors introduced by finite data word lengths may propagate
recursively. As a result, the quality of DWT may deteriorate rapidly, causing the results to be
unusable. We should then study the impact of finite word lengths on pyramidal algorithm and
compare the results with those of a non-recursive DWT algorithm.

We consider two DWT algorithms representing two extreme cases: (i) basis correlation, and
(if) pyramidal algorithm [5], [6]. The basis correlation scheme (Scheme 1) produces DWT
results from inner-products of the input vector with a set of wavelet basis signals, while the
pyramidal scheme (Scheme 2) obtains the results by recursively filtering the input signal using
wavelet and scaling filters. The basis signals and the filter’s impulse responses come from a
wavelet prototype.

This paper, expanding a description of our work reported in [7], is organized as follow.
First, Section 1l describes DWT algorithms, defines both Scheme 1 and Scheme 2, and
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showing that Scheme 2 is recursive in nature. Section Il presents the experiments of integer
word-length impacts on algorithms’ quality, showing that both schemes behave similarly under
various computational conditions. Section IV discusses results of complexity analysis of both
schemes, shows the benefits of Scheme 2, and finally concludes that Scheme 2 should be used
as the basic algorithm for DWT VLSI architectures.

2. The DWT Algorithms

In a usual vector setting, a signal can be represented by a vector x in a Euclidean vector
space. If the vector space is M-dimensional, having orthonormal basis vectors {uy, ---, uy,}, the
signal can be representated by

x =% au; oy

Where the coefficients «; are obtained using an inner product
a; = (x,u;) )

In a case of digital signals x[n] defined in a [? vector space, we have orthonormal basis signals
{uy[n], -+, up[n]} such that
x[n] = XL, ajui(n] ®)

If uj[n] is the complex-conjugate of u;[n], the inner product is obtained using a form of basis
correlation

a; = Yn=1 x[nJui[n] (4)
Now we can apply the concept to understand the basis correlation algorithm of DWT.

A. The Basis Correlation DWT Algorithm

For a given mother wavelet {¢[n],[n]}, one can define a set of scaling and wavelet
functions recursively [8], namely

¢jxlnl =V27ip[27/n — k]

Wjnln] =V27iyp[27/n — k] (5)

Let us define j=1,---,J, where J=(log;,N)—1, and k depends on j, i.e,
k(j) = 0,-+,27 N — 1. There will be M — 1 wavelet functions {i; x(;[n]} and one scaling
function {¢;xH[n]}. We can then combine {y;H[n]} and {¢;,H[n]} as a set of
orthonormal basis signals, in which there is a one-to-one mapping (j,k(j)) < i, such that the
set of all Y . [n] corresponds tofu, [n], -+, uy—1[n]} and uy [n] = ¢;k[n].

For a given set of input samples x[n], n = 0,--, N — 1, we can define DWT to be a set of
coefficients {c; x(j), d; ()} according to Eq. (4):

Cix() = Zm=o X[MJW] (py[n]

dyrey = Znzo x[n]d] ey [n] (6)
such that
“iN— -IN—
x[n] = ¥ ZRoise Gacyinn ] + Ziee" " dyiey b 0] O

Scheme 1 computes wavelet coefficients{c; (), d;x(} directly using Eq (6). Here we
constructs N basis signals consisting of {y; x(;)[n]} and {¢; x[n]}. Implementing Eq. 4, Eq.

(6) defines inner-product of signal input samples x[n] with those basis signals. Consequently,
Eq. (7) implements Eq. (1).

B. Pyramidal DWT Algorithm

It is well known that for orthonormal wavelet, both signals {¢[n], ¥ [n]} are closely related.
Consider for example Daubechies wavelets [9]. Table | shows scaling coefficients ¢[n] for
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Daubechies wavelets of lengths L = 4, 12, and 20. Corresponding wavelet coefficients are
derived from the scaling coefficients according to
Y[n] = (-1)T"P[L-1—-n]
This relation in Eq. (8) ensures the basis signals are orthonormal, and both {; x(;,[n]} and
{®;kn[n]} can be derived from ¢[n] in Table | using Eq. (5). Figure 1 shows mother
wavelets [n] for L = 4, 12, and 20.

Amplitude (x 1000)
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'
[REY
o

Table 1

Scaling Coefficients of Daubechies Wavelets [9].

(®)

(a)

n Scaling Coefficients ¢p[n]for Various L
L=4 L=12 L=20

0 0.6830127 0.15774243 0.03771716

1 1.1830127 0.69950381 0.26612218

2 0.3169873 1.06226376 0.74557507

3 | -0.1830127 0.44583132 0.97362811
4 -0.31998660 0.39763774
5 -0.18351806 -0.35333620
6 0.13788809 -0.27710988
7 0.03892321 0.18012745

8 -0.04466375 0.13160299

9 7.83251152¢e-4 -0.10096657
10 6.75606236€-3 -0.04165925
11 -1.52353381e-3 0.04696981
12 5.10043697e-3
13 -0.01517900
14 1.97332536e-3
15 2.81768659¢-3
16 -9.69947840e-4
17 -1.64709006e-4
18 1.32354367e-4
19 -1.875841e-5

0.4 0.8 1.2

(b)

(c)

Time (ms)

Figure 1. Daubechies mother wavelets y[n], for (8) L =4, (b) L = 12, and (c) L = 20.

As a result of such a close relationship in Eqg. (8), Eq (6) can be implemented in a pyramidal
structure of filterbanks, having impulse responses corresponding to wavelet and scaling
functions. There are two filters: highpass filter (HPF) and lowpass filter (LPF). Both the HPF

261



Armein Z. R. Langi

and LPF are of finite impulse response (FIR), having impulse responses corresponding to
scaling coefficients and wavelet coefficients, respectively.

Scheme 2 has the following algorithm shown a pseudocode in Figurel. At the first phase, j
= 1, those N input samples x[n] are passed through a HPF and an LPF, simultaneously,
resulting in N samples y, [n]and y,[n], respectively (see also Fig 3). The scheme subsamples-
by-2 the y,[n] to be ¢y, i.e., ¢y = yu[2k + 1]. Furthermore, d, ;.= y,[2k + 1]. Thus there are
N/2 samples of ¢y ;, and d .

(1) INITIALIZEd [n] = x[n], FOR n =0,--,N -1

(2) SETJ = (log, N) — 1; K=N;
(3) FOR|j=1TOJ, DO LOOP 1

4) K=K/2
(5) FORk=0TOK-1,DO LOOP 2
(6) L-1 .
Cik = Z(_1)1¢L—1—idj—1,2k+i
i=0
7) L-1 .
djy = Z(_l)lﬁbidj—l,zkﬂ'
i=0
(8) END LOOP 2

(99 ENDLOOP1
Figure 2. A pseudocode of the DWT pyramidal algorithm for L point wavelet.

Now, for the second phase, j = 2, the scheme repeats the process. It takes N/2 samples d ;,
to be used as input of the HPF and LPF, simultaneously, resulting in N/2 samples y;,[n] and
yi[n], respectively. The scheme then subsamples-by-2 the the y,[n] to be c,4, i.e., c3x =
yn[2k + 1]. Furthermore d, ;= y;[2k + 1]. Thus there are N/4 values of ¢, ; and d .

The process is repeated for the next j until j = J, where at each stage j, the input is N/(2/+1)
samples d;_; , to both HPF and LPF, simultaneously, to produce N/(27+1) samples y,[n] and
yi[n] (see Figure3). It then subsamples-by-2 the y,[n] to be c;, ie., ¢jx = yp[2k +1].
Furthermore d; ;= y,[2k + 1]. At the end of the algorithm, after j = J, we have all wavelet

coefficients {c;, d, . } as desired.
ynlk]
—> HPF Cik
[K]

Figure 3. Filtering for the pyramidal algorithm at phase j.

x[k] = dj—1,k

To illustrate the use of filtering in Figure3 for DWT, consider a sample signal x[n], shown
in Figure4. Here we use N = 64. As a result, J = 5, and we have five recursive filtering phases
j=1,--+,5. The first phase results in two signals: wavelet highpass signals at j = 1 (see Fig
5.a), and scaling low pass signal at j = 1. This scaling low pass signal is used as the input for
the next phase j = 2, resulting in wavelet high pass signals at j = 2 (see Fig 5.b), and scaling
low pass signal at j = 2. This scaling low pass signal becomes the next phase input (j = 3),
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resulting in wavelet high pass signals at j = 3 (see Fig 5.¢), and scaling low pass signal at j = 3.
Similar filtering at j = 4, resulting in resulting in wavelet high pass signals at j = 4 (see Fig 5.d),
and scaling low pass signal at j = 4. Finally, filtering of the scaling lowpass signal at j = 5,
resulting in wavelet high pass signals at j = 5 (see Fig 5.e), and scaling low pass signal at j =5
(see Fig 5.1). It should be noted that if we sum all these filtering signals (Fig 5.a to f), we will
have exactly x[n] in Figure 4.

30 t
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Figure 4. An 8-ms block of sample signal x[n].

(a)

AlO--

i O“I\A /\)‘AVA.I\M\ AA A&.‘AAAA AAI\‘/\AA
g Vv WVVVVVV WV
:é—

Time (8 ms)

(b)

AlO.-

% 0--/\V/_\|Av /\./\V/\v_,\/\/\/—
$ A
.E%

Time (8 ms)

263



Armein Z. R. Langi

(c)
10+

(=)
S
2 0 /\ Agme A A/
o | VN \/
© 1
2
= ]
Z

Time (8 ms)
(d)
— 4T
o
o
=
x 0
[}
©
2
£
£

Time (8 ms)
(e)
3
2 0 ' M\
) \/\/
el
3 1
=
£

Time (8 ms)
(f)
— 17
(&)
o
S o
=
o /
-c -
2
'_é_
< .

Time (8 ms)

Figure 5. An 8-ms block of wavelet filtering results of sample signal x[n] in Figurel, where (a)
wavelet high pass at j = 1, (b) wavelet high pass at j = 2, (c) wavelet high pass at j = 3, (d)
wavelet high pass at j = 4, (e) wavelet high pass at j =5, and (f) scaling low pass at j = 5.
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3. Word Length Effects

We expect the computational structure of pyramidal algorithm is more efficient comparing
to that of basis correlation scheme. As a result, Scheme 2 should be the choice of VLSI
architecture. However an efficient VLSI architecture requires integer implementations. In
general the quality of integer architecture is sensitive to word length. Our concern with Scheme
2 is it involves a pyramidal structure, hence it is recursive. In recursive cases, the arithmetic
word-length becomes an important issue.

We then study the performance of both Scheme 1 and Scheme 2 under integer arithmetics.
The performance of the schemes is evaluated according to the length of integer word (W), at
specified length of input samples (N) and the length of wavelet prototype (L). Notice that N
represents the number of input samples, taking integer values of power of 2. We limit L to 4,
12, and 20, to cover Daubechies prototype wavelets of length 4, 12, and 20 [9] (see also
Figurel). Finally, W should cover the usual integer word lengths of 8, 14, 16, 24, and 32. For
completeness, W is varied from 4 to 32 .

Here as shown in Figure6, we first apply uniformly distributed random samples as input
signal x[n] to both schemes, resulting in respective coefficients {c;[n],d,[n]}. We then
apply both results independently to an inverse DWT to produce reconstructed signals x[n].
Finally we compare the resulting signals x[n] with the original ones x[n], and measure the
signal-to-noise ratio (SNR) of the re-synthesized signals, according to

SNR = 10log;, YN-3|2[n]-x[n]|2 ?
x[n] {C),k [nl.d;x[n] ] Inverse o
DWT DWT
Compare
SNR

Figure 6. Measuring quality of the Schemes.

Table 11 shows the SNR as a function of W. Our experiments to assess round-off effects
show that W is critical for both schemes. Changing W will change the SNR dramatically (see
Figure7). In some signal applications, an SNR level of 30dB is considered minimal. Thus an
integer DWT must use at least W = 12 bits. For word length of 16 bit, the SNR is already at an
excellent level of 61 dB. And the integer DWT at 32 bit performs overwhelmingly well.
However notice that both schemes perform almost equivalently, and in most cases Scheme 2
seems to outperform Scheme 1, illustrated in Figure7. It seems that the recursive nature of the
pyramidal algorithm does not propagate round-off errors. The two schemes behave similarly
due to round-off effects. The most important point is that this means there is no advantage in
SNR of using Scheme 1. It should be noted that in our experiment N and L have no significant
effects on the SNR.
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Table |
Effect of word length W to SNR, for N = 1024 and L = 20.
W Signal to Noise Ratio (dB)
Scheme 1 Scheme 2
4 1.60 1.48
8 16.27 16.76
12 37.77 38.98
14 49.23 50.93
16 61.36 62.71
24 108.94 111.27
32 157.24 159.58
SNR (dB)
160 | jol
140 —|- '
® Scheme 1
120 |-
O Scheme 2
100 —
80 |-
60 |
40 —
20
0 | w

2 4 8 16 32
Figure 7. Critical impacts of word length W to the quality.

4. Discussions and Concluding Remarks

We have compared two different algorithm candidates of VLSI architectures for integer
DWT, namely basis correlation (Scheme 1) and pyramidal algorithm (Scheme 2). Scheme 1
has a direct relationship with the DWT definition, hence it is expected to perform well in SNR
using integer computations. On the other hand Scheme 2 is of recursive nature, resulting in
potential accumulating computational error propagations.

However, our experiments show that Scheme 2 is as computationally good as Scheme 1,
i.e., SNRs for various word lengths are comparable. Furthermore, the behavior of both scheme
are comparable for various sample lengths or wavelet prototype lengths. This means Scheme 1
has no advantages over Scheme 2.

Scheme 1 has a computational structure directly following Eq (2), hence it has a simpler
and straightforward control structure. However by observing the equation, we conclude that for
each coefficient in Eq. (6) there are N multiplications and N-1 accumulations to be made. Since
there are N coefficients to be produced, we can say that the complexity of Scheme 1 is O(N?).
In fact, the total computation is found to be N2 + Nlog,(N/L) + N — L.

As expected, Scheme 2 requires fewer computational operations (i.e., multiplication and
addition). In particular each coefficient requires L multiplications and L-1 accumulations
because of LPF and HPF. Furthermore, there are N coefficients to be produced by HPF and N
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coefficients by LPF. Hence, Scheme 2 has 2NL total computation, or simply O(N) as opposed
to on? in Scheme 1.

Thus for a typical N and L of 64 and 4, respectively, Schemes 1 and 2 result in 3900 and
512 operations, respectively. It should be noted that Scheme 1 uses very simple processing
elements (multiply and accumulate) and can lead to very fast, parallel schemes, while Scheme
2 has inherent speed limitation due to its recursive nature. Thus in terms of computational
complexity, Scheme 2 outperforms Scheme 1 as expected. Its complexity is only 13.1% of that
of Scheme 1 for a typical sample length and a prototype length.

In conclusion, finite word length of data has similar critical impact on DWT performance
on both algorithms. We can also conclude that Scheme 2 should be selected as the VLSI
architecture of choice in our DWT VLSI design based on computing complexity reason.
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