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ABSTRACT
In prior work [15] we studied a language constructrestrict that
allows programmers to specify that certain pointers are not aliased
to other pointers used within a lexical scope. Among other appli-
cations, programming with these constructs helps program analysis
tools locally recover strong updates, which can improve the track-
ing of state in flow-sensitive analyses. In this paper we continue
the study ofrestrict and introduce the constructconfine .
We present a type and effect system for checking the correctness
of these annotations, and we develop efficient constraint-based al-
gorithms implementing these type checking systems. To make it
easier to userestrict andconfine in practice, we show how
to automatically infer such annotations without programmer as-
sistance. In experiments on locking in 589 Linux device drivers,
confine inference can automatically recover strong updates to
eliminate 95% of the type errors resulting from weak updates.
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Programs]: Studies of Program Constructs
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1. INTRODUCTION
Almost all program analyses for languages with pointers must

perform some form ofalias analysis: when a program indirectly
loads or stores through a pointerp, the analysis must determine to
which location(s)p points. Alias analysis is a key ingredient in
many program checking systems and compiler optimizations. The
research literature abounds with proposed alias analysis techniques
[1, 7, 10, 18, 20, 21, 24, 26, 30] (to name only a few), some of
which scale to very large programs. Almost all of these techniques
are fully automatic. That is, such an analysis takes a bare program
and infers all possible aliasing.

This paper is about aliasing in programs, but the purpose is dif-
ferent from previous work on automatic alias analysis. Our mo-
tivation comes from experience developing and using CQUAL, a
system for extending C with user-defined type qualifiers [15]. Con-
sider the partial program shown in Figure 1. We use this example
to tell a story, the moral of which is that we needed a new form of
alias analysis to make CQUAL and similar analyses work in prac-
tice; that new form of alias analysis, previously sketched briefly
[15] and developed further here, is the topic of this paper.

One application of CQUAL is to verify properties of locking.
CQUAL uses two non-standard, flow-sensitive (see below) type qual-
ifiers locked andunlocked to refine the typelock . If all goes
well in the example in Figure 1, CQUAL infers that*l (the lock
that l points to) has typeunlocked lock at point 1 (i.e., the
lock is not held), the typelocked lock at point 2 (i.e., the lock
is held), and the typeunlocked lock at point 3.1 In this way,
CQUAL checks code for deadlocks caused by reacquiring a lock
that is already held or releasing a lock that has not been acquired.

CQUAL models state by mapping every program variablev (or
other concrete memory location) to an abstract locationρ. If two
program quantities may alias each other (according to a particular
alias analysis), they are mapped to the same abstract location. In
the example, because our alias analysis cannot distinguish different
elements of an array, all elements of the array reside at the same
abstract locationρ. Similarly, l points to locationρ, meaning that
*l is stored at locationρ, and thus both*l and all array elements
may alias.

To analyze locking CQUAL performs aflow-sensitiveanalysis,
which means that CQUAL must be able to assign*l different types
at different points in the program. Assume that all locks in the array
begin in the stateunlocked lock . The call tospin lock(l)
changes the state of*l to a locked lock . However, it is not
*l ’s state that is changed, but the state of*l ’s abstract location

1To accomplish this, CQUAL also needs to know how the functions
spin lock andspin unlock change the state of locks. This
information is given as type signatures [15].



void foo(int i) {
do_with_lock(&locks[i]);

}

void do_with_lock(lock *l) { /* 1 */
spin_lock(l); /* 2 */
work();
spin_unlock(l); /* 3 */

}

Figure 1: Example program

ρ. But ρ stands for other locks, too—namely the other locks in the
array, which are still in theunlocked state. Thus after the call to
spin lock(l) the static information aboutρ degrades to know-
ing only that any locks it represents may be either in thelocked or
theunlocked state, and the verification of any locking properties
on any of these locks becomes impossible.

The difficulty is that the single abstract locationρ stands for mul-
tiple concrete locks, and the call tospin lock(l) only changes
the state of a single lock. Thus the information aboutρ after the
call to spin lock(l) is the union of the old state (for the locks
that did not change) and the new state (for the one lock that did
change). In flow-sensitive analysis, this is known as aweak update.
What we need for accurate analysis, though, is astrong update: we
want to change the state of*l from unlocked to locked and
not affect the status of any other lock. The need to perform strong
updates is not specific to locks. This problem arises in any static
analysis where there are both collections such as arrays or lists and
we want to track state changes of values.

If we knew thatdo with lock could only access*l through
its formal parameterl , and not through some alias it holds through,
e.g., a global variable, then locally withindo with lock we could
ignore the aliases of*l external todo with lock and perform
strong updates on*l ’s location [15].

The recent C99 standard for the C programming language [2]
provides a way to say almost exactly this. Change the definition of
do with lock to

void do_with_lock(lock *restrict l)

At a high level, therestrict keyword means that no alias of
*l defined outside ofdo with lock is used during the func-
tion’s execution. Although there may be many aliases ofl in the
program, locally we knowl is the only way fordo with lock
to access*l . This notion of locally unaliased pointers is miss-
ing from conventional flow-insensitive may-alias analysis, where
pointers are either aliased or not and the only scope of interest is the
entire program. Notice that while context-sensitive [24] or parame-
terized [21] alias analysis may help ourdo with lock example,
we can also use restrict to indicate local non-aliasing within nested
scopes smaller than function scopes. Indeed, we make use of this
feature in our experiments (Section 7).

Another key feature ofrestrict is that it provides a form
of program documentation: it allows the programmer to specify
a particular kind of non-aliasing. Combined with a checking sys-
tem such as we propose, we believe thatrestrict is not only
beneficial for tools like CQUAL, but also for the programmer when
writing their program.

In C, restrict is trusted and unchecked by the compiler—it
amounts to a license for compilers to perform aggressive optimiza-
tions that would be unsound in the presence of aliases. We believe
restrict is even more useful in program checking tools, and not

just for C programs, but for programs written in any language with
references. While there are important exceptions, such as functions
that copy data or pointers, we believe many pointers in practice can
be markedrestrict ed.

The thesis of this paper is thatrestrict ed references are com-
mon in real programs, and that exploiting this (usually implicit)
structure is important to software engineering tools such as CQUAL

that need to reason about references. More specifically, the contri-
butions of this paper are:

• We develop a formal semantics ofrestrict (Section 3.2)
and also present an informal description and examples (Sec-
tion 2).

• We give atype and effect system[22] for checking that a
restrict -annotated program is correct with respect to our
semantics (Section 3).

• We give aO(kn) constraint-based algorithm for verifying
restrict annotations, wheren is the size of the typed program
andk is the number ofrestrict annotations in the pro-
gram. The type system for restrict is described briefly in
prior work [15], but this is the first description of the type
checking algorithm (Section 4).

• In using CQUAL we have found it necessary to add many
more restrict annotations to programs than we would
like to do by hand. This motivates the idea ofrestrict in-
ference: not just checking user-suppliedrestrict annota-
tions, but automatically inferringrestrict s in a program
with no restrict annotations. We give anO(n2) algo-
rithm for restrict inference (Section 5).

• Furthermore, in many applications we wish torestrict
not just a variable, but an expression. This extension of
restrict introduces two new problems. First, to treat
an arbitrary expression as a name, it must be referentially
transparent, which introduces additional constraints beyond
what is required forrestrict . We call this stronger con-
dition confiningan expression and likewise name the associ-
ated constructconfine . Second, forconfine inference
we have the additional problem of inferring in what scope an
expression can be confined (Section 6).

• We present the results of experiments withconfine infer-
ence, in which we use CQUAL to analyze the locking behav-
ior of 589 Linux device drivers. In this experiment,confine
is very effective at identifying the program points where strong
updates can aid the analysis (Section 7).

2. RESTRICT
This section gives an informal semantics ofrestrict and sev-

eral examples. Section 3.2 sketches a precise, formal semantics of
restrict . Let p be a pointer declared as

int *restrict p;

meaning thatp is a restricted pointer to an integer, and supposep
points to objectX. The simplest use ofrestrict is to bind a new
namep for all accesses ofX in a local scope. Here an access within
a scope is either a direct access or an access that occurs during
the execution of a function called within that scope. The following
example demonstrates valid and invalid pointer dereferences within
the scope of arestrict :



{ int *restrict p = q;
*p; // valid
*q; // invalid
*a; // invalid if a and q may alias

}

Herep is initialized toq, and we attempt to dereferencep, q, and
a within the scope ofp. Sincep is annotated withrestrict , we
may dereferencep but we may not dereferenceq or a (if a aliases
q). In other words, within the scope of therestrict , the name
p (and copies derived fromp; see below) must be the sole access
to the locationp points to.

As another example, the following code shows thatrestrict -
qualified pointers may be re-bound in an inner scope:

{ int *restrict p = ...;
{ int *restrict r = p;

*r; // valid
*p; // invalid

}
*p; // valid

}

In our version ofrestrict (which differs from C99 [2] on a
few points; see below), it is legal to create and use some aliases of
restricted pointers. Consider the following example:

int *x;
{ int *restrict p = ...;

int *r = p;
*r; // valid: use of local copy
x = p; // invalid: copy escapes

}

Here we are allowed to make copies of the restricted pointerp,
which we can also dereference inside of therestrict .

Intuitively, annotating the definition ofp with restrict splits
the aliases ofp into two groups:

• Aliases ofp created outside scope of therestrict may be
accessed outside therestrict but not inside.

• p and aliases ofp created inside the scope of therestrict
may be accessed within the scope of therestrict but not
outside.

In most uses ofrestrict , only the restricted pointer itself is
used to reference storage it points to inside therestrict con-
struct. In this common case,restrict serves to create a local
pointer that is known to be the sole access to its storage in a par-
ticular scope. However, there is no difficulty in supporting copies
of restrict ed pointers as in the example above. The require-
ment that aliases created inside therestrict not be used outside
of the restrict means that we must check that no aliases of
the restricted pointerescapethe scope of therestrict . Thus
the assignment tox is illegal in the example above and would be
flagged as an error by our system. References can also escape by
being stored into the heap or global variables; our system disal-
lows such operations on restricted pointers. While we have found
that preventing restricted pointers from escaping sufficient so far,
one can imagine applications where allowing restricted pointers to
leave their original scope of definition might be useful. We plan to
consider such an extension as future work.

As mentioned in the introduction, our version ofrestrict is
inspired by the ANSI C keyword of the same name [2]. The ma-
jor difference between our version ofrestrict and ANSI C’s

is that in ANSI Crestrict is not checked—the programmer is
assumed to have added therestrict qualifier correctly. Another
difference is that in ANSI C, arestrict annotation on a pointer
p is ignored if the object pointed to byp is not written within the
scope of therestrict . For a full discussion, see [13, 14].

3. LANGUAGE AND TYPE CHECKING
We present our type system forrestrict using a small imper-

ative language:

e ::= x Variable
| n Integer
| new e Allocate memory initialized toe
| * e Dereference pointere
| e1 := e2 Assigne2 to e1

| let x =e1 in e2

Bind e1 to namex in e2

| restrict x =e1 in e2

Restricte1 to namex in e2

For simplicity, we have omitted function definitions and calls from
the language. The treatment of functions is standard and introduces
no new issues; we omit it for brevity. Statement sequencinge1; e2

is also not present in the language, but is easily added with no com-
plications. A discussion of the language extended with functions,
as well as a detailed proof of soundness, can be found elsewhere
[13, 14].

Besides variables, integers, pointer allocationnew e, derefer-
ence* e, and assignment, our language has two mechanisms for
introducing local variables. The first islet x =e1 in e2, which
simply initializes a new pointer variablex to e1 for use ine2. There
is also a new scoping construct

restrict x =e1 in e2

with the following meaning: likelet , the pointerx is initialized
to e1 and bound within the bodye2. However, unlikelet , within
e2 the only access to the locationx points to is throughx or values
derived fromx.

To enforce the semantics ofrestrict , our type system needs
two extensions of standard types. First, we need a way to keep track
of program names that may be aliased to one another. We use the
standard solution, which is to associate abstract memory locations
ρ with pointer types. Names that have the same abstract location in
their types may be aliased to the same concrete memory location.
The grammar for types is:

τ ::= int | ref ρ(τ)

Pointer types areref ρ(τ), meaning a pointer to a value of typeτ
whereρ is the abstract location pointed to.

Second, we need to enforce the rule that a locationρ0 may not
be accessed within the bodye of a restrict . To accomplish
this, we calculate the set of abstract locationsLe thate may read or
write and checkρ0 6∈ Le. The setLe is called theeffectof e [16].
The grammar for effects is:

L ::= ∅ | {ρ} | L1 ∪ L2 | L1 ∩ L2

We need one auxiliary function for our type checking system.
We write locs(τ) for the set of locations occurring in the typeτ ,
defined as

locs(int) = ∅
locs(ref ρ(τ)) = {ρ} ∪ locs(τ)

Our type system proves judgments of the form

Γ ` e : τ ; L



Γ ` x : Γ(x); ∅
(Var)

Γ ` n : int; ∅
(Int)

Γ ` e : τ ; L

Γ ` new e : ref ρ(τ); L ∪ {ρ}
(Ref)

Γ ` e : ref ρ(τ); L

Γ ` * e : τ ; L ∪ {ρ}
(Deref)

Γ ` e1 : ref ρ(τ); L1 Γ ` e2 : τ ; L2

Γ ` e1 := e2 : τ ; L1 ∪ L2 ∪ {ρ}
(Assign)

Γ ` e1 : ref ρ(τ1); L1

Γ[x 7→ ref ρ(τ1)] ` e2 : τ2; L2

Γ ` let x =e1 in e2 : τ2; L1 ∪ L2

(Let)

Γ ` e1 : ref ρ(τ1); L1

Γ[x 7→ ref ρ′
(τ1)] ` e2 : τ2; L2

ρ 6∈ L2 ρ′ 6∈ locs(Γ, τ1, τ2)

Γ ` restrict x =e1 in e2 : τ2; L1 ∪ L2 ∪ {ρ}
(Restrict)

Figure 2: Type Checking Rules

meaning that expressione has typeτ in type environmentΓ (a map-
ping of variables to types), and the evaluation ofe may read or write
the locations inL. We definelocs(Γ) as

⋃
x:τ∈Γ locs(τ).

Figure 2 gives the type checking rules for our language. We
briefly discuss the rules, which except forrestrict are all typi-
cal of effect systems.

• (Var) looks up the type of a variable in the type environment
Γ. Looking up a pointer variable does not dereference that
variable and thus has no effect.

• (Int) says an integer constant has typeint. There is no effect.

• (Ref) constructs a pointer type; there is an effect on the allo-
cated location.

• (Deref) deconstructs a pointer type. Since operationally a
dereference reads a location, we addρ, the abstract location
pointed to bye, to the effect set.

• (Assign) updates a location. As with (Deref), we addρ to the
effect set, since the assignment updatese1. Notice we require
that the type ofe2 and the type pointed to bye1 match. Since
those types may themselves contain abstract locations, this
rule encodes a unification-based may-alias analysis Steens-
gaard [26].

• (Let) does two things. First,let introduces a local variable
x . The type ofx is required to be a pointer. This restriction
just makeslet parallel with restrict in our small lan-
guage (restrict only makes sense for pointers). Second,
let evaluates bothe1 ande2; note that the effect of thelet
is the union of the effects of these two expressions.

The key rule in this system is (Restrict). The rule is written
to highlight the similarities and differences with the rule forlet ,
which introduces normal unrestricted pointers. There are four dif-
ferences:

• Recall the semantics ofrestrict x =e1 in e2 states thatx
is a pointer to a copy of the location pointed to bye1 (Sec-
tion 2). This naturally suggests givingx a type with a fresh
abstract locationρ′ during the evaluation ofe2. With this
binding we can distinguish accesses throughx or copies of
x, which have an effect on locationρ′, from accesses through
other aliases ofe1, which have an effect on locationρ.

• The constraintρ 6∈ L2 prevents other aliases ofe1 from being
accessed withine2.

• The constraintρ′ 6∈ locs(Γ, τ, τ2), prevents the new location
for x from escaping the scope ofe2. Consider:

let x = new 0 in
let p = . . . in

(restrict q = x in
p := q;

/* 1 */
restrict r = x in

**p)

Supposex has typeref ρx(int). By (Restrict), the types of
q and x can contain different abstract locations. Letq’s
type beref ρq (int), whereρx 6= ρq. Now if the clauseρ′ 6∈
locs(Γ, τ, τ2) were not included in (Restrict), the assignment
p := q would type check. At program point 1, we would
have two different names for the same location—ρq andρx—
even though neither isrestrict ed. Thus the dereference
**p would type check even though the program is incorrect.
We forbidρ′ from escaping in (Restrict) to prevent this prob-
lem.

• Finally, notice that the conclusion of (Restrict) contains the
effect{ρ}, i.e., restricting a location is itself an effect. This
forbids sneaky programs such as:

restrict y = x in
restrict z = x in

. . .*y . . .*z . . .

If restricting a location had no effect on that location, it would
be possible torestrict the same name twice and have
both restricted names available for use in the same scope.

While the type and effect system presented here is built upon a
unification-based alias analysis, restrict (and restrict checking) can
also be combined with more precise alias analyses. We have not
yet explored this possibility.

3.1 Removing Effects
This section details a kind of polymorphism that we have found

to be important for effectively checkingrestrict annotations
in programs. Consider a generic sentence in our logicΓ ` e :
τ ; L. In practice, surprisingly often it happens that the effectL
contains locations that are not mentioned either in the typeτ or the
environmentΓ. The cause of this seemingly odd behavior is easy to
see:e may have subexpressions that allocate temporary storage and
have effects on that storage. No rule in Figure 2 removes locations
from the effect of an expression, so effects simply grow as we move
from the leaves to the root of the abstract syntax tree. This behavior
is not benign. In recursive functions, these extra locations appear to
be in both the effect of recursive calls and the effect of the body of
the function, resulting in more locations being equated than should
be and frequently causingrestrict checking to fail.



We need a rule that removes effects:

Γ ` e : τ ; L

Γ ` e : τ ; L ∩ locs(Γ, τ)
(Down)

(Down) states that effects on locations that are no longer in use—
neither part of the result computed by an expression, nor accessible
through the environment—can be removed from the effect set [4,
16, 22]. Note that the rule (Down) is the one non-syntactic rule in
our system. We can construct a purely syntax-directed version of
our system by observing that two applications of (Down) in a row
always can be combined into one. Thus, we can assume there is
one application of (Down) for each expression in the program. In
fact, it is unprofitable to apply (Down) anywhere except before the
rule for functions (which, again, we have not shown). Combining
these observations yields a syntax-directed system.

3.2 Semantics and Soundness
In this section we give a very brief sketch of the semantics and

soundness ofrestrict . Our big-step operational semantics is
formulated to prove judgments of the formS ` e → v; S′, mean-
ing that evaluatinge starting in initial storeS (a map from locations
l to values, which may themselves be locations) yields a valuev
and a (possibly updated) final storeS′. Here a valuev is either a
locationl or an integern (or a function binding, if that were in our
source language). We modelrestrict in our semantics using
the following rule:

S ` e1 → l; S′

S′[l 7→ err , l′ 7→ S′(l)] ` e2[x 7→ l′] → v, S′′

l ∈ dom(S′) l′ 6∈ dom(S′)

S ` restrict x =e1 in e2 → v; S′′[l 7→ S′′(l′), l′ 7→ err ]

This rule uses copying to enforcerestrict ’s semantics. To
evaluaterestrict x =e1 in e2, we first evaluatee1 normally,
which must yield a pointerl. Within the body ofe2, the only way
to access whatl points to should be via the particular value that
resulted from evaluatinge1. We enforce this by allocating a fresh
locationl′ initialized with the contents ofl, and then bindingl to
err to forbid access throughl. The remainder of our semantics (not
shown) is strict inerr , and any computation that goes wrong re-
duces toerr (rather than becoming stuck). Thus, any program that
tries to read or writel within e2 will reduce toerr . The sound-
ness of our checking system (see below) implies that no program
evaluates toerr , which in turn implies that an implementation can
safely optimizerestrict by eliding the copy ofl. Instead, in an
implementationrestrict simply bindsx to l.

Notice that it is not an error to use the valuel within e2, but only
to dereference it. Aftere2 has been evaluated, we re-initializel to
point to the valuex points to, and then forbid accesses throughl′.
Forbidding access throughl′ corresponds to the requirement in the
type rule (Restrict) thatρ′ not escape. (An alternative formulation,
which we leave to future work, is to rename occurrences ofl′ to l
aftere2 finishes.)

We can show soundness in the usual way via a subject reduction
theorem that shows that the type of an expression is preserved by
evaluation. Then sinceerr has no type, a program that starts off
well-typed can never reduce toerr :

THEOREM 1 (SOUNDNESS). If ∅ ` e : t; L and ∅ ` e →
r; S′, thenr is noterr.

Herer is either a value orerr (all terminating programs reduce to
one or the other). In other words, in a program that type checks, no
use ofrestrict is found to be invalid at run time.

Γ, εΓ ` x : Γ(x); ∅
(Var)

Γ, εΓ ` n : int; ∅
(Int)

Γ, εΓ ` e : τ ; L ρ fresh
ετ ∪ {ρ} ⊆ εref ρ(τ)

Γ, εΓ ` new e : ref ρ(τ); L ∪ {ρ}
(Ref)

Γ, εΓ ` e : ref ρ(τ); L

Γ, εΓ ` * e : τ ; L ∪ {ρ}
(Deref)

Γ, εΓ ` e1 : ref ρ(τ1); L1 Γ, εΓ ` e2 : τ2; L2

τ1 = τ2

Γ, εΓ ` e1 := e2 : τ1; L1 ∪ L2 ∪ {ρ}
(Assign)

Γ, εΓ ` e : τ ; L

Γ, εΓ ` e : τ ; L ∩ (εΓ ∪ ετ )
(Down)

Γ, εΓ ` e1 : ref ρ(τ1); L1

Γ′, εΓ′ ` e2 : τ2; L2 Γ′ = Γ[x 7→ ref ρ(τ1)]
εΓ ∪ εref ρ(τ1) ⊆ εΓ′

Γ, εΓ ` let x =e1 in e2 : τ2; L1 ∪ L2

(Let)

Γ, εΓ ` e1 : ref ρ(τ1); L1

Γ′, εΓ′ ` e2 : τ2; L2 Γ′ = Γ[x 7→ ref ρ′
(τ1)]

ετ1 ∪ {ρ′} ⊆ εref ρ′
(τ1) εΓ ∪ εref ρ′

(τ1) ⊆ εΓ′

ρ 6∈ L2 ρ′ 6∈ εΓ ∪ ετ1 ∪ ετ2

Γ, εΓ ` restrict x =e1 in e2 : τ2; L1 ∪ L2 ∪ {ρ}
(Restrict)

Figure 3: Type Inference Rules for Checking Restrict

4. ALIAS AND EFFECT INFERENCE
We now give an algorithm for checking restrict annotations ac-

cording to the type rules in Figure 2 together with the rule (Down).
The algorithm we give is sound and complete; if there is a proof that
a restrict -annotated program is correct according to Figure 2,
the algorithm finds it.

We assume that the programmer has written their program us-
ing restrict and that the program type checks according to the
standard type rules of the language. Figure 3 gives inference rules
that show how to compute the remaining missing elements, namely
the locations and effects needed at each point. As is standard, for
inference we transform the conditions in the type checking rules
into a system of constraints that can be solved if and only if there is
some proof according to the rules in Figure 2. We first discuss the
constraints and some details of the inference algorithm, and then
we describe the individual type rules.

Our rules generate three kinds of constraintsC: equality con-
straints between types, inclusion constraints between effects, and
disinclusion constraints between locations and effects:

C ::= τ1 = τ2 | L ⊆ ε | ρ 6∈ L
τ ::= int | ref ρ(τ)
L ::= ∅ | {ρ} | ε | L1 ∪ L2 | L1 ∩ L2

Hereε is aneffect variable, which stands for an unknown set of
locations. Notice that inclusion constraints between effects are of
the special formL ⊆ ε, which makes these constraints particularly
easy to solve.

An important algorithmic consideration is how we compute the
sets of locationslocs(τ) andlocs(Γ) required by the type checking



rules (Restrict) and (Down). We want to avoid repeatedly travers-
ing type structuresτ and type environmentsΓ at each point in the
program—a program withO(n) expressions may have (monomor-
phic) types of sizeO(n) and environmentsΓ with O(n) variables,
and thus this part of the algorithm alone would likely be at least
quadratic.

Our solution is to memoize the computation oflocs(·). Recall
that effects are sets of locations. We associate an effect variableετ

with each typeτ , and we maintain this association with an implicit
global mapping. As we construct new types, e.g., in (Ref), we
generate constraints to represent the locations in the new types:

ετ ∪ {ρ} ⊆ εref ρ(τ)

Then in the type inference rules, instead oflocs(τ), we useετ , e.g.,
in (Down).

Similarly, we observe that the type environment is empty at the
root of the proof tree and then is only incrementally modified for
each subexpression. If we know the set of locations in an environ-
ment at an expressione, we can incrementally compute the set of
locations in the environments at each ofe’s subexpressions. We use
effect variablesεΓ to contain the set of locations occurring in en-
vironmentΓ. Where we extend environmentΓ with a new binding
x 7→ τ in (Let) and (Restrict), we generate a constraint

εΓ ∪ ετ ⊆ εΓ[x7→τ ]

Thus we succinctly capturelocs(Γ[x 7→ τ ]) without recomputing
locs(Γ). Because the variablesεΓ must be communicated between
adjacent steps of the proof, they are included as part of the environ-
ment (to the left of the turnstilè) in the rules of Figure 3.

We briefly discuss the type inference rules in Figure 3. We as-
sume that type checking has already been carried out for the under-
lying standard types of the language, and that these types are given
to us. That is, we do not infer the standard types.

• (Var), (Int), and (Deref) are identical to the type checking
rules except for the addition ofεΓ to the left of the turnstile.

• (Ref) and (Assign) are written with explicit fresh variables
and equality constraints between types where needed.

• (Down) is similar to its type checking rule, except we use the
variableεΓ in place oflocs(Γ) andετ in place oflocs(τ).
Notice the use of our implicit global mapping ofτ to ετ .

• (Let) differs in one significant way from its type checking
rule. The set of locationsεΓ′ of Γ′ is taken to be the union of
the locations ofΓ (which isεΓ) and the locations inref ρ(τ1).

• (Restrict) differs from (Let) in the following ways.

– The variablex is given a type with the new locationρ′,
andρ′ instead ofρ is included in the set of locations
εΓ′ of environmentΓ′.

– A check ensures thatρ does not appear in the effectL2

of e2.

– A check ensures thatρ′ does not escape.

– There is an extra effect onρ in the effect of the whole
expression.

Let n be the size of the initial program with its standard types.
Applying the inference rules in Figure 3 takesO(n) time and gen-
erates a system of constraintsC of sizeO(n). We split the reso-
lution of the side constraintsC into two phases, shown as left-to-
right rewrite rules in Figure 4. First, we solve the type equality

C ∪ {int = int} ⇒ C
C ∪ {ref ρ1(τ1) = ref ρ2(τ2)} ⇒

C ∪ {ρ1 = ρ2} ∪ {τ1 = τ2}
C ∪ {ρ1 = ρ2} ⇒ C[ρ1 7→ ρ2]
C ∪ {ε1 = ε2} ⇒ C[ε1 7→ ε2]

(a) Type Equality

C ∪ {ρ 6∈ L} ⇒
C ∪ {ρ 6∈ ε} ∪ {L ⊆ ε} ε fresh

C ∪ {∅ ⊆ ε} ⇒ C
C ∪ {L1 ∪ L2 ⊆ ε} ⇒ C ∪ {L1 ⊆ ε} ∪ {L2 ⊆ ε}

C ∪ {∅ ∩ L ⊆ ε} ⇒ C
C ∪ {L ∩ ∅ ⊆ ε} ⇒ C

C ∪ {(L1 ∪ L2) ∩ L ⊆ ε} ⇒
C ∪ {ε′ ∩ L ⊆ ε} ∪ {L1 ∪ L2 ⊆ ε′} ε′ fresh

C ∪ {L ∩ (L1 ∪ L2) ⊆ ε} ⇒
C ∪ {L ∩ ε′ ⊆ ε} ∪ {L1 ∪ L2 ⊆ ε′} ε′ fresh

(b) Constraint Normalization

Figure 4: Constraint Resolution

constraintsτ1 = τ2 using the rules in Figure 4a. Because we as-
sume checking of the standard types has already been done, the
type equality rules can never discover an inconsistency. However,
the type equalities must still be solved to discover all implied con-
straints betweenρ andε variables. This step requiresO(n) time.

The resulting constraints are of the formL ⊆ ε andρ 6∈ L.
We call such a system of constraints aneffect constraint system. A
solutionto an effect constraint systemC is a mappingσ from effect
variables to sets of locations such thatσ(L) ⊆ σ(ε) andρ 6∈ σ(L)
for each constraintL ⊆ ε andρ 6∈ L in C, where we extendσ
from effect variables to arbitrary effects in the natural way. An
effect constraint system issatisfiableif it has a solution. Notice
that abstract locations are not in the domain ofσ—intuitively, after
discovering all equalities between locations after applying the rules
in Figure 4a, we can treat abstract locations as constants.

We define a partial order on solutions,σ ≤ σ′ iff for every effect
variableε we haveσ(ε) ⊆ σ′(ε). The least solutionto an effect
constraint system is the solutionσ such thatσ ≤ σ′ for any other
solutionσ′. If an effect constraint systemC has any solution, then
C has a least solution [13, 14].

To test satisfiability of an effect constraint system, we first apply
the rules in Figure 4b to translate the constraints into the following
normal form:

C ::= L ⊆ ε | ρ 6∈ ε
L ::= M | M ∩M

M ::= {ρ} | ε

Notice that the rules in Figure 4b preserve least solutions but not ar-
bitrary solutions. Also notice that in Figure 4b we do not consider
the case(L1 ∩ L2) ∩ L ⊆ ε or L ∩ (L1 ∩ L2) ⊆ ε. Such con-
straints are never generated once (Down) is merged into the rule for
functions (not shown). Applying the rules in Figure 4b takes time
O(n).

We view the inclusion constraints in a normal form effect con-



CHECK-SAT(ρ 6∈ ε):
AssociateCount(v) with each nodev in the graph
Initialize Count(v) = 0 for all v
Let W = {ρ}, the set of nodes left to visit
While W is not empty

Remove some nodev from W
If v == ε returnunsatisfiable
For each edgev → ε′

If Count(ε′) == 0 then
Count(ε′) = 1
Add ε′ to W

For each edgev → I
If Count(I) == 0 then

Count(I) = 1
Else ifCount(I) == 1 then

Count(I) = 2
Add I to W

Returnsatisfiable

Figure 5: Checking satisfiability of ρ 6∈ ε

straint system as a directed graph:

Constraint Edge(s)
{ρ} ⊆ ε ρ → ε
ε1 ⊆ ε2 ε1 → ε2

M1 ∩M2 ⊆ ε M1 → I
M2 → I
I → ε
I fresh

The nodes of the directed graph are abstract locationsρ (with in-
degree 0), effect variablesε (with arbitrary in-degree), and inter-
sectionsI (with in-degree 2). We generate a freshI node for each
constraintM1 ∩M2 ⊆ ε.

Given a normal form effect constraint system, we test satisfiabil-
ity by checking, for each constraintρ 6∈ ε, whetherρ ∈ σ(ε) in the
least solutionσ. Figure 5 shows the modified depth-first search we
use to check this condition. The algorithm in Figure 5 takes time
O(n) for eachρ 6∈ ε constraint. Given an initial program withk
occurrences ofrestrict , the system considered in Figure 5 has
O(k) constraints of the formρ 6∈ ε. Hence the time for this step is
O(kn), which is also the total time for the algorithm.

5. RESTRICT INFERENCE
The type checking algorithm of the previous section checks user-

suppliedrestrict annotations. In practice, however, many such
annotations may be necessary to give the quality of aliasing infor-
mation needed for other analyses, and adding these annotations by
hand can be very time-consuming. In this section we give an al-
gorithm for automatically addingrestrict to a program. More
precisely, we show how to automatically decide whether a binding
construct should belet or restrict . A bit surprisingly, our
type rules always admit a unique maximum set oflet expressions
that can berestrict ed. Our inference algorithm computes this
optimal annotation of the program.

As we have observed,let andrestrict differ only in a few
ways. Our approach is to combine the inference rules (Let) and
(Restrict) into a single rule (Let-or-Restrict), corresponding to a
new constructlet-or-restrict x =e1 in e2, with two prop-
erties. First, in any solution of the constraints, (Let-or-Restrict)
satisfies the requirements of exactly one of the (Let) or (Restrict)

rules. Second, (Let-or-Restrict) “prefers” the (Restrict) solution:
if the constraints have any solution satisfying the requirements of
(Restrict), then that will be the least solution.

Recall thatrestrict has four differences fromlet . We con-
sider each of these in turn. First, arestrict uses two locationsρ
andρ′ wherelet has onlyρ. Thus, our inference rule should begin
by assumingρ andρ′ are distinct (therestrict case), and if it
turns out that the expression cannot be arestrict , the locations
should be unified (ρ = ρ′, thelet case).

Second, there are two negative constraints

ρ 6∈ L2

ρ′ 6∈ εΓ ∪ ετ1 ∪ ετ2

in restrict . If either of these is unsatisfiable, then the expres-
sion must be alet . We can combine this with the reasoning above
to yield the following constraints:

ρ ∈ L2 ⇒ ρ = ρ′

ρ′ ∈ (εΓ ∪ ετ1 ∪ ετ2) ⇒ ρ = ρ′

These constraints say that if either the old locationρ is used in the
body of the construct, or the new locationρ′ escapes, then the lo-
cations must be equal and the construct is alet . We have not seen
suchconditionalconstraints before in this paper. These constraints
are easy to solve, though we omit the details here.

Finally, there is the extra effect onρ in the result ofrestrict .
If the expression is arestrict we must have the effect, and if
it is a let we must not. Given the semantics ofrestrict we
have used so far, we do not know how to model this choice effi-
ciently. However, if we interpretrestrict a little more liberally,
an efficient solution is straightforward.

Consider the constructlet-or-restrict x =e1 in e2, which
will behave either asrestrict or let . If e2 has an effect onρ′,
we are done: if it is arestrict there is an effect onρ and if
it is a let there is also an effect onρ becauseρ = ρ′. What if
e2 has no effect onρ′? In that case, we do not need to require
that restrict have an effect onρ! Recall from the example in
Section 3 that the extra effect is needed to preventρ from being
restricted twice and both restricted pointers used simultaneously. If
a restricted pointer is not used at all, there is no need to prevent it
from being restricted a second time in the same scope.2 These two
cases (e2 does or does not have an effect onρ′) can be combined in
one additional conditional constraint

(ρ′ ∈ L2) ⇒ {ρ} ⊆ ε

whereL2 is the effect ofe2 andε is included in the effect of the
entire expression.

Putting everything together, we have the following inference rule:

Γ, εΓ ` e1 : ref ρ(τ1); L1

Γ′, εΓ′ ` e2 : τ2; L2 Γ′ = Γ[x 7→ ref ρ′
(τ1)]

ετ1 ∪ {ρ′} ⊆ εref ρ′
(τ1) εΓ ∪ εref ρ′

(τ1) ⊆ εΓ′

ρ′ ∈ (εΓ ∪ ετ1 ∪ ετ2) ⇒ ρ = ρ′

ρ ∈ L2 ⇒ ρ = ρ′

ρ′ ∈ L2 ⇒ {ρ} ⊆ ε
ρ, ρ′, ε fresh

Γ, εΓ ` let-or-restrict x =e1 in e2 : τ2; L1 ∪ L2 ∪ ε

2This is consistent with the semantics ofrestrict in C. We have
not introduced this semantics before now because it is more com-
plicated.



This new rule, which replaces (Let) and (Restrict), allows us to
infer restrict annotations. It is easy to check that these con-
straints have a least solution, which guarantees the existence of an
optimal annotation of a program withrestrict .

A straightforward implementation of this inference rule gives a
quadratic time algorithm. Given a typed program of sizen, there
areO(n) possible locations andO(n) constraints. Computing ini-
tial reachability in the constraint graph (without the conditional
constraints) for allO(n) locations using the algorithm in Figure 5
takesO(n2) time. We maintain a work-list of conditional con-
straints whose left-hand side has become true. For each conditional
constraint on our work-list, we performO(n) extra work to recom-
pute reachability for the unified locations (or to recompute reacha-
bility for the locationρ in the constraint{ρ} ⊆ ε). Since there are
O(n) possible total unifications, and each may triggerO(n) work,
the overall complexity isO(n2).

6. CONFINE
Recall that, as in the code in Figure 1, many realistic examples

whererestrict -like functionality is useful involve values held
in containers. Unlike Figure 1, however, in practice programs often
do not include an explicit variable torestrict . For example,
consider

spin_lock(&locks[i]);
work();
spin_unlock(&locks[i]);

Assuming thatwork() does not modifyi or access any other ele-
ments of the arraylocks , we can rewrite this code usingrestrict
to allow a checker like CQUAL to analyze this code:

restrict x = &locks[i] in {
spin_lock(x);
work()
spin_unlock(x); }

(*)

While this is effective, implementing this transformation by hand
is tedious, not only because we must introduce a new name and
manually perform a substitution, but also because we must discover
the scope of therestrict and check that therestrict ed ex-
pression refers to the same object throughout the body. For in-
stance, in this case, we must notice that there are two occurrences of
&locks[i] in the code that refer to the same object, and then we
must put the scope of the new variable that names the lock around
both uses. Note that in the system described in Section 5 we only
infer restrict for variables, which come with an obvious scope.

Editing a program to add a fewrestrict annotations is not
difficult; the problem is that in practice there are manyrestrict
annotations to add, and many involve expressions. In our experi-
ence, the manual labor required to introduce local variables for all
of those expressions is just too much. Our solution is to introduce
a new construct,confine , that deals specifically with restricting
the aliases of expressions. The syntax is

confine e1 in e2

meaning that aliases of the locatione1 refers to arerestrict ed
in the scopee2. (Note that our use of the wordconfine is not
related to the term as used in object-oriented alias control sys-
tems [28].) The expressione1 itself serves as the name for the
restrict ed location. Assuming all program variables have been
renamed to be distinct, we defineconfine syntactically by trans-
lation torestrict :

confine e1 in (e2[e1/x]) = restrict x =e1 in e2

wherex is a fresh variable that is substituted for occurrences of
e1 in e2. For nestedconfine s, the translation must be done
innermost-first.

For instance, the example above would be written:

confine (&locks[i]) in {
spin_lock(&locks[i]);
work();
spin_unlock(&locks[i]);

}

and this is defined to be equivalent to (*) above. Notice that with
confine we do not need to rewrite the body of therestrict ed
scope—we need only wrap an appropriateconfine around it.

Our goal is to performconfine inference—to automatically
placeconfine s in the program. Intuitively,confine inference
corresponds to performing a kind of common sub-expression elim-
ination that handles aliasing and then applying restrict inference.
There are two issues:

• Referential transparency.For the definition given above of
confine in terms ofrestrict to make sense, an expres-
sion that isconfine d must truly behave like a name within
the scope of theconfine . An expression behaves like a
name in a scope only if it is referentially transparent within
that scope3—if it in fact always evaluates to the same value.

• Inferring scopes.As mentioned above, we must determine
the scope for aconfine .

6.1 Referential Transparency
Consider an expressionconfine e1 in e2. To enforce referen-

tial transparency ofe1 within the scope ofe2, we must first ensure
thate1 terminates. Our solution is to simply forbide1 from contain-
ing a function application, and indeed for the experiment described
in Section 7 we are interested only ine1’s that are composed of
identifiers, field accesses, and pointer dereferences.

To enforce referential transparency, we must also be certain that
neithere1 nor e2 modify any of the locationse1 needs during its
evaluation—locations used bye1 must only be read withine1 and
e2. To accomplish this we must extend our notion of effect. For
a given locationρ, we now distinguish effectsread(ρ) (reads of
locationρ), write(ρ) (writes to locationρ), andalloc(ρ) (allocation
of locationρ). Our rules now have two different kinds of sets: sets
S of locations (as before) and setsL of read, write, andalloc effects
on locations. For clarity, we separate these two kinds of sets and use
variablesπ for sets ofread, write, andalloc effects, and variables
ε for sets of locations. The grammars for sets are now:

L ::= ∅ | {read(ρ)} | {write(ρ)} | {alloc(ρ)} | π
| L1 ∪ L2 | L1 ∩ L2

S ::= ∅ | {ρ} | ε | S1 ∪ S2 | S1 ∩ S2

All inference rules must be modified to correctly report read,
write, and allocation effects on locations; we omit the details due to
space constraints. We also need to introduce a new kind ofeffectful
variable xL, which is typechecked just like a regular variablex,
except that evaluatingxL has effectL:

Γ, εΓ ` xL : Γ(x); L
(VarL)

Intuitively, we could also modelxL as a thunk if the language used
in this paper contained functions. We discuss the use of effectful
variablesxL below.
3Our usage is slightly non-standard; in the standard use of the term
“referential transparency,” the scope referred to is the whole pro-
gram.



To perform type inference forconfine e1 in e2, we modify
let-or-restrict for use withconfine :

Γ, εΓ ` e1 : ref ρ(τ1); L1

Γ′, εΓ′ ` e2[xπ′/x] : τ2; L2 Γ′ = Γ[x 7→ ref ρ′
(τ1)]

ετ1 ∪ {ρ′} ⊆ εref ρ′
(τ1) εΓ ∪ εref ρ′

(τ1) ⊆ εΓ′

ρ′ ∈ (εΓ ∪ ετ1 ∪ ετ2) ⇒ (ρ = ρ′ ∧ L1 ⊆ π′)
X(ρ) ∈ L2 ⇒ (ρ = ρ′ ∧ L1 ⊆ π′)

X(ρ′) ∈ L2 ⇒ {X(ρ)} ⊆ π
∀ρ′′.write(ρ′′) ∈ L1 ⇒ (ρ = ρ′ ∧ L1 ⊆ π′)
∀ρ′′.alloc(ρ′′) ∈ L1 ⇒ (ρ = ρ′ ∧ L1 ⊆ π′)

∀ρ′′.read(ρ′′) ∈ L1 ⇒ (write(ρ′′) ∈ L2 ⇒ (ρ = ρ′ ∧ L1 ⊆ π′))
∀ρ′′.read(ρ′′) ∈ L1 ⇒ (alloc(ρ′′) ∈ L2 ⇒ (ρ = ρ′ ∧ L1 ⊆ π′))

ρ, ρ′, π, π′ fresh
Γ, εΓ ` confine? e1 in e2[e1/x] : τ2; L1 ∪ L2 ∪ π

The nameconfine? is meant to be suggestive of an “op-
tional confine .” This rule chooses whether to insertconfine
based on the solution of the constraints (ifρ 6= ρ′ andL1 6⊆ π′

there is aconfine , otherwise there is not). The easiest way to
understand this rule is to compare it with the inference rule for
let-or-restrict (Section 5). The first line of the two rules is
identical. In the second line, we bindx as before, and we replacex
in e2 with an effectful variablexπ′ . Recall that ine2, occurrences
of e1 have been replaced byx. If inserting confine succeeds,
π′ = ∅ in the least solution of the constraints, soxπ′ is equiv-
alent tox. In other words, if insertingconfine succeeds, then
we replace occurrences of the common sub-expressione1 by x.
But if insertingconfine fails (for any reason) then the constraint
L1 ⊆ π′ will be generated, and therefore in this case when type-
checkinge2 we will give each occurrence ofx bothe1’s type and
e1’s effect. Thus, if insertingconfine fails, we do not eliminate
common sub-expressione1.

The third and fourth line of our rule forconfine? are as in our
rule for let-or-restrict , with the addition of the constraint
L1 ⊆ π′. In the next two lines we have used a short-hand in the new
rule: X is a wildcard constructor standing for any ofread, write,
or alloc. These constraints simply instantiate the requirements of
the original rule for each of the three specific kinds of effects. The
four lines beginning with universal quantifiers are the referential
transparency constraints specific toconfine . The first two lines
of the premise require that theconfine d expressione1 have no
side effects; the last two lines say that if a locationρ′′ is read by
e1 (i.e., the effectread(ρ′′) is in L1) then ρ′′ cannot be written
or allocated bye2. In other words, the last two lines prevente1

from being confined if the meaning ofe1 may be changed by an
assignment ine2.

It is important to understand that it is not necessary to actually
introduce new program variables and carry out inverse substitutions
to implementconfine inference. Our reduction ofconfine
inference torestrict inference allows us to rely on soundness
results forrestrict , but an efficient implementation is possible
without explicit program transformations. For space reasons we
have not given a type checking rule forconfine . A confine
rule is easily derived from the rule forconfine? by requiring
thatρ 6= ρ′ and simplifying.

6.2 Inferring Scopes
Ourconfine? rule gives us a method for inferringconfine .

This facility gives us a very simple way to automatically infer the
best (largest) scope in which to confine a given expressione1. In
Section 7, we use this technique to confine expressions correspond-
ing to locks in the Linux kernel.

Briefly, the main idea is that to infer the scope of aconfine

of an expressione1, we addconfine? e1 in e2 to every possi-
ble scopee2 and pick the largest scope where inference succeeds
(where “succeeds” means that the solutions of the constraints indi-
cate that aconfine can be added). The possible scopes wheree1

can be confined are just those where the free variables ofe1 are in
scope. For example, if we have

let x =e3 in (let y =e2 in . . . e1 . . .)

then confine inference fore1 addsconfine? to the outer scopes:

confine? e1 in (let x = e3 in
confine? e1 in (let y =e2 in . . . e1 . . .))

assuming thate1 did not mention eitherx or y. Confine infer-
ence is then carried out. After the constraints are solved, we select
the outermostconfine? that succeeds, if indeed any succeed.
Note that this method checks allconfine? expressions simulta-
neously. Given a typed program of sizen and a fixed expression
e1, there areO(n) possible places to insertconfine? . Finding
syntactic occurrences ofe1 takesO(n2) time. Solving the con-
straints forO(n) confine? s takesO(n2) time. To see this, note
that our type inference rules generateO(n) locations, and com-
puting reachability for a location in the constraint graph (using an
algorithm similar to that in Figure 5) takesO(n) time. Thus, com-
puting an initial least solution of every location, before taking any
conditional constraints into account, takes timeO(n2). Then for
any conditional constraint whose left-hand side is true, we perform
O(n) extra work to recompute reachability for the unified loca-
tions and to propagate the least solution ofL1 to π′. Since there
areO(n) possible total unifications, and each may triggerO(n)
work, the overall complexity isO(n2).

In our implementation, we use an algorithm with a higher worst-
case running time but better performance in practice. Rather than
computing reachability for every location in the constraint graph
(which takesO(n2) time), we do a backwards search from effects
in constraints generated forconfine? to find which locations
reach them. Since this tends to be a small portion of the constraint
graph, this is usually more efficient.

7. EXPERIMENTS
As discussed in Section 1, among other applications, we are in-

terested inrestrict andconfine because they enable strong
updates in flow-sensitive analyses. To assess the usefulness of our
confine construct in practice, we have implementedconfine
inference in CQUAL and tested it in conjunction with CQUAL ’s
flow-sensitive analysis. This section presents the results of that ex-
perience.

The flow-sensitive analysis we use is the analysis of locking be-
havior reported previously [15]. The Linux kernel has two primi-
tives spin lock(e) andspin unlock(e) for acquiring and
releasing locks, respectively. By tracking the state (held or not
held) of locks, we can detect when a lock is acquired or released
twice in succession within a single thread. These particular pro-
gramming errors are surprisingly common in Linux device drivers
[11].

In previous experiments [15], we examined hundreds of device
drivers and discovered numerous locking errors by inspecting the
results of analyzing single files and a few entire device drivers. Po-
tentially, more errors could be found by analyzing entire device
driver modules (which typically consist of many files), but we dis-
covered in analyzing many whole modules that the aliasing of locks
became so pervasive that it was very difficult to separate true bugs
from type errors reported due to spurious aliases, and it was sim-



ply impractical to remove the spurious aliases by adding all of the
neededrestrict annotations by hand.

We have repeated our locking experiments, usingconfine in-
ference as described in Section 6 to try toconfine any arguments
passed tochange type() , a special state-changing statement
built in to CQUAL [15]—in particular, we try toconfine any
arguments tospin lock or spin unlock . There is one wrin-
kle in performingconfine inference in a language with blocks of
statements

{e1; . . . ei; . . . ej ; . . . en}

such as C. Sometimes it is necessary toconfine only a portion
of the block with respect to an expressione; e.g., we may need to
introduce a new scope to write

{e1; . . . ; confine e in {ei; . . . ej ; }; . . . en}

The problem is to discover to what portion of a block we can add
confine . Observe that

(confine e in e1; confine e in e2) =
(confine e in {e1; e2})

That is, adjacentconfine s of the same expression can be com-
bined. This suggests the following general algorithm: in a block
e1; . . . en, for eachi, addconfine? e in ei and then greedily
combine all adjacentconfine? s that succeed. This algorithm
discovers the largest possibleconfine sub-blocks within a block
of statements.

To improve performance, our current implementation introduces
new sub-blocks forconfine? using a slightly different algorithm
based on a syntactic heuristic. For each statement in the program
(including statement blocks), we keep track of whether the state-
ment containschange type . When two statements in the same
block containchange type , and the arguments tochange type
match syntactically, we introduce the smallest possible sub-block
around the two statements and report that the new sub-block does
not contain achange type . Intuitively, this heuristic tries to put
confine? around sets of statements that callspin lock and
spin unlock with the same syntactic expression. The heuristic
is weaker than the general strategy outlined above, but still works
well in our experiment, as our results suggest. Also notice that al-
though the introduction ofconfine? is a syntactic heuristic, our
confine inference algorithm uses our type and effect system to
decide whether introducingconfine is safe.

We analyzed 589 whole device driver modules from the 2.4.9
Linux kernel. We used CQUAL in three different modes: without
confine inference, with confine inference, and finally in a mode
where all updates are assumed to be strong. In each case we mea-
sured the number of type errors reported by CQUAL in the flow-
sensitive pass—here the number of type errors is the number of syn-
tactic calls tospin lock() andspin unlock() where CQUAL

could not verify that locks are held in the correct state. Since one
application ofconfine is to enable strong updates in a flow-
sensitive analysis, the last mode provides an upper bound on the
number of spurious type errors that can be eliminated by adding
confine annotations.

Of the 589 modules, 352 are free of type errors without the ad-
dition of anyconfine annotations. 85 of the remaining modules
contain type errors, but not because of strong updates—using no
confine at all yields the same type errors as assuming all up-
dates are strong. Of the remaining 152 modules where CQUAL

reports type errors, usingconfine inference produces the same
type errors as assuming all updates are strong in 138 modules. That
is, in 138 of 152 modules whereconfine inference could make a
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Figure 6: Spurious type errors eliminated byconfine infer-
ence.

Module Number of lock/unlock type errors
no confine confine all updates
inference inference strong

wavelancs 22 16 15
trix 29 24 22
netrom 41 25 0
rose 47 28 0
usb-ohci 32 26 17
uhci 74 45 34
sb 31 24 22
ide-tape 58 47 41
mad16 29 24 22
emu10k1 198 60 35
trident 107 49 36
digi aceleport 62 32 4
sbni 23 16 9
iph5526 39 34 32

Figure 7: Modules for which confine inference does not infer
all possible strong updates.

difference, it removes all spurious type errors due to lack of strong
updates. Figure 6 shows the distribution of type errors eliminated
by confine inference for these modules. Summing the individ-
ual results for all modules,confine inference could potentially
eliminate 3,277 type errors, and it succeeds in eliminating 3,116
type errors, or 95%. Note that the type error counts should be taken
with a grain of salt, as multiple type errors often have a single root
cause. Also, many modules share files, so even type errors reported
in different modules are not independent.

Of the 152 modules, 14 contain sites whereconfine inference
cannot infer that a potentially useful strong update is possible. We
give the type error counts for each of the three modes of usage for
these modules in Figure 7. We have examined the type error reports
from several of these 14 modules to discover whereconfine in-
ference fails. In some cases, our underlying may-alias analysis is
unable to verify the addition ofconfine without programmer in-
tervention (e.g., a type cast). In other cases, there is not a well-
defined lexical scope forconfine ; these cases often involve quite
tricky coding styles.

Although it is not the subject of this paper, as mentioned above
even assuming that all updates are strong, CQUAL reports at least
some type errors in 137 of the modules. The sources of these type
errors are mostly the same as reported previously [15]. In particu-
lar, there are a few places where a path sensitive analysis would be
useful, and others where we need the ability to model the sequential
acquiring or releasing of a set of aliased locks at once. There are



also just plain program errors, including 4 apparently new bugs we
have found since the results reported previously [15]. These bugs
were present in the code analyzed previously [15] but escaped no-
tice simply because the large number of spurious type errors caused
by the lack ofconfine inference. Finally, so far we have found
one place where the addition of location polymorphism would re-
move a CQUAL type error.

The performance impact ofconfine inference on CQUAL is
modest, because in our experiments the pointer-valued expressions
that areconfine d tend to be small and because we only try to
confine arguments tospin lock or spin unlock . For ex-
ample, in the largest module whereconfine inference eliminated
some type errors (ide-tape ) CQUAL ran in 28.5 seconds with
confine inference and in 26.0 seconds without it. The running
time of confine inference for other modules is a similarly small
fraction of the overall time.

8. RELATED WORK
Effect systems were first described by Gifford and Lucassen for

FX-87 [16, 22]. FX-87 includes subtyping, polymorphism, and
notation for declaring the effects of expressions [16]. One of the
best-known type and effect systems is the region type system pro-
posed by Tofte and Talpin [27]. Our type systems, and particularly
the system for automatically inferring where to placerestrict
andconfine annotations, is related to region inference. Theρ
annotations can be thought of as regions, and we can apply the
rule (Down) (which is borrowed from a region type system [4])
whenever we discover that a location is purely local to a lexical
scope of the computation [4]. One important difference between
restrict/confine inference and region inference is that introducing
restrict and confine requires that certain locations not be accessed
within their scope, whereas introducing a new region never de-
creases the set of accessible locations.

Wang and Appel [29] use a technique very similar torestrict
to check that covariant subtyping under reference types is safe. This
can be seen as another application ofrestrict .

Automatic alias analysis has been heavily studied in recent years;
a few of the many proposed analyses are [1, 7, 10, 18, 20, 21, 24,
26, 30]. Our type system incorporates may-alias analysis to check
the correctness ofrestrict andconfine . The may-alias anal-
ysis we use is very conservative, and it is possible that a more
expressive (and expensive) may-alias analysis would be useful in
practice to improve the precision ofrestrict and confine
checking and inference.

One of the limitations of our approach is thatrestrict and
confine must be lexically scoped. This assumption fits well with
many, but not all, uses ofrestrict andconfine in practice.
Other type-based systems that model strong and weak updates and
do not have lexical scoping restrictions [9, 12, 25] are more expres-
sive, but also less suited to tractable automatic inference than our
approach. For example, Boyland [3] shows how to check several
programming paradigms using non-lexically scoped linearities and
flow-sensitive aliasing information.

There are several systems for modelinguniquenessin object ori-
ented programming languages [19, 23, 3]. In these systems a unique
object always has exactly one pointer pointing to it. In contrast,
in our system a location pointed to by a restricted pointer may
be pointed to by arbitrarily many pointers. However, some of the
techniques from the literature on uniqueness may be applicable to
restrict andconfine . For example, a type system by Clarke
and Wrigstad [6] allows a unique object to have a non-unique view
in a scope while leaving the unique pointer to the object alive by
forbidding the escape of aliases created in the scope.

As discussed in the introduction, one of the most interesting
properties ofrestrict andconfine is that they allow us to lo-
cally recover the ability to treat a pointer as a reference to a unique
value, which allows analyses that userestrict andconfine
information to perform strong updates [5]. This idea is the subject
of previous work [15] that combinesrestrict with ideas from
flow-sensitive type systems [25]. The resulting system can be used
to check flow-sensitive program properties.

Several other systems, such at Meta-level compilation [17] and
ESP [8], check flow-sensitive program properties using approaches
more directly based on dataflow analysis. In these systems, ar-
bitrary dataflow facts are associated with each program point. In
contrast, our approach can be seen as associating a more restricted
language of facts, i.e., the qualified type of each abstract locationρ,
with each program point. This yields a quite different design trade-
off: Meta-level compilation and ESP support a richer language of
facts that is correspondingly more complex to reason about. In
CQUAL, the facts are easier to reason about but less expressive. The
restrict andconfine constructs regain some expressiveness
by enriching the set of abstract locations, which correspondingly
enriches the set of possible facts at each program point.

9. CONCLUSION
In this paper we have presentedrestrict , a language con-

struct that allows a programmer to specify that certain pointers are
not aliased within a lexical scope. We have shown both how to au-
tomatically check the correctness ofrestrict annotations using
an alias and effect system, and how to automatically infer which
let bindings may be safely changed torestrict bindings.

We have also developedconfine , which allows an expres-
sion to berestrict ed, and shown how to automatically add
confine annotations to a program. We have shown that auto-
maticconfine inference can be used to recover nearly all impor-
tant strong updates needed for a flow-sensitive analysis to check
locking behavior in Linux kernel device drivers. Although our ex-
periments to date have focused on usingrestrict andconfine
to aid CQUAL, we believe thatrestrict andconfine can be
profitably applied as programmer annotations in other systems.

In our view, the key benefit of our approach is thatrestrict
andconfine give the programmer a handle on an alias analysis
and, by extension, any subsequent analyses (e.g., program verifica-
tion tools) based on aliasing information. We feel that this exposure
of aliasing information is important, especially to express critical
aliasing invariants needed to verify flow-sensitive program proper-
ties. However, we also believe that many uses ofrestrict and
confine are routine. Thus, we believe a workable approach is to
support both automatic inference ofrestrict andconfine as
well as programmerrestrict and possiblyconfine annota-
tions.
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