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ABSTRACT INTRODUCTION

In prior work [15] we studied a language constreestrict  that Almost all program analyses for languages with pointers must
allows programmers to specify that certain pointers are not aliased perform some form otlias analysis when a program indirectly

to other pointers used within a lexical scope. Among other appli- loads or stores through a pointerthe analysis must determine to
cations, programming with these constructs helps program analysiswhich location(s)p points. Alias analysis is a key ingredient in
tools locally recover strong updates, which can improve the track- many program checking systems and compiler optimizations. The
ing of state in flow-sensitive analyses. In this paper we continue research literature abounds with proposed alias analysis techniques
the study ofrestrict  and introduce the construcbnfine [1, 7, 10, 18, 20, 21, 24, 26, 30] (to name only a few), some of
We present a type and effect system for checking the correctnesswhich scale to very large programs. Almost all of these techniques
of these annotations, and we develop efficient constraint-based al-are fully automatic. That is, such an analysis takes a bare program
gorithms implementing these type checking systems. To make it and infers all possible aliasing.

easier to useestrict  andconfine in practice, we show how This paper is about aliasing in programs, but the purpose is dif-
to automatically infer such annotations without programmer as- ferent from previous work on automatic alias analysis. Our mo-
sistance. In experiments on locking in 589 Linux device drivers, tivation comes from experience developing and usirguéL, a
confine inference can automatically recover strong updates to System for extending C with user-defined type qualifiers [15]. Con-
eliminate 95% of the type errors resulting from weak updates. sider the partial program shown in Figure 1. We use this example
to tell a story, the moral of which is that we needed a new form of
alias analysis to make @AL and similar analyses work in prac-
tice; that new form of alias analysis, previously sketched briefly
[15] and developed further here, is the topic of this paper.

One application of QUAL is to verify properties of locking.
CQUAL uses two non-standard, flow-sensitive (see below) type qual-
ifierslocked andunlocked to refine the typdock . If all goes
well in the example in Figure 1, @AL infers that*l (the lock
that! points to) has typanlocked lock  at point 1 (i.e., the
lock is not held), the typtocked lock  at point 2 (i.e., the lock
is held), and the typanlocked lock  at point 3! In this way,
CQuaL checks code for deadlocks caused by reacquiring a lock
that is already held or releasing a lock that has not been acquired.

CQUAL models state by mapping every program variabl@r
other concrete memory location) to an abstract locatioff two
program quantities may alias each other (according to a particular
alias analysis), they are mapped to the same abstract location. In
the example, because our alias analysis cannot distinguish different
elements of an array, all elements of the array reside at the same
abstract locatiop. Similarly,| points to locatiorp, meaning that
*This research was supported in part by NSF CCR-0085949 and*| is stored at locatiop, and thus bottl and all array elements
DARPA Contract No. F33615-00-C-1693. may alias.

To analyze locking QUAL performs aflow-sensitiveanalysis,
which means that QUAL must be able to assigh different types
at different points in the program. Assume that all locks in the array
begin in the statanlocked lock . The call tospin _lock(l)
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changes the state 6F to alocked lock . However, it is not
*| ’s state that is changed, but the statetlofs abstract location

To accomplish this, QUAL also needs to know how the functions
spin _lock andspin _unlock change the state of locks. This
information is given as type signatures [15].



void foo(int i) {
do_with_lock(&locks]i]);

}

void do_with_lock(lock *I) { /* 1 */
spin_lock(l); [* 2 *
work();
spin_unlock(l); [* 3 *

}

Figure 1: Example program

p. But p stands for other locks, too—namely the other locks in the
array, which are still in theinlocked state. Thus after the call to
spin _lock(l)  the static information about degrades to know-
ing only that any locks it represents may be either indicked or
theunlocked state, and the verification of any locking properties
on any of these locks becomes impossible.

The difficulty is that the single abstract locatipstands for mul-
tiple concrete locks, and the call $pin _lock(l) only changes
the state of a single lock. Thus the information abpuwfter the
call tospin _lock(l) is the union of the old state (for the locks
that did not change) and the new state (for the one lock that did
change). In flow-sensitive analysis, this is known asak update
What we need for accurate analysis, though,9s@ng updatewe
want to change the state df from unlocked tolocked and
not affect the status of any other lock. The need to perform strong
updates is not specific to locks. This problem arises in any static

analysis where there are both collections such as arrays or lists and

we want to track state changes of values.

If we knew thatdo _with _lock could only acces8l through
its formal parametdr, and not through some alias it holds through,
e.g., aglobal variable, then locally withito _with _lock we could
ignore the aliases of external todo_with _lock and perform
strong updates ofi ’s location [15].

The recent C99 standard for the C programming language [2]
provides a way to say almost exactly this. Change the definition of
do_with _lock to

void do_with_lock(lock *restrict I)

At a high level, therestrict keyword means that no alias of
*| defined outside oflo_with _lock is used during the func-
tion's execution. Although there may be many aliaset @f the
program, locally we know is the only way fordo_with _lock

to accesgl . This notion of locally unaliased pointers is miss-
ing from conventional flow-insensitive may-alias analysis, where

pointers are either aliased or not and the only scope of interest is the

entire program. Notice that while context-sensitive [24] or parame-
terized [21] alias analysis may help adw_with _lock example,
we can also use restrict to indicate local non-aliasing within nested

scopes smaller than function scopes. Indeed, we make use of this

feature in our experiments (Section 7).

Another key feature ofestrict is that it provides a form
of program documentation: it allows the programmer to specify
a particular kind of non-aliasing. Combined with a checking sys-
tem such as we propose, we believe trestrict is not only
beneficial for tools like QUAL, but also for the programmer when
writing their program.

In C, restrict is trusted and unchecked by the compiler—it
amounts to a license for compilers to perform aggressive optimiza-

just for C programs, but for programs written in any language with
references. While there are important exceptions, such as functions
that copy data or pointers, we believe many pointers in practice can
be markedestrict  ed.

The thesis of this paper is thastrict  ed references are com-
mon in real programs, and that exploiting this (usually implicit)
structure is important to software engineering tools such@saC
that need to reason about references. More specifically, the contri-
butions of this paper are:

e We develop a formal semantics i&strict (Section 3.2)
and also present an informal description and examples (Sec-
tion 2).

We give atype and effect systef@2] for checking that a
restrict ~ -annotated program is correct with respect to our
semantics (Section 3).

We give aO(kn) constraint-based algorithm for verifying
restrict annotations, whereis the size of the typed program
andk is the number ofestrict annotations in the pro-
gram. The type system for restrict is described briefly in
prior work [15], but this is the first description of the type
checking algorithm (Section 4).

In using QQUAL we have found it necessary to add many
more restrict annotations to programs than we would
like to do by hand. This motivates the idea rektrict in-
ference not just checking user-suppliedstrict annota-
tions, but automatically inferringestrict s in a program
with no restrict annotations. We give a®(n?) algo-
rithm for restrict inference (Section 5).

Furthermore, in many applications we wishrestrict

not just a variable, but an expression. This extension of
restrict introduces two new problems. First, to treat
an arbitrary expression as a name, it must be referentially
transparent, which introduces additional constraints beyond
what is required forestrict . We call this stronger con-
dition confiningan expression and likewise name the associ-
ated constructonfine . Second, forconfine inference

we have the additional problem of inferring in what scope an
expression can be confined (Section 6).

We present the results of experiments witnfine  infer-
ence, in which we use @JAL to analyze the locking behav-
ior of 589 Linux device drivers. In this experimengnfine

is very effective at identifying the program points where strong
updates can aid the analysis (Section 7).

2. RESTRICT

This section gives an informal semanticgestrict and sev-
eral examples. Section 3.2 sketches a precise, formal semantics of
restrict . Letp be a pointer declared as

int *restrict p;

meaning thap is a restricted pointer to an integer, and suppose
points to objeck. The simplest use akstrict is to bind a new
namep for all accesses of in a local scope. Here an access within

a scope is either a direct access or an access that occurs during
the execution of a function called within that scope. The following

tions that would be unsound in the presence of aliases. We believeexample demonstrates valid and invalid pointer dereferences within

restrict is even more useful in program checking tools, and not

the scope of aestrict



{ int *restrict p = q; is that in ANSI Crestrict is not checked—the programmer is

e1:= ez Assignes to e;
let z=eiin es
Bind e; to namez in ez

{ int *restrict p = ..;
{ int *restrict r = p;

*p; [/ valid assumed to have added tiestrict qualifier correctly. Another
*q; // invalid difference is that in ANSI C, eestrict annotation on a pointer
*a; // invalid if a and g may alias p is ignored if the object pointed to ky is not written within the
} scope of theestrict . For a full discussion, see [13, 14].
Her_ep_ is initialized toq, and we attempt to dgrefere_npeq, and 3. LANGUAGE AND TYPE CHECKING
a within the scope op. Sincep is annotated withestrict , we . ) )
may dereferencp but we may not dereferencgor a (if a aliases We present our type system fastrict  using a small imper-
q). In other words, within the scope of thestrict ~ , the name ~ &tive language:
p (and copies derived fromp; see below) must be the sole access e = I Variable
to the locatiorp points to. | n Integer
As another example, the following code shows tiestrict - | newe Allocate memory initialized te
qualified pointers may be re-bound in an inner scope: | *e Dereference pointer
|

*pe H
*r" /;/ \i/r?\lllglid | restrict T=e1in ez
p; Restricte; to namez in es
*p; /I valid For simplicity, we have omitted function definitions and calls from
} the language. The treatment of functions is standard and introduces

] ) ] ] no new issues; we omit it for brevity. Statement sequeneing:
In our version ofrestrict  (which differs from C99 [2]ona  js also not present in the language, but is easily added with no com-
few points; see below), it is legal to create and use some aliases ofpjications. A discussion of the language extended with functions,

restricted pointers. Consider the following example: as well as a detailed proof of soundness, can be found elsewhere
it *x; [13,14]. . _ .
{ int ;restrict p= . Besides varlab!es, integers, pointer allocati@mw e, derefer-
int *r = p: _ence* e and assngnment, our Ianguage has twc_) mechan_lsms for
- /I valid: use of local copy |r)tr0dup|pg Ipcal varlables. The flrst Ist z=e; in e, which
x = p; // invalid: copy escapes _S|mply|n|t|allzesa_newpomtervanab;leto«al for use ines. There
} is also a new scoping construct

. . . restrict T=e1in ez
Here we are allowed to make copies of the restricted pointer

which we can also dereference inside of thstrict . with the following meaning: likdet , the pointerz is initialized
Intuitively, annotating the definition qf with restrict  splits to e, and bound within the body.. However, unlikdet , within
the aliases op into two groups: ez the only access to the locatianpoints to is through: or values
derived fromz.
e Aliases ofp created outside scope of thestrict ~ may be To enforce the semantics oéstrict ~ , our type system needs
accessed outside thestrict but not inside. two extensions of standard types. First, we need a way to keep track

of program names that may be aliased to one another. We use the
standard solution, which is to associate abstract memory locations
p with pointer types. Names that have the same abstract location in

e p and aliases gb created inside the scope of trestrict
may be accessed within the scope of thstrict but not

outside. their types may be aliased to the same concrete memory location.
In most uses ofestrict , only the restricted pointer itself is ~ The grammar for types is:
used to reference storage it points to inside ririct con- T ou= int|ref?(r)

struct. In this common casegstrict serves to create a local
pointer that is known to be the sole access to its storage in a par-Pointer types areef (7), meaning a pointer to a value of type
ticular scope. However, there is no difficulty in supporting copies Wherep is the abstract location pointed to.
of restrict  ed pointers as in the example above. The require-  Second, we need to enforce the rule that a locatipmay not
ment that aliases created inside thstrict ~ not be used outside e accessed within the bodyof arestrict . To accomplish
of the restrict means that we must check that no aliases of this, we calculate the set of abstract locatidnghate may read or
the restricted pointeescapethe scope of theestrict . Thus write and checkoo & L. The setL. is called theeffectof e [16].
the assignment ta is illegal in the example above and would be ~The grammar for effects is:
flagged as an error by our system. References can also escape by L u= 0|{p}|LiULs|LiNLs
being stored into the heap or global variables; our system disal- - ) .
lows such operations on restricted pointers. While we have found We need one auxiliary function for our type checking system.
that preventing restricted pointers from escaping sufficient so far, We writelocs(r) for the set of locations occurring in the type
one can imagine applications where allowing restricted pointers to defined as
leave their original scope of definition might be useful. We plan to locg(int) =
consider such an extension as future work. locs(ref 7 (7)) {p} Ulocs(T)

As mentioned in the introduction, our versionrestrict is ourt ; ud ts of the f
inspired by the ANSI C keyword of the same name [2]. The ma- urtype system proves judgments ot the form
jor difference between our version ofstrict and ANSI C’s T'kFe:7;L



I'ka:T(x);0 (Var)
I'kn:int;® (Int)
I'te:m; L (Ref)

I'Fnewe:ref?(7); LU {p}

Pte:ref?(r); L

e Recall the semantics oéstrict T =e;in ey Statesthat
is a pointer to a copy of the location pointed to by(Sec-
tion 2). This naturally suggests givinga type with a fresh
abstract locatiorp’ during the evaluation oé,. With this
binding we can distinguish accesses througbr copies of
x, which have an effect on locatign, from accesses through
other aliases of,, which have an effect on locatign

The constrainp ¢ Lo prevents other aliases ef from being

(Deref) accessed withias.
F'k*e:7m; LU{p}
e The constrainp’ ¢ locyT, 7, 72), prevents the new location
Pkey:ref?(r);L1 Tkeg:7;La (Assign) for  from escaping the scope ef. Consider:
Pkeii=ex:m; L1 UL U{p}
let X = new O in
ke :ref?(r); Ly let p= ...1in
Dz — ref (1) F ez : 25 Lo (Let) (restrict g = x in
TFlet m=elin 6227’2;L1UL2 p = q;
* 1
[k e :ref?(rm); Ly restrict r = x in
[z +— ref ”/(7'1)] F ez :mo; Lo **p)
p & Lo p' & locyT, 71, 72) (Restrict) _ )
I krestrict  a=e;in es:7mo; L1 ULy U{p} Supposex has typeref 7= (int). By (Restrict), the types of

Figure 2: Type Checking Rules

meaning that expressierhas typer in type environmerit (a map-
ping of variables to types), and the evaluatior afay read or write
the locations in_. We defindocs(T") aslJ,,., < locs(7).

Figure 2 gives the type checking rules for our language. We
briefly discuss the rules, which except festrict are all typi-
cal of effect systems.

e (Var) looks up the type of a variable in the type environment
I". Looking up a pointer variable does not dereference that
variable and thus has no effect.

(Int) says an integer constant has type There is no effect.

(Ref) constructs a pointer type; there is an effect on the allo-
cated location.

(Deref) deconstructs a pointer type. Since operationally a
dereference reads a location, we agdhe abstract location
pointed to bye, to the effect set.

(Assign) updates a location. As with (Deref), we add the
effect set, since the assignment updateNotice we require

that the type o2 and the type pointed to by match. Since
those types may themselves contain abstract locations, this
rule encodes a unification-based may-alias analysis Steens-
gaard [26].

(Let) does two things. Firstet introduces a local variable
X. The type ofx is required to be a pointer. This restriction
just makedet parallel withrestrict in our small lan-
guage festrict only makes sense for pointers). Second,
let evaluates both; ande-; note that the effect of thiet

is the union of the effects of these two expressions.

The key rule in this system is (Restrict). The rule is written
to highlight the similarities and differences with the rule fer ,
which introduces normal unrestricted pointers. There are four dif-
ferences:

g and x can contain different abstract locations. log
type beref 7 (int), wherep, # p,. Now if the clausey’ &
locyT", 7, 2 ) were not included in (Restrict), the assignment
p := g would type check. At program point 1, we would
have two different names for the same locatign-andp,—
even though neither igestrict ed. Thus the dereference
**n would type check even though the program is incorrect.
We forbid o’ from escaping in (Restrict) to prevent this prob-
lem.

Finally, notice that the conclusion of (Restrict) contains the
effect{p}, i.e., restricting a location is itself an effect. This
forbids sneaky programs such as:

restrict y = x in
restrict z = X in
LY Loz

If restricting a location had no effect on that location, it would
be possible taestrict the same name twice and have
both restricted names available for use in the same scope.

While the type and effect system presented here is built upon a
unification-based alias analysis, restrict (and restrict checking) can
also be combined with more precise alias analyses. We have not
yet explored this possibility.

3.1 Removing Effects

This section details a kind of polymorphism that we have found
to be important for effectively checkingestrict annotations
in programs. Consider a generic sentence in our lagie e :
7; L. In practice, surprisingly often it happens that the effbct
contains locations that are not mentioned either in the typethe
environment". The cause of this seemingly odd behavior is easy to
see:e may have subexpressions that allocate temporary storage and
have effects on that storage. No rule in Figure 2 removes locations
from the effect of an expression, so effects simply grow as we move
from the leaves to the root of the abstract syntax tree. This behavior
is not benign. In recursive functions, these extra locations appear to
be in both the effect of recursive calls and the effect of the body of
the function, resulting in more locations being equated than should
be and frequently causirrgstrict checking to fail.



We need a rule that removes effects:
I'ke:7; L
I'e:7m;LNlocyT, )

(Down)

(Down) states that effects on locations that are no longer in use—

neither part of the result computed by an expression, nor accessible

through the environment—can be removed from the effect set [4,
16, 22]. Note that the rule (Down) is the one non-syntactic rule in
our system. We can construct a purely syntax-directed version of
our system by observing that two applications of (Down) in a row

always can be combined into one. Thus, we can assume there is

one application of (Down) for each expression in the program. In
fact, it is unprofitable to apply (Down) anywhere except before the
rule for functions (which, again, we have not shown). Combining
these observations yields a syntax-directed system.

3.2 Semantics and Soundness

In this section we give a very brief sketch of the semantics and
soundness ofestrict . Our big-step operational semantics is
formulated to prove judgments of the forsh- e — v; S’, mean-
ing that evaluating starting in initial storeS' (a map from locations
[ to values, which may themselves be locations) yields a value
and a (possibly updated) final stafé. Here a valuey is either a
location! or an integer (or a function binding, if that were in our
source language). We modedstrict in our semantics using
the following rule:

Ske —1;8
S'l—err, ' — S )]k efr— 1] — v 5"
1 € dom(S") I ¢ dom(S")
S krestrict  x=erin es — v; 8" [l — S"(I"),l' — err]

This rule uses copying to enforgestrict  's semantics. To
evaluaterestrict r=eyin ez, we first evaluatee; normally,
which must yield a pointet. Within the body ofez, the only way

to access what points to should be via the particular value that
resulted from evaluating;. We enforce this by allocating a fresh
location!’ initialized with the contents aof, and then binding to

err to forbid access through The remainder of our semantics (not
shown) is strict inerr, and any computation that goes wrong re-
duces teerr (rather than becoming stuck). Thus, any program that
tries to read or writd within e, will reduce toerr. The sound-
ness of our checking system (see below) implies that no program
evaluates te@rr, which in turn implies that an implementation can
safely optimizeestrict by eliding the copy of. Instead, in an
implementationrestrict simply bindsz to [.

Notice that it is not an error to use the valugithin ez, but only
to dereference it. Aftegs has been evaluated, we re-initializeo
point to the valuer points to, and then forbid accesses throifgh
Forbidding access throudhcorresponds to the requirement in the
type rule (Restrict) that’ not escape. (An alternative formulation,
which we leave to future work, is to rename occurrences t
aftere, finishes.)
We can show soundness in the usual way via a subject reduction

theorem that shows that the type of an expression is preserved by

evaluation. Then sincerr has no type, a program that starts off
well-typed can never reduce &or:

THEOREM1 (SOUNDNESY. If @) F e : t;Landd e —
r; S’, thenr is noterr.

Herer is either a value oerr (all terminating programs reduce to
one or the other). In other words, in a program that type checks, no
use ofrestrict is found to be invalid at run time.

(Var)

Dyer b a:T(x);0

Int

Dyer Fn:int; 0 (nt)

IertFe:r; L p fresh
er U {p} C Eref £ (1)

Ref
Dyer Fnewe:ref?(r); LU {p} (Re)

Ter Fe:ref?(r); L

Deref
FierH*e:7m; LU{p} ( )

Dyer Feq:ref?(m); L

T1 = T2

F,(—:r '— € TQ;LQ

Assign
TyerFei:= ez :m; L1 UL U{p} ( an)
TerFe:m; L (Down)
Dierbe:m;LN(erUes)
Dyer b eq:ref?(m); Ly
IMembe:m;Ly TV =Tz ref?(r)]
er Uerefr(r) € erv (Let)
Ter let z=e;in ey : 723 L1 U Lo
D,er - eq:ref?(m); Ly
F,,Er/ }—62:7'2;1:2 F/ZF[.Z‘F—)I’Efp,(Tl)]
er U {p,} C €t P’ (11) Er U € o’ (11) Cer
p&Le plEerUen Uen (Restrict)

D,er Frestrict x=eiin ex:me; L1 ULy U{p}

Figure 3: Type Inference Rules for Checking Restrict

4. ALIAS AND EFFECT INFERENCE

We now give an algorithm for checking restrict annotations ac-
cording to the type rules in Figure 2 together with the rule (Down).
The algorithm we give is sound and complete; if there is a proof that
arestrict  -annotated program is correct according to Figure 2,
the algorithm finds it.

We assume that the programmer has written their program us-
ing restrict and that the program type checks according to the
standard type rules of the language. Figure 3 gives inference rules
that show how to compute the remaining missing elements, namely
the locations and effects needed at each point. As is standard, for
inference we transform the conditions in the type checking rules
into a system of constraints that can be solved if and only if there is
some proof according to the rules in Figure 2. We first discuss the
constraints and some details of the inference algorithm, and then
we describe the individual type rules.

Our rules generate three kinds of constraifits equality con-
straints between types, inclusion constraints between effects, and
disinclusion constraints between locations and effects:

C = ’7'1:T2‘Lg5|p¢L
T u= int|reff(r)
L = ®|{p}‘€|L1UL2|L1ﬂL2

Heree is aneffect variable which stands for an unknown set of
locations. Notice that inclusion constraints between effects are of
the special forml. C e, which makes these constraints particularly
easy to solve.

An important algorithmic consideration is how we compute the
sets of locationtocs() andlocy(I") required by the type checking



rules (Restrict) and (Down). We want to avoid repeatedly travers-
ing type structures and type environments at each point in the
program—a program witth(n) expressions may have (monomor-
phic) types of siz&)(n) and environments with O(n) variables,
and thus this part of the algorithm alone would likely be at least
guadratic.

Our solution is to memoize the computationlo€s(-). Recall
that effects are sets of locations. We associate an effect vatiable
with each typer, and we maintain this association with an implicit
global mapping. As we construct new types, e.g., in (Ref), we
generate constraints to represent the locations in the new types:

er U{p} C Eref £ (1)

Then in the type inference rules, insteadawfs(7), we use:-, e.g.,
in (Down).

Similarly, we observe that the type environment is empty at the
root of the proof tree and then is only incrementally modified for
each subexpression. If we know the set of locations in an environ-
ment at an expressian we can incrementally compute the set of
locations in the environments at eactefsubexpressions. We use
effect variablegr to contain the set of locations occurring in en-
vironmentI". Where we extend environmehitwith a new binding
x — 7 in (Let) and (Restrict), we generate a constraint

erUer C Er[arT]

Thus we succinctly captutecs(I'[z — 7]) without recomputing
locs(T"). Because the variables must be communicated between

adjacent steps of the proof, they are included as part of the environ-

ment (to the left of the turnstile) in the rules of Figure 3.
We briefly discuss the type inference rules in Figure 3. We as-

cu{int=int} = C
CuU{ref?1(r) =ref2(m)} =
CU{p1=p2tU{n =7}
CU{p1=p2} = Clp1— p2]
CU{€1:€2} = 0[61 >—>€2]

(a) Type Equality

Cu{p¢gL} =
CU{pgetU{L Ce} efresh
Cu{hCe} C
CU{LlungE}
Cu{dnLCe}
Cu{LNndCe}
CU{(LiUL)NLCe} =
CU{ENLCelU{L1ULy, Ce'} £ fresh
CU{LQ(LluLg)gE} =
CU{LNeg Ce}U{L1ULy, Ceg'} £ fresh

=
= CU{ngE}U{ngE}
= C
= C

(b) Constraint Normalization

Figure 4: Constraint Resolution

constraintsr; = 72 using the rules in Figure 4a. Because we as-

sume that type checking has already been carried out for the undersume checking of the standard types has already been done, the
lying standard types of the language, and that these types are giverlype equality rules can never discover an inconsistency. However,

to us. That is, we do not infer the standard types.

e (Var), (Int), and (Deref) are identical to the type checking
rules except for the addition ef- to the left of the turnstile.

e (Ref) and (Assign) are written with explicit fresh variables
and equality constraints between types where needed.

e (Down) is similar to its type checking rule, except we use the
variableer in place oflocyI") ande, in place oflocs(r).
Notice the use of our implicit global mapping ofto <.

e (Let) differs in one significant way from its type checking
rule. The set of locationsy of I’ is taken to be the union of
the locations of (which iser) and the locations iref #(1).

o (Restrict) differs from (Let) in the following ways.

— The variablex is given a type with the new locatigs,
andp’ instead ofp is included in the set of locations
er» of environment”.

— A check ensures thatdoes not appear in the effebg
of es.

— A check ensures that does not escape.

— There is an extra effect omin the effect of the whole
expression.

Let n be the size of the initial program with its standard types.
Applying the inference rules in Figure 3 také&$n) time and gen-
erates a system of constrair@isof size O(n). We split the reso-
lution of the side constraint§' into two phases, shown as left-to-
right rewrite rules in Figure 4. First, we solve the type equality

the type equalities must still be solved to discover all implied con-
straints betweep ande variables. This step requir€3(n) time.

The resulting constraints are of the forimC ¢ andp ¢ L.

We call such a system of constraintsedfect constraint systeni
solutionto an effect constraint systefis a mappingr from effect
variables to sets of locations such thdtf.) C o(¢) andp & o (L)

for each constrainL C ¢ andp ¢ L in C, where we extend
from effect variables to arbitrary effects in the natural way. An
effect constraint system matisfiableif it has a solution. Notice
that abstract locations are not in the domaiwrefintuitively, after
discovering all equalities between locations after applying the rules
in Figure 4a, we can treat abstract locations as constants.

We define a partial order on solutiors < o iff for every effect
variablee we haveo(¢) C o’(g). Theleast solutionto an effect
constraint system is the solutiensuch thair < ¢’ for any other
solutiono’. If an effect constraint syste has any solution, then
C has a least solution [13, 14].

To test satisfiability of an effect constraint system, we first apply
the rules in Figure 4b to translate the constraints into the following
normal form:

C == LCel|p¥de
L == M|MnM
M = {p}|e

Notice that the rules in Figure 4b preserve least solutions but not ar-
bitrary solutions. Also notice that in Figure 4b we do not consider
the casg L1 N Le) N L C eor LN (L N L2) C e. Such con-
straints are never generated once (Down) is merged into the rule for
functions (not shown). Applying the rules in Figure 4b takes time
O(n).

We view the inclusion constraints in a normal form effect con-



CHECK-SAT(p € €): rules. Second, (Let-or-Restrict) “prefers” the (Restrict) solution:

AssociateCoun{v) with each node» in the graph if the constraints have any solution satisfying the requirements of
Initialize Count(v) = 0 for all v . (Restrict), then that will be the least solution.
Let W = {p}, the set of nodes left to visit Recall thatestrict  has four differences froret . We con-
While W is not empty sider each of these in turn. Firstrestrict uses two locationg
Remove some nodefrom W andp’ wherelet  has onlyp. Thus, our inference rule should begin
If v == e returnunsatisfiable by assuming andp’ are distinct (theestrict case), and if it
For each edge — &’ turns out that the expression cannot brestrict  , the locations
If Coun{(e’) == 0 then should be unifiedd = o', thelet case).
Counte’) =1 Second, there are two negative constraints
Adde toW
For each edge — T p & Lo
If Coun{I) == 0then /
Coun((l)) =1 pog erUenUen
Else if Coun(/) == 1 then in restrict . If either of these is unsatisfiable, then the expres-
Coun(l) =2 sion must be éet . We can combine this with the reasoning above
Add I toW to yield the following constraints:

Returnsatisfiable
pELy = p=/
/ /
Figure 5: Checking satisfiability of p ¢ ¢ pe(erienlen) = p=p
These constraints say that if either the old locajids used in the
body of the construct, or the new locatiphescapes, then the lo-
straint system as a directed graph: cations must be equal and the constructlita. We have not seen
suchconditionalconstraints before in this paper. These constraints

E:o}nsctr:mt Ed_g)eg(s) are easy to solv_e, though we omit the details here. _
Pr = L Finally, there is the extra effect gnin the result ofrestrict
&1 C e £1 7 e2 If the expression is aestrict  we must have the effect, and if
MinM, Ce| My — I itis alet we must not. Given the semantics refstrict we
My =1 have used so far, we do not know how to model this choice effi-
I—e ciently. However, if we interpreestrict a little more liberally,
I fresh an efficient solution is straightforward.

The nodes of the directed graph are abstract locajioféith in- 'Consider the construtgt-or-restrict z=e1in ez, which
degree 0), effect variables(with arbitrary in-degree), and inter- ~ Will behave either agestrict  orlet . If e2 has an effect op’,
sections (with in-degree 2). We generate a freBhode for each ~ We are done: if it is aestrict  there is an effect op and if

constraintM; N M> C . itis alet there is also an effect opbecause = p’. What if
Given a normal form effect constraint system, we test satisfiabil- €2 has no effect opp’? In that case, we do not need to require
ity by checking, for each constraiptZ ¢, whetherp € o(¢) in the thatrestrict have an effect op! Recall from the example in

least solution. Figure 5 shows the modified depth-first search we Section 3 that the extra effect is needed to preyefrom being
use to check this condition. The algorithm in Figure 5 takes time restricted twice and both restricted pointers used simultaneously. If

O(n) for eachp ¢ ¢ constraint. Given an initial program with a restricted pointer is not used at all, there is no need to prevent it
occurrences ofestrict  , the system considered in Figure 5 has  from being restricted a second time in the same séofieese two
O(k) constraints of the form ¢ . Hence the time for this stepis ~ casesdz does or does not have an effect@hican be combined in
O(kn), which is also the total time for the algorithm. one additional conditional constraint

5. RESTRICT INFERENCE (b€ L2)={ptCe

The type checking algorithm of the previous section checks user- WhereLz is the effect ofe; ande is included in the effect of the
suppliedrestrict  annotations. In practice, however, many such €ntire expression. o
annotations may be necessary to give the quality of aliasing infor- Putting everything together, we have the following inference rule:

mation needed for other analyses, and adding these annotations by

hand can be very time-consuming. In this section we give an al- Dyer b eq:ref?(m); L1

gorithm for automatically addingestrict to a program. More T, er Fes: 7o Lo I" =Tz — ref p’(ﬁ)]
precisely, we show how to automatically decide whether a binding en U{p}Ce ol er U g Cep
construct should béet or restrict . A bit surprisingly, our et () rer ()

p € (erUer Uer) = p=y
pELy=p=/p
peLy={p}Ce
p, P, € fresh
T, er I let-or-restrict r=eyin ex:7mo; L1 UL Ue

type rules always admit a unique maximum seleof expressions
that can beestrict  ed. Our inference algorithm computes this
optimal annotation of the program.

As we have observedet andrestrict differ only in a few
ways. Our approach is to combine the inference rules (Let) and
(Restrict) into a single rule (Let-or-Restrict), corresponding to a
new constructet-or-restrict z=e1in ez, With tWo prop- —  27pjs is consistent with the semanticsre$trict  in C. We have
erties. First, in any solution of the constraints, (Let-or-Restrict) not introduced this semantics before now because it is more com-
satisfies the requirements of exactly one of the (Let) or (Restrict) plicated.




This new rule, which replaces (Let) and (Restrict), allows us to wherex is a fresh variable that is substituted for occurrences of
infer restrict annotations. It is easy to check that these con- e; in es. For nestedconfine s, the translation must be done
straints have a least solution, which guarantees the existence of arinnermost-first.
optimal annotation of a program witlstrict . For instance, the example above would be written:

A straightforward implementation of this inference rule gives a
guadratic time algorithm. Given a typed program of sizehere
areO(n) possible locations an@(n) constraints. Computing ini-
tial reachability in the constraint graph (without the conditional
constraints) for allD(n) locations using the algorithm in Figure 5 }
takesO(n?) time. We maintain a work-list of conditional con-
straints whose left-hand side has become true. For each conditionalnd this is defined to be equivalent to (*) above. Notice that with

confine (&locksl[i]) in {
spin_lock(&locksi]);
work();
spin_unlock(&locks]i]);

constraint on our work-list, we perforl(n) extrawork to recom- ~ confine  we do not need to rewrite the body of trestrict ~ ed

pute reachability for the unified locations (or to recompute reacha- scope—we need only wrap an appropriee@fine  around it.

bility for the locationp in the constrain{p} C ¢). Since there are Our goal is to perforntonfine  inference—to automatically

O(n) possible total unifications, and each may trigg¥rn) work, placeconfine s in the program. Intuitivelygonfine inference

the overall complexity i€ (n?). corresponds to performing a kind of common sub-expression elim-
ination that handles aliasing and then applying restrict inference.

6. CONEINE There are two issues:

Recall that, as in the code in Figure 1, many realistic examples ~ ® Referential transparencyFor the definition given above of
whererestrict  -like functionality is useful involve values held confine interms ofrestrict ~ to make sense, an expres-
in containers. Unlike Figure 1, however, in practice programs often sion thatisconfine  d must truly behave like a name within
do not include an explicit variable te@strict . For example, the scope of theonfine . An expression behaves like a
consider name in a scope only if it is referentially transparent within

that scop&—if it in fact always evaluates to the same value.
spin_lock(&locksli]);
work();
spin_unlock(&locksli]);

e Inferring scopes.As mentioned above, we must determine
the scope for @onfine

6.1 Referential Transparency

Consider an expressi@onfine e;in e2. To enforce referen-
tial transparency of; within the scope oé2, we must first ensure
thate; terminates. Our solution is to simply forhig from contain-
ing a function application, and indeed for the experiment described
* in Section 7 we are interested only én’'s that are composed of
identifiers, field accesses, and pointer dereferences.

To enforce referential transparency, we must also be certain that
neithere; nor e modify any of the locationg; needs during its
evaluation—Ilocations used k¢ must only be read withie; and

Assuming thatvork() does not modify or access any other ele-
ments of the arralpcks , we can rewrite this code usimgstrict
to allow a checker like QUAL to analyze this code:
restrict x = &locksJi] in {
spin_lock(x);
work()
spin_unlock(x); }
While this is effective, implementing this transformation by hand
is tedious, not only because we must introduce a new name and
manually perform a substitution, but also because we mustdlscovere} To accomplish this we must extend our notion of effect. For

the scope of theestrict  and check that theestrict — edex- 4 given |ocationp, we now distinguish effecteead(p) (reads of
pression ref_ers to the same ob_Ject throughout the body. For in- locationp), write(o) (writes to locatiorp), andalloc() (allocation
stance, in this case, we must notice that there are two occurrences of¢ locationp). Our rules now have two different kinds of sets: sets
&locks[i] in the code that refer to the same object, and then we ¢ ot |cations (as before) and sdtf read, write, andalloc effects

must put the scope of the new variable that names the lock aroundqp, jgcations. For clarity, we separate these two kinds of sets and use

both uses. Note that in the system described in Section 5 we only ariaplesy for sets ofread, write, andalloc effects, and variables
infer restrict for variables, which come with an obvious scope.  _ oy sets of locations. The grammars for sets are now:

Editing a program to add a fevestrict annotations is not

difficult; the problem is that in practice there are maegtrict L == 0] {readp)} | {write(p)} | {alloc(p)} | 7
annotations to add, and many involve expressions. In our experi- | LU Ly | LN Ly
ence, the manual labor required to introduce local variables for all S u= Ol{p}le|S1US|S1NS2

of those expressions is just too much. Our solution is to introduce
a new constructconfine , that deals specifically with restricting
the aliases of expressions. The syntax is

All inference rules must be modified to correctly report read,
write, and allocation effects on locations; we omit the details due to
space constraints. We also need to introduce a new kiatfextful

confine ey in es variable x 1, which is typechecked just like a regular variable
except that evaluating;, has effectL:
meaning that aliases of the locatienrefers to argestrict  ed
in the scopeez. (Note that our use of the wordonfineis not Ter Fap:T(x); L
related to the term as used in object-oriented alias control sys-
tems [28].) The expressios, itself serves as the name for the
restrict ed location. Assuming all program variables have been
renamed to be distinct, we definenfine  syntactically by trans-
lation torestrict : 30ur usage is slightly non-standard; in the standard use of the term
“referential transparency,” the scope referred to is the whole pro-
confine eqin (ezle1/z]) = restrict r=e1in ez gram.

(Varz)

Intuitively, we could also modet, as a thunk if the language used
in this paper contained functions. We discuss the use of effectful
variablesz, below.




To perform type inference foconfine
let-or-restrict for use withconfine
Tyer Feq:ref?(m); Ly
I, er b eslwn /2] : To; Lo I =T[z — ref? (m)]
er U{p'} C Erer ot () Er U Eper o/ (7,) & ETY
p €(erUen Uern,)=(p=p AL C7')
X(p)€eLa= (p=p NL1Cn)
X(p') € Ly = {X(p)} C
Vo' write(p”) € L1 = (p=p' A L1 C7')
Vp".alloc(p”) € L1 = (p=p' ANL1 C7')
Vo .read(p”’) € L1 = (write(p”) € Lo = (p=p' A L1 C 7))
Vo' .read(p”) € L1 = (alloc(p”) € La = (p=p' A L1 C ')
p,p 7, ' fresh
erin ezler/x]:mo; LiULy U

e1in ez, we modify

I, er - confine?

The nameconfine? is meant to be suggestive of an “op-
tional confine .” This rule chooses whether to insexnfine
based on the solution of the constraintsditt p’ andL; ¢ =’
there is aconfine , otherwise there is not). The easiest way to
understand this rule is to compare it with the inference rule for
let-or-restrict (Section 5). The first line of the two rules is
identical. In the second line, we bindas before, and we replace
in e2 with an effectful variabler.,. Recall that ine2, occurrences
of e; have been replaced by If insertingconfine  succeeds,

7' = ( in the least solution of the constraints, 89/ is equiv-
alent tox. In other words, if insertingonfine  succeeds, then
we replace occurrences of the common sub-expressidoy x.

But if insertingconfine fails (for any reason) then the constraint
L; C =" will be generated, and therefore in this case when type-
checkinge2 we will give each occurrence af bothe;’s type and
e1's effect. Thus, if insertingonfine fails, we do not eliminate
common sub-expressian.

The third and fourth line of our rule faonfine? are asin our
rule for let-or-restrict , with the addition of the constraint
L, C 7. Inthe next two lines we have used a short-hand in the new
rule: X is a wildcard constructor standing for any refad, write,
or alloc. These constraints simply instantiate the requirements of
the original rule for each of the three specific kinds of effects. The
four lines beginning with universal quantifiers are the referential
transparency constraints specificconfine . The first two lines
of the premise require that tttonfine d expressiore; have no
side effects; the last two lines say that if a locatjghis read by
e1 (i.e., the effectread(p”) is in L1) thenp” cannot be written
or allocated byes. In other words, the last two lines prevent
from being confined if the meaning ef may be changed by an
assignment ire;.

It is important to understand that it is not necessary to actually

of an expressiom;, we addconfine? e;in e2 to every possi-

ble scopees and pick the largest scope where inference succeeds
(where “succeeds” means that the solutions of the constraints indi-
cate that @onfine can be added). The possible scopes where
can be confined are just those where the free variables afe in

scope. For example, if we have
let T =e3 in (let Y=eszin ...e1 )
then confine inference fer, addsconfine?  to the outer scopes:

T = esin
erin (let Y=ezin ..

confine? ey in (let

confine?

)

assuming that; did not mention either: or y. Confine infer-
ence is then carried out. After the constraints are solved, we select
the outermostonfine?  that succeeds, if indeed any succeed.
Note that this method checks albnfine?  expressions simulta-
neously. Given a typed program of sizeand a fixed expression
e1, there areD(n) possible places to insecbnfine? . Finding
syntactic occurrences ef; takesO(n?) time. Solving the con-
straints forO(n) confine? s takesO(n?) time. To see this, note
that our type inference rules gener&n) locations, and com-
puting reachability for a location in the constraint graph (using an
algorithm similar to that in Figure 5) take€3(n) time. Thus, com-
puting an initial least solution of every location, before taking any
conditional constraints into account, takes tién?). Then for
any conditional constraint whose left-hand side is true, we perform
O(n) extra work to recompute reachability for the unified loca-
tions and to propagate the least solutionZafto =’. Since there
are O(n) possible total unifications, and each may trigd&mn)
work, the overall complexity i€ (n?).

In our implementation, we use an algorithm with a higher worst-
case running time but better performance in practice. Rather than
computing reachability for every location in the constraint graph
(which takes®(n?) time), we do a backwards search from effects
in constraints generated faonfine?  to find which locations
reach them. Since this tends to be a small portion of the constraint
graph, this is usually more efficient.

€1 ..

7. EXPERIMENTS

As discussed in Section 1, among other applications, we are in-
terested irrestrict andconfine because they enable strong
updates in flow-sensitive analyses. To assess the usefulness of our
confine  construct in practice, we have implementahfine
inference in QUAL and tested it in conjunction with @JAL’'s
flow-sensitive analysis. This section presents the results of that ex-
perience.

introduce new program variables and carry out inverse substitutions  The flow-sensitive analysis we use is the analysis of locking be-

inference. Our reduction afonfine
inference allows us to rely on soundness
, but an efficient implementation is possible

to implementconfine
inference tarestrict
results forrestrict

havior reported previously [15]. The Linux kernel has two primi-
tivesspin _lock(e) andspin _unlock(e) for acquiring and
releasing locks, respectively. By tracking the state (held or not

without explicit program transformations. For space reasons we held) of locks, we can detect when a lock is acquired or released

. A confine
by requiring

have not given a type checking rule foonfine
rule is easily derived from the rule faonfine?
thatp # p’ and simplifying.

6.2 Inferring Scopes

Ourconfine?  rule gives us a method for inferringpnfine
This facility gives us a very simple way to automatically infer the
best (largest) scope in which to confine a given expressiorin

twice in succession within a single thread. These particular pro-
gramming errors are surprisingly common in Linux device drivers
[11].

In previous experiments [15], we examined hundreds of device
drivers and discovered numerous locking errors by inspecting the
results of analyzing single files and a few entire device drivers. Po-
tentially, more errors could be found by analyzing entire device
driver modules (which typically consist of many files), but we dis-

Section 7, we use this technique to confine expressions correspondeovered in analyzing many whole modules that the aliasing of locks

ing to locks in the Linux kernel.
Briefly, the main idea is that to infer the scope of@nfine

became so pervasive that it was very difficult to separate true bugs
from type errors reported due to spurious aliases, and it was sim-



ply impractical to remove the spurious aliases by adding all of the
neededestrict annotations by hand.

90

We have repeated our locking experiments, usiogfine  in- é 707
ference as described in Section 6 to trgtmfine  any arguments g %0
passed tachange _type() , a special state-changing statement § 507
built in to CQUAL [15]—in particular, we try toconfine  any 5 07
arguments tepin _lock orspin _unlock . There is one wrin- £ 30
kle in performingconfine  inference in a language with blocks of % 201
statements 12 ]
€1;,...€4;...€45;...€ Q N Q A\) N} Q N N O
{ b v 7 n} N ® N “l«\?’ ,b\’b‘ b‘\’b i ,0\1\ AN %\9 Q’,\'\Q \Q\f\\g

such as C. Sometimes it is necessargaafine only a portion
of the block with respect to an expressigre.g., we may need to
introduce a new scope to write

Number of spurious type errors eliminated

) ) Figure 6: Spurious type errors eliminated by confine infer-
{e1;...;confine ein {ei;...€e;;};...en} ence.

The problem is to discover to what portion of a block we can add
confine . Observe that Module Number of lock/unlock type errors
: no confine| confine | all updates

(confine ein eg;confine ein e) = inference | inference| strong

(confine ein {e1;e2}) wavelancs 22 16 15
) _ ) _ trix 29 24 22
That is, adjacentonfine s of the same expression can be com- netrom 41 25 0
bined. This suggests the following general algorithm: in a block rose 47 28 0
e1;...en, for eachi, addconfine?  ein e; and then greedily usb-ohci 32 26 17
combine all adjacentonfine? s that succeed. This algorithm uhci 74 45 34
discovers the largest possildenfine  sub-blocks within a block sb 31 24 22
of statements ide-tape 58 a7 41
. ) . . madl6 29 24 22
To improve performance, our current implementation introduces emUTOKT 198 0 35
new sub-blocks foconfine?  using a slightly different algorithm trident 107 29 36
based on a syntactic heuristic. For each statement in the program digi_aceleport 62 32 y)
(including statement blocks), we keep track of whether the state- sbni 23 16 9
ment containghange _type . When two statements in the same iph5526 39 34 32

block contairchange _type , and the arguments thange _type
match syntactically, we introduce the smallest possible sub-block Figure 7: Modules for which confine
around the two statements and report that the new sub-block doesall possible strong updates.
not contain achange _type . Intuitively, this heuristic tries to put
confine?  around sets of statements that cglin _lock and
spin _unlock with the same syntactic expression. The heuristic difference, it removes all spurious type errors due to lack of strong
is weaker than the general strategy outlined above, but still works updates. Figure 6 shows the distribution of type errors eliminated
well in our experiment, as our results suggest. Also notice that al- by confine inference for these modules. Summing the individ-
though the introduction adonfine?  is a syntactic heuristic, our  ual results for all modules;onfine inference could potentially
confine inference algorithm uses our type and effect system to eliminate 3,277 type errors, and it succeeds in eliminating 3,116
decide whether introducingpnfine  is safe. type errors, or 95%. Note that the type error counts should be taken

We analyzed 589 whole device driver modules from the 2.4.9 with a grain of salt, as multiple type errors often have a single root
Linux kernel. We used QUAL in three different modes: without  cause. Also, many modules share files, so even type errors reported
confine inference, with confine inference, and finally in a mode in different modules are not independent.
where all updates are assumed to be strong. In each case we mea- Of the 152 modules, 14 contain sites wheoafine inference
sured the number of type errors reported byuaL in the flow- cannot infer that a potentially useful strong update is possible. We
sensitive pass—here the number of type errors is the number of syn-give the type error counts for each of the three modes of usage for
tactic calls tespin _lock() andspin _unlock() where QQUAL these modules in Figure 7. We have examined the type error reports
could not verify that locks are held in the correct state. Since one from several of these 14 modules to discover wleengfine  in-
application ofconfine is to enable strong updates in a flow- ference fails. In some cases, our underlying may-alias analysis is
sensitive analysis, the last mode provides an upper bound on theunable to verify the addition afonfine  without programmer in-
number of spurious type errors that can be eliminated by adding tervention (e.g., a type cast). In other cases, there is not a well-
confine  annotations. defined lexical scope faonfine ; these cases often involve quite

Of the 589 modules, 352 are free of type errors without the ad- tricky coding styles.
dition of anyconfine annotations. 85 of the remaining modules Although it is not the subject of this paper, as mentioned above
contain type errors, but not because of strong updates—using noeven assuming that all updates are strongu&L reports at least
confine at all yields the same type errors as assuming all up- some type errors in 137 of the modules. The sources of these type
dates are strong. Of the remaining 152 modules whepeAC errors are mostly the same as reported previously [15]. In particu-
reports type errors, usingpnfine inference produces the same lar, there are a few places where a path sensitive analysis would be
type errors as assuming all updates are strong in 138 modules. Thatseful, and others where we need the ability to model the sequential
is, in 138 of 152 modules wheoonfine inference could make a  acquiring or releasing of a set of aliased locks at once. There are

inference does not infer



also just plain program errors, including 4 apparently new bugs we  As discussed in the introduction, one of the most interesting
have found since the results reported previously [15]. These bugsproperties ofestrict andconfine is that they allow us to lo-
were present in the code analyzed previously [15] but escaped no-cally recover the ability to treat a pointer as a reference to a unique
tice simply because the large number of spurious type errors causedsalue, which allows analyses that ussstrict andconfine
by the lack ofconfine inference. Finally, so far we have found information to perform strong updates [5]. This idea is the subject
one place where the addition of location polymorphism would re- of previous work [15] that combina®strict with ideas from
move a QUAL type error. flow-sensitive type systems [25]. The resulting system can be used
The performance impact aonfine inference on QUAL is to check flow-sensitive program properties.
modest, because in our experiments the pointer-valued expressions Several other systems, such at Meta-level compilation [17] and
that areconfine d tend to be small and because we only try to ESP [8], check flow-sensitive program properties using approaches
confine arguments tepin _lock orspin _unlock . For ex- more directly based on dataflow analysis. In these systems, ar-
ample, in the largest module wherenfine  inference eliminated bitrary dataflow facts are associated with each program point. In
some type errorside-tape ) CQUAL ran in 28.5 seconds with  contrast, our approach can be seen as associating a more restricted
confine inference and in 26.0 seconds without it. The running language of facts, i.e., the qualified type of each abstract location
time of confine inference for other modules is a similarly small ~ with each program point. This yields a quite different design trade-

fraction of the overall time. off: Meta-level compilation and ESP support a richer language of
facts that is correspondingly more complex to reason about. In
8. RELATED WORK CQUAL, the facts are easier to reason about but less expressive. The

restrict andconfine  constructs regain some expressiveness
by enriching the set of abstract locations, which correspondingly
enriches the set of possible facts at each program point.

Effect systems were first described by Gifford and Lucassen for
FX-87 [16, 22]. FX-87 includes subtyping, polymorphism, and
notation for declaring the effects of expressions [16]. One of the
best-known type and effect systems is the region type system pro-
posed by Tofte and Talpin [27]. Our type systems, and particularly 9, CONCLUSION

the system for automatically inferring where to plaestrict In this paper we have presentetrict a language con-

and con_fine anrl;ota;ionshis ;elated to regionO:nference. TOhle h struct that allows a programmer to specify that certain pointers are
anlnotatlons Ca?]_ ﬁ_t ?)UQ to dafs regions, and we can apply thenot aliased within a lexical scope. We have shown both how to au-
rule (Down) (which is borrowed from a region type system [4]) -y, asically check the correctnessrebtrict  annotations using

whenever we discover that a location is purely local to a lexical an alias and effect system, and how to automatically infer which
scope of the computation [4]. One important difference between let bindings may be safel),/ changedrstrict bindings.
restrict/confine inference and region inference is that introducing We have also developecbnfine , which allows an expres-
restrict and confine requires that certain locations not be accesse%ion to berestrict  ed. and show;1 how to automatically add
within their scope, whereas introducing a new region never de- confine  annotations tc') a program. We have shown that auto-

creases thedset of Iaccessmle Iocr?tl_ons. imil . maticconfine inference can be used to recover nearly all impor-
Wang an Appe.[29] use aFeC nique very simi amt“?t . tant strong updates needed for a flow-sensitive analysis to check
to check that covariant subtyping under reference types is safe. Th'slocking behavior in Linux kernel device drivers. Although our ex-

can be seen als. anothler gpﬁllcaglome?]‘tnctll diedi _periments to date have focused on usiegjrict andconfine
Automatic alias analysis has been heavily studied in recentyears;; " iy CQUAL, we believe thatestrict andconfine can be

a few of the many proposed analyses are [1, 7, 10, 18, 20, 21, 24, itap)y applied as programmer annotations in other systems.
26, 30]. Our type system incorporates may-alias analysis to check In our view, the key benefit of our approach is thestrict

th? correctness aestrict an(_jconflne . ._The me_ly-allas anal- andconfine  give the programmer a handle on an alias analysis
YSIS We Uuse IS Very conservatlve, gnd Itis possmle that a MOT€ and, by extension, any subsequent analyses (e.g., program verifica-
Expressive (and expensive) m"?‘y'a"as a_lnalys,ls would b_e useful inop tools) based on aliasing information. We feel that this exposure
practlge to improve the precision oéstrict and confine of aliasing information is important, especially to express critical
checking and inference. . . aliasing invariants needed to verify flow-sensitive program proper-
One of the limitations of our approach is thasirict and ties. However, we also believe that many usesestrict and
confine must be lexically scoped. This assumption fits well with confine are ;'outine. Thus, we believe a workable approach is to

many, but not all, uses obstrict  andconfine in practice. upport both automatic inferencerefstrict ~ andconfine  as
Other type-based systems that model strong and weak updates ange | a5 programmerestrict ~ and possiblyconfine  annota-
do not have lexical scoping restrictions [9, 12, 25] are more expres- tions

sive, but also less suited to tractable automatic inference than our
approach. For example, Boyland [3] shows how to check several
programming paradigms using non-lexically scoped linearities and 10. REFERENCES
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