
Second-Order Abstract Interpretation via Kleene Algebra

Łucja Kot
lucja@cs.cornell.edu

Dexter Kozen
kozen@cs.cornell.edu

Department of Computer Science
Cornell University

Ithaca, New York 14853-7501, USA

Abstract

Most standard approaches to the static analysis of pro-
grams, such as the popular worklist method, are first-order
methods that inductively annotate program points with ab-
stract values. In this paper we introduce a second-order ap-
proach based on Kleene algebra. In this approach, the pri-
mary objects of interest are not the abstract data values, but
the transfer functions that manipulate them. These elements
form a left-handed Kleene algebra. The dataflow labeling
is not achieved by inductively labeling the program with ab-
stract values, but rather by computing the star (Kleene clo-
sure) of a matrix of transfer functions. In this paper we in-
troduce the method and prove soundness and completeness
with respect to the standard worklist algorithm.

1 Introduction

Dataflow analysis and abstract interpretation are con-
cerned with the static derivation of information about the
execution state at various points in a program. There is typ-
ically a semilatticeL of typesor abstract values, each de-
scribing a larger set of possible runtime values. The natural
partial order associated withL is the subtype relation. The
objective of the analysis is to associate an element ofL with
each point of the program that represents what is known
about the program state whenever control passes through
that point. This may consist of type information, bounds
on values of variables or registers, operand stack depth, the
shape of data structures, whether pointers are null, etc. It is
usually only an approximation; the lower in the semilattice,
the better the approximation.

Each instruction has one or more associatedtransfer
functionsf : L → L that describe how the state is trans-
formed by the instruction. The domain off is determined
by the type of the instruction. Membership in the domain of
f may be considered a precondition for the safe execution

of the instruction; attempting to applyf to an element of
L not in its domain signals a type error. For example, an
empty stack should not be popped. Transfer functions may
be composed, provided there is no type mismatch. Transfer
functions may be polymorphic, as for example in the case
of a swap operation that interchanges the top two elements
of a stack.

Each instruction has zero or moresuccessors. Data
manipulation instructions such as loads, stores, and arith-
metic operations have the fallthough instruction as succes-
sor. Conditional jumps have the fallthrough as well as the
jump target, and unconditional jumps have only the jump
target. Any instruction that can raise an exception has the
entry point of an exception handler as a successor. Suc-
cessors are determined solely by statically available infor-
mation. Thus the program can be modeled by a directed
control flow graphG whose nodes are the instructions and
whose edges go from each instruction to the successors of
that instruction. The edges are labeled with the transfer
functions associated with that instruction. In most cases the
transfer function is the same for all edges exiting a partic-
ular node, but in some cases it is different. For example,
in Java bytecode, if an instruction throws an exception, then
the operand stack is cleared and the exception object pushed
onto the stack before invoking the handler. The successor
state corresponding to the exception handler thus reflects a
different stack configuration than that corresponding to the
fallthrough instruction.

The worklist algorithm for dataflow analysis is a stan-
dard method for computing a least fixpoint labeling of the
nodes ofG with elements ofL [6]. It works as follows.
First, the entry point of the method is labeled with the ele-
ment ofL describing the initial state of the computation.
For example, in Java bytecode, the initial label consists
of an empty operand stack, the types of the arguments to
the method (including the object itself if it is an instance
method) in the first few local variables, and a special unde-
fined marker for the remaining local variables. This node

is marked as changed and placed on a worklist. Then, as
long at the worklist is nonempty, the procedure repeatedly
removes the next elements of the worklist, and for each ex-
iting edge(s, t), applies the transfer functionf associated
with that edge to the labelx ∈ L of s to getf(x), then
updates the label of the successort with f(x). If t is unla-
beled, then it is labeled withf(x). If t is already labeled,
then it is relabeled with the join off(x) and its current la-
bel in the semilattice, if the join exists. This indicates the
best information that is known about the program state at
t from the various control flow paths intot that have been
analyzed so far. If the join off(x) and the current label of
t does not exist in the semilattice, then it is a type error. If
t is successfully labeled and the new label is different from
the old, thent is marked as changed and placed back on
the worklist. When the worklist becomes empty, the result-
ing labeling is the least fixpoint of a monotone mapping on
labelings defined in terms of the transfer functions.

One disadvantage of the worklist approach is that long
paths in the graph may be analyzed several times. For ex-
ample, if a nodes is labeled withx ∈ L, then later revisited
and relabeled withy > x, then any long paths out ofs may
be traversed again. The running time could be as bad as
dn, wheren is the size of the program andd is the depth
of the semilattice, although this worst-case bound is proba-
bly rarely attained in practice. Thus the worklist algorithm
remains a popular method for many practical program anal-
ysis tasks.

In this paper we describe an alternative approach that can
be used to avoid the recalculation of dataflow information
along long paths using a symbolic method based on Kleene
algebra. The elements of the algebra are transfer functions.
The novelty of this approach is that it is the transfer func-
tions, not the data values, that are the objects of primary
algebraic interest. The transfer functions are elements of a
certain algebraic structure called aleft-handed Kleene alge-
bra with the operations of composition, join, and iteration.
The control flow graph of a method withn instructions gives
rise to ann×n matrix of transfer functions, and computing
the star or Kleene closure of this matrix amounts to com-
puting the dataflow information at all points of the program
simultaneously.

In a companion paper [8], we describe a concrete appli-
cation of these ideas in the context of Java bytecode. That
application combines the second-order approach introduced
in this paper with the standard worklist algorithm to obtain
a hybrid algorithm with running timeO(nm + m3), where
m is the size of a cutset (a set of nodes breaking all cycles
in G). The algorithm avoids recalculation of dataflow infor-
mation along long paths by computing the star (closure) of
anm × m matrix of transfer functions. This may give an
improvement whenm is small compared ton.

In this paper, we lay the foundations of this approach

and prove correctness with respect to the standard work-
list algorithm [6]. This paper is organized as follows. In
Section 2, we review the pertinent definitions of Kleene al-
gebra and left-handed Kleene algebra, including the forma-
tion of matrices, and describe how transfer functions can
be modeled as strict monotone functions on a semilattice of
abstract values or types. In Section 3, we present an alter-
native approach to static analysis based on computing the
star or Kleene closure of a matrix of transfer functions. Fi-
nally, in Section 4 we prove that our second-order method
produces the same final dataflow labeling as the standard
worklist algorithm on all type-correct programs.

1.1 KAT and the Static Analysis of Programs

In [10], we showed how Kleene algebra with tests
(KAT), a variant ofKA that includes Boolean tests, can
be used to statically verify compliance with safety policies
specified bysecurity automata, a general mechanism for
the specification and enforcement of a large class of safety
policies [12]. We proved the soundness and completeness
of the method over relational interpretations, and illustrated
the method on an example of [3] involving the verification
of a device driver.

The results of [10] are very different from those of the
present paper. In that paper, the objective was to show how
the deductive system could be used as a mechanism to prop-
agate state information throughout the program. That was
also a first-order approach. The Boolean algebra and the de-
ductive system were essential components of that program.
Here, we are not restricting ourselves to Boolean informa-
tion, and we are not using the deductive system.

2 Background

2.1 Upper Semilattices

An upper semilatticeis a partially ordered setL in which
every finite set has a least upper bound, which must be
unique. The least upper bound of two elementsx and y
is denotedx + y. The least upper bound of the null set is
denoted⊥. The operation+ is associative, commutative,
idempotent (x + x = x), andx ≤ y iff x + y = y. The
element⊥ is the least element of the semilattice and is an
identity for+.

We also assume that there are no infinite ascending
chains inL; this is known as theascending chain condition
(ACC). It follows from this assumption that there exists a
maximum element>.

Intuitively, lower elements in the semilattice represent
more specific information, and the join operation repre-
sents disjunction of information. For example, in the Java

2

class hierarchy, the join ofString andStringBuffer
is Object , their least common ancestor in the hierarchy.

The element> represents a type error. In practice, any
attempt by a dataflow analysis computation to form a join
x + y that does not make sense indicates a fatal type error,
and the analysis will be aborted. We represent this situation
mathematically byx + y = >.

The element⊥ represents “unlabeled”. For example, the
initial labeling in the worklist algorithm is a mapw0 : V →
L, whereV is the set of vertices of the control flow graph,
such thatw0(s0) is the initial dataflow information available
at the start nodes0, andw0(u) = ⊥ for all other nodes
u ∈ V .

The ascending chain condition (ACC) is a standard as-
sumption that ensure that dataflow computations always
converge.

2.2 Kleene Algebra

Kleene algebra (KA) was introduced by S. C. Kleene
[7] (see also [4]). We define aKleene algebra(KA) to be
a structure(K, +, ·, ∗, 0, 1), where(K, +, ·, 0, 1) is an
idempotent semiring,a∗b is the leastx such thatb+ax ≤ x,
and ba∗ the leastx such thatb + xa ≤ x. Here “least”
refers to the natural partial ordera ≤ b ↔ a + b = b. The
operation+ gives the supremum with respect to≤. This
particular axiomatization is from [9]. We normally omit the
·, writing ab for a · b. The precedence of the operators is
∗ > · > +. Thusa + bc∗ should be parseda + (b(c∗)).

KA has a rich algebraic theory with many natural and
useful models: language-theoretic, relational, trace-based,
matrix. Standard models include the family of regular sets
of strings over a finite alphabet, the family of binary rela-
tions on a set, and the family ofn×n matrices over another
Kleene algebra. We refer the reader to [9] for further defi-
nitions and basic results.

For this paper, we consider a weaker axiomatization. We
will assume that the algebra is left-distributive, but not nec-
essarily right-distributive. However, we will assume that it
is right-predistributive. That is, we assume thatab + ac =
a(b + c), but onlyac + bc ≤ (a + b)c. Moreover, we will
not require thata∗b be the leastx such thatb + ax ≤ x,
but only thatba∗ be the leastx such thatb + xa ≤ x. Such
algebras are called aleft-handed Kleene algebras.

The following summarizes the axioms of left-handed
KA:

a + (b + c) = (a + b) + c a(bc) = (ab)c
a + b = b + a 1a = a1 = a
a + 0 = a + a = a 0a = a0 = 0

ab + ac = a(b + c) ac + bc ≤ (a + b)c

and for the∗ operator,

1 + a∗a ≤ a∗ (1)

b + xa ≤ x ⇒ ba∗ ≤ x, (2)

where≤ refers to the natural partial order onK:

a ≤ b ⇔ a + b = b.

Instead of (2), we might take the equivalent axiom

xa ≤ x ⇒ xa∗ ≤ x (3)

One can show that all the operations are monotone with
respect to≤. The proof of monotonicity of multiplication
does not need distributivity, but only predistributivity. One
can also show that the inequality (1) can be strengthened to
an equality.

2.3 Matrices

As mentioned, then× n matrices over a Kleene algebra
again form a Kleene algebra under the appropriate defini-
tions of the operators. One can establish that matrices over
a left-handed algebra are left-handed, and those over a right-
handed algebra are right-handed. The proofs are symmetric.
Unfortunately, the proof given in [9] uses distributivity on
both sides to show only right-handedness, so technically it
does not suffice to establish the result we need. We there-
fore supply a proof here for completeness. We show that
2 × 2 matrices over a left-handedKA are left-handed; the
result for generaln follows by induction as in [9]. We also
show only (1) and (3); the other laws are all straightforward.

Define the matrixE∗ from E as follows:

E =
[

a b
c d

]
E∗ =

[
f∗ f∗bd∗
g∗ca∗ g∗

]
,

wheref = a + bd∗c andg = d + ca∗b. The inequality (1)
for E is I + E∗E ≤ E∗, which reduces to the following
inequalities overK:

1 + f∗a + f∗bd∗c ≤ f∗

f∗b + f∗bd∗d ≤ f∗bd∗

g∗ca∗a + g∗c ≤ g∗ca∗

1 + g∗ca∗b + g∗d ≤ g∗.

For the first two,

1 + f∗a + f∗bd∗c = 1 + f∗(a + bd∗c)
= 1 + f∗f ≤ f∗,

f∗b + f∗bd∗d = f∗b(1 + d∗d) ≤ f∗bd∗,

and the other two are symmetric. To show (3) forE, we
must show thatXE ≤ X implies XE∗ ≤ X. We can

3

show this independently for each row ofX. This reduces to
the task of showing

xf∗ + yg∗ca∗ ≤ x (4)

xf∗bd∗ + yg∗ ≤ y (5)

under the assumptions

xa + yc ≤ x xb + yd ≤ y.

By symmetry, we need only show (4). By the property (3)
for K, we havexa∗ ≤ x andyd∗ ≤ y, therefore

xf = x(a + bd∗c) ≤ xa + xbd∗c
≤ xa + yd∗c ≤ xa + yc ≤ x.

It follows from (3) thatxf∗ ≤ x. By a symmetric argu-
ment,yg∗ ≤ y. Thus

yg∗ca∗ ≤ yca∗ ≤ xa∗ ≤ x.

These two inequalities establish (4), hence (3) forE.
In applications, we will be considering left-handed

Kleene algebras of monotone functions on a semilattice sat-
isfying the ascending chain condition.

2.4 Strict Monotone Functions on a Semilattice

We model transfer functions as strict monotone functions
f : L → L, whereL is an upper semilattice satisfying the
ascending chain condition. The mapsf must satisfy

x ≤ y ⇒ f(x) ≤ f(y) (6)

f(⊥) = ⊥. (7)

There are particular strict monotone functions

0 = λx.⊥ 1 = λx.x.

Thedomainof f is the set

dom f = {x ∈ L | f(x) 6= >}.

The property (6) implies thatdom f is closed downward
under≤.

Let K denote the family of strict monotone functions on
L. We can impose a left-handed Kleene algebra structure on
K as follows. First, define addition of functions pointwise:

(f + g)(x) = f(x) + g(x)
f ≤ g ⇔ f + g = g.

Under this definition,K forms an upper semilattice with
least element0.

Elements ofK can be composed using ordinary func-
tional composition. The operator is written· and the com-
position off followed byg is writtenfg; thus(fg)(x) =

g(f(x)). Note thatx ∈ dom fg iff x ∈ dom f and
f(x) ∈ dom g. The identity function1 is a two-sided iden-
tity for composition and0 is a two-sided annihilator.

Composition distributes over+ on the left, but not neces-
sarily on the right. However, it is right-subdistributive due
to monotonicity. ThusK forms a left-handed idempotent
semiring under the operations+, ·, 0, 1.

The elementf∗ is defined as the function which on input
x gives the leasty such thatx + f(y) ≤ y. In symbols,

f∗(x) = µy.(x + f(y) ≤ y),

whereµ is the usual least-fixpoint operator. The least fix-
point exists, sincef is monotone and the ACC holds, so the
monotone sequence

x, x + f(x), x + f(x + f(x)), . . .

converges after a finite number of steps, but not necessarily
uniformly bounded inx; a counterexample is given by the
semilattice consisting ofN ∪ {∞} with min as join and
the strict monotone functionf that on inputx gives∞ if
x = ∞, x− 1 if x ≥ 1, and0 if x = 0.

To show (1), we need to show that1 + f∗f ≤ f∗, or in
other words, for an arbitraryx, x+f(f∗(x)) ≤ f∗(x). But
this is true, sincef∗(x) is defined to be the least element
with this property.

Finally, to show (3), we need to show thatgf ≤ g im-
pliesgf∗ ≤ g, or in other words,f∗(g(x)) ≤ g(x) when-
everf(g(x)) ≤ g(x). But if f(g(x)) ≤ g(x), theng(x)
satisfiesg(x) + f(Y) ≤ Y , andf∗(g(x)) is the least such
element.

We have shown

Theorem 2.1 The structure(K, +, ·, ∗, 0, 1) is a left-
handed Kleene algebra.

3 A Second-Order Approach

In this section we present a general second-order ap-
proach to static analysis. The technique exploits the ability
to compute the Kleene algebra operations on transfer func-
tions as defined above.

We are given a program withn instructions, and we wish
to label the underlying control flow graphG of the program
with elements of the semilatticeL. Let E be then × n
matrix with rows and columns indexed by the vertices of
G such that if(s, t) is an edge ofG, thenE[s, t] is the
transfer function labeling the edge(s, t), andE[s, t] = 0
if (s, t) is not an edge ofG. This matrix is easily constructed
in a single pass thorough the program.

Recall from Section 2.3 that then × n matrices over a
left-handed Kleene algebra again form a left-handed Kleene
algebra. We can thus speak of the matrixE∗. The entry

4

E∗[u, v] is the join of the composition of transfer func-
tions along all paths fromu to v. The desired fixpoint
dataflow labeling at any nodeu of G can be obtained by
evaluatingE∗[s0, u] (`0), where`0 ∈ L is the initial la-
bel of the start nodes0. Thus the inductive labeling of the
control flow graph is replaced with the computation of the
matrixE∗.

A concrete implementation of this method is described in
[8] in the context of Java bytecode. In that implementation,
E∗ is not computed directly, but rather used in conjunction
with the worklist algorithm to obtain a hybrid method that
uses matrix closure on a small cutset to avoid recalculation
dataflow information along long paths in the control flow
graph.

4 Soundness and Completeness

We argue in this section that the second-order algo-
rithm proposed in Section 3 and the standard worklist al-
gorithm produce the same final dataflow labeling for any
type-correct program.

Let L be an upper semilattice satisfying the ACC as de-
scribed in Section 2.1, and letK be the left-handed Kleene
algebra of strict monotone functionsL → L as described
in Section 2.4. LetG be a control flow graph with vertices
V , n = |V |, start nodes0 ∈ V , and edges labeled with
transfer functionsf ∈ K. Let `0 ∈ L be the initial dataflow
information ats0.

Formally, the worklist algorithm computes a sequence of
labelingswn : V → L, n ≥ 0, as follows. We start with the
initial labeling

w0(u) =
{

`0, if u = s0

⊥, otherwise.

At stagen, say we have constructed a labelingwn. To get
wn+1, we take the next edge(u, v) from the worklist, apply
the associated transfer functionE[u, v] to the current label
wn(u) of u, and update the label ofv with that value. Thus

wn+1(t) =
{

E[u, v] (wn(u)) + wn(v), if t = v,
wn(t), if t 6= v.

The sequencew0, w1, . . . is monotone and converges to a
fixpoint

w∗ = sup
n

wn.

This labeling is the least labeling such that for allu reach-
able from the start nodes0,

E[u, v] (w∗(u)) ≤ w∗(v) (8)

[6]. For verticesu not reachable froms0, the worklist al-
gorithm will never see them, but (8) will still hold for those

vertices, sincew∗(u) = ⊥ andE[u, v] (⊥) = ⊥ ≤ w∗(v).
Note thatv may still be reachable froms0, even ifu is not.

To compare this algorithm to our second-order algorithm
of Section 3, it will be convenient to label vertices with cer-
tain functionsL → L instead of elements ofL. We lift an
elementx ∈ L to an almost-constant function̂x ∈ K as
follows:

x̂(y) =
{

x, if y 6= ⊥
⊥, otherwise.

Note that⊥̂ = 0. The valuex can be recovered from̂x by
applyingx̂ to any element ofL besides⊥. The advantage
of using lifted values is that function application becomes
composition, which is a Kleene algebra operation:

f̂(x) = x̂f. (9)

If w : V → L is a labeling, we can lift it to a second-
order labelingŵ : V → K by taking

ŵ[u] = ŵ(u).

For example, the lifted version of the initial labelingw0 is

ŵ0[u] =
{ ̂̀

0, if u = s0

0, otherwise.

Although bothw andŵ are functions onV , we writeŵ[u]
with square brackets because we will be regarding it as a
row vector of lengthn and using it in matrix-vector compu-
tations.

We are now ready to prove our main theorem.

Theorem 4.1 Let w∗ : V → L be the final dataflow label-
ing produced by the worklist algorithm. Then for allu ∈ V ,

E∗[s0, u] (`0) = w∗(u). (10)

Proof. Let w0 be the initial labeling, and consider the
matrix-vector product̂w0E

∗, which is a row vectorV →
K. We first show that

ŵ0E
∗ = ŵ∗. (11)

By (2), the left-hand side is the least solution of

ŵ0 + XE ≤ X, (12)

so it suffices to show that̂w∗ is as well, since the least solu-
tion of (12) is unique. For allu ∈ V andx 6= ⊥,

ŵ0[u] (x) = w0(u) ≤ sup
n

wn(u)

= w∗(u) = ŵ∗[u] (x),

5

thereforeŵ0 ≤ ŵ∗. Similarly,

(ŵ∗E)[u] (x) = (
∑

v

ŵ∗[v] E[v, u])(x)

=
∑

v

ŵ∗[v] E[v, u] (x)

=
∑

v

E[v, u] (w∗(v))

≤ w∗(u) by (8)

= ŵ∗[u] (x).

Sinceu andx 6= ⊥ were arbitrary,ŵ∗E ≤ ŵ∗. Since both
ŵ0 ≤ ŵ∗ and ŵ∗E ≤ ŵ∗, we haveŵ0 + ŵ∗E ≤ ŵ∗,
thereforeŵ∗ is a solution to (12).

To show that it is the least solution, letX be any other
solution. Thenŵ0 ≤ X. Reasoning inductively, suppose
thatŵn ≤ X. Let (s, t) be the edge selected by the worklist
algorithm at stagen. Forx 6= ⊥,

ŵn+1[u] (x)
= wn+1(u)

=
{

E[v, u] (wn(v)) + wn(u), if (v, u) = (s, t)
wn(u), otherwise

≤
∑

v

E[v, u] (wn(v)) + wn(u)

=
∑

v

ŵn[v] E[v, u] (x) + ŵn[u] (x)

= (ŵnE)[u] (x) + ŵn[u] (x)
= (ŵn(E + 1))[u] (x),

thereforeŵn+1 ≤ ŵn(E + 1). It follows that

ŵn+1 ≤ ŵn(E + 1) ≤ X(E + 1)
≤ XE + X ≤ X.

Thenŵ∗ = supn ŵn ≤ X, so ŵ∗ is the least solution of
(12).

Finally, we show how (10) follows from (11). Letu ∈ V .
Sinceŵ0[v] = 0 for v 6= s0, we have

ŵ0[s0] E∗[s0, u]

= ŵ0[s0] E∗[s0, u] +
∑
v 6=s0

ŵ0[v] E∗[v, u]

=
∑

v

ŵ0[v] E∗[v, u]

= (ŵ0E
∗)[u]

= ŵ∗[u] by (11),

thus for anyx ∈ L− {⊥},

E∗[s0, u] (`0) = E∗[s0, u] (w0(s0))
= ŵ0[s0] E∗[s0, u] (x)
= ŵ∗[u] (x)
= w∗(u). 2

4.1 Conclusions and Future Work

We would like to implement the hybrid algorithm de-
scribed in [8] and compare it experimentally to the standard
worklist algorithm as specified in the Java VM specification
[11]. This should not be difficult, since we already have an
implementation of the latter [2].

The efficacy of our hybrid algorithm depends on find-
ing a small cutset in the control flow graph; that is, a set of
nodes intersecting every directed cycle. Finding a minimum
cutset is known to beNP-complete, but solvable in polyno-
mial time for reducible graphs [5]. Flowgraphs of bytecode
programs compiled from Java source would ordinarily be
reducible. In practice, simply taking set of all targets of
back edges should give a very small cutset.

To test this, we collected some rough empirical evidence
from a sample of Java bytecode programs. Of 537 programs
analyzed, the median cutset size as a percentage of total
program size was 2.1%. All except five programs were less
than 5%. The largest program analyzed was 2668 instruc-
tions with 5 cutpoints, or 0.2%. These are very encouraging
numbers indeed.

It is also apparent that our second-order method is
amenable to parallelization. The worklist method is inher-
ently sequential, since each application of a transfer func-
tion requires knowledge of its inputs, whereas composi-
tions can be computed without knowing their inputs. This
presents another intriguing possibility that we would like to
investigate.

Acknowledgments

We are indebted to Stephen Chong, Andrew Myers, and
Radu Rugina for valuable discussions. This work was sup-
ported in part by NSF grant CCR-0105586 and ONR Grant
N00014-01-1-0968. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of these organizations
or the US Government.

References

[1] M. Abadi and R. Stata. A type system for Java bytecode
subroutines. InProc. 25th Symp. Principles of Programming
Languages, pages 149–160. ACM SIGPLAN/SIGACT, Jan-
uary 1998.

[2] F. Adelstein, D. Kozen, and M. Stillerman. Malicious code
detection for open firmware. InProc. 18th Computer Se-
curity Applications Conf. (ACSAC’02), pages 403–412, De-
cember 2002.

[3] T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. InProc. Conf. Principles

6

of Programming Languages (POPL’02), pages 1–3. ACM,
January 2002.

[4] J. H. Conway.Regular Algebra and Finite Machines. Chap-
man and Hall, London, 1971.

[5] M. R. Garey and D. S. Johnson.Computers and Intractibil-
ity: A Guide to the Theory of NP-Completeness. W.H. Free-
man, 1979.

[6] G. A. Kildall. A unified approach to global program opti-
mization. InProc. Conf. Principles of Programming Lan-
guages (POPL’73), pages 194–206. ACM, 1973.

[7] S. C. Kleene. Representation of events in nerve nets and
finite automata. In C. E. Shannon and J. McCarthy, editors,
Automata Studies, pages 3–41. Princeton University Press,
Princeton, N.J., 1956.

[8] Ł. Kot and D. Kozen. Kleene algebra and bytecode verifi-
cation. Technical Report 2004-1972, Computer Science De-
partment, Cornell University, December 2004.

[9] D. Kozen. A completeness theorem for Kleene algebras
and the algebra of regular events.Infor. and Comput.,
110(2):366–390, May 1994.

[10] D. Kozen. Kleene algebras with tests and the static analysis
of programs. Technical Report 2003-1915, Computer Sci-
ence Department, Cornell University, November 2003.

[11] T. Lindholm and F. Yellin.The JAVA virtual machine speci-
fication. Addison Wesley, 1996.

[12] F. B. Schneider. Enforceable security policies.ACM
Trans. Information and System Security, 3(1):30–50, Febru-
ary 2000.

7

