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Abstract

It is a well known fact in logic design that synthesis of some special class of

Boolean functions is often easier than the synthesis of a general unrestricted

specification. In reversible logic, well-scaled synthesis methods with a reason-

ably small cost of the associated implementation have been found for only a

few classes of functions. This includes synthesis of multiple-output symmetric

and reversible linear functions.

In this work, we present an efficient reversible/quantum synthesis method

for the class of multiple-output symmetric functions. Our method is purely

theoretical, therefore its scaling on functions with a large number of in-

puts/outputs requires minimal resources. We calculate garbage, i.e. the

number of outputs that are not required by the function specification, the

number of reversible gates, and the quantum cost of the presented implemen-

tations. We then apply our approach to the synthesis of benchmark functions.

Comparison of our designs to the previously reported implementations is fa-

vorable.

1 Introduction

Reversible logic implementations are such that the values of input variables can

be deduced from the output values. Information loss does not contribute to heat

dissipation in these circuits [4, 13]. Therefore, they potentially help to solve at least

two problems: overheating and power saving, which implies longer life for batteries.
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The reversible logic solution may be especially important in low-voltage designs of

mobile systems, where both power saving and overheating are very important due

to the need for light weight and independent power supply.

Reversible implementations have applications in quantum computing [12, 25] and

nanotechnology [19, 20]. Quantum technology has received significantly more at-

tention, and is often considered to be the most promising application for reversible

computations. Consequently, in this paper, we calculate quantum costs for the pre-

sented designs. Numerous applications requiring reversible implementations have

resulted in the appearance of multiple reversible synthesis papers, e.g. [2, 9, 10, 11,

15, 17, 21, 24, 26, 28, 30, 32]. Indeed, once a technology is discovered, the next step

towards employing it is the creation of useful applications and the synthesis of the

corresponding circuits.

The use of general purpose reversible synthesis methods [2, 9, 10, 11, 15, 17, 21,

24, 30, 32] usually results in large and thus, likely, technologically expensive speci-

fications. Those methods, especially their heuristic parts, scale poorly. In fact, the

largest benchmark function for which a heuristically synthesized circuit has been

reported has only 20 inputs and 20 outputs [17]. Most of the above methods, except

[15, 24, 32], target synthesis of the reversible specifications only. This limits their

applicability to the synthesis of useful benchmark functions since the latter are usu-

ally specified irreversibly. The task of finding a reversible specification containing a

given irreversible specification that can be effectively used by one or the other syn-

thesis approach is difficult to solve and no reasonably good solution of this problem

has yet been found. Synthesis approaches that work with irreversible specifications

have been proposed [15, 24, 32]. The synthesis method suggested in [32] has neither

been implemented nor tested. The synthesis approach in [15] works with functions

having up to 10 input variables only. Usage of methods discussed in [24] allows

synthesis of larger irreversible specifications. However, its application sometimes
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results in a significant number of garbage bits, wide and expensive gates (resulting

in high overall technological cost), and it fails to employ the interdependence of bits

in a reversible circuit.

Due to the above problems with the synthesis of a general non-resticted specification,

it is a good idea to synthesize reversible circuits for classes of functions. Linear re-

versible functions with n input/output variables were synthesized with O(n2/ log(n))

reversible/quantum CNOT operations [26]. This synthesis requires no garbage and

is asymptotically optimal.

Symmetric functions were first synthesized as a separate class in [28]. The reversible

gate count for an n-input m-output symmetric function synthesis in this method

is n2

2
+ mn. But, their implementation uses excessive garbage, n(n+1)

2
. This will

likely prevent their synthesis results from being used in quantum technology—most

advanced of the existing quantum technologies is liquid NMR [1, 8] which imposes

a strict limit on the number of qubits allowed in a single computation. Since,

minimization of garbage is an important synthesis criterion in such application [8].

We also notice that an inexpensive quantum realization of the Kerntopf gates used

in [28] for synthesis was never found. In particular, it was recently shown [22]

that optimal quantum implementation of the Kerntopf gate requires 14 elementary

operations in a well studied [14] quantum gate library composed with NOT, CNOT,

and controlled-sqrt-of-NOT gates. Optimal NCV quantum implementation of the

Toffoli gate used in this work requires only 5 such operations.

[28] mentions an approach to a non-symmetric Boolean specification extension into

a larger but symmetric specification. This is very useful because it makes it possible

to synthesize any function by first “symmetrizing” it through adding new input

variables, and then synthesizing its extended symmetric specification. Thus, a good

reversible synthesis procedure for a symmetric specification may be of interest in

general reversible synthesis. This further motivates research of the ways to construct
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inexpensive circuits for symmetric functions.

In this paper we present a synthesis method with the reversible gate count of at most

n2

2
+ mn + o(n2 + mn), quantum implementation cost of at most 5n2

2
+ mn + o(n2 +

mn) and at most 2n − 2 bits of garbage; and its modification with the reversible

gate count of at most (2n−k)(k−1)
2

+ mn + o(n2 + mn), quantum cost of at most

5(2n−k)(k−1)
2

+12∗mn∗blog nc+o(n2 +mn∗ log(n)) and garbage of at most n+k−1,

where k = 2blog nc.

2 Preliminaries

2.1 Reversible Circuits

Reversible logic design differs significantly from conventional logic design. A re-

versible circuit should be composed with reversible gates. In addition to the re-

versibility of gates, “no fan-outs” and “no feed-backs” [25] restrictions are applied.

This leaves us with the cascade as the only possible structure. The circuit diagrams

are built in the popular notations, such as those used in [25]. In short, horizontal

“wires” carry information about single bit (qubit) each; the computation (time) in

the circuit diagrams is propagated from left to right; gate controls (defined below)

are depicted with •; gate targets (defined below) appear as ⊕.

There is a limited number of reversible gates used for the synthesis of reversible

circuits. Most popular among them are the gates associated with a cheap techno-

logical implementation. In this work we employ Toffoli gates [31] whose inexpensive

quantum realizations are well known [3, 18, 25].

Definition 1. For the set of input variables {x1, x2, ..., xn} the generalized Tof-

foli gate has the form TOF (C; t), where C = {xi1 , xi2 , ..., xik}, t = {xj} and

C ∩ t = ∅. It maps the Boolean pattern {x0
1, x

0
2, ..., x

0
n} to {x0

1, x
0
2, ..., x

0
j−1, x0

j ⊕
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x0
i1
x0

i2
...x0

ik
, x0

j+1, ..., x
0
n}. The set C which controls the change of the j-th bit is

called the set of controls and t is called the target. I

TOF (x1) = x̄1 is a NOT gate. TOF (x1; x2) = (x1, x1 ⊕ x2)[6] is often termed

as a CNOT gate. In quantum technology, these gates are used as basic building

blocks, therefore we associate a quantum cost of one with the use of each such gate.

TOF (x1, x2; x3) = (x1, x2, x3⊕x1x2) is usually referred to as a Toffoli gate [31]. The

Toffoli gate is a composite gate, and in quantum it is simulated with 5 elementary

operations [25]. Gates NOT, CNOT and Toffoli are depicted in Figure 1. Quantum

implementations of larger Toffoli gates were also reported [3, 18]. For the purpose

of future quantum cost calculation, we notice that a Toffoli gate with 3 controls

can be simulated with 13 (or 15, depending on the set of basic quantum operations

chosen) quantum operations [3] ([18]), and every Toffoli gate with m > 3 controls

allows realization with 12m− 22 elementary operations (assuming there are m− 2

temporary storage bits available) [18].

2.2 Multiple Output Symmetric Functions

Definition 2. Multiple output symmetric Boolean function
−→
F (x1, x2, ..., xn) =

(y1, y2, ..., ym) is such a function that
−→
F (x1, x2, ..., xn) =

−→
F (π(x1, x2, ..., xn)), for any

permutation π of its n inputs. I

A single output symmetric function with n inputs can be defined by its carry vector

(c0, c1, ..., cn)—a Boolean vector of length n+1 that consists of the output values ci of

the given symmetric function for the input patterns of weight i (where the weight is

defined as a sum of ones in the pattern). Given a symmetric function, its carry vector

can be computed through n + 1 variable substitutions: it suffice to compute sym-

metric function on the input values (0, 0, ..., 0), (0, 0, ..., 0, 1), (0, 0, ..., 0, 1, 1), ... ,

(1, 1, ..., 1). Due to its simplicity, carry vector is often used as an input/storage
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format for single output symmetric functions. Multiple output symmetric functions

are stored as a set of Boolean carry vectors, or a single integer carry vector.

Definition 3. The σ-function σk
n(x1, x2, ..., xn) is defined as

⊕
{i1<i2<...<ik} xi1xi2 ...xik

for k = 0, 1, ..., n. I

Example 1. Over the set of 3 variables {x1, x2, x3}, the σ-functions are those as

listed below

σ0
3 = 1

σ1
3 = x1 ⊕ x2 ⊕ x3

σ2
3 = x1x2 ⊕ x1x3 ⊕ x2x3

σ3
3 = x1x2x3

The following two lemmas are well-known results employing the σ-functions.

Lemma 1. Every symmetric function can be written as a linear combination (with

respect to EXOR operation) of not more than (n + 1) different σ-functions.

Example 2. A 3-variable symmetric function x1x2x3 ⊕ x̄1x̄2x̄3 is equivalent to the

linear combination σ0
3 ⊕ σ1

3 ⊕ σ2
3. This can be easily verified through substitution

x̄i → xi ⊕ 1 on the left hand side and formulas for σ-functions (see Example 1) on

the right hand side of the discussed equality.

Linear combination of the σ-functions is, in fact, equivalent to to the Positive Po-

larity Reed-Muller expansion (PPRM) [29], an EXOR polynomial with all literals

appearing in the positive polarity. A more general object, Fixed Polarity Reed-

Muller expansion (FPRM) for function f(x1, x2, ..., xn) is defined as

f(x1, x2, ..., xn) = c0 ⊕ c1x
∗
1 ⊕ c2x

∗
2 ⊕ ...⊕ cnx

∗
n ⊕ ... ⊕ c2n−1x

∗
1x
∗
2...x

∗
n,
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where ci are Boolean coefficients and x∗i is either xi or its complement x̄i. The term

Fixed Polarity refers to the fact that each variable occurs in the expression in one

way only, uncomplemented (xi) or complemented (x̄i).

Any FPRM expression of a symmetric function with n inputs can be found in O(n3)

time with O(n2) storage space [5]. This includes finding PPRM, which is equivalent

to the linear combination of σ-functions. Similarly, an FPRM is a linear combina-

tion of polarized σ-functions. However, we will use PPRM when constructing the

reversible implementations of symmetric functions. This is because the bottleneck

of our approach is in construction of the largest degree σ-function that one needs

to implement a given symmetric function. And, it can be shown that the degree of

the largest degree σ-function participating in the expansion does not decrease when

considering FPRMs instead of the plain PPRM.

Lemma 2. σk
n(x1, x2, ..., xn) = xnσ

k−1
n−1(x1, x2, ..., xn−1)⊕σk

n−1(x1, x2, ..., xn−1) for k ≥
2.

Proof. Observe that the first part of the right hand side has all the terms of degree

k which include variable xn as a multiple. The second part has all the terms of

degree k that do not include the variable xn. Thus, right hand side has all the terms

of degree k, which, according to the definition, forms the left hand side. ¥

Example 3. We illustrate Lemma 2 for n = 4 and k = 2:

(RHS) x4σ
1
3(x1, x2, x3)⊕ σ2

3(x1, x2, x3)

= x4(x1 ⊕ x2 ⊕ x3)⊕ (x1x2 ⊕ x1x3 ⊕ x2x3)

= x1x4 ⊕ x2x4 ⊕ x3x4 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3

= σ2
4(x1, x2, x3, x4) (LHS).

Each function σk
n(x1, x2, ..., xn) is symmetric. Therefore, it can be described by a
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subset Mk ⊂ {0, 1, 2, ..., n} of the input weights where its output equals 1. In other

words, Mk is a set of indices corresponding to the unit values of the carry vector

of function σk
n(x1, x2, ..., xn). Observe, that l ∈ Mk ⇔ (l

k) mod 2 ≡ 1. According

to Kummer’s Theorem [7] maximal j : (l
k)|2j equals the number of bit carry over

operations while adding numbers k and l−k in binary. In particular, if k is a power

of 2, that is, k = 2i, and binary expansion of number l has zero ith bit, then binary

decomposition of l − k also has zero ith bit. In such case, addition of k with l − k

in binary requires no carry over, and thus (l
k) is odd. Alternatively, if ith bit of the

binary expansion of number l equals one, ith binary bit of l− k also equals one, and

there will be carry over while adding k with l − k in binary. Summarizing, the set

Mk for k = 2i consists of the numbers l with unit values in bit i. And so, every

symmetric function equal to one for the input patterns with weight j only can be

achieved as a product &i(σ2i ⊕ αi), where αs...α2α1 is the binary expansion of j.

This observation allows to formulate the following useful result.

Theorem 1. Every symmetric function y = f(x1, x2, ..., xn) with Mf = {j1, j2, ..., jt}
can be computed using σ-functions σ1, σ2, ..., σ2s, 2s ≤ n < 2s+1 according to the for-

mula

y = ⊕r=1..t&i=1..s(σ2i ⊕ αr
i ), (1)

where αr
s...α

r
2α

r
1 is the binary expansion of number jr.

Note that from the point of view of applications, it makes sense to simplify expression

(1) through applying techniques like EXORCISM [23]. In particular, designs of

functions sym12 and sym15 shown in Table 5 will benefit from such simplification.

5 Toffoli5 gates used in the design of sym12 can be replaced with 1 Toffoli5 gate and

1 Toffoli gate (because x̄1x2x̄3x̄4 ⊕ x̄1x2x̄3x4 ⊕ x̄1x2x3x̄4 ⊕ x̄1x2x3x4 ⊕ x1x̄2x̄3x̄4 =

x̄1x2 ⊕ x1x̄2x̄3x̄4). Analogously, 6 Toffoli5 gates used in the design of sym15 can

be replaced with 2 Toffoli5 and 2 CNOT gates (because x̄1x2x̄3x4 ⊕ x̄1x2x3x̄4 ⊕
x̄1x2x3x4 ⊕ x1x̄2x̄3x̄4 ⊕ x1x̄2x̄3x4 ⊕ x1x̄2x3x̄4 = x1x̄2x3x4 ⊕ x̄1x2x̄3x̄4 ⊕ x1 ⊕ x2).
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3 Reversible Synthesis of Multiple Output Sym-

metric Functions

Our approach to the reversible synthesis of symmetric Boolean functions is as follows.

We first consider a symmetric Boolean function defined by its carry vector. We next

transform carry vector into the linear combination of σ-functions (PPRM) using

procedure discussed in [5]. This is followed by construction of all needed σ-functions

and synthesis of their linear combinations using simple modula-2 addition (through

application of CNOT gates or the technique discussed in [26]). The above explains

all except how and which σ-functions to construct. This is discussed next.

The statement of the Lemma 2 holds for k = 1. The result for k = 1 can be

used to calculate σ1
n(x1, x2, ..., xn). We suggest using Lemma 2 as a basis for the

following dynamic programming algorithm which calculates the set of σ-functions

{σ1
n(x1, x2, ..., xn), σ2

n(x1, x2, ..., xn), ..., σn
n(x1, x2, ..., xn)} = {sigma[1], sigma[2], ...,

sigma[n]}.

1. create Boolean array sigma[1..n]=0;

2. for i=1 to n

3. for k=i down to 1

4. if k>1 sigma[k] = (sigma[k] + x[i]*sigma[k-1]) mod 2;

5. if k=1 sigma[k] = (sigma[k] + x[i]) mod 2;

6. end for;

7. end for.

Note, that in a reversible circuit computing all σ-functions it is enough to have 2n

rails marked x1, x2, ..., xn, σ1, σ2, ..., σn that initially hold the values x1, x2, ..., xn, 0, 0, ..., 0.

Rails σ1, σ2, ..., σn are updated with regards to the formulas given in the above al-

gorithm. It turns out that the gates associated with updating the values are very
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simple. In fact, a gate is only added to the reversible cascade on steps 4 and 5 of the

algorithm. Step 4 requires addition of the Toffoli gate TOF (xi, σk−1; σk) and step

5 requires a simpler CNOT gate, TOF (xi; σk). Once all σ-functions are created,

their linear composition can be used to construct all outputs, according to Lemma

1. These observations lead to the following theorem.

Theorem 2. Every symmetric multiple output function
−→
F (x1, x2, ..., xn) = (y1, y2, ..., ym)

can be realized with:

• at most m NOT gates, at most n+mn− 1 CNOT gates, and at most n(n−1)
2

Toffoli gates;

• at most n + m− 1 garbage bits;

• quantum implementation cost of at most 5n(n−1)
2

+ mn + m + n− 1 elementary

operations.

Proof. The maximum of m NOT gates is used since every component of the output

may require modula-2 addition of σ0
n = 1 function. The last can be EXORed with

the target circuit rail through the use of one NOT gate. The number of outputs

is m, making usage of m NOT gates sufficient for a computation of any m-output

symmetric function.

Among the n + mn − 1 CNOT gates mn are used to create the outputs. Outputs

are created on separate new rails y1, y2, ..., ym whose initial values are set to zero.

According to Lemma 1, at most n CNOT gates are needed to create each output.

The remaining n− 1 CNOTs are used in step 5 of the algorithm while constructing

σ-functions. Their number is n − 1 instead of the expected n, since σ1 can be

computed on the input line xn.

n(n−1)
2

Toffoli gates are used on the step 4 of the algorithm.

The rails in the constructed circuit are x1, x2, ..., xn(= σ1), σ2, ..., σn, y1, y2, ..., ym and

the outputs are built on the wires y1, y2, ..., ym. Thus, the total garbage is 2n − 1
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bits. However, this number is reduced to 2n − 2 if output y1 is created on the rail

σi such that this σi belongs to the linear expansion of variable y1. Further, it turns

out that in most cases (in practice, all benchmarks considered in this paper have

this property) it is possible to reuse wires σ1, σ2, ..., σn for the output construction.

This reduces the number of garbage bits to 2n−m− 1. ¥
If all the outputs can be composed using the first k + 1 (2 ≤ k ≤ n) σ-functions

σ0
n(x1, x2, ..., xn), σ1

n(x1, x2, ..., xn), ..., σk
n(x1, x2, ..., xn), there is no need to create the

remaining (n−k) σ-functions. This observation allows us to formulate the following

result (proof is analogous to that of the previous theorem).

Theorem 3. Every symmetric multiple output function
−→
F (x1, x2, ..., xn) = (y1, y2, ..., ym),

such that its linear σ-function decomposition requires a σ-function of maximal degree

k (2 ≤ k ≤ n) can be realized with:

• at most m NOT gates, at most n + mn − 1 CNOT gates, and at most

(2n−k)(k−1)
2

Toffoli gates;

• at most n + k − 2 garbage bits;

• and quantum implementation cost of at most 5(2n−k)(k−1)
2

+ mn + m + n − 1

elementary operations.

Example 4. Take a multiple output function rd53, which is the 5-input 3-output

symmetric function whose output is the binary representation of the number of ones

in its input. Carry vectors (their number is 3 according to the number of primary

outputs) of this function are (0, 0, 0, 0, 1, 1), (0, 0, 1, 1, 0, 0), and (0, 1, 0, 1, 0, 1). They

are first transformed to the vectors of PPRM coefficients [5]. The result of such

transformation is a set of 3 vectors (0, 0, 0, 0, 1, 0), (0, 0, 1, 0, 0, 0), and (0, 1, 0, 0, 0, 0)

with ones at position i meaning presence of σi in the linear σ-expansion of the target

function. Next step, rewrite target function in terms of σ-functions—(σ4, σ2, σ1).
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Written as a Boolean formula this expression is (x1x2x3x4⊕ x1x2x3x5⊕ x1x2x4x5⊕
x1x3x4x5⊕x2x3x4x5, x1x2⊕x1x3⊕x1x4⊕x1x5⊕x2x3⊕x2x4⊕x2x4⊕x3x4⊕x3x5⊕
x4x5, x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5). Note that σ5-function needs not be built. Build the

dynamic programming part that computes σ1, σ2, σ3, and σ4. Linear combinations

need not be built because each output is a single σ-function. Also, rails σ1, σ2 and

σ4 can be reused for the output and thus new output rails y1, y2 and y3 need not be

introduced. Observe that the gates that affect a garbage bit whose changed value is

not used by the design afterwards (the gate colored gray in Figure 2) can be deleted

from the circuit without changing the output of the target function. The resulting

circuit contains 12 gates.

In our further designs, if a gate affects a garbage bit whose changed value is not

used in the circuit to affect useful output bits afterwards, it can be deleted from

the design. This trivial procedure brings some simplification in almost every case.

Also note, that the quantum cost of the boxed parts in the second circuit in Figure

2 is 4 (instead of 6=5+1 as one would expect), an implementation that was known

to Peres [27]. Once these considerations are taken into account, the final quantum

implementation cost will be lower than stated in the above theorems. We also

suggest to use the templates [18] to further reduce the quantum costs of all presented

designs.

Next, observe that using large Toffoli gates allows synthesis of symmetric specifi-

cations with a small number of outputs m, m ≺ n
log(n)

with smaller reversible gate

count, garbage, and sometimes smaller quantum cost. Using Theorem 1 allows to

compute σ-functions σ1, σ2, ..., σ2s , 2s ≤ n < 2s+1, first and then use at most n

Toffoli gates with blog(n)c controls and at most s control bit negations to construct

each of the m outputs of a given symmetric specification. The following Theorem

summarizes this result.

Theorem 4. Every symmetric multiple output function
−→
F (x1, x2, ..., xn) = (y1, y2, ..., ym)
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can be realized with:

• at most m NOT gates, at most n CNOT gates, at most (2n−k)(k−1)
2

Toffoli

gates, and at most nm Toffoli gates with blog(n)c controls;

• at most n + k − 1 garbage bits;

• quantum implementation cost of at most 5(2n−k)(k−1)
2

+ 12 ∗ nm ∗ blog(n)c +

o(n2 + mn ∗ log(n)) elementary operations,

where k = 2blog(n)c.

4 Comparison of the Results

There were several design methods proposed in literature for the reversible design

of multiple output Boolean functions. We would like to compare our results to the

results of the RPGA method by Perkowski et al. [28] (the method designed to

synthesize the symmetric functions with reversible gates), reversible wave cascades

[24], Khan gate family synthesis [10, 11], generalized Toffoli gates family [15] and

design of the Toffoli circuits using the templates [17]. The comparison consists of the

three parts: comparison of the garbage, number of gates in the reversible cascade

and comparison of the quantum costs.

Unfortunately, [28] do not provide a table of results, which makes it hard to do

a precise comparison. The asymptotic reversible cost (number of gates) of both

realizations, theirs and presented here, are the same, namely O(n2 + mn). But, the

RPGA method uses excessive garbage, n(n+1)
2

(calculated in [15]), when the presented

methods have the garbage of maximum (2n − 2). A good quantum realization of

the Kerntopf gates used in [28] was never found, therefore we claim that from the

point of view of quantum cost our method will produce quantum circuits which will
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be constant (= 14
5

in quantum NOT, CNOT, controlled-sqrt-of-NOT gate library)

times cheaper.

Comparison to the reversible wave cascades [24] (RWC columns), Khan gate family

synthesis [11] (KGF columns) and generalized Toffoli gates family [15] (GT columns)

reversible synthesis results is summarized in Table 5. Actual circuits for our designs

can be found in [16].

The comparison in Table 5 is not quite fair. On one hand, the methods RWC,

KGF and GT are general synthesis methods, which do not use special properties of

functions. On the other hand, the cardinality of the set of gates of these is greater

on the order than the number of gates used in the presented method.

It can be seen that our method produces better results for larger functions both

from the point of view of the reversible cost and garbage. The presented method

can never beat the generalized Toffoli gates family synthesis method in terms of the

number of garbage bits, since the last uses theoretically minimal number of garbage

bits. But, the GT method scales badly—it can produce circuits for functions with

no more than 10 inputs. The RWC and KGF are synthesized heuristically and their

usage is expected to cause problems when scaled.

We were not able to compare the quantum costs of the presented designs to those

of earlier methods due to impossibility or hardness of getting access to the actual

circuits. However, in few cases the comparison of quantum costs could be made. [17]

gives an example of a circuit for rd53 function with 12 reversible gates, which seems

to be the smallest (reversible gate count wise) among all known. The generalized

Toffoli gates used in [17] are expensive (yet, generally, less expensive than the gates

in RWC, KGF and GT) and the quantum cost calculation based on [16] reports the

quantum cost of 120 for that realization. In the same costing metric, our 12-gate

realization of rd53 has the quantum cost of 36 only, which is more than 3 times lower.

[15] presents a circuit for rd53 with cost 232. Which, again, compares favorably to
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our 36.

Another interesting comparison can be made using 2of5 function. Realization in

[15] uses 7 reversible gates in comparison to 12 in the presented paper. However, the

quantum cost of their realization is 158 in comparison to 32 for our circuit. Thus,

we find our realization to be potentially more practical. This example also serves

as a good illustration of the thesis [22] that a small number of reversible gates does

not mean a cheap technological implementation.

Secondly, we synthesized reversible circuits for some symmetric functions or sym-

metric components of some benchmarks [5] whose reversible implementations were

never reported before. The results can be found in Table 5. Columns name, in,

out#, and Car. Vec. list the name of the benchmark function, total number

of its inputs, symmetric output number (in case if not all outputs are symmetric),

and carry vector of the symmetric component considered. We next compute PPRM

expansion using the transeunt triangle [5]. It is listed in column PPRM coef. All

circuits were synthesized assuming there might be an additional computation on

top of computing the symmetric components. Thus, all primary inputs are returned

unaltered. Some properties of the synthesized circuits are listed in the remaining

three columns. Column gates lists the gate counts according to their types with

AN representing the number of NOT gates, AC representing the number of CNOT

gates, AT representing the number of Toffoli gates, and ATB representing the num-

ber of generalized Toffoli gates of size B, where A is a constant equal to the number

of gate types used. Column garb. lists the number of garbage bits required (in this

setting, garbage bits are all outputs except primary inputs that are being passed

unchanged and the primary output). Finally, column QC lists an upper bound for

the quantum cost of the circuits. We stress that this is an upper bound, because the

listed number is the weighted gate count, which, for instance, does not take it into

account that some sequences of Toffoli-CNOT gates added into the total sum as 6
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are Peres gate with the cost 4. Further simplification could be achieved through

dropping the gates affecting garbage outputs only and applying local optimization

techniques [18].

5 Conclusion

In this paper we presented an efficient reversible/quantum synthesis method for the

class of multiple output symmetric Boolean functions. As compared to the best

previously reported method targeting the synthesis of symmetric Boolean functions,

our method uses simpler gates (resulting in technologically preferable circuit speci-

fications) and requires significantly less garbage bits. We compared our designs to

those presented previously and found that our circuits are smaller. We presented

reversible implementations for some well known symmetric benchmark functions

whose reversible circuits were never reported before. Further advance of our synthe-

sis approach includes optimization of the presented circuits; and synthesizing almost

symmetric functions (which is, likely, a separate problem rather than a trivial ex-

tension of the presented technique).
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Table captions:

Tab. 1 Comparison of the results to RWC, KGF and GT

Tab. 2 The results of synthesis for some symmetric benchmarks

Figure captions:

Fig. 1 (a) TOF (x1), (b) TOF (x1; x2) and (c) TOF (x1, x2; x3) Toffoli gates

Fig. 2 Circuit for rd53
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Table 1

function number of gates garbage

name in out RWC KGF GT Ours RWC KGF GT Ours

2of5 5 1 N/A N/A 7 12 N/A N/A 5 6

rd53 5 3 14 17 13 12 19 19 4 5

rd73 7 3 36 43 37 20 43 47 6 7

rd84 8 4 58 64 N/A 28 66 68 7 11

6sym 6 1 N/A N/A 13 20 N/A N/A 6 9

9sym 9 1 52 52 N/A 28 61 60 9 11

xor5 5 1 5 5 4 4 10 9 4 4
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Table 2

function circuit

name in out# Car. Vec. PPRM coef. gates garb. QC

co14 14 0 01013 01013 13T 0 13

m1 6 6 106 106 1N 0 1

m4 6 8 106 106 1N 0 1

misex5 5 5 051 051 8C+9T+1T4 3 67

misj 10 10 1100 1091 1N+18C+45T 7 244

sym4 4 0 01202 01202 8C+3T 0 23

sym10 10 0 041502 04103120 20C+44T 6 240

sym12 12 0 041504 04103130 22C+56T+5T5 7 432

sym15 15 0 051605 051402140 28C+77T+6T5 7 569

dbruijn 2 4 0 02120 02102 6C+3T 0 21

dbruijn 3 9 0 03101302 03101203 18C+30T 4 168

dbruijn 4 18 0 04102120101403 04130120210104 40C+143T 12 755

dbruijn 5 35 0 051031202101 051010120213 90C+580T 28 2990

02130101201504 021010170105
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Figure 1
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Figure 2
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