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Abstract

This paper introduces a texture representation suitable for
recognizing images of textured surfaces under a wide range
of transformations, including viewpoint changes and non-
rigid deformations. At the feature extraction stage, a sparse
set of affine-invariant local patches is extracted from the
image. This spatial selection process permits the compu-
tation of characteristic scale and neighborhood shape for
every texture element. The proposed texture representation
is evaluated in retrieval and classification tasks using the
entire Brodatz database and a collection of photographs of
textured surfaces taken from different viewpoints.

1. Introduction

Over the past decade, computer vision literature has re-
ported texture recognition schemes [7, 12, 19] that perform
impressively well on such challenging data sets as the Bro-
datz database [2]. Unfortunately, these schemes rely on
restrictive assumptions about the input (e.g. texture must
be stationary) and are not generally invariant with respect
to 2D similarity and affine transformations, much less to
3D transformations caused by movement of the camera and
non-rigid deformations of the textured surface. However,
invariance to such transformations is desirable for many ap-
plications, including wide-baseline matching [11, 15, 17],
texture-based retrieval [14, 16], segmentation of natural
scenes [8], and recognition of materials [18].

In this paper, we design a texture representation that is
invariant to any geometric transformations that can be lo-
cally approximated by an affine model. In practice, local
affine invariants are capable of modeling not only global
affine transformations of the image, but also perspective
distortions and non-rigid deformations that preserve the lo-
cally flat structure of the surface (e.g. the bending of paper
or cloth). Our goal is to develop a representation that ad-
dresses the problems of spatial selection (finding the most
salient image locations for computing texture descriptors)
and and shape selection (finding the characteristic size and
shape of local texture neighborhoods).

The proposed method performs spatial and shape selec-
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Figure 1: Outline of the proposed method.

tion by restricting the set of candidate texture elements to
a sparse set of affine-invariant regions in the image. Sev-
eral types of affine-invariant region detectors have recently
been developed for applications of wide-baseline matching,
indexing, and retrieval [11, 17]. To us, these detectors rep-
resent powerful tools for creating sparse texture representa-
tions. In the current paper, we show how such representa-
tions may be built and investigate their effectiveness. The
proposed method consists of four steps (see Figure 1):

1. Extract a sparse set of affine regions from a texture im-
age (Section 2.1).

2. For each region, compute an intensity descriptor that is
invariant to affine geometric and photometric transfor-
mations. In Section 2.2, we discuss a novel descriptor
based on spin images [3].

3. Perform clustering on the affine-invariant descriptors
and summarize the distribution of descriptors in the
form of a signature consisting of cluster centers and
relative weights (Section 2.3).

4. Compare signatures using the Earth Mover’s Distance
(EMD) [13, 14], which is a convenient and effective
dissimilarity measure applicable to many types of im-
age information. The output of this stage is an EMD
matrix whose (4, j)th entry is the distance between the
signatures of the sth and jth image in the database. The
EMD matrix can be used for retrieval and classifica-
tion, as described in Section 3.1.

In Section 3, we evaluate the proposed texture represen-
tation on two data sets. The first set consists of photographs
of textured surfaces taken from different viewpoints and



featuring significant scale changes, perspective distortions,
and non-rigid transformations. The second set is the Bro-
datz database, which has significant inter-class variability,
but no geometric transformations between members of the
same class. Because affine invariance is not required in this
case, we modify the basic framework to use neighborhood
shape as an additional discriminative feature.

2. Building the Representation

2.1 Affine-Invariant Regions

Blostein and Ahuja [1] have first introduced a multiscale
blob detector based on maxima of the Laplacian of Gaus-
sian. Lindeberg [6] has extended this detector in the frame-
work of automatic scale selection, where a “blob” is de-
fined by a maximum of a normalized Laplacian measure in
scale space. Informally, the spatial coordinates of the max-
imum become the coordinates of the center of the blob, and
the scale at which the maximum is achieved becomes the
characteristic scale. Lindeberg and Garding [5] have also
shown how to design an affine-invariant blob detector us-
ing an affine adaptation process based on the second mo-
ment matrix. Mikolajczyk and Schmid [10, 11] have pro-
posed alternative scale- and affine-invariant detectors that
use a multi-scale version of the Harris interest point detec-
tor to localize interest points in space while employing Lin-
deberg’s scheme for scale selection and affine adaptation.

Tuytelaars and Van Gool [17] have articulated the goal of
building an “opportunistic” system that would combine the
output of several region detectors tuned to different kinds
of image structure. In this spirit, the texture representa-
tion proposed in this paper is designed to support multiple
“channels” based on the regions found by different detec-
tors. The four steps listed in Section 1 can be carried out
separately for each available channel; at the final stage, the
channels are combined as described in Section 2.3.

Our prototype implementation uses two channels: one
based on the Harris-Affine detector of Mikolajczyk and
Schmid [11], and the other on the affine-adapted Laplacian
blob detector after Lindeberg and Garding [5]. From now
on, the respective detectors will be dubbed H and L. Fig-
ure 2 shows the output of L and H on two natural images.
Intuitively, the two detectors provide complementary kinds
of information about the image: H responds to corners and
other regions of “high information content” [11], while L
responds to blob-like regions of relatively uniform intensity.
Note that L tends to produce a denser set of regions than H,
though the absolute number of regions extracted from an
image is small in any case (for the experiments of Section
3, this number is thresholded at 800 for each detector).

The regions localized by the H and L detectors can be
thought of as ellipses defined by (x —x¢)? M (x —x0) < 1,
where xq is the center of the ellipse, and M isa 2 x 2 sym-

Figure 2: Left: original images, center: output of the H detector,
right: output of the L detector.

metric local shape matrix (see [5, 11] for details). We can
perform affine normalization on the patch defined by M by
applying to it any transformation that would map the el-
lipse onto a unit circle. It can be shown that if two im-
age patches are initially related by an affine transformation,
then the respective normalized patches are related by an ar-
bitrary orthogonal transformation [5, 11]. To eliminate this
remaining one-parameter ambiguity, we can represent each
normalized patch by a rotationally invariant descriptor.

2.2. Spin Images as Intensity Descriptors

In this paper, we describe a novel intensity-based rotation-
invariant descriptor inspired by the idea of spin images in-
troduced by Johnson and Hebert [3] for matching range
data. An intensity domain spin image is a two-dimensional
histogram encoding the distribution of brightness values in
an affine-normalized patch. The two dimensions of the his-
togram are d, the distance from the center or the origin of
the normalized coordinate system of the patch, and ¢, the in-
tensity value. The “slice” of the spin image corresponding
to a fixed d is simply the histogram of the intensity values
of pixels located at a distance d from the center. Since the
d and ¢ parameters are invariant to orthogonal transforma-
tions, spin images offer exactly the right degree of invari-
ance for representing affine-normalized patches. To achieve
invariance to affine transformations of the intensity (trans-
formations of the form I — al + b), it is sufficient to nor-
malize the range of the intensity function within the support
region of the spin image. We implement the spin image
as a “soft histogram” where each pixel within the support
region contributes to more than one bin. Namely, the con-
tribution of a pixel having distance d from the center and
intensity value 4 to the bin indexed by (dg, ) is propor-
tional to exp[—(d—dp)?/(2a?) — (i —1i0)?/(26?)], where
and g are “soft width” parameters. In our implementation,
the distance between two spin images is given by the sum
of squared differences (SSD), with the spin images normal-



Spin image

Figure 3: Spin image construction: three sample points in the
normalized patch (left) map to three different locations in the spin

image (right).

ized to have zero mean and unit Frobenius norm. Figure
3 illustrates the construction of spin images, and Figure 4

shows several examples.
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Figure 4: Normalized patches (top) and spin images (bottom).

—
-

We have compared the effectiveness of spin images to
descriptors based on outputs of rotation-invariant “Gabor-
like” linear filters [16, 18]. In a recent evaluation [18],
Gabor-like filters had performance levels similar to those of
several alternative filter banks. Therefore, they can be seen
as fair representatives of currently used filter-based descrip-
tors. Figures 6 (a) and (b) show the performance of spin
images and Gabor-like filters on the data set described in
Section 3.2. The fact that spin images perform better on our
data makes intuitive sense: as a two-dimensional descriptor,
the spin image is a richer representation of local appearance
than a one-dimensional array of filter outputs.

2.3. Clustering and Signatures

Our method performs clustering to discover a small set of
basic primitives in the set of descriptors (spin images) ex-
tracted from any single image. We use a standard agglom-
erative clustering algorithm [4] that successively merges
clusters until either the desired target number of clusters is
reached (10 to 15 in the implementation), or the distance be-
tween clusters exceeds a pre-specified threshold. Agglom-
erative clustering takes as input not the descriptors them-
selves, but only a matrix of pairwise distances between de-
scriptors. Thus, the running time of clustering is effectively
independent of the dimensionality of the feature space (we
use spin images of size 20 x 20, so technically we are work-
ing with 400-dimensional features).

After the clustering stage is completed, we form the fi-
nal representation for the image: a signature {(m;,u;)},
where m; is the medoid (the most centrally located ele-
ment of the 4th cluster) and u; is the weight (the size of
the cluster divided by the total number of descriptors in

the image). Signatures have been introduced by Rubner
et al. [13, 14] as representations suitable for matching us-
ing the Earth Mover’s Distance (EMD). The EMD between
two signatures {(m;, »;)} and {(n;,v;)} has the form

22 22 fij d(my, ny)
i fij

where the f;; are flow values determined by solving a lin-
ear programming problem (see [13] for details), and the
d(m;,n;) are ground distances between medoids. In our
case, m; and n; are spin images and the distance is SSD.

For our application, the signature/EMD framework of-
fers several important advantages. A signature is more de-
scriptive than a histogram, and it does not require global
clustering of the descriptors found in all images. EMD can
match signatures of different sizes, and is not very sensitive
to the number of clusters — that is, if one cluster is split
into several, the magnitude of the EMD is not greatly af-
fected [14]. This is an important property, since automatic
selection of the number of clusters is generally difficult.

Recall that our texture representation involves multiple
channels corresponding to different detectors. Each chan-
nel generates its own signature representation for each im-
age in the database, and therefore its own EMD value for
any pair of images. We have experimented with several
methods of combining these separate values to obtain a cu-
mulative inter-image distance measure. It was empirically
determined that simply adding the separate distances with
equal weights produces the best results.

3. Performance Analysis
3.1 Methodology

We have exercised the proposed texture representation in
retrieval and classification tasks. For retrieval, we follow
the procedure standardized in several previous studies [7,
12, 19]. Given a query image, we select images from the
database in increasing order of EMD. Each image in the
database is used once as a query image. The performance is
summarized in a plot of average recognition rate (number of
images from the class retrieved so far over the total number
of images in the class) vs. the number of closest images
retrieved. Perfect performance would correspond to 100%
recognition rate after n — 1 retrievals, where n is the number
of images of the given class in the database.

In the above retrieval framework, we effectively treat
each image as a model for its class, hoping that the rest of
the images from the class will be very similar to this model.
However, this reasoning does not work for databases with
significant intra-class variability, where a given texture can-
not be adequately modeled by any individual sample. To
avoid this problem, we suggest classification as an addi-



tional method for performance evaluation. In the classifi-
cation framework, a model for a class is created not from a
single (possibly atypical) image, but from several training
images. As long as the training set adequately reflects the
range of variation within the class, classification rate is not
unduly affected by inhomogeneity.

In our implementation, we use nearest-neighbor classifi-
cation with EMD. The training set is selected as a fixed-size
random subset of the class, and all remaining images are
added to the test set. To eliminate the dependence of clas-
sification rates on the particular training images used, this
procedure is repeated with different random training sets
(we use 50 iterations).

3.2. Viewpoint-Invariant Texture Recognition

We have acquired a data set consisting of 20 samples each
of ten different textured surfaces, for a total of 200 images
(Figure 5). Significant viewpoint and scale changes are fea-
tured within each class. To push the limits of our system,
we have allowed additional sources of variability: inhomo-
geneities in the texture pattern, non-rigid transformations,
illumination changes, and unmodeled viewpoint-dependent
appearance changes (these are the most severe for class T4,
whose “textured” look is due largely to the pattern of light
and shadow on a bumpy surface).

Figure 6 (a) shows retrieval results using spin images as
intensity-based descriptors. Notice that for this data set, the
H channel is more discriminative than the L channel. Never-
theless, adding the two EMD estimates results in improved
performance. This “hyperacuity effect” is the strongest ar-
gument for combining the output of different feature extrac-
tors. Figure 6 (b) shows the results using Gabor-like filters
as descriptors instead of spin images (see Section 2.2 for
discussion). Figure 6 (c) summarizes the classification re-
sults obtained by using 5 samples from each class as train-
ing images. The classification rate for each class provides
an indication of the “difficulty” of this class for our repre-
sentation. The mean rate is 0.89, with two classes achieving
1.0, showing the robustness of our system against a large
amount of intra-class variability. In particular, performance
is very good for relatively inhomogeneous textures T5 and
T6. Class T4 has the lowest recognition rate, which is prob-
ably due to excessive variability in local appearance caused

Figure 5: Samples of the ten texture classes used in the experiments of Section 3.2.

by the complex interaction between viewpoint, lighting, and
fine-scale 3D structure. Indeed, about half of the signatures
for this class are dominated by (roughly speaking) light cen-
ter/dark surround blobs, while the remaining signatures are
dominated by dark center/light surround blobs. The EMD
between these two types of signatures is quite high, explain-
ing the relatively low recognition rate.

3.3. Brodatz Database Evaluation

In the experiments shown in the previous section, we dis-
card the information contained in the shape of the patches
computed using affine adaptation (recall Section 2.1). How-
ever, shape can be a distinctive feature when affine invari-
ance is not required. In this section, we present a modifica-
tion of our system that takes advantage of affine shape for
recognition, and evaluate it on the Brodatz database.

Let E; and E- be two regions defined by local shape
matrices M; and M,. We eliminate the translation be-
tween E; and E, by aligning their centers, and then com-
pute the dissimilarity between the regions as d(E1, E») =
1—Area(E1NE,)/Area(E; UE,). Notice that this measure
takes into account the relative rotations of the two ellipses.
We can achieve rotation invariance simply by aligning the
major and minor axes of the ellipses before comparing their
areas. In the experiments of this section, we use local shape
to obtain one additional channel for each region detector.
This involves a separate clustering stage for each set of re-
gions based on the “ellipse distance” d(E1, E»), as well as
the computation of shape-based signatures and EMD’s be-
tween all pairs of images. At the end, the shape-based EMD
matrices are combined with the spin image-based EMD ma-
trices through addition.

The Brodatz database is a widely used benchmark for
texture recognition. Following the same procedure as pre-
vious evaluations [7, 12, 19], we form the classes by par-
titioning each of the 111 images into nine non-overlapping
fragments, for a total of 999 images. As many authors have
noted before, the wide variety of Brodatz textures, com-
bined with a certain degree of subjectivity in assigned tex-
ture classes (some perceptually similar textures have differ-
ent labels, while a few textures are too inhomogeneous to
permit successful recognition) makes the Brodatz database
a challenging platform for performance analysis.
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Figure 6: (a), (b), (c) Retrieval and classifi cation performance for the data set shown in Figure 5. (d), (€) Retrieval using the Brodatz
database. The solid black curveisthe samein both plots. This curve represents the best performance of our system (seetext). (f) Histogram

of classifi cation rates for all 111 classes.

Parts (d) and (e) of Figure 6 show retrieval results using
the shape channel alone, the spin image channel alone, and
the two channels combined. By comparing the two plots,
we can see that H and L spin image channels produce very
similar results, but the shape information for H is much less
descriptive than for L. As a result, the combined L channel
outperforms the combined H channel, which is the reverse
of the situation seen in Section 3.2. The final performance
of the system, shown as the solid curve in Figures 6 (d)
and (e), is obtained by combining the shape and spin image
channels from both detectors.

Figure 6 (f) gives us a more detailed means of perfor-
mance analysis. It shows a histogram of classification rates
for all 111 classes obtained by putting three images from
each class into the training set. The histogram reveals that
the majority of textures are highly distinguishable, with
only a few stragglers at the low end. In fact, 41 classes have
1.0 classification rate, and the mean rate is 0.85. Three of
these classes are shown in the top part of Figure 7, with the
three bottom textures below. Not surprisingly, the bottom
three textures are highly inhomogeneous. While the tests
of Section 3.2 show that our method provides some robust-
ness against inhomogeneity, textures with large amounts of
spatial variation remain difficult to recognize.

The best performance curve of our system has about 0.75
recognition rate after 8 retrievals. This result is on par with
Picard et al. [7, 12], but somewhat below Xu et al. [19], who

report 0.84 recognition rate using the multiresolution simul-
taneous autoregressive (MRSAR) model [9]. MRSAR is
completely different from our method: it models texture as
a stationary random field, uses a dense representation with
fixed neighborhood shape and size, and has no scale, rota-
tion, or affine-invariance. Traditional texture models such
as MRSAR have been studied and perfected for at least a
decade, while our method is built on new techniques that
have not previously been applied to texture analysis. We
believe that “mature” methods such as MRSAR have been
pushed close to the intrinsic limit of their performance,
while novel methods such as ours have a much greater po-
tential for improvement in the future.

4. Discussion and Future Work

In this paper, we have introduced a non-parametric texture
representation that provides several kinds of geometric in-
variance, does not make any statistical assumptions about
the input texture, and applies spatial and shape selection to
automatically determine the locations and support regions
of salient texture neighborhoods.

In the future, we will pursue several avenues for im-
provement of our method. One important research direction
is acquiring a better understanding of the relative expres-
siveness of the H and L detectors. In our experiments, H
worked better for the data set of Section 3.2, while L gave
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Figure 7: Top: three of the 41 textures having classifi cation rate
of 1.0. Interestingly, the representation for D48 has an average of
only 9 L and 5 H regions per sample. Bottom: three textures with
the worst classifi cation rates (shown in parentheses).

better performance on the Brodatz database. We plan to
conduct a more systematic study of the on larger databases,
and to develop a quantitative measure of the discriminative
power of different detectors on different types of texture.
This study should also involve more detectors, e.g., the ones
proposed by Tuytelaars and Van Gool [17].

Another issue worthy of further research is the method
for combining channels. For our two data sets, the simple
method of adding the individual EMD matrices has worked
surprisingly well to improve average performance. How-
ever, as can be seen from Figure 6 (b), it is occasionally pos-
sible for the combined recognition rate to be lower than the
single-channel rates. In the future, we plan to study more
sophisticated methods for combining channels that would
not suffer from similar detrimental effects.

Finally, we believe that a significant increase in dis-
criminative power will come from using features based on
spatial relationships between neighoring regions. A few
recent representations [8, 16] have used a two-level scheme,
with intensity-based textons at the first level and histograms
of texton distributions over local neighborhoods at the
second level. For many natural textures, the arrangement of
affine regions captures perceptually significant information
about the global geometric structure. Augmenting our
representation with such information is likely to increase
its ability to distinguish textures that have similar local
neighborhoods but different spatial layouts.
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