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Abstract. For an n-dimensional complete connected Riemannian man-

ifold M with sectional curvature KM ≥ 1 and diameter diam(M) > π
2
,

and a closed connected totally geodesic submanifold N of M , if there

exist points x ∈ N and y ∈ M satisfying the distance d(x, y) > π
2
,

then N is homeomorphic to a sphere. We also give a counterexam-

ple in 2-dimensional case to the following problem: let M be an n-

dimensional complete connected Riemannian manifold with KM ≥ 1

and rad(M) > π
2
, whether does the “antipodal” map A of M restricted

to a complete totally geodesic submanifold agree with the “antipodal”

map of M?

1. Introduction

Let M be an n-dimensional complete connected Riemannian manifold with
sectional curvature KM ≥ 1. A lot of interesting results about M have been
proven during the past years. In 1977 Grove and Shiohama [9] showed that
M is homeomorphic to the n-dimensional sphere Sn, if the diameter of M

diam(M) > π
2 . In the paper Grove and Shiohama established critical point

theory for distance functions on complete Riemannian manifolds, which serves
as an very important tool in Riemannian Geometry. One can find some of
them, e.g., in [1], [4], [6], [8], [9], [12].

Recall that for a compact metric space (X, d), the radius of X at a point
x ∈ X is defined as radX(x) = maxy∈X d(x, y), and the radius of X is given by
rad(X) = minx∈X rad(x), which was invented in [10]. In 2002 Xia[12] showed
the following result.
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Theorem 1.1. Let M be an n-dimensional complete connected Riemannian
manifold with KM ≥ 1 and rad(M) > π

2 . Suppose that N is a k-dimensional
closed connected totally geodesic submanifold. Then N is homeomorphic to a
k-dimensional Euclidean sphere Sk.

In Xia [12], he asked whether the condition that rad(M) > π
2 could be

weakened to diam(M) > π
2 .

First we defined a set

B := {p ∈ M ; ∃ q ∈ M, such that d(q, p) >
π

2
}.

Now we state our first theorem as follows:

Theorem 1.2. Let M be an n-dimensional complete connected Riemannian
manifold with KM ≥ 1 and diam(M) > π

2 . Suppose that N is a k-dimensional
closed connected totally geodesic submanifold and N ∩ B 6= ∅. Then, for any
x ∈ N ∩ B, radN (x) ≥ radM (x). Furthermore, N is homeomorphic to a
k-dimensional Euclidean sphere Sk.

This theorem partially answers Xia’s question and generalizes the theorem
1.1. As a direct consequence of Theorem 1.2, we have the following corollary,
which was obtained by Wang[11].

Corollary 1.3. Let M be an n-dimensional complete connected Riemannian
manifold with KM ≥ 1 and rad(M) > π

2 . Suppose that N is a k-dimensional
closed connected totally geodesic submanifold, then rad(N) ≥ rad(M).

Recall that the proof of Corollary 1.3 relies on the fact that the “antipo-
dal” map A is surjective, where the map A: M → M is defined as follows, for
any x ∈ M , A(x) is a point in M that is at maximal distance from x. It is
not difficult to prove that A is well defined under the conditions of Corollary
1.3, i.e., for any x ∈ M , there is a unique point A(x) in M such that A(x)
is at maximal distance from x (see Lemma 2.2); and it is also not hard to
show that A is continuous and surjective (cf.[7], [12]). However under the
conditions of Theorem 1.2, the map A may not be well defined there, in the
proof of Theorem 1.2 we use the first variations of energy. In other words, we
give new proofs of Theorem 1.1 and Corollary 1.3.

Let N be a complete totally geodesic submanifold of M . If we assume that
rad(M) > π

2 , by Theorem 1.2 (or Corollary 1.3), rad(N) > π
2 . Hence, the

“antipodal” map A is well defined in N . The second result of the paper is to
give a counterexample in 2-dimensional case to the problem which was asked
by Wang in [11]. The problem is stated as follows:
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Problem 1.4. Let M be an n-dimensional complete connected Riemannian
manifold with KM ≥ 1 and rad(M) > π

2 . Does the “antipodal” map A of M

restricted to a complete totally geodesic submanifold agree with that of M?

The proof of Theorem 1.2 frequently utilizes the Toponogov comparision
theorem which one can refer to [5]. In Section 2 we will prove Theorem 1.2.
In Section 3 we will give the counterexample to Problem 1.4.

2. Proof of Theorem 1.2

Before proving Theorem 1.2, we first give two elementary lemmas:

Lemma 2.1. Let M be a complete Riemannian manifold and let N ⊂ M be
a closed submanifold of M . Let p ∈ M and p 6∈ N , and let d(p, N) be the
distance from p to N . Then there exists a point q ∈ N such that d(p, q) =
d(p,N) and that any minimizing geodesic connecting p to q is orthogonal to
N .

Proof. the existence of q can be obtained by the compactness of N . The
other assertion can be very easily obtained by using formula for the first
variation of the energy of a curve (cf.[3], pp.195). ¤

Lemma 2.2. Let M be a complete Riemannian manifold with sectional cur-
vature KM ≥ 1 and p ∈ M . If there exists a point q ∈ M so that d(p, q) > π/2,
then there exists a unique point A(p) which is at maximal distance from p.

Proof. The existence obviously follows from the compactness of M . Next
we show the uniqueness. If not,we let q1 and q2 be two different points which
are at maximal distance from p, then we have

(2.1) π ≥ d(p, q1) = d(p, q2) > π/2.

The left equality follows from the well known Bonnet-Myer Theorem(cf.[3]).
By the well known Berger Lemma (cf.[3]), we know that q1 and q2 are both
critical points to p. Taking a minimal geodesic γ from q1 to q2, then there
exists a minimizing geodesic σ from q1 to p such that ∠(γ′(0), σ′(0)) ≤ π

2 .
Applying the Toponogov comparison theorem to the hinge (γ, σ), we obtain

cos d(p, q2) ≥ cos d(p, q1) cos d(q1, q2) +(2.2)

sin d(p, q1) sin d(q1, q2) · cos∠(γ′(0), σ′(0))

≥ cos d(p, q1) cos d(q1, q2).

But we already have d(p, q1) = d(p, q2) > π/2, this contradicts (2.2). Hence
A(p) is the unique point farthest from p. ¤

Now we are ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Let x ∈ N ∩B and A(x) is the point farthest from
x. Since diam(M) > π

2 , by Lemma 2.2 we know A(x) is unique. If A(x) ∈ N ,
since any minimizing geodesic from x to A(x) in N is also a geodesic from x

to A(x) in M , rad(x) in N is greater than or equal to rad(x) in M . Hence we
only need to discuss the case that A(x) 6∈ N .

Because of compactness of N , we can take a point y ∈ N such that

d(A(x), y) = min
z∈N

d(A(x), z).(2.3)

case A: y = x.
Taking a point m ∈ N different from x, let γ be a minimizing geodesic from

x to A(x) in M and σ be a minimizing geodesic from x to m in N . Because
N is a complete totally geodesic submanifold of M , the sectional curvature
KN ≥ 1 and σ is also a geodesic from x to m in M . By the classical Bonnet-
Myer theorem one has dN (x,m) ≤ π. Under such conditions we can use the
Toponogov comparision theorem to the hinge (σ, γ). First from Lemma 2.1
we know that the angle between σ and γ is π/2, so we have

cos d(m,A(x)) ≥ cos d(x,A(x)) cos dN (x,m) +(2.4)

sin d(x,A(x)) sin dN (x,m) · cos ∠(γ′(0), σ′(0))

= cos d(x,A(x)) cos dN (x,m).

Since y = x, d(m,A(x)) ≥ d(x, A(x)) follows from the selection of y.
Naturally we have d(m,A(x)) > π/2, hence

cos d(x,A(x)) cos dN (x, m) < 0.(2.5)

Since d(x, A(x)) > π/2, we have cos dN (x,m) > 0. From (2.4) we obtain

cos d(m,A(x)) > cos d(x,A(x)).(2.6)

By the monotonicity of cosine function, we have d(m,A(x)) < d(x, A(x)),
which contradicts the picking of y. Hence the case A does not happen.

case B: y 6= x.
Let γ be a minimizing geodesic from y to A(x) in M and σ be a minimizing

geodesic from y to x in N . Because N is a complete totally geodesic subman-
ifold of M , the sectional curvature KN ≥ 1 and σ is also a geodesic from y to
x in M . By the classical Bonnet-Myer theorem one has dN (x, y) ≤ π. Under
such conditions we can use the Toponogov comparision theorem to the hinge
(σ, γ). First from Lemma 2.1 we know that the angle between σ and γ is π/2,
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hence we obtain

cos d(x,A(x)) ≥ cos d(y, A(x)) cos dN (x, y) +(2.7)

sin d(y, A(x)) sin dN (x, y) · cos∠(γ′(0), σ′(0))

= cos d(y, A(x)) cos dN (x, y).

Since d(x, A(x)) > π/2, we have

cos d(y, A(x)) cos dN (x, y) < 0.(2.8)

Now we discuss the problem in two cases.

case B1: dN (y, x) < π/2.
From (2.8),we know d(y, A(x)) > π/2. Returning to (2.7), we have

cos d(x,A(x)) > cos d(y, A(x)).(2.9)

By the monotonicity of cosine function, we have d(x,A(x)) < d(y, A(x)),
which is a contradiction to the picking of y . Hence the case B1 does not
happen.

case B2: dN (y, x) > π/2.
From (2.8),we know d(y, A(x)) < π/2. Returning to (2.7), we have

cos d(x,A(x)) > cos dN (y, x).(2.10)

By the monotonicity of cosine function , we have d(x,A(x)) < dN (y, x).
Since radM (x) = d(x,A(x)),

radN (x) > radM (x).(2.11)

From the two cases above we obtain radN (x) > radM (x). Since radM (x) >

π/2, using the Grove-Shiohama diameter sphere theorem (cf.[9]) we know that
N is homeomorphic to a k-dimensional Euclidean sphere Sk. ¤

Remark 2.1. If dim M = 3, the answer to Xia’s question is affirmative. Indeed,
we only need to consider N of dimension 2. By The Synge Theorem(cf. [3]),
N is homeomorphic to RP 2 if N is not simply connected. However M is
homeomorphic to S3. By the classical topology theorem we know RP 2 can
not be embedded into S3, so N must be simply connected. Hence, N is
homeomorphic to S2.



44 MENG WU AND YUNHUI WU

3. Counterexample

Before giving the counterexample, we describe our idea roughly. Let S2(1)
be the standard 2-dimensional unit sphere in R3, p be the north pole and
q be the south pole. We can get a new surface M by giving a very small
perturbation around the point (1,0,0) of S2(1) such that the curvature does
not change a lot and the length of the curve M ∩ {x ≥ 0, y = 0} is less than
π. Let N be the big circle M ∩ {x = 0}, as in the following figure.

x

z

y q

M

pN

Figure 1

We endow the induced metric from R3 on M . It is obvious that N is a
complete totally geodesic submanifold of M and q is the farthest point from
p in N . But from the Berger lemma we can prove that q is not the farthest
point from p in M , which gives a negative answer to the Problem 1.4. Next
let us explicitly discuss the problem.

First let us recall the definition of Gromov-Hausdorff distance. Let X,
Y , Xi, i = 1, 2, , 3, · · · be compact metric spaces. If X, Y are isometrically
embedded in Z, the classical Hausdorff distance dZ

H(X, Y ) satisfies

dZ
H(X, Y ) < ε ⇔ Y ⊂ B(X, ε), X ⊂ B(Y, ε),

where B(X, ε) = {z ∈ Z|d(z, X) < ε}. The Gromov-Hausdorff distance dGH

satisfies

dGH(X, Y ) < ε ⇔ dZ
H(X, Y ) < ε, for some metric on

Z = X q Y extending the ones on X, Y.
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Similarly, Gromov-Hausdorff convergence is characterized by

X = lim Xi ⇔ the metrics on X, Xi extend to a metric

on Z = X qXi and dZ
H(X,Xi) → 0.

Now we construct a curve γ in xy-plane as follows

γ(θ) :=

{
(cos θ, sin θ) 1 ≤ θ ≤ π,

(1 + hλ(θ))(cos θ, sin θ) 0 ≤ θ < 1,

where hλ(θ) = −e
λ

θ2−1 , λ > 0.
Rotating γ around the x-axis we can get a closed smooth surface Mλ which

is explicitly represented by the following map

F : [0, π]× [0, 2π) → R3,

(θ, ϕ) 7→
{

(cos θ, sin θ cosϕ, sin θ sin ϕ) 1 ≤ θ ≤ π, ϕ ∈ [0, 2π),

(1 + hλ(θ))(cos θ, sin θ cos ϕ, sin θ sin ϕ) 0 ≤ θ < 1, ϕ ∈ [0, 2π).

It is not hard to see that Mλ is a smooth surface. We consider the Riemann-
ian metric gλ on Mλ which is given by the induced metric from R3. Obviously
the sectional curvature (i.e. Gauss curvature) K(Mλ,gλ)(F (θ, ϕ)) = 1 when
θ ≥ 1. Now let us estimate the curvature K(Mλ,gλ)(F (θ, ϕ)) when 0 ≤ θ < 1.
For the sake of simplicity we replace hλ(θ) by hλ. First we know that the first
and second fundamental forms of Mλ at F (θ, ϕ) are

I = ((1 + hλ)2 + (h′λ)2)dθ2 + (1 + hλ)2 sin2 θdϕ2,

II = ((1 + hλ)2 + (h′λ)2)−
1
2 {(−(1 + hλ)2 − 2(h′λ)2 + (1 + hλ)h′′λ)dθ2

+(1 + hλ) sin θ(−(1 + hλ) sin θ + h′λ cos θ)dϕ2}.
By the standard computation(cf.[2]), the curvature K(Mλ,gλ)(F (θ, ϕ)) equals
to

(−(1 + hλ)2 − 2(h′λ)2 + (1 + hλ)h′′λ)(h′λ cos θ − (1 + hλ) sin θ)
((1 + hλ)2 + (h′λ)2)2(1 + hλ) sin θ

.

Denote the expression above by C(λ, θ). It is easy to see that

h
(i)
λ (θ) → 0, as λ → +∞ (i = 0, 1, 2).

Hence,

C(λ, θ) → 1, as λ → +∞.

That is,

K(Mλ,gλ)(F (θ, ϕ)) → 1, as λ → +∞.
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It is obvious that Mλ converge to the 2-dimensional standard unit sphere
S2(1) in the sense of Gromov-Hausdorff distance. Since rad(S2(1)) = π, we
can fix a number λ0 large enough such that

{
rad(Mλ0 , gλ0) > 3

4π

K(Mλ0 ,gλ0 ) ≥ 4
9 .

(3.12)

Considering the totally geodesic submanifold N = Mλ0 ∩ {x = 0}. Choose
two points p = (0, 0, 1), q = (0, 0,−1) on N . It is easy to see that q is the
farthest point from p in N , that is q = A(p) in N .

However, we claim that q is not the farthest point from p in M . To see
this, firstly we can pick out a curve γ0 from p to q, which coincides with
M |y=0,x≥0. The length of γ0 is

L(γ0) = 2
∫ π

2

0

| γ′(θ) | dθ = π − 2 + 2
∫ 1

0

| γ′(θ) | dθ

= π − 2 + 2
∫ 1

0

√
(1 + hλ0(θ))2 + (h′λ0

(θ))2dθ

= π − 2 + 2
∫ 1

0

√
1− e

λ0
θ2−1 (2− (1 +

4λ2
0θ

2

(θ2 − 1)4
)e

λ0
θ2−1 )dθ.

It is not hard to see that

2−
(

1 +
4λ2

0θ
2

(θ2 − 1)4

)
e

λ0
θ2−1 > 0, when θ ∈ [0, 1) and λ0 is large enough.

Hence

L(γ0) < π − 2 + 2
∫ 1

0

1 dθ < π.

If q is the farthest point from p in M , by the well known Berger Lemma q is
a critical point to p, that is, for any v ∈ TqM , there is a minimizing geodesic
γ from q to p such that the angle between γ′(0) and v is less than or equal
to π

2 . Since the left half of Mλ0(i.e.,Mλ0 ∩ {x ≤ 0}) is just the same as that
of S2(1), any geodesics in Mλ0 ∩ {x ≤ 0} from p to q has length π. So they
are not minimizing geodesics because we already have a curve γ0 with the
length less than π. We consider the geodesic γ1 from q to p, which coincides
with Mλ0 ∩ {x ≤ 0, y = 0}. From the argument above there doesn’t exist
any minimizing geodesic σ from q to p such that the angle between σ′(0) and
γ′1(0) is less than or equal to π

2 . This contradicts that q is a critical point to
p. Therefore q is not the farthest point from p in M .
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Replacing the metric gλ0 by 4
9gλ0 , From (3.11) we have

{
rad(Mλ0 ,

4
9gλ0) > 1

2π

K(Mλ0 , 4
9 gλ0 ) ≥ 1.

After rescaling the metric, N is still a totally geodesic submanifold in M and
p is still the farthest point from q in N , but we know that q is not the farthest
point from p in M from the argument above. That is to say, the “antipodal”
map A of M restricted to a complete totally geodesic submanifold may not
agree with the “antipodal” map of M .
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