Having your Cake and Eating it too:
Routing Security with Privacy Protections

Alexander J. T. Gurney

University of Pennsylvania

Micah Sherr

Georgetown University

ABSTRACT

Internet Service Providers typically do not reveal details of
their interdomain routing policies due to security concerns,
or for commercial or legal reasons. As a result, it is difficult
to hold ISPs accountable for their contractual agreements.
Existing solutions can check basic properties, e.g., whether
route announcements correspond to valid routes, but they do
not verify how these routes were chosen. In essence, today’s
Internet forces us to choose between per-AS privacy and ver-
ifiability.

In this paper, we argue that making this difficult tradeoff
is unnecessary. We propose private and verifiable routing
(PVR), a technique that enables ISPs to check whether their
neighbors are fulfilling their contractual promises to them,
and to obtain evidence of any violations, without disclosing
information that the routing protocol does not already reveal.
As initial evidence that PVR is feasible, we sketch a PVR
system that can verify some simple BGP policies. We con-
clude by highlighting several research challenges as future
work.

Categories and Subject Descriptors

C.2.2 [Computer Systems Organization]: Computer-Com-
munication Networks—~Network Protocols; C.2.6 [Compu-
ter Systems Organization]: Computer-Communication Net-
works—Internetworking

General Terms
Algorithms, Design, Reliability, Security

Keywords

Security, Privacy, Accountability, Interdomain routing, BGP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HotNets '11, November 14-15, 2011, Cambridge, MA, USA.

Copyright 2011 ACM 978-1-4503-1059-8/11/11 ...$10.00.

Andreas Haeberlen
University of Pennsylvania

Wenchao Zhou
University of Pennsylvania

Boon Thau Loo
University of Pennsylvania

1. INTRODUCTION

In today’s Internet, there is an inherent tension between ver-
ifiability and privacy. Network operators are routinely en-
tering into agreements that concern various aspects of their
interdomain routing policies [6]. For example, network A
might promise network B that it will act as B’s provider,
or it might enter into a ‘partial transit’ relationship [24, 21]
with network B and promise to deliver routes from, e.g., Eu-
ropean peers in preference to other routes. On the one hand,
it is legitimate for network B to want to verify that network
A’s policy logic is consistent with its promises. On the other
hand, the actual policies are considered to be business se-
crets, and only the chosen routes are exported via BGP to
the other networks. Thus, network A’s promises are worth
little: it can do whatever it likes.

The value of verifiability. = There are many reasons why
a network might not keep a promise it has made to another
network. Intentional violations are certainly a possibility;
it has been shown that networks may have economic incen-
tives to lie about their routes [8], and there are notorious
examples of malicious behavior [12, 19]. However, uninten-
tional violations seem to be far more common, e.g., due to
misconfigurations [16], compromised routers [18], or equip-
ment failures [23]. Whatever the cause, it seems reasonable
for networks to want to detect and diagnose such violations
— to fix routing problems, or simply to ensure that they are
getting their money’s worth.

In this paper, we focus on verifying a network’s control-
plane actions; we do not consider promises about data-plane
performance, e.g., with respect to bandwidth, latency, or
packet loss rate. Techniques for verifying data-plane per-
formance have been studied independently, e.g., in [1], al-
though not with a particular focus on privacy. Secure vari-
ants of BGP, such as S-BGP [13], have been proposed as
mechanisms for ISPs to check that a routing announcement
does correspond to the claimed path and destination, but
these mechanisms do not address the important question of
whether the route decision process matches expectations.

The value of privacy. ISPs have traditionally been re-
luctant to disclose details of their routing policy. While some

aspects of configuration may be revealed to neighbors, in-
cluded in a route registry, or exposed indirectly via looking
glass services, the full policy is not published anywhere. Op-
erational security concerns, as well as commercial or legal
considerations, weigh against disclosure. Interdomain rout-
ing policy encodes the nature of the business relationships
between the participants, public knowledge of which could
compromise negotiations with other parties (“I want the deal
they’re getting”) or long-term commercial plans (“It looks
like you’re expanding in Belgium”). Knowledge of which
routes are available to an AS can be useful to a competitor,
even without access to the policy.

To some extent, the privacy barrier can be penetrated to-
day; for example, it is possible to build a highly accurate
map of the Internet [15, 22], or to classify AS business re-
lationships on the basis of publicly available data [5, 7].
These inferences go beyond what was intended in publish-
ing that data, but even they are inherently unable to verify
certain types of promises, e.g., whether a better route would
have been available, but was not exported. We could enable
complete verification by revealing all routing tables, similar
to [11], but then everything is revealed, and there is no way
to limit the information that might be learned.

Verifiability or privacy? Intuitively, it seems that ver-
ifiability and privacy are conflicting goals — by revealing
more information, we can improve verifiability, but we re-
duce privacy. Despite this intuition, this paper provides ini-
tial evidence that it is possible to have one’s cake and eat
it too: we show that a network can allow its neighbors to
collectively verify a simple but realistic example promise
(shortest-path routing to a given IP prefix) without revealing
any additional information to each other. We also briefly de-
scribe how our method could be generalized to handle more
complex promises.

2. PROMISES AND POLICIES

Neighboring networks will surely have some understanding
of the kind of routes they expect to be advertised between
them, whether or not there is a formal contractual agreement
to that effect. What sort of promise might an AS make to its
neighbor? The absolute minimum is what we implicitly have
today: “You get what you’re given”, which is no guarantee
at all, since it cannot be violated. Some stricter potential
promises include:

1. “I will give you the shortest route I receive.”

2. “I will give you the shortest route out of those received
from a specific subset of neighbors.”

3. “I will give you a route no more than e hops longer
than my best route.”

4. “The route you get is no longer than what I tell any-
body else.”

Promises further down the list allow more latitude to the
sending AS, and would therefore be preferable for it, whereas

the recipient might want a stronger guarantee about what
routes it might obtain. The correctness of an AS’s actions
must be judged against the standard of whatever promise is
agreed to exist, as a result of negotiation between the AS and
its neighbors.

These promises can be understood as specifying, for each
set of input routes the AS might receive, some set of per-
missible routes that its output must be drawn from. A vio-
lation occurs whenever an AS emits a route that was not in
its permitted set, given the inputs it had received. Current
BGP is unable to detect violations of any kind, since there
is no way for the recipient of a route to know what inputs
were available. S-BGP can detect violations of the promise
that any output route (for an external destination) must have
come from the neighbor that it claims. However, there is still
no way to enforce any promise that depends on the internal
decision rules used by an AS.

There will be many ways to implement each promise in
terms of the language of router configurations. Equally, an
AS has only a single concrete configuration, but it can still
make different promises to different neighbors, since each
promise is an overapproximation to the true behavior. This
decoupling matches the privacy concerns: an AS certainly
does not wish to disclose all configuration details to all neigh-
bors, but only those details which are relevant to whatever
promise has been made.

2.1 Policies as route-flow graphs

The actual route computation process is complicated, but for
the purposes of verification, a network can present a sim-
plified version of reality as a set of decision rules, whose
structure corresponds to the promise that has been made. A
recipient can check that the rules would, if followed, result
in the promise being met; and at the same time, the sending
network can prove that its actions are in accordance with the
rules (as explained in Section 3).

For us, a rule is an operation that takes some set of input
routes and emits a set of output routes (which may be a single
route, or no route at all). The entire BGP decision process
could be modeled by a single black-box rule, but it is prefer-
able to decompose it into smaller interconnected pieces that
can be hidden or revealed individually. We will refer to these
pieces as operators, which operate on variables — typically
routes and sets of routes, but also communities, AS paths,
prefixes, etc. An example would be an operator for select-
ing, from a given set of routes, the routes with minimal AS
path length (the second step in BGP). A pipeline of such
operators, one for each attribute, makes up the usual route
selection process. But there are some situations where other
operator topologies are of use—say, when routes from dif-
ferent neighbors should be treated differently—so in general
the connections between operators and variables will form a
graph. In analogy to data flow graphs, we will refer to this
graph as the route-flow graph. Two simple examples of such
graphs will be presented in Section 3.

2.2 Access control policies

Visibility of operators and variables is governed by an access

control policy. Let V' be the set of vertices in the route-flow

graph (operators and variables), and let N be the set of par-

ticipating networks. A function & : NxV — {TRUE, FALSE}
expresses which networks are allowed to see which parts of

the graph. If v is a variable vertex, o(n,v) = TRUE means

that network n is allowed to learn the current value of v; if v

is an operator vertex, n is allowed to learn which function v

computes.

A network may be able to tell, given the rules to which
it has access, whether particular promises made to it will be
kept. This is based purely on static inspection of the route-
flow graph, tracing connections from input variables (which
correspond to incoming route announcements) to output vari-
ables. The problem, of course, is that a malicious network
might not follow the declared rules: we need incorrect com-

putations (and, hence, violations of promises) to be detectable.

2.3 Goal: PVR

We propose PVR (private and verifiable routing), which has
the following properties:

Detection If an AS A incorrectly evaluated its route-flow
graph, an incorrect result is visible to at least one neigh-
bor B, and all of A’s neighbors are correct, then at least
one neighbor can detect this.

Evidence If an incorrect evaluation is detected in an AS A,
then at least one AS B can obtain evidence against A
that will convince a third party.

Accuracy If an AS A has evaluated its route-flow graph cor-
rectly, no correct AS can detect a violation in A, and A
can disprove any evidence that is presented against it.

Confidentiality No AS will learn information from running
PVR that it could not learn in the unsecured system,
unless this was explicitly authorized by .

The last point requires some elucidation. If the unsecured
system already reveals a fact to some network, whether di-
rectly or indirectly, we should not demand that the protected
system conceal this fact. For example, if X promises Y that
it will deliver the shortest route, and Y receives a route go-
ing through X’s neighbor Z, then Y can infer that (if X was
telling the truth) X had no route that was shorter than Z’s.
Thus, Y learns the values of some of X’s input variables,
even though, according to «, it may not have access. How-
ever, note that o only controls what Y may additionally learn
through PVR. Since the information is already revealed by
standard BGP in this case, we do not consider this to be a
violation of confidentiality.

3. A SIMPLE PVR SYSTEM

Presenting a general PVR system is beyond the scope of this
paper; rather, our goal here is to present evidence that PVR

is feasible, and to illustrate how a PVR system could work.
To this end, we present a simple PVR system that enables
a network to verify the second example promise from Sec-
tion 2, i.e., that the route advertised by a neighbor network
was the shortest route it received from a known subset of its
peers.

We begin with the simple
scenario shown in Figure 1. N,
Network A is connected to
neighbors Ny, ..., N, and
B, and we assume that this
is known to each of the
networks. N; through Ny
each advertise to network A
a route r; to some prefix,
and A has promised to net-
work B that it would ex-
port the shortest of these
routes. To make things
challenging,! we assume
a(Ny,r) = a(B,rg) =
TRUE, (1, min) = truE for all networks n, and a(n,v) =
FALSE otherwise. Our goal is to enable Ny, ..., N; and B
to collectively verify that A is keeping its promise, without
forcing them to reveal additional information to each other.
In particular, none of the /V; should learn whether some other
Nj; has advertised a route to A, or which route was chosen
by A. B obviously learns the chosen route, but should not
learn anything about any other routes, except that they would
have been longer.

We adopt a conservative threat model and assume that
an unknown subset of the networks is Byzantine and can
behave arbitrarily. Moreover, incorrect networks may col-
lIude and share knowledge via zero-latency private communi-
cation channels.

N, N,

Figure 1: PVR example.

3.1 Strawman designs

We can imagine a strawman solution in which the networks
use secure multiparty computation (SMC) [9], possibly with
output privacy [3], to compute the routes (there are even
SMC protocols that provide both security and privacy,
e.g., [14]). However, such a system would seem prohibitively
expensive: even with only five players, state-of-the-art SMC
systems take about 15 seconds of computation time for a
simple task like voting [2], and such a task would have to be
performed for every single BGP update. Apart from being
computationally infeasible, this solution is also too weak: it
gives us excellent privacy but no evidence, so we cannot en-
force contracts in this way. Another strawman could be built
using general zero-knowledge proofs (ZKPs) [10], which are
also very general, but at the same time, there are scaling con-
cerns as the complexity of policy increases.

'Tf a system can enforce some access control policy «, it can triv-
ially enforce any policy that is strictly weaker.

In any case, the full generality of SMC and ZKP seems
unnecessary for interdomain routing. Although BGP pol-
icy is complex, and could be arbitrary, there are common
patterns which tend to reoccur in practice. Hence, it seems
more promising to aim for a domain-specific solution, simi-
lar to the one we propose here.

3.2 Example #1: The existential operator

To explain our PVR system, we first consider a simplified
variant of the scenario in Figure 1 in which the minimum
operator is replaced by an existential operator — that is, A
promises B that it will export a route whenever at least one
of the N, provides one. To enable PVR verification of this
promise, we can break it down into two conditions that can
be verified independently by A’s neighbors:

1. B verifies that, if a route was exported by A, then that
route was provided to A by some N;; and

2. Each N; verifies that, if it provided a route r; to A, then
A exported some route to B.

To support condition 1, we can sign all the routing announce-
ments. Supporting condition 2 is more difficult, since we
would like to prevent the N; from learning which route was
chosen. To achieve this, we can ask A to commit to a bit b,
which is set to 1 whenever A has received at least one route.
A can do this by publishing a commitment ¢ := H(b|| p),
where H is a cryptographic hash function and p is a random
bitstring. A’s neighbors can gossip about ¢ to ensure that
they all have the same view of b, although they do not yet
know b’s value.”

Now A can reveal b and p to each N; that has provided
a route, and the signed route (if any) to B. All neighbors
that have received b and p immediately verify whether ¢ =
H(b|| p). B also checks condition 1 by verifying that either
b = 0 or it has received a properly signed route, and the
N; each check condition 2 by verifying that, if N; has pro-
vided a route to A, then A has revealed b and p to N;, and
b = 1. Since both conditions are verified, we achieve de-
tection, but since no neighbor has learned anything it did not
already know, we also achieve confidentiality. If A performs
the computation correctly, all the checks will pass (ensuring
accuracy), and any neighbor that detects a violation has also
obtained evidence to prove it.

We note that, since BGP updates contain the AS path, it
is obvious which N; has to be the signer. But this is not a
requirement. Suppose we apply PVR to a link-state proto-
col that only exports whether a path exists. Then the V; can
use a ring signature scheme, such as [20], to sign the state-
ment “A route exists”. Thus, B could tell that some N; had
provided a route, but it could not tell which one.

3.3 Example #2: The minimum operator

We now return to the original scenario in Figure 1, i.e., A
promises B to export the shortest route among the ones pro-

%If p were not included in the hash, any neighbor could simply
check whether ¢ = H(0) or c = H(1).

vided by NVy, ..., Ni. We can extend our existential opera-
tor from Section 3.2 to verify this promise by adding a third
condition:

3. Each N; that has provided a route r; to A verifies that
the route A has exported to B is not longer than ;.

To verify this condition, we need A to commit to more val-
ues. Suppose the maximum AS-path length at A is k. Then
we can ask A to compute k bits by, . .., bg, such that b; = 1
iff at least one of the input routes has a path length of ¢ or
less. A commits to each b;, and A’s neighbors can again
gossip about the commitments to detect equivocation.

To each N; that has provided a route r; to A, A now re-
veals the bit b),.,. Each such NV; then checks the commitment
to verify that this bit is 1 (clearly, the chosen route cannot be
longer than IV;’s route). A also reveals all the bits b; to B. B
verifies that a) if at least one bit is set to 1, then it must have
received a properly signed route, and b) if some b; is set to
1, then all the b;, 7 > ¢, must also be set to 1. Again, any
misbehavior by A can be detected by at least one neighbor,
but neither B nor any N; learn anything in the process that
they did not already know.

3.4 Building blocks

From these examples, we can identify three mechanisms that
are needed to evaluate PVR queries, and that are likely to
be part of any generalized PVR system capable of checking
more complex promises. The three building blocks are:

1. A commitment mechanism to ensure that a network
cannot change its mind about its decisions after the
fact, and that all the neighbors are seeing the same de-
cisions;

2. A selective disclosure mechanism to selectively re-
veal information to authorized networks, without leak-
ing any other information; and

3. A verification mechanism to establish whether a
promise has been kept or violated.

In general, the verification mechanism requires some addi-
tional data (such as the bits b and b; above). We refer to this
data as evidence that a promise has been kept.

3.5 Generalizing the mechanism

So far, we have only considered route-flow graphs with a
single operator. However, recall from Section 2.1 that we
would also like to verify more general route-flow graphs
with multiple operators and variables, which correspond to
more complex routing policies. In such a graph, an edge
(0,v) from an operator o to a variable v indicates that v is
computed by o; an edge (v,0) indicates that v is an input
to o. For example, the simple graph in Figure 2 enforces a
policy that corresponds to the promise “I will export some
route via No, ..., N unless N7 provides a shorter route”.

To achieve this, we must
enable a network’s route-
flow graph to be navigated
by that network’s neigh-
bors without learning about
the existence of rules or
variables they are not au-
thorized to see. This
means that we need a
more general mechanism
for commitment and selec-
tive disclosure, in which we
can store some information
I(z) for each vertex z —i.e.,
the operator type for opera-
tor vertices and the current
value for variable vertices — as well as information about in-
coming and outgoing edges. We discuss how to do this next.

Figure 2: Example with
multiple operators.

3.6 Commitment and selective disclosure

We assume that a) each network can assign a unique bitstring
to each of its rules, as well as to any output produced by these
rules, and that b) the resulting bitstrings are prefix-free, i.e.,
no valid bitstring is a prefix of another valid bitstring. A
simple way to ensure both is to encode the string rule (x)
for each rule x and var (v) for each variable v, although
there are more efficient representations.

We can now construct a Merkle Hash Tree (MHT) [17]
that (conceptually) contains one leaf for each bitstring. We
imagine the two edges out of each inner node of the MHT to
be labeled 0 and 1; thus, we can associate each leaf with the
bitstring that is constructed by concatenating all the labels
along the path from the root to the leaf. Since the bitstrings
are prefix-free, no inner node can construct to a valid bit-
string. Of course, an actual network will only have a small
finite number of rules and variables instantiated at any given
time. The network constructs its MHT as the union of a)
the instantiated leaves, b) all the inner nodes along a path
from an instantiated leaf to the root, and c) all the immediate
children of these inner nodes.

The MHT gives us an efficient way to perform commit-
ments: Each network simply computes the hash value of
its MHT’s root node, signs that hash value, and publishes
it to its neighbors. The neighbors can then gossip about the
hash value to ensure that they all have the same view of the
MHT. The MHT also gives us selective disclosure: To dis-
close the information I(z) in a vertex x to a neighbor, the
network can send the neighbor I(x) and all the hash values
for interior nodes along the path from z to the MHT’s root.
The neighbor can use these values to recompute the top-level
hash value, and to compare it against the previously pub-
lished value. If successful, this validates I(x). Since the
neighbor does not know whether the hash values are random
bitstrings or hashes of ‘real’ interior nodes, this does not re-
veal the presence or absence of any vertices other than x.

3.7 Graph navigation

We now consider the question of how I(x) should be cho-
sen. Clearly, we must have a way to reveal the structural
information (incoming and outgoing edges) independent of
the data (route, or type of operator), so that a neighbor may
navigate parts of the graph it is not allowed to see. For in-
stance, in our example from Section 3.3, B would want to
verify that the minimum was computed over routes provided
specifically by Ny, ..., Ng, even if it is not authorized to
see what the routes were. We can enable this by choosing
I(z) to be (c(af,...,2P), c(a5,...,2}), ¢(ZT)), where the
¢(-) are commitments and the xP and 2:° are bitstrings iden-
tifying predecessor and successor vertices, respectively. Z is
the route itself (in the case of a variable) or the operator type
and the evidence (in the case of an operator). Thus, the three
types of information can be revealed independently, depend-
ing on the authorization of the querying neighbor.

3.8 Overhead

The simple PVR mechanism we have sketched here is cer-
tainly far less general than SMC or ZKP. However, in re-
turn, it also seems far less expensive. The most expensive
operations we have used are a cryptographic hash-function
(such as SHA-256), which are relatively cheap, and a public-
key signature scheme (such as RSA). A RSA-1024 signa-
ture takes about two milliseconds on current hardware. This
overhead can be burdensome during BGP message bursts,
but it seems feasible to sign messages in batches, perhaps
using a small MHT to reveal batched routes individually. Of
course, we have demonstrated only two very simple oper-
ators, and it is possible that more advanced operators may
require more expensive cryptography. Nevertheless, it is
encouraging that our PVR mechanism already seems suf-
ficient to verify nontrivial promises, like the one shown in
Section 3.5.

3.9 Summary

Our simple PVR system demonstrates the feasibility of PVR.
We have discussed only two simple operators, and there are
clearly many practical challenges that we have not yet ad-
dressed. However, recall that our main goal was to show that
verifiability and privacy are not mutually exclusive, and that
it seems possible to build efficient systems that can provide
both. Building a deployable PVR routing system will re-
quire solving additional research challenges, some of which
we describe in the next section.

4. CHALLENGES

More operators: Clearly, the two operators we have
sketched in Sections 3.2 and 3.3 are not sufficient to express
all routing policies that a network would want to use. For
example, we do not yet have operators that evaluate com-
munities or check for the presence of particular ASes on the
path. To build a practical PVR system, it will be necessary
to extend the set of operators considerably. Also, such a sys-

tem should have language support for compiling a high-level
policy description (or router configuration file) into a com-
pact route-flow graph.

Minimum access: Not all promises are verifiable under all
access control policies. A trivial example entails a network
that exports a route but does not allow any of its neighbors
to see the operator that was used to derive it; thus, promises
about that route are not verifiable. A practical PVR system
must have a way for a network’s neighbors to tell whether a)
the visible route-flow graph implements a given promise and
b) the access privileges granted by the network are sufficient
to verify that promise.

Structural privacy: When a network allows a neighbor to
see only part of the logic that was used to derive a certain
route, it may have to reveal some operators without speci-
fying what they do. This might still leak some information
to the neighbor, since they may be able to guess the purpose
of a computation from its structure. It should be possible
to avoid this by introducing some form of hierarchy into the
route-flow graph, i.e., by adding a composite operator whose
internal structure is only revealed to authorized neighbors,
analogous to the approach proposed by Davidson et al. [4].
Other applications: PVR may be useful not only for
network-level protocols, but also more generally to
distributed systems that span more than one administrative
domain. Both privacy and security concerns are common
in such systems, and an approach that combines both seems
attractive. With our domain-specific approach, we cannot
expect to match the generality of SMC or ZKP, but we may
be able to support some of the most common operations, and
thus reduce the reliance on SMC or ZKP.

5. CONCLUSION

We have argued that verifiability and privacy are both valu-
able goals for an interdomain routing protocol and that, con-
trary to popular belief, there is no need to choose between
them. To demonstrate that it is feasible to provide both prop-
erties simultaneously, we have sketched the design of a sim-
ple system that achieves this for a small but nontrivial set
of routing policies, without relying on general but expensive
primitives such as multiparty computation or
zero-knowledge proofs. We have also described several re-
search challenges that need to be addressed before practical
routing systems of this type can be built and deployed.

Acknowledgments

We thank the anonymous reviewers for their helpful com-
ments and suggestions. This work was supported by NSF
grants [IS-0812270, CCF-0820208, CNS-1040672,
CNS-1054229, CNS-1065130, and AFOSR grant
FA9550-08-1-0352.

6. REFERENCES

[1] K. J. Argyraki, P. Maniatis, and A. Singla. Verifiable
network-performance measurements. In CoNEXT, 2010.

[2] A.Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A
system for secure multi-party computation. In Proc. ACM
CCS, 2008.

[3] E. Bresson, D. Catalano, N. Fazio, A. Nicolosi, and M. Yung.
Output privacy in secure multiparty computation. In Proc.
YACC, 2006.

[4] S.B. Davidson, S. Khanna, T. Milo, D. Panigrahi, and
S. Roy. Provenance views for module privacy. In Proc.
PODS, 2011.

[5] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker,
Y. Hyun, kc claffy, and G. Riley. AS relationships: inference
and validation. SIGCOMM CCR, 37:29-40, January 2007.

[6] P. Faratin, D. Clark, P. Gilmore, S. Bauer, A. Berger, and
W. Lehr. Complexity of internet interconnections:
Technology, incentives and implications for policy. In Proc.
TPRC, 2007.

[7] L. Gao. On inferring autonomous system relationships in the
internet. IEEE/ACM Trans. Netw., 9:733-745, 2001.

[8] S. Goldberg, S. Halevi, A. Jaggard, V. Ramachandran, and
R. Wright. Rationality and traffic attraction: Incentives for
honestly announcing paths in BGP. In Proc. ACM
SIGCOMM, Aug. 2008.

[9] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game. In Proc. ACM STOC, 1987.

[10] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield
nothing but their validity or all languages in NP have
zero-knowledge proof systems. J. ACM, 38:690-728, 1991.

[11] A. Haeberlen, I. Avramopoulos, J. Rexford, and P. Druschel.
NetReview: Detecting when interdomain routing goes
wrong. In Proc. NSDI, Apr 2009.

[12] A.J. Kalafut, C. A. Shue, and M. Gupta. Malicious hubs:
detecting abnormally malicious autonomous systems. In
Proc. INFOCOM, 2010.

[13] S. Kent, C. Lynn, and K. Seo. Secure border gateway
protocol (S-BGP). IEEE JSAC, 18(4):582-592, 2000.

[14] Y. Lindell and B. Pinkas. An efficient protocol for secure
two-party computation in the presence of malicious
adversaries. In Proc. EUROCRYPT, 2007.

[15] H. V. Madhyastha, E. Katz-Bassett, T. Anderson,

A. Krishnamurthy, and A. Venkataramani. iPlane Nano: path
prediction for peer-to-peer applications. In Proc. NSDI, 2009.

[16] R. Mahajan, D. Wetherall, and T. Anderson. Understanding
BGP misconfiguration. In Proc. ACM SIGCOMM, Sep 2002.

[17] R. Merkle. Protocols for public key cryptosystems. In Proc.
Symposium on Security and Privacy, Apr. 1980.

[18] O. Nordstroem and C. Dovrolis. Beware of BGP attacks.
ACM CCR, Apr. 2004.

[19] N. Patrick, T. Scholl, A. Shaikh, and R. Steenbergen. Peering
Dragnet: anti-social behavior amongst peers, and what you
can do about it, 2006. NANOG 38: http://nanog.org/
meetings/nanog38/presentations/scholl-
peering-dragnet .pdf.

[20] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a
secret. In Proc. ASIACRYPT, 2001.

[21] M. Roughan, W. Willinger, O. Maennel, D. Perouli, and
R. Bush. 10 lessons from 10 years of measuring and
modelling the Internet’s Autonomous Systems. I[EEE Journal
on Selected Areas in Commun., 29(9):1810-1821, 2011.

[22] R. Sherwood, A. Bender, and N. Spring. Discarte: a
disjunctive internet cartographer. In SIGCOMM, 2008.

[23] J. Wu, Z. M. Mao, J. Rexford, and J. Wang. Finding a needle
in a haystack: Pinpointing significant BGP routing changes
in an IP network. In Proc. NSDI, May 2005.

[24] M. Yoshinobu. What makes our policy messy. BGP
Workshop April 2009: http://www.attn. jp/maz/
p/c/bgpworkshop200904/.

http://nanog.org/
meetings/nanog38/presentations/scholl-
peering-dragnet.pdf
http://www.attn.jp/maz/
p/c/bgpworkshop200904/

	Introduction
	Promises and Policies
	Policies as route-flow graphs
	Access control policies
	Goal: PVR

	A Simple PVR System
	Strawman designs
	Example #1: The existential operator
	Example #2: The minimum operator
	Building blocks
	Generalizing the mechanism
	Commitment and selective disclosure
	Graph navigation
	Overhead
	Summary

	Challenges
	Conclusion
	References

