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Abstract: In this paper we describe an approach to simultaneous localization
and mapping, SLAM. The method is based on a graphical representation of the
information in the map. By consolidating this information intelligently we can
eliminate almost all non-linear effects and solve topological constraints on the
map very easily. The algorithm has been implemented in real-time on an outdoor
robot and we have experimental validation of our ideas. We show how to reduce the
graph by combining groups of measurements into a single node which we call a star
node. These star nodes act as local sub-maps and are invariant to translations and
rotations. These star nodes can then be used to impose topological consistency,
such as, closing a loop. This loop closing is fast and could be used on-line.
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1. INTRODUCTION

This paper presents a new way to look at the
SLAM problem, focusing on the issues that have
challenged most of the methods reported in the
literature. We have tried to combine the best
features of existing approaches in a way that
allows a robust solution to the problem.

Our guiding principle is to retain all the important
information and use it in an exact way with no
approximations as long as possible. We can then
introduce approximations later when we have a
more comprehensive view of the true state.

We represent our world model as a graph with
some nodes representing the state and some nodes
representing the measurements from our sensors.
The updates and approximations can then be for-
mulated as operations on the graph. The interac-
tions of the nodes in a section of the graph can be
approximated linearly in a local frame leading to a
simplification that does not suffer from non-linear
effects as the global map is distorted to impose
topological constraints.

Using this general representation it is possible
to efficiently evaluate data association and the
structure of the model can be evaluated using an
Energy based approach.

2. BACKGROUND ON THE SLAM PROBLEM

A number of methods have been proposed to
do SLAM. The methods can be characterized as
being batch or incremental, feature based or raw
data based and topological or metric. All methods
can be traced back to some probabilistic inter-
pretation and many are explicitly formulated as
maximum likelihood problems and use statistical
methods for estimation of a solution.

In many environments the sensors will have many
readings that simply are not useful for localiza-
tion. These could be range scans of a bush or
hedge, people, cars, sloping surfaces and so on. By
trying to extract good features from the raw data
we can significantly improve the signal to noise
ratio. Incorrectly matching features from different
scans leads to errors in the resulting maps. Once
such an error has occurred, many of the existing



methods have no way to correct or detect these
errors. Matching errors are handled best by ex-
pectation maximization, EM, methods, (Thurn et
al., 1998). When applied in the pure form EM will
find the best set of matches. In on-line systems
of EM this desirable property must be partially
sacrificed as a consequence of the limited time-
windows (Martin and Thurn, 2002).

Global consistency, the problem of closing large
loops, is much harder. Many methods simply can-
not use the information that the robot has closed
a loop to fix the map. Some methods are designed
to use this type of information explicitly (Lu and
Milios, 1997), (Gutmann and Konolige, 1999),
(Golfarelli et al., 1998). The idea of combining
topological and metric information in a unified
approach was shown in (Bosse et al., 2003) to be
a powerful one. Our method is similar to those
methods and can also use the global consistency
constraints to improve the map.

3. MAIN IDEA

We have the robot moving along a path periodi-
cally taking measurements. That is, a number of
features are measured along with their uncertainty
relative to the current pose of the robot. Between
these measurements the robot has moved and the
change in pose is also estimated.

Initially we make no approxamations by main-
taining a state vector that includes all the pose
estimates. The result is a long state vector but
very sparse relationships between the elements.
We can then exploit the simple structure to reduce
the computational burden. After having collected
data from an area for a while we can begin to
consolidate the state vector but we never carry
out the consolidation all the way.

We start by introducing the ’energy’ of a measure-
ment, which is nothing less than the log-likelihood
of the measurement given the current state vec-
tor for the poses and features. This energy gives
rise to a force which for Gaussian measurement
models looks like a spring with a spring constant
proportional to the inverse covariance.

Each measurement is described by its energy func-
tion which normally depends on part of the state
vector. We form a graph with the state contained
in ’state nodes’ and the energy in ’energy nodes’.
We have edges between the energy nodes and
those state nodes that are needed to calculate that
energy. The state nodes can be pose or feature
nodes. The energy nodes can be due to dead-
reckoning or feature measurements. Since the to-
tal energy of the system is a measure of the
goodness of the fit one can use it to test the data
association of measurements with features.

The map is represented by a graph. The energy
nodes are measurements of the relative positions
of two or more state nodes. Thus each pose
node will be connected to the previous and next
pose nodes through energy nodes representing the
dead-reckoning of the robot motion between them.
Each pose can also be connected to feature nodes
if the feature was seen from that pose.

Each state node will need some world coordinates
to specify its position. For the pose nodes these
will typically be x,, = (On, Tn, UYn )T. The fea-
tures will also have some world representation.
For example, we use the x-y of the endpoints to
represent walls. The full state vector would be a
concatenation of all the pose and feature vectors.

4. POSE-POSE ENERGY

The dead-reckoning estimate of the robot move-
ment from pose n-1 to n will give our graph an
energy node between pose nodes n-1 to n. We will
then have a vector &, expressing the measured
displacement in the relative frame of the robot at
pose n-1. We also have an estimate of the inverse
of the covariance of &,, which we will call k,.
We can form the difference between our measured
displacement and the displacement according to
the current state.
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The energy of the measurement will then be:
En=(1/2)n, - Kn -1 (3)

The gradient of this energy is non-linear due to
the rotation term which depends on 6,,_1. The
other measurements will give rise to similar non-
linear energy terms which we will simple denote by
E,p, for a measurement from pose n to feature m.
These full non-linear energy formulas are used to
calculate the energy and its derivatives whenever
the energy node is asked for such information.

5. FEATURE MATCHING

In addition to the energy in each energy node,
we introduce a negative energy for each matched
measurement,

Ep = (=A)(Nm — 1), (4)

where N, is the number measurements associated
with feature m. The parameter A sets how much



we can distort the graph edges to make a match
and still lower the energy. It will be important
when making the data associations. If the energy
after matching two measurements is more then
before, the match is probably wrong. The A cor-
resoponds to the size of the validation gates used
in Kalman based estimation. The total energy is
then given by,

E=Y Eit) Bty En  (5)

In general, finding the set of matches that will
minimize this energy is not feasible. The problem
is that trying more than a few match hypothesizes
is computationally expensive. We can, however
update the map such that the energy in each
new pose-feature interaction does not exceed .
We do this by first adding the node for the
feature measurement, then calculating the new
equilibrium position. One can then compare the
total energy before and after adding the node
using the equation above.

Thus, the data association problem is reduced
to checking the change in energy. We need not
be very careful when adding measurements to
our graph. We use a relatively loose matching
requirement and rely on this check of the energy
to uncover any mistakes after recalculating the
equilibrium.

We should mention here one of the major ad-
vantages of this representation of the map. We
can at any time and with little effort go in and
make changes to the graph. We can for example
merge features by simply moving the edges from
one feature node to the other and then discarding
the node. We can check the energy before and
after the merge to see if the features really should
be merged. We can add information to existing
energy nodes if we find for example more data can
be associated with the feature. We can also remove
measurements if we find that they no longer make
sense. And, of course, the initialization of the
features is trivial.

6. MAP UPDATE

We will now outline how the graph is built up as
the robot moves about. At the k*" step we will
need to add the k" pose node and possibly some
new feature nodes to the graph. We will also need
to add energy nodes and edges between the k"
pose node and other nodes. The nodes can be
added at their equilibrium positions assuming the
positions of the old nodes are fixed.

Having added the new nodes and edges we must
calculate the change induced on the rest of the
map. We have to find the minimum of eq. (5)

with respect to the pose and feature positions.
We expand eq. (5) about the current state out
to the quadratic terms. We thus get a gradient
and a Hessian term contributed from each edge
in our graph. Armed with these quantities we can
devise several ways to drive the system towards its
equilibrium position quickly. The terms associated
with a particular node, call it A, look like:
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where Ax4 = x4 — X4, etc. Some more notation:
9=VEA=(ggf*) (7)

Haa Ha; ) (8)
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Here we just call everything x and make no
distinction between pose and feature nodes. The
subscript i indicates all the coordinates that are
not tied to node A but share an energy node with
A. An important number for us is the prediction
of the energy gain from moving a node to the
minimum position holding all other nodes fixed.
This can easily be calculated. First the new node
position would be:

(xa—%a)=—Hy4 - Ga 9)

Then the change in energy would be:

AE, =—(1/2)Ga-Hy 4 - Ga (10)

This AE 4 will be used to make decisions as to
what optimization method to use and whether an
update is needed.

The simplest and slowest method is to use steepest
decent. We use this as a last resort when near a
saddle point. This is the situation that eq. (10)
gives AE, > 0. In that case, we need to move
the node away from the saddle point, hopefully on
the correct side. We move in the direction of minus
the gradient a small step and then recalculate and
repeat until no significant change occurs. The step
size is increased if the change in energy seems to
indicate a flat region, (ie. the change is given by
the gradient times the change in x), and decreased
if the curvature is too high.

The next simplest method is to use eq. (9) directly.
This will move the node to the bottom of the
energy surface but the higher order terms in the



energy might require us to iterate this a number
of times until there is no significant change in
the energy. We will refer to the use of these two
methods, (steepest descents and eq. (9)), for per
node minimization, as relaxing the node.

Having implemented only this much we found that
the maps were already looking better than our
previous SLAM maps. The updates were rather
slow however. One must relax the new node then
all the adjacent nodes then if any of those changed
one must relax any adjacent to them and so on.
This causes the update to move back and forth
between nodes a lot when what is needed is to
move a set of nodes simultaneously. We were able
to significantly speed up the procedure by doing
what we call chained updates on the pose nodes.

For that we exploit the special nature of our
problem. We have a chain of pose nodes connected
by the dead-reckoning edges. Let us consider pose
node A with the previous pose node labeled B. We
will consider the features and the next pose node
as fixed while nodes A and B are variable. In this
subspace, we can always eliminate pose node A’s
coordinates in terms of B’s like this:

(xa—%a) = —Hpa-[Hap-(xp —Xp)+Ga] (11)

Making this substitution we find the edge AB
now contributes some extra terms to B’s gradient
and Hessian. We now move to B and repeat the
procedure using the gradient and Hessian with the
extra terms added to them. First test if B needs
an update, (ie. if eq. (10) gives AEp < some
threshold). Then, if an update is needed, eliminate
B in terms of the previous pose, C. Then move to

C.

When we get to a node that doesn’t need an
update we can then use its coordinate values
to update its next node, then the next node’s
coordinates to update its next node, and so on
until we get back to node A.

Using these techniques we could grow the graph
in real time as long as major inconsistancies were
not encounterd.

7. REDUCING THE GRAPH

An optimization would be to simplify the graph
by combining nodes. For a linear system one can
reduce the graph with an exact formula. One
simply chooses a state node that one wants to
remove, call it node A. Then eliminates the state
variables for A using the constraint equations for
the equilibrium state. One then ends up with a
sub-system with an energy that is a function of
all the state nodes that were tied to the node A.

The energy of this sub-system can be represented
as a single energy node, which we call a star node,
with edges radiating out to all these remaining
nodes. So we combine all the energy nodes into
star node and use gaussian elimination to remove
the variables of node A.

In our case we have a nonlinear system. We must
therefore expand the equations around the current
equilibrium point. We chose to only eliminate pose
nodes. We can start with eliminating x;. We then
end up with a star node with edges to xg, xo and
z; for the features, i, connected to x;. We can
then continue by eliminating x» and so on. If we
continue all the way to the current pose we end up
with a fully connected graph with only one pose
variable. This is similar to what happens in the
extended Kalman filter.

However, we should not carry the reduction
though the whole set of poses. The resulting sys-
tem would be too hard to update. That is because
it is no longer sparsely connected. Therefore, we
stop at some point and start a new star node
instead.

If we first chose to eliminate every other pose
node, we can then merge two star nodes separated
by a pose node into a larger star node by eliminat-
ing the pose node between them. The details are
trivial but numerous so we just say that it must
be done correctly.

One continues in this way forming a sort of
binary tree until there is only one star node
representing the interactions of a section of the
graph. The advantage of forming a tree rather
than just a long chain is numerical stability as
we end up with a sum of terms with a small
number of multiplications in each term rather
than multiplying a single matrix many times. The
level of the tree gives a simple stopping criteria so
we can for instance go to 7 levels (127 reductions).

We need not do the combining for the most recent
poses. One can wait, say, 50 poses before starting
to combine. So as each new pose is added to the
graph we try to eliminate the pose 50 steps earlier.
The advantage is that the linearization will be
done about a better point and the match energy
will have been observed for some time. This can
be compared to the EKF where the linearization
and matching takes place at once.

We need to deal with any invariance, zero eigen
values, that the Hessians of the star nodes have
or we will suffer numerical instability. We treat
the translation/rotation invariance more carefully
than the other invariances, (such as, sliding end-
points tangent to walls). That is because we later
will want to translate and rotate by arbitrary
amounts when imposing topological constraints.
We reduce the dimensionality of the star node by



first changing variables to coordinates relative to
one of the two pose nodes attached to the star.
This is done exactly with the full Jacobian and so
on. For the other invariances we simple project the
relevant part of the state space with fixed projec-
tion matrices in the relative space. For example,
for walls these might be the normal vectors.

We then have reduced the star node’s dimension
to something like half. We are able to calculate
back to the original world coordinates by inverting
the procedure. Thus we can move the star node
and recalculate the energy without any lineariza-
tion error. We also have an explicitly invariant
representation that can be reduced using principle
component analysis to a set of eigen values and
eigen vectors. By adjusting the linearization point
in the reduced space we can eliminate the gradient
terms. The advantage of this clean representation
will be apparent when we close the loop.

E. = @)+ (1/2) Y Eyl(da) - Vol (12)

Here q are the final reduced coordinates, E,; are
the eigen values and V,; are the eigen vectors. The
q are expanded around the equilibrium point, §.

The ideas here result in a representation of the
map very similar to the sparse extended informa-
tion filter (Lui and Thurn, 2003). The difference
here is that we do not linearize once at the time
of the observation and lock the approximation in
that frame. Instead we linearize a section of the
graph in a relative frame and at a time when
it is more mature. This avoids most of the non-
linear effects that would otherwise result from
the local frame being rotated in the world frame.
Another difference is that Lui and Thurn ’throw
away’ some information in order to prevent a fully
connected system. We instead leave some pose
nodes around which achieve the same end without
loss of information.

8. CLOSING THE LOOP

Closing a loop presents two separate problems.
First, how does the robot realize that a loop has
been closed. Second how can the map be changed
to close the loop. We will show a way to solve the
second problem. Thus, we supply the algorithm
with a list of pairs of features that are to be
matched, (ie. one feature from the beginning of
the loop and one from the end). The map will then
be recalculated with the new constraints added.

The key insight that makes loop closing trivial is
found in eq. (12). Imagine that one did not assume
that the features seen from one star node were the
same as those seen from another. Then the Aq=0

for those features. This in turn reduces the total
energy in the remaining relative pose-pose q’s to
be block diagonal with 3x3 blocks. These blocks
contain the information on the features seen from
each star but not the information from associating
the features from different stars. This then looks
like the strong links of (Lu and Milios, 1997).
We can impose topological constraints on this
system by the method of Lagrange multipliers.
For a simple loop this involves inverting N+1 3x3
matrices. Where N is the number of star nodes
around the loop. More complex constraints can
also be solved in this way.

After moving all the pose nodes using the method
above we simply put the feature associations back
in to fine tune the map. This strategy is highly
effective and can be done on-line.

9. EXPERIMENTS

We have implemented our method on an ATRV2
outdoor robot. The map consists of walls mea-
sured with a SICK laser scanner. The dead-
reckoning data fusion and the feature detection
are described in an earlier paper, (Folkesson and
Christensen, 2003). The output of the feature de-
tection module is simply fed to the grapher.

The loop closing was tested by miss-tuning the
algorithm to cause various loop closing errors. The
algorithm worked very satisfactorily making very
nice adjustments that improved most parts of the
maps. The data had 7500 iterations. The average
times per iteration was about 20-25 msec. This is
only a little slower than our compressed Kalman
filter. However since the time for each update is
variable it is necessary to collect the data in a
queue with separate process and then have the
SLAM program read the data from the top of the
queue and process it. We use a separate feature
extractor/tracker to maintain this queue in our
real-time implementation.

In figure 1 we show a typical map that failed to
close. The result is shown in figure 2. This loop
closing calculation took about 1 second.

10. DISCUSSION

We believe that the results of the experiments
confirm the validity of our approach. We can make
good quality maps in this straight forward way.
The graphs contain information and computa-
tional machinery that allows us to do things like
imposing global constraints on the map.

Our goal in this paper is to introduce the concept
of graphical SLAM and to draw attention to
the aspects of the SLAM problem that are the
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Fig. 1. This is an example of a map that did
not close properly. The doted lines show
the actual building outline. The path was
traversed counterclockwise. The dots show
the pose nodes that remain.
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Fig. 2. Here we show the result of applying the
loop closing constraint on the previous map.

most difficult. Those aspects are characterized by
the appearance of inconsistancies in the map. A
solution to the SLAM problem must be able to
survive and profit from these inconsistancies when
they are discovered.

We can compare the graphical representation of
the map to the Kalman Filter type representation.
The Kalman filter represents the probability den-
sity of the map as a Gaussian while the graphical
method, even if it uses a Gaussian for the mea-
surements, does not result in a Gaussian for the
state space. So that the graph can represent much
more complex probability surfaces.

CONCLUSIONS

We have presented an approach to solving the
SLAM problem which avoids its three most trou-
blesome stumbling blocks. The non-linear effects
are eliminated by postponing the linearization and
linearizing in a local frame. The data association
errors are detected and corrected automatically.
And finally large loops can be closed in a way that
is consistent with all the information collected.

We have outlined an efficient implementation that
is running the algorithm in real-time on an out-
door robot. Experimental results have also been
shown to confirm that the algorithm does pro-
duce good maps. A comparison to a Kalman fil-
ter SLAM implementation on the same platform
shows that the maps are in many ways superior.

The energy in the graph gives a useful measure of
goodness for the map and allows one to compare
two solutions. The graph gives a representation of
a general map probability distribution and is not
limited to ’Gaussian maps’.
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