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Abstract

We propose the binding information as an information theoretic measure of complexity between multiple random
variables, such as those found in the Ising or Potts models of interacting spins, and compare it with several previously
proposed measures of statistical complexity, including excess entropy, Bialek et al’s predictive information, and the
multi-information. We discuss and prove some of the properties of binding information, particularly in relation to
multi-information and entropy, and show that, in the case of binary random variables interactions, the processes which
maximise binding information are the ‘parity’ processes. The computation of binding information is demonstrated on
Ising models of finite spin systems, showing that various upper and lower bounds are respected and also that there is a
strong relationship between the introduction of high-order interactions and an increase of binding-information. Finally

we discuss some of the implications this has for the use of the binding information as a measure of complexity.
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1. Introduction

The concepts of ‘structure’, ‘pattern’ and ‘complexity’
are relevant in many fields of inquiry: physics, biology, cog-
nitive sciences, machine learning, the arts and so on; but are
vague enough to resist being quantified in a single definitive
manner. One approach is to attempt to characterise them
in statistical terms, for distributions over configurations
of some system (that is, for a statistical ensemble rather
than particular members of the ensemble) using the tools
of information theory [1]. This approach has been taken
by several researchers [e.g. 2-8] and is the one we adopt
here. It is based on a consideration of the entropies and
conditional entropies between the random variables in a
probabilistic model of the system under investigation. A
visualisation of some of the relevant quantities can be seen
in Fig. 1; similar diagrams will be used to illustrate the
various measures that will be examined in later sections.

In previous work, we defined the predictive information
rate (PIR) [9] of a sequentially observed random process
as the average information in one observation about future
observations yet to be made given the observations made so
far; thus, it quantifies the new information in observations
made as part of a sequence. The PIR captures a dimension
of temporal dependency structure that is not accounted
for by previously proposed measures that, loosely speaking,

*Corresponding author.
Email addresses: samer.abdallah@eecs.qmul.ac.uk (Samer A.
Abdallah), mark.plumbley@eecs.qmul.ac.uk (Mark D. Plumbley)

Preprint submitted to Physics Letters A

X1

N ¥
N

Figure 1: Venn diagram visualisation of entropies and mu-
tual informations for three random variables X, X2 and Xs.
The areas of the three circles represent H(X1), H(X2) and
H(X3) respectively. The total shaded area is the joint entropy
H(X1,X2,X3). The central area I123 is the co-information [10].
Some other information measures are indicated in the legend.

Lj2s = H(X1| X2, X3)

Iz = I(X1; X3 X2)
Lo + I13)2 = H(X1|X?2)
Loz + T2z = I1(X1; X2)

X3

all focus on redundancy, or the extent to which different
parts of a system all convey the same information. In this
letter, we propose a measure of statistical structure that is
based on the PIR but is applicable to arbitrary countable
sets of random variables and not just stationary sequences.

We begin by reviewing a number of earlier proposals
for measures of structure and complexity as well as the
PIR. Then, in §3, we define the binding information as
the extensive counterpart of the PIR applicable to arbi-
trary countable sets of random variables. In §4 we derive
some upper and lower bounds on the binding information
in relation to the entropy and multi-information, and in
85, investigate which processes maximise binding informa-
tion. Finally, in §6, we illustrate how binding information

October 7, 2011


markp
Text Box
NOTICE: this is the author’s version of a work that was accepted for publication in Physics Letters A. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Physics Letters A 376(4): 275–281, Jan 2012. doi 10.1016/j.physleta.2011.10.066


behaves in an extended Ising model of a spin glass with
high-order interactions, and conclude with some observa-
tions about binding information as a measure of complexity
and its relationship to the alternatives.

In the following, if X is a random process indexed by
a set A, and B C A, then Xp denotes the compound
random variable (random ‘vector’) formed by taking X,
for each o € B. |B| denotes the cardinality of B. The set of
integers from M to N inclusive will be written M..N, and
\ will denote the set difference operator, so, for example,
Xl..4\{2} = (Xl, Xg, X4).

2. Entropic measures of statistical structure

Suppose that (..., X_1, Xo, X1,...) is a bi-infinite sta-
tionary sequence of random variables, and that V¢ € Z, the
random variable X; takes values in a discrete set X. Let
be the associated shift-invariant probability measure over
all configurations of the system. Stationarity implies that
the probability distribution associated with any contiguous
block of N variables (X¢41, ..., X¢+n) is independent of ¢,
and therefore we can define a shift-invariant block entropy
function:

H(N) £ H(X1,...,Xn) = Y —pp (x)logp) (x), (1)

xeXN

where pﬁ’ : XN — [0,1] is the unique probability mass
function for any N consecutive variables in the sequence,
pg(x) S2Pr(Xy =2 A... AN XN =1N).

A number of quantities can be expressed in terms of the
block entropy H(N). Firstly, the entropy rate h, can be
written in two equivalent ways [1]:

H(N

hy = lim ) =
N —o0

lim H(N)— H(N -1). (2)
N —oc0
The entropy rate gives a measure of the overall randomness
or unpredictability of the process.

Excess entropy. The block entropy function H(-) can be
used to express the mutual information between two con-
tiguous blocks of length N and M respectively:

I(Xn.—1;X0.m-1) = H(N)+ H(M) - H(N + M). (3)

If we let both block lengths N and M tend to infinity, we
obtain what Crutchfield and Packard [11] called the excess
entropy, and Grassberger [2] termed the effective measure
complexity (EMC): it is the amount of information about
the infinite future that can be obtained, on average, by
observing the infinite past:

E = lim 2H(N)— H(2N). 4)
N—o0
It can also be expressed in terms of the h, (V) defined by

Crutchfield [12] as h,(N) £ H(Xy|X1.nv-1) = H(N) —
H(N — 1), which can be thought of as an estimate of the

entropy rate obtained from the finite dimensional marginal
distribution p}). Crutchfield and Young [3] define the excess
entropy in terms of h,(-) as follows

E£ Y (h(M) ~ hy). (5)

M=1

but the result is equivalent to the mutual information
between semi-infinite halves of the process (4).

Predictive information. Grassberger [2] and others [4, 13]
have commented on the manner in which k,(N) approaches
its limit h,, noting that in certain types of random process
with long-range correlations, the convergence can be so
slow that the excess entropy is infinite, and that this is
indicative of a certain kind of complexity. This phenomenon
was examined in more detail by Bialek et al. [8], who
defined the predictive information Zpyeqa(N) as the mutual
information between a block of length N and the infinite
future following it:

Ipred(N)é]\/}IAIPOOH(N)+H(M)7H(N+M) (6)

Bialek et al showed that even if Z,,eq(NV) diverges as N
tends to infinity, the manner of its divergence reveals
something about the learnability of the underlying random
process. Bialek et al also emphasise that Z,.eq(V) is the
sub-extensive component of the entropy in the following
sense: if the entropy rate h, is the intensive counterpart
of the asymptotically extensive entropy H(N), and Nh,,
is thought of as the purely extensive component of the
entropy (i.e. the part that grows linearly with N), then
Tpred(NN) is the difference, such that

H(N) = Nhy, + Tprea(N). (7)

From this we can see that the sum of the first N terms of
(5), which comes to H(N) — Nh,, is equal to Zprea (V).

Multi-information. The multi-information [14] is defined
for any collection of N random variables (Xi,...,Xn) as

I(X1.n) & —H(X1.5) + Z H(X;). (8)
iEL.N

For N = 2, the multi-information reduces to the mutual
information I(X7; X2), while for N > 2, I(X; . n) continues
to be a measure of dependence, being zero if and only if the
variables are statistically independent. In the thermody-
namic limit, its intensive counterpart the multi-information

rate can be defined as
pM é hm I(Xl__N) — I(Xl.AN—l)- (9)

N—o0
It can be shown from (2), (8) and (6) that p, = Zprea(1l) =
H(1) — hy, (see fig. 2). Erb and Ay [15] studied the be-
haviour of the multi-information in the thermodynamic
limit and demonstrated a relationship between the multi-
information rate p, (they call it I) and the ‘finite volume’
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Figure 2: Venn diagram representation of several information
measures for stationary random processes. Each circle or oval
represents a random variable or sequence of random variables
relative to time ¢ = 0. Overlapped areas correspond to various
mutual information as in Fig. 1. In (c), the circle represents the
‘present’. Its total area is H(Xo) = H(1) = pu + ru + by, where
pp is the multi-information rate, r, is the residual entropy rate,
and b, is the predictive information rate. The entropy rate is
hy =1y +bu.

approximation to the excess entropy found by summing
the first N terms of (5), which as we have already noted is
equal to Zpyed(IV); in the present terminology,

(X ) + Tyrea(N) = Niy (10)
Comparing this with (7), we see that, as well as being
the sub-extensive component of the entropy, Zprea(IN) is
also the sub-extensive component of the multi-information.

Thus, all of the measures considered so far, being linearly
dependent in various ways, are closely related.

State machine based measures. Another class of measures,
including Grassberger’s true measure complezity [2] and
Crutchfield et al’s statistical complezity C,, [3, 16], is based
on the properties of stochastic automata that model the
process under consideration. These have some interesting
properties that make them viable measures of complexity,
but, due to space limitations, are beyond the scope of this
letter.

Predictive information rate. In previous work [9], we in-

troduced the predictive information rate (PIR), which

is the average information in one observation about
—

the infinite future given the infinite past. If X, =
(..., X¢—2,X;_1) denotes the variables before time ¢, and

N
X: = (X¢q1, Xt42,...) denotes those after ¢, the PIR at
time t is defined as a conditional mutual information:

= A - - — —
Zt:I(Xt,Xt|Xt):H(Xt|Xt)—H(Xt|Xt,Xt) (11)
Equation (11) can be read as the average reduction in
uncertainty about the future on learning X;, given the
past. Due to the symmetry of the mutual information, it

can also be written as

— — —
I(Xt,Xt|Xt):H(Xt|Xt)*H(Xt|Xt,Xt) (12)

Now, in the shift-invariant case, H (Xt|)<_( ¢) is the familiar
entropy rate h,,, but H (XX, X;), the conditional entropy
of one variable given all the others in the sequence, future
as well as past, is what we called the residual entropy
rate r, in [17], but was previously identified by Verdd and
Weissman [18] as the erasure entropy rate. It can be defined
as the limit

A .

T, = NIEHOOH(X—N..N)
The second term, H(X; n,X_n. 1), is the joint entropy
of two non-adjacent blocks each of length N with a gap
between them, and cannot be expressed as a function of
block entropies alone. Thus, the shift-invariant PIR (which
we will write as b,) is the difference between the entropy
rate and the erasure entropy rate: b, = h, —r,. These
relationships are illustrated in Fig. 2, along with several of
the information measures we have discussed so far.

-HX n.-1,X1.n5) (13)

Measuring complexity. Many of the measures reviewed
above were intended as measures of ‘complexity’, where
‘complexity’ is a quality that is somewhat open to inter-
pretation [6, 19]; hence the variety of proposals. What is
generally agreed [e.g. 5-7, 20], however, is that a plausible
measure of complexity should be low for systems that are
deterministic, or easy to compute or predict—‘ordered’—
and also low for systems that a completely random and
unpredictable—‘disordered’. The PIR satisfies these condi-
tions without being ‘over-universal’ in the sense of Crutch-
field et al [6, 20]: it is not simply a function of entropy or
entropy rate that fails to distinguish between the different
strengths of temporal dependency that can be exhibited
by systems at a given level of entropy. In our analysis
of Markov chains [9], we found that the processes which
maximise the PIR are not those that maximise the multi-
information rate p, (or the excess entropy, which is the
same in this case), and do not have the kind of predictabil-
ity associated with highly redundant processes. What they
do have, however, is a sort of partial predictability that re-
quires the observer continually to pay attention to the most
recent observations in order to make optimal predictions.
And so, while Crutchfield et al make a compelling case for
the excess entropy I and their statistical complexity C},
as measures of complexity, there is still room to suggest
that the PIR captures a different and non trivial aspect of
temporal dependency structure not previously examined.



3. Binding information

In this section, we address two questions. Firstly, if the
PIR is considered an intensive quantity like the entropy rate
or the multi-information rate, what is its extensive counter-
part? Secondly, can the concept be extended to collections
of random variables which are not organised sequentially,
such as spin systems in two or more dimensions?

When the PIR is accumulated over successive observa-
tions, one obtains a quantity which we call the binding
information. To proceed, we first reformulate the PIR in
a form that is applicable to a finite sequence of random
variables (X1,...,Xn):

Z,(X1.n) = I1(Xe; X1y, N1 X1 e=1)), (14)

which is to be compared with the PIR for infinite sequences
(11). Note that this is no longer shift-invariant and may
depend on t. The binding information B(X; y), then, is
the sum

N
B(X1.n =Zi (X1.n) (15)

Expanding this sum in terms of entropies and conditional
entropies, cancelling terms and simplifying yields

N
B(X1.n)=H(X1.n) =Y HX|X1.ny)  (16)
t=1

That is, the binding information is the difference between
the joint entropy of all the variables and the residual or
erasure entropy as defined by Verdi and Weissman [18].
Like the multi-information, it measures the information
shared between a set of random variables, but in a different
way (see Fig. 3).

Though the binding information was derived by accu-
mulating the PIR sequentially, the result is permutation
invariant. This suggests that the concept might apply to ar-
bitrary sets of random variables regardless of their topology.
Accordingly, we formally define the binding information as
follows:

Definition 1. If {X,|a € A} is a countable indexed set
of random wariables, then its binding information is

B(Xa4) 2 H(Xa) = ) H(XolXaygay)  (17)
acA

Since it can be expressed as a sum of (conditional) mu-
tual informations (15), it inherits a number of properties
from the mutual information: it is (a) non-negative; (b)
applicable to continuous-valued random variables as well as
discrete-valued ones; and (c¢) invariant to invertible point-
wise transformations of the variables; that is, if Y4 is a set
of random variables taking values in ), and for all o € A,
there exists some invertible function f, : X — ) such that
Y, = fa(X4), then B(Y4) = B(X 4).

(a) H(X1.4) (b) 1(X1.4) (c) B(X1..4)

Figure 3: Illustration of binding information as compared with
multi-information for a set of four random variables. In each
case, the quantity is represented by the total amount of black
ink, as it were, in the shaded parts of the diagram. Whereas
the multi-information counts the triple-overlapped areas twice
each, the binding information counts each overlapped areas just
once.

Conditions for minimisation. The binding information is
zero for sets of independent random variables—the case
of complete ‘disorder’—since in this case all the mutual
informations implied in (15) are zero. The binding infor-
mation is also zero when all variables have zero entropy,
taking known, constant values and representing a certain
kind of ‘order’. However, it is also possible to obtain low
binding information for random systems which are nonethe-
less very ordered in a particular way. If, for each pair of
indices o, o/ € A, X,, is some known function of X, then
there is, in effect, only one random variable: the state
of the entire system can be read off from any one of its
component variables. In this case, it is easy to show that
B(X4) = H(X4) = H(X,,) for any a € A, which, as we
will see, is relatively low compared with what is possible
as soon as N becomes appreciably large. Thus, binding
information is low for both highly ‘ordered’ and highly
‘disordered’ systems, but in this case, ‘highly ordered’ does
not simply mean deterministic or known a priori: it means
the whole is predictable from the smallest of its parts.

In the following sections, we will compare properties of
the binding information with those of the multi-information,
and so, we include here the definition of the multi-
information written in the same terms, for arbitrary index-
ing sets:

I(Xa) 2 —H(X4)+ Y H(Xa) (18)
acA

4. Bounds on binding and multi-information

In the following we confine our attention to finite sets
of discrete random variables taking values in a common
alphabet containing K symbols. This subsumes Ising (K =
2) and Potts (K > 2) spin systems with arbitrary high-
order (i.e. not just pairwise) interactions. In this case, it is
quite straightforward to derive upper bounds, as functions
of the joint entropy, on both the multi-information and
the binding information, and also upper bounds on multi-
information and binding information as functions of each
other.
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Figure 4: Constraints on multi-information I(X; n) and binding
information B(X7. n) for a system of N = 6 binary random variables.
The labelled points represent identifiable distributions over the 2V
states that this system can occupy: (a) known state, the system is
deterministically in one configuration; (b) giant bit, one of the Pg, pro-
cesses; (¢) parity, the parity processes P26,0 or P26,1? (d) independent,
the system of independent unbiased random bits.

Theorem 1. If {X,|a € A} is a set of |A| = N random
variables all taking values in a discrete set of cardinality
K, then

I(Xa) < Nlog K — H(Xa) (19)

and I(X4) < (N —-1)H(X4). (20)

Proof. The multi-information is I(X4) = > c4 H(Xa) —
H(X4). Since each variable X, can take one of only
K values, H(X,) < logK for all @« € A. Therefore

Y aca H(Xa) < Nlog K and (19) follows directly. We
also have, for all « € A, H(X,) < H(X4), and so

I(Xa) S NH(Xa) — H(X4) = (N - 1)H(X4).
O

Theorem 2. If {X,|a € A} is a set of N random variables
all taking values in a set of cardinality K, then

B(X4) < H(Xa) (21)
and B(X4) < (N-1)(Nlogk — H(X4)). (22)

Proof. The first inequality comes directly from the def-
inition of the binding information (17) or (16), since
H(Xa|X a\{a3) > 0 for any discrete random variable X,.
To obtain the second inequality, we expand the conditional
entropies of (16):

B(X4) = H(Xa) = Y H(Xo|X\(a})

acA

= H(X4)— Y _[H(Xa) = H(X4\{a})]
acA

=Y H(Xaygay) = (N = D H(Xa).

acA
But, for all o, H(X 4\{a}) < (N —1)log K bits, so

B(X4) < N(N = 1)log K — (N — 1)H(X.4)
= (N —1)(Nlog K — H(X.4)).

These bounds restrict (X 4) and B(X 4) to two trian-
gular regions of the plane when plotted against the joint
entropy H(X 4), illustrated for N = 2, K = 2 in Fig. 4.

Next, we examine the relationship between I(X 4) and
B(X ).

Theorem 3. If{X,|a € A} is a set of N random variables
all taking values in a set of cardinality K, then

I(X4)+ B(X4) < NlogK. (23)

Proof. Expanding the definitions of binding and multi-
informations yields

I(Xa4)+B(Xa) =Y H(Xo)— > H(Xa|X4\(a})

acA acA
=3 I(Xa; XA\(a})-
acA

Since the mutual information of any pair of variables is no
more than either of their entropies, and H(X,) < log K
for discrete random variables with K possible values, we
obtain a chain of two inequalities:

Z I(Xa;XA\{a}) < Z H(Xa) < Nlog K.
acA acA

and the theorem is proved. O

Proposition 1. If {X,|a € A} is a set of N = | A| discrete
random variables, then the following two inequalities hold:

I(Xa) < (N-1)B(Xa) (24)
and B(X.a) < (N — 1)I(X.4). (25)

We will not prove Proposition 1 here but a sketch of a
potential proof can be found in [17]. It is based on a result
that can be obtained for N = 3; in this case, it is relatively
easy to find that

2B(X1.3) —I(X1.3) =

I(Xq; Xo| X3) + 1(X1; X3|X2) + [(X2; X3|X1),
2[(X1”3) — B(Xlng) =

I(X1; Xo) + I(X1; X3) + 1(X2; X3).

Since both quantities are sums of non-negative mutual
informations or conditional mutual informations, the in-
equalities (24) and (25) for N = 3 follow directly. The
proof sketch in [17] rests on finding a similar decomposition
into non-negative terms when N > 3.

Subsequent to our initial work on binding information
[17], we learned that Proposition 1 follows from results
presented by Han [21], in which Han analyses the space
of information measures that can be expressed as linear
combinations of entropies. He discovered a duality relation
on this space, and identified the dual total correlation as the
formal dual of Watanabe’s [22] total correlation. The multi-
information and the binding information are precisely the
total correlation and its dual respectively. The duality is
hinted at by the symmetry between the bounds illustrated
in fig. 4.



5. Maximising binding information

Now that we have established some constraints on the
binding information in relation to the entropy and the
multi-information, it is instructive to examine what kind
of processes maximise the binding information, and in
particular, whether the absolute maximum of (N —1)log K
implied by Theorem 2 is attainable. The answer (for finite
sets of binary variables) is surprisingly simple.

Theorem 4. If {Xy,..., XN} is a set of binary random
variables each taking values in {0,1}, then the binding
information B(X1. n) is mazimised by the two ‘parity pro-
cesses” Py and P3),. For m € {0,1}, the probability of
observing x € {0,1}" under each process is

B () = {21—N if (vazl xi) mod 2 =m, (26)

0 : otherwise.

The binding information of these processes is N —1 bits.

PQIYO is the ‘even’ process, which assigns equal probability
to all configurations with an even number of 1s and zero to
all others. PQJYO is the ‘odd’ process, which assigns uniform
probabilities over the complementary set. When a parity
process is observed sequentially in any order, the finite-
sequence form of the PIR (14) yields the maximum possible
1 bit for each observation except the last, which cannot
provide any predictive information as there is nothing left
to predict.

Consider now the multi-information of the parity pro-
cesses. Since the joint entropy of either of them is N — 1
bits and the marginal entropy of each variable is 1 bit,
the multi-information, consulting (8), is 1 bit. By con-
trast, if we look for binary processes which maximise the
multi-information, we find that they have low binding in-
formation. From Theorem 1, we know that the maximal
multi-information is (N—1) bits, which can only be achieved
at a joint entropy of 1 bit. At this entropy, Theorem 2 tells
us that the binding information can be at most 1 bit. We
can easily find such processes: consider a system in which
the indices 1..N are partitioned into two disjoint sets B
and its complement B = 1..N \ B, and the probabilities
assigned to configurations x € {0,1}" as follows:

(ifVie 1.N.x; =1(i € B),
ifVie 1.N .2; =1(i € B), (27)

: otherwise,

Pg (x) =

O W= =

where I(-) is 1 if the proposition it contains is true and 0 oth-
erwise. Hence, there are only two equiprobable global con-
figurations, which can be obtained from each other by ‘flip-
ping’ all the bits. For all 4, the marginal entropy H(X;) = 1
bit, the conditional entropy H(X;|X; a\f:3) = 0, and the
joint entropy H (X7 ) = 1 bit. These ‘giant bit’ processes
are marked on Figure 4: they have I(X;. n) = N—1 bits
and B(X;. ) = 1 bit. Thus we see that binary process

that maximise the multi-information and the binding in-
formation are very different in character. In [17], we prove
Theorem 4 as a corollary of a more general theorem for
discrete-valued random variables, where we find that the
parity processes generalise to the modulo-K processes. We
also prove that, for systems of binary random variables,
the converse is also true: namely, that the parity processes
are uniquely the only two processes which maximise the
binding information when K = 2.

6. Binding information in spin systems

In this section we consider a system of N binary random
variables X; for ¢ € 1..N, such as can be used to model
a system of interacting spin % particles. This system has
2N distinct configurations and so the set of probability
distributions over these states is the standard (2 — 1)-
simplex embedded in 2V dimensions. For small N, we can
represent such probability distributions explicitly, compute
their joint entropy H(X;. n), multi-information I(X;. n),
and binding information B(X;_ n) numerically, and thereby
represent them as points in a 3-dimensional space. We
will model these distributions using an Ising model with
random interactions, that is, a spin glass, initially with just
pairwise interactions, then gradually adding in higher-order
interactions. To facilitate this, we let the variables take
values in {—1,+1} rather than {0, 1}.

6.1. Up to pairwise interactions

With pairwise interactions and a non-uniform external
field, the Hamiltonian of the Ising model, as a function of
the system’s configuration x € {—1,+1}, is

HQ(X) = Z B;x; + Z JijiL’i(Ej. (28)

i€1..N {i,j}C1..N

where the J;; (with ¢ < j) are the interaction strengths
between each pair of spins and the B; are the external
field strengths at each site. The probability P(x) of any
configuration x is proportional to the exponential of the
Hamiltonian: P(x) oc e~ "2)/T where T is the tempera-
ture (which we will set to 1 in the remainder). To complete
the model, we need a scheme for sampling the values of the
B; and J;;; here, we will sample them independently from
two student’s t distributions with scale factors o and oy
respectively:

B, ~ 01T (v), Jij ~o2T(v), (29)

where T (v) denotes the student’s t distribution with v
degrees of freedom, allowing for a non-Gaussian distribution
of interactions. Unlike the Gaussian interactions of the
Sherrington-Kirkpatrick spin glass [23], the student’s t
model when v is small induces sparsity; for example, at
v = 0.25, the pairwise component of the Hamiltonian will
be dominated by relatively few strong ‘bonds’. In practise,
we find that with fixed o1 and o9, this sampling scheme



is unable to reach simultaneously the limits of high and
low entropy that can be obtained with the model, and so
we sample 0?7 and o2 themselves from two independent
inverse-gamma distributions: for k € {1, 2},

UI% NIg(avﬂk)ﬂ (30)

where the « is the (global) shape parameter and the S
are the scale parameters. These allow the various orders
of interaction to be individually enabled or disabled by
setting the corresponding [y to nonzero or zero values.

The scatter plot in fig. 5(a) was obtained by sampling
3000 systems with N = 8, v = 0.25, « = 0.5, 51 =0
and B, = 1078, that is, with only pairwise interactions
and no external field. Each system was plotted as a single
point according to its 3 information coordinates. The
resulting cloud of points stretches between the ‘giant bit’
and ‘independent bits’ processes illustrated in fig. 4 as
points b and d respectively. However, it does not reach all
the way to the ‘parity’ process at point ¢, which cannot
be modelled using only pairwise interactions. Instead, the
binding information appears to reach a maximum of 4 bits
at H = B = I = 4. Examination of the processes that
reach this point shows that they all consist of 4 independent
copies of 2-bit parity processes, with 4 strong bonds forming
4 disconnected pairs.

What may not be obvious from the scatter plot is that
all the points lie in the plane I = N — H, which implies
(referring to the proof of Theorem 1) that the marginal
entropy H(X,) of each variable is 1 bit. This also means
that the net expected magnetisation ), ¢ (Xa) = 0.

By varying 8, and [2, the relative strengths of the pair-
wise interactions and the external field can be adjusted.
With 85 = 0, we obtain the relatively uninteresting case
where all the generated processes have independent (but bi-
ased) bits, which lie on the line I = B = 0, between points
a and d in fig. 4. Setting 81 = B2 = 2 x 1078, we obtain
fig. 5(b). The point cloud here fills a volume between the
planar region in fig. 5(a) and point a, respecting all the
bounds established in § 4.

6.2. Higher-order interactions

It is possible to extend the model by adding higher order
interactions modulated by scale factors o3, 04 etc., up to
on. The new Hamiltonian is

N
Hy(x) = I ER (31)

k=1 ae[N](k‘) 1€

where the Jc(yk), with & € 1..N, represent all the interaction
strengths for all orders of interaction, and [N]*) denotes
the set of all subsets of 1..IV of cardinality k, that is,
[N]®) = {a C 1..N : |a| = k}. The model of (28) can be
recovered by setting JS}) = B, JEIZ)J} = J;; and all other
interactions to zero. The interaction strengths are again
independent with student’s t distributions and linked scale

I/bits

I/bits

I/bits

0 0 ‘
Hibits Blbits Hibits B/bits

Figure 5: Joint entropy (H), binding information (B) and multi-
information (I) plotted for systems of N = 8 binary random
variables, generated using the Ising model with high-order in-
teractions (31). For each scatter plot, 4000 systems were gener-
ated, using the following parameters (all unspecified 8; default
to zero): (a) pairwise interactions only, v = 0.25, a = 0.5,
B2 = 107% (b) v = 0.25,a = 0.2,61 = B2 = 2 x 1078,
() v = 0.25,a = 0.5,8; = 107'% (d) v = 0.25,a =
0.25,85 =8 x 107'; (e) v = 0.25,0 = 0.25, 87 = 5 x 10™%; (f)
v=1a=0.15,8: = 107° Yk € 1..8. The points labelled a, b,
c and d correspond with those in fig. 4.

factors oy, again sampled according to (30), for each order
of interaction:

JF) ~ 0, T(v), Yo e |[N]®, (32)

Fig. 5 illustrates the effect of bringing in progressively
higher-order interactions on the binding information. For
example, when only fourth-order interactions are included,
the maximum reachable binding information appears to
be 6 bits, which is acheived by processes consisting of 2
independent 4 bit parity processes. The absolute maximum
binding information of N —1 bits is obtained when order-N
interactions are the only ones present. This is not surprising
when we consider that the order-IV term of the Hamiltonian,
[Tic1. n @i on the domain {—1,1}* is isomorphic to the
parity function on {0,1}". Note also that in all cases
where only even-order interactions are present, the points
are confined to the I = N — H plane.



While these examples give a mostly qualitative picture of
how binding information behaves for systems of binary ran-
dom variables, they do show that an information theoretic
characterisation of such systems is enriched by including the
binding information along with the entropy and the multi-
information, as well as suggesting quantitative properties
for further investigation. There is a strong relationship
between binding information and the presence of strong
high-order interactions, which is not apparent when the
entropy and multi-information are examined alone.

7. Discussion

Our examination of the extended Ising model with high-
order interactions shows that, unlike the entropy or the
multi-information, the binding information is sensitive to
the presence of high-order interactions. Such levels of
stochastic dependence are discussed by Studeny and Vej-
narova [14, §4], who formulate a level-specific measure of
dependence which captures the dependency visible when
fixed size subsets of variables are examined in isolation.
Studeny and Vejnarova use the parity process as an ex-
ample of a random process in which the dependence is
only visible at the highest level, that is, amongst all N
variables. If fewer than IV variables are examined, they
appear to be independent. They note that such models
were called ‘pseudo-independent’ by Xiang et al. [24], who
concluded that standard algorithms for Bayesian network
construction fail on such processes. It is intriguing, then,
that these are singled out as ‘most complex’ according to
the binding information criterion.

As noted in § 1, Bialek et al. [8] argue that the predictive
information Zpeq(IN), being the sub-extensive component
of the entropy, is the unique measure of complexity that
satisfies certain reasonable desiderata, including transfor-
mation invariance for continuous-valued variables. While
lack of space precludes a full discussion, we note that trans-
formation invariance does not, as Bialek et al state [8,
p. 2450], demand sub-extensivity: binding information is
transformation invariant, since it is a sum of conditional
mutual informations, and yet it can have an extensive com-
ponent, since its intensive counterpart, the PIR, can have
a well-defined value, e.g., in stationary Markov chains [9].

As Verdi and Weissman [18] note, the erasure entropy is
relevant to single-site Gibbs sampling methods for simulat-
ing a random process: the erasure entropy is the entropy
rate, per sweep through the variables, of the Gibbs sam-
pling process itself. Since the binding information is the
joint entropy minus the erasure entropy, processes with
high binding information will be harder to simulate via
Gibbs sampling, with long mixing times due to the low
rate of entropy generation as compared with the entropy
of the desired distribution.

Van Enter [25] gives analytical methods for computing
the erasure entropy density in the thermodynamic limit for
the 2-D Ising model with nearest-neighbour interactions on
rectangular and honeycomb grids. In combination with a

method for computing the entropy density, these methods
can be used to compute the binding information density in
such systems. Where analytical methods are not available,
Yu and Verdu’s [27] erasure entropy estimation method
based on bidirectional context tree weighting (CTW) could
be used instead. Alternatively, for smaller systems, a brute-
force histogram-based entropy estimator (e.g. [26]) could
be used.
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