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Abstract
Multivariate statistical analysis relies heavily on moment assumptions of

second order and higher. With increasing interest in heavy tailed distributions,
however, it is desirable to describe dispersion, skewness, and kurtosis under
merely first order moment assumptions. Here the univariate L-moments of
Hosking (1990) are extended to “L-comoments” analogous to covariance. For
certain models, the second order case yields correlational analysis coherent with
classical correlation but also meaningful under just first moment assumptions.
We develop properties and estimators for L-comoments, illustrate for several
multivariate models, examine behavior of sample multivariate L-moments with
heavy-tailed data, and discuss applications to financial risk analysis and re-
gional frequency analysis.
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1 Introduction

A present limitation of multivariate statistical analysis is heavy reliance on moment

assumptions of second order and higher. With increasing interest, however, in model-
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ing with heavy tailed data, we would like to characterize descriptive features, typically

dispersion, skewness, and kurtosis, under low order moment assumptions. Here we

introduce a new multivariate analysis methodology that contributes toward this goal

in both parametric and nonparametric settings.

Our approach extends the univariate “L-moments” of Hosking [16] to a notion

of “L-comoments” which have interpretations similar to the classical central moment

covariance, coskewness, and cokurtosis but also possess the features of L-moments,

remaining well-defined for all orders under merely a first moment assumption. The

multivariate extensions of L-moments for all orders higher than two are thus matri-

ces – L-covariance, L-coskewness, L-cokurtosis, etc. In this connection, for example,

under certain assumptions the corresponding L-correlation provides a coherent ex-

tension of the classical correlation to the case of only first moments (see Proposition

3).

Section 1.1 provides background and perspective, Section 1.2 introduces univari-

ate L-moments and their attractive properties, and Section 2 presents a few technical

results for L-moments needed in treating the multivariate case in Section 3. Section 4

provides illustrations and applications, Section 5 discusses further studies. A consid-

erably more detailed version of this paper is available at www.utdallas.edu/∼serfling.

1.1 Background and Perspective

For measuring descriptive features of a univariate distribution, central moments are

popular but confined to sufficiently light-tailed distributions. An appealing alterna-

tive is the series of L-moments, expectations of strategically selected linear functions

of order statistics, which are finite for all orders under merely a finite first moment

assumption. A formal and comprehensive treatment of L-moments was first devel-

oped in [16]. Parametric fitting of distributions by a “method of L-moments”, or
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exploratory nonparametric analysis via L-moments as descriptive measures, may be

carried out. With interest in heavy-tailed distributions, extensive L-moment method-

ology has been developed for regional frequency analysis in environmental science [20].

It is timely to extend the notion of L-moments to the multivariate case. Except

for the extension of the univariate mean to the multivariate vector mean, this has

remained open for lack of a notion of linear functions of order statistics in higher

dimensional space. Hosking [16, p. 122] writes that “No extension of L-moments

to multivariate distributions is immediately apparent.” On the other hand, he also

mentions that the “seemingly most promising approach” would be to use the notion

of concomitants of order statistics to measure association of random variables. The

present paper develops this insight into a formal approach. For jointly distributed

(V,W ) with finite mean we define a notion of L-comoment of order k, k ≥ 2 (for k = 2

the “Gini covariance” studied in [36], [43], [31]). For X = (X1, . . . ,Xd)
′ in Rd with

finite mean, for each k ≥ 2 the corresponding k-th multivariate L-moment is then the

d × d matrix of L-comoments of order k for the ordered pairs (Xi,Xj), 1 ≤ i, j,≤ d.

These provide new descriptive tools having practical utility for all orders similar to

the widely used classical covariance matrix.

1.2 Univariate L-Moments: Definitions and Features

Essential to our development is an understanding of univariate L-moments. With

X1:k ≤ X2:k ≤ . . . ≤ Xk:k denoting the ordered observations for a sample of size k

from a univariate distribution, the kth L-moment is defined as

λk = k−1

k−1∑

j=0

(−1)j

(
k − 1

j

)
E(Xk−j:k). (1)

Clearly, the L-moments are scale equivariant. The first L-moment, the mean λ1 =

E(X1:1), is translation equivariant. For k ≥ 2 the L-moments are linear contrasts

3



among expected order statistics and hence translation invariant :

λk(θ + ηX) = η λk(X), (2)

for η > 0 and arbitrary θ. Also, λk(−X) = (−1)kλk(X).

The 2nd L-moment, λ2 = 1
2
E(X2:2−X1:2), measures spread and in fact is one-half

the classical Gini mean difference [12]. Besides its intrinsic role, λ2 is used to define

scale-free higher-order descriptive measures, τk = λk/λ2, k ≥ 3, called L-moment

ratios [20]. Very conveniently for practical use and interpretation, these satisfy [15]

−1 ≤ τk ≤ 1, k ≥ 3. (3)

In comparison, the classical central moment analogues (further discussed in Section

3.1.1) do not satisfy any such inequality.

The 3rd L-moment, λ3 = 1
3
E(X3:3 − 2X2:3 + X1:3), is simply the difference in

expectations of the two spacings from a sample of size 3 and hence measures skewness

(unscaled). As pointed out in [16], by the result [33] that the expected range for

sample size 3 is three-halves the expected range for sample size 2, τ3 is a direct

analogue of Bowley’s skewness measure [4]. The 4th L-moment, λ4 = 1
4
E(X4:4 −

3X3:4 + 3X2:4 −X1:4), measures kurtosis, as argued very nicely in [16].

Attractive properties include: finite if first moment finite; distribution determined

by L-moments; L-functional structure with mutually orthogonal weight functions; L-

statistic and U-statistic structures; unbiasedness. For Normal(µ, σ2), λ1 = µ, λ2 =

π−1/2σ, λ3 = 0, λ4 = (30π−1 arctan
√

2− 9)π−1/2σ. For uniform(a, b), λ1 = (a+ b)/2,

λ2 = (b − a)/6, and λk = 0, k ≥ 3. (The zero skewness, kurtosis, etc., for uniform

distributions is not shared by the central moments.) See [20] for other examples.
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2 Univariate L-Moments: Technical Basics

We provide certain results for univariate L-moments, some new, that are used in

Section 3. Let cdf F have quantile function F−1 and L-moment sequence {λk}.

2.1 Representations

Substitution into (1) of a standard expression for the expected value of an order

statistic [6] yields a classical L-functional representation [39, Chap. 8], [17]

λk =

∫ 1

0

F−1(u)P ∗
k−1(u) du, (4)

where P ∗
k (u) =

∑k
j=0 p

∗
k,j u

j, with p∗k,j = (−1)k−j
(

k
j

)(
k+j

j

)
. The orthogonal polynomials

P ∗
r (u), 0 ≤ u ≤ 1, r = 0, 1, 2, . . ., comprise the shifted Legendre system. By the

orthogonality, the λk capture differing types of information about F . For detailed

discussion see [16] and [20, §§2.4–2.5].

Straightforward transformation in (4) using P ∗
0 (u) ≡ 1 and the orthogonality leads

to a representation in terms of covariance:

λk =

{
E(X), k = 1;
Cov(X,P ∗

k−1(F (X))), k ≥ 2.
(5)

For k ≥ 2, equation (5) facilitates an illuminating characterization: the kth L-moment

is the covariance of X and a particular function of its rank F (X). In particular,

λ2 = 2Cov(X,F (X)) = Cov(X, 2F (X) − 1) (6)

exhibits λ2 as the covariance of X and its centered rank, a well-known representation

[40] for the Gini mean difference. By Cauchy-Schwarz we obtain a comparison of the

second L-moment with the usual standard deviation:

λ2 ≤ σ/
√

3, (7)
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given in [32] and equivalently in [35]. This will be used in Section 4.3. For k = 3, we

have λ3 =−6Cov(X,F (X)(1−F (X))), the covariance of X and a function symmetric

about the median of F , and it follows that λ3 is zero for F symmetric.

It is also readily derived that the kth L-moment has a representation as the ex-

pected value of an L-statistic:

λk = n−1
n∑

r=1

w(k)
r:nE(Xr:n), (8)

where w
(k)
r:n =

∑min{r−1,k−1}
j=0 (−1)k−1−j

(
k−1

j

)(
k−1+j

j

)(
n−1

j

)−1(r−1
j

)
.

2.2 Estimation

The sample version [20, formula (2.59)] of (8) is

λ̂k = n−1

n∑

r=1

w(k)
r:n Xr:n, (9)

– an L-statistic in form and unbiased. For k = 1 and 2, (9) yields λ̂1 = X and (see [39,

p. 263] and [20, p. 30]) λ̂2 = 1
2
G, where G =

(
n
2

)−1∑
1≤i<j≤n |Xi −Xj|, the U-statistic

known as Gini’s mean difference. In fact, each λ̂k is a U-statistic. To see this, note

from (1) that λk = E(h(X1, . . . ,Xk)), where h(x1, . . . , xk) = k−1
∑k−1

j=0 (−1)j
(

k−1
j

)
xk−j:k.

Now, for a kernel h(x1, . . . , xk) that is a linear combination of the order statistics of

its arguments, it follows by a straightforward derivation or by a technique of Blom

[3] that the corresponding U-statistic based on a sample of size n may be expressed

as a linear combination of the order statistics of the full sample. Consequently, the

U-statistic based on h(x1, . . . , xk) agrees with the L-statistic (9).

Under suitable second moment conditions, standard theory for U- and L-statistics

[39, Chaps. 5 and 8] yields that the vector of the first k L-moments is asymptotically

k-variate normal. These and related results are given in [16].
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3 L-Comoments and Multivariate L-Moments

We now introduce L-comoments and examine properties, inequalities, representations,

estimators, and convergence. We conclude with L-comoment matrices.

3.1 Definition and Properties of L-Comoments

3.1.1 Preliminary on Central Comoments

Let (X(1),X(2)) have cdf F with marginal distributions F1 and F2, means µ1 and µ2,

central moments µ
(1)
k and µ

(2)
k , 2 ≤ k ≤ K, and (scaled) central moment coefficients

ψ
(i)
k = µ

(i)
k /(µ

(i)
2 )k/2, 3 ≤ k ≤ K. The ψ

(i)
k , k ≥ 3, do not satisfy any universal bounds

and can have arbitrarily large magnitudes, so that interpretation of sample values is

by comparison with values from specific reference distributions.

Related comoments are (asymmetric) higher order analogues of covariance that

have been developed in financial risk modeling [34]. For k ≥ 2, the kth central co-

moment of X(1) with respect to X(2) is defined as ξk [12] = Cov(X(1), (X(2) − µ
(2)
1 )k−1).

(The asymmetric counterpart is denoted ξk [21].) For 2nd order, ξ2 [12] = ξ2 [21] = σ12,

the usual covariance, whose symmetry is merely an artifact of the definition rather

than a feature necessarily desired for comoments in general. For higher order cases

one could produce symmetric versions by taking signed versions of
√
ξk [12] ξk [21], for

example, but ordered pairs (ξk [12], ξk [21]), k ≥ 3, carry greater information while still

being simple and therefore are preferred. Drawing upon familiarity with covariance,

it is straightforward to interpret the higher order central comoments. For example,

the coskewness ξ3 [12] of X(1) with respect to X(2) increases or decreases with rela-

tively higher or lower weight on points (x(1), x(2)) with positive deviations x(1) − µ
(1)
1 ,

for given squared deviation (x(2) − µ
(2)
1 )2. Scale-free versions are given by ψk [12] =

ξk [12]/(µ
(1)
2 )1/2(µ

(2)
2 )(k−1)/2, for k = 2 the usual correlation coefficient ρ12.
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3.1.2 L-Comoments

Now take (X(1),X(2)) having cdf F with finite mean, marginals F1 and F2, and L-

moment sequences {λ(1)
k } and {λ(2)

k }. By analogy with the covariance representation

(5) for L-moments, and also by analogy with the central comoments, we define the

kth L-comoment of X(1) with respect to X(2) by

λk [12] = Cov(X(1), P ∗
k−1(F2(X

(2)))) (10)

with asymmetric counterpart λk [21]. It is readily checked that λk [12] is translation

invariant and scale equivariant with respect to transformations of X(1) and translation

and scale invariant with respect to transformations of X(2):

λk [12](θ + ηX(1), ζ + βX(2)) = η λk [12](X
(1),X(2)), (11)

for positive η and β and arbitrary θ and ζ. Appropriate scaled versions are given by

the L-comoment coefficients τk [12] = λk [12]/λ
(1)
2 , analogues of the τk. Here τ2 [12] is the

L-correlation of X(1) with respect to X(2), also denoted ρ[12].

As with central comoments, symmetric L-comoments are possible [43], but the

more fundamental notion of an ordered pair of asymmetric comoments is preferred.

Fortuitously, L-comoments provide this option even in the 2nd order case. Indeed,

the (asymmetric) L-correlations arise naturally for a decomposition of the 2nd L-

moment of a sum into a weighted sum of 2nd L-moments of the individual terms:

for univariate Y1, . . . , Yn and S = Y1 + · · · + Yn, we have λ2(S) = 2Cov(S,FS(S)) =

2
∑n

i=1 Cov(Yi, FS(S)) =
∑n

i=1 λ2[12](Yi, S) =
∑n

i=1 ρ[Yi,S] λ2(Yi).

For X(1) = X(2), L-comoments reduce to L-moments: λk [12] = λk [21] = λ
(1)
k = λ

(2)
k .

On the other hand, for X(1) and X(2) independent, λk [12] = 0, all k ≥ 2.

A convenient tool is that λk [12] can be expressed as the L-comoment of E(X(1) |X(2))

with respect to X(2). The following results are used to advantage in Section 4.
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Proposition 1 Let X(1) have finite mean. Then, for k ≥ 2,

λk [12] = Cov(E(X(1) |X(2)), P ∗
k−1 ◦ F2(X

(2))) (12)

and, under finiteness of the kth moment of X(2),

ξk [12] = Cov(E(X(1) |X(2)), (X(2) − µ
(2)
1 )k−1). (13)

Proof. Using E(X(1)Q(X(2))) = E(E(X(1) |X(2))Q(X(2))), etc., we obtain

Cov(X(1), Q(X(2))) = Cov(E(X(1) |X(2)), Q(X(2))).

Now take in turn Q(x) = P ∗
k−1 ◦ F2(x) and Q(x) = (x− µ

(2)
1 )k−1 with k ≥ 2. 2

Corollary 2 Let X(1) have finite mean and linear regression on X(2): E(X(1) |X(2))

= a+ bX(2). Then, for k ≥ 2,

λk [12] = b λ
(2)
k (14)

and, under finiteness of the kth moment of X(2),

ξk [12] = b µ
(2)
k . (15)

When X(1) has linear regression on X(2) and F1 and F2 are affinely equivalent,

there hold simple expressions for τk [12] in terms of τ
(1)
k and ψk [12] in terms of ψ

(1)
k . For

k = 2 these yield that, under the assumed conditions, the L-correlation ρ[12] not only

agrees with the classical Pearson product-moment correlation ρ12 but also assumes

the same formula in terms of model parameters while remaining well-defined under

lesser moment assumptions.

Proposition 3 Assume (i) (X(1),X(2)) has joint distribution with linear regression

of X(1) on X(2): for some constants a and b, E(X(1) |X(2)) = a+bX(2). Also, assume
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(ii) the respective marginals F1 and F2 are affinely equivalent: for some constants θ

and η, F2(x) = F1(η
−1(x− θ)), i.e., X(2) d

= θ + ηX(1). Then

ρ[12] = bη = ρ12 (16)

holds under second moment assumptions, with the first equality valid as well under

only first moment assumptions. Also, for k ≥ 2,

λk [12] = b η λ
(1)
k = ρ[12] λ

(1)
k (17)

and thus

τk [12] = ρ[12] τ
(1)
k , (18)

and, under finiteness of the kth moment of X(2),

ξk [12] = b ηk µ
(1)
k (19)

and thus

ψk [12] = b η ψ
(1)
k = ρ12 ψ

(1)
k . (20)

Proof. Under 1st moment assumptions, ρ[12] = λ2 [12]/λ
(1)
2 = bλ

(2)
2 /λ

(1)
2 = bη, the 1st

equality by definition, the 2nd by Corollary 2 using (i) and (14), and the 3rd by (ii)

and (2). Also, under 2nd moment assumptions, ρ12 = σ12/σ1σ2 = bσ2
2/σ1σ2 = bσ2/σ1

= bη, by (i) and (ii). This yields (16) and similar arguments yield (17) and (19). 2

3.1.3 Key Inequalities for L-Comoments

Here we rigorously establish that L-correlation like the Pearson version takes values

between ±1 (for previous treatments see [36], [37]). While ρ12 attains ±1 only under

linear relationships, ρ[12] does so under strictly monotone relationships. In the same

sense that ρ12 measures linearity, we thus consider ρ[12] to measure monotonicity.
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Proposition 4 In general,

|λ2 [12]| = 2 |Cov(X(1), F2(X
(2))| ≤ 2Cov(X(1), F1(X

(1)) = λ
(1)
2 (21)

and thus

−1 ≤ ρ[12] ≤ 1. (22)

The upper (lower) bound in (22) is attained when X(1) and X(2) are related a.s.

through a strictly increasing (decreasing) function, and in the case of continuous dis-

tributions this condition is necessary as well.

Proof. Let X(1) and X(2) have joint distribution F12. For V and W with finite

E|V |, E|W |, and E|V W |, we have (see [14], [25]) Cov(V,W ) =
∫ ∫

[FV,W (v,w) −

FV (v)FW (w)] dv dw. Transforming by v = x(1) and w = F2(x
(2)) and checking that

FW (w) = F2(x
(2)) and FV,W (v,w) = F12(x

(1), x(2)), we obtain

Cov(X(1), F2(X
(2))) =

∫ ∫
[F12(x

(1), x(2)) − F1(x
(1))F2(x

(2))] dx(1) dF2(x
(2)). (23)

With FX and FY specified, a joint distribution FX,Y (x, y) satisfies the Fréchet bounds

[11], [24] max{FX(x) + FY (y)− 1, 0} ≤ FX,Y (x, y) ≤ min{FX(x), FY (y)}. The upper

(or lower) bound is attained if Y = g(X) a.s. for strictly increasing (or decreasing)

function g, since then Fg−1(Y )(g
−1(Y )) = FY (Y ) (or 1 − FY (Y )). For continuous

FX and FY this condition is necessary [38, Theorem 2]. Applying the upper Fréchet

bound with (23), we obtain Cov(X(1), F2(X
(2))) =

∫ ∫
[min{F1(x), u}−F1(x)u] dx du.

Also, hypothetically taking X(2) = X(1), in which case F2(X
(2)) = F1(X

(1)) and the

joint distribution of X(1) and F1(X
(1)) attains the upper bound, the same steps yield

Cov(X(1), F1(X
(1))) =

∫ ∫
[min{F1(x), u}−F1(x)u] dx du. Hence Cov(X(1), F2(X

(2)))

≤ Cov(X(1), F1(X
(1))). Now using max{a+b−1, 0}−ab= −[min{1−a, b}−(1−a)b],

along with the lower Fréchet bound, a similar derivation leads to Cov(X(1), F2(X
(2)))

≥ −Cov(X(1), F1(X
(1))), completing the proof. 2
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Remark. Via
∫ ∫

[min{F1(x), u}−F1(x)u] dx du = 1
2

∫
F1(x)[1−F1(x)] dx, we thus

have λ2 =
∫
F (x)[1− F (x)] dx, also given in [15] and equivalently in [26]. 2

Generalization of Proposition 4 to higher order comoment coefficients is somewhat

problematic. The assumptions of Proposition 3, however, yield a useful result.

Corollary 5 Under the conditions of Proposition 3, we have, for k ≥ 2, |τk [12]| ≤

|τ (1)
k | (≤ 1, by (3)) and |ψk [12]| ≤ |ψ(1)

k | (≤ ∞).

3.1.4 L-Correlation, L-Coskewness, and L-Cokurtosis

The 2nd L-comoments and the L-correlations have been studied in [36], [37], [43],

and [31] as Gini covariances and Gini correlations, with emphasis on “Gini regression

analysis” and applications in economics.

One way to interpret λ2 [12] relative to σ12 is through the following analogue of (6):

λ2 [12] = 2Cov(X(1), F2(X
(2))) = 2Cov(X(1), F2(X

(2)) − 1/2).

Thus λ2 [12] differs from σ12 simply in replacing the deviation X(2) − µ
(2)
1 of X(2) from

its mean by the deviation F2(X
(2)) − 1/2, a scale-free measure of the deviation of

X(2) from its median. Similarly, for λ3 [12] we obtain λ3 [12] = Cov(X(1), P ∗
2 (F2(X

(2))))

= 6Cov(X(1), (F2(X
(2)) − 1/2)2). Thus λ3 [12] differs from its central analogue ξ3 [12]

simply by replacing the deviation X(2) − µ
(2)
1 by the deviation F2(X

(2)) − 1/2. For

λ4 [12], we obtain λ4 [12] = Cov(X(1), 20(F2(X
(2)) − 1/2)3 − 3(F2(X

(2)) − 1/2)). Again

the L-comoment replaces X(2) − µ
(2)
1 by F2(X

(2)) − 1/2, except that here in addition

the particular function of the deviation also changes (slightly).

3.2 Representations for λk [12] in Terms of Concomitants

Consider now a sample {(X(1)
i ,X

(2)
i ), 1 ≤ i ≤ n} from F (x(1), x(2)) with marginals F1

and F2. Corresponding to the ordered X(2)-values X
(2)
1:n ≤ X

(2)
2:n ≤ · · · ≤ X

(2)
n:n, we call
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the element of {X(1)
1 , . . . ,X

(1)
n } that is paired with X

(2)
r:n the concomitant X

(12)
[r:n] of X

(2)
r:n

(see [41] and [6]). It is quickly seen that E(X
(12)
[r:n]) = nE(X

(1)
1 |X(2)

1 = X
(2)
r:n), leading

immediately to E(X
(12)
[r:n]) = n

(
n−1
r−1

)
E(X(1) [F2(X

(2))]r−1 [1 − F2(X
(2))]n−r). This may

be used to establish the following representation expressing L-comoments in terms of

expected values of concomitants in exactly the same way that L-moments are defined

in terms of expected values of order statistics. (This does not quite mean, however,

that the L-comoments can be called the L-moments of the concomitants.)

Proposition 6 The kth L-comoment of X(1) with respect to X(2) may be represented

as

λk [12] = k−1
k−1∑

j=0

(−1)j

(
k − 1

j

)
E(X

(12)
[k−j:k]). (24)

Proposition 6 immediately yields another proof, communicated by Jon Hosking, of

the inequality (21). We merely apply to (24) the well-known result [13, Theorem 368]

that, given an ordered sequence a1 ≤ a2 ≤ · · · ≤ aI and any other sequence b1, . . . , bI,

the sum of products
∑I

i=1 aibσ(i) for a permutation (σ(1), . . . , σ(I)) of (1, . . . , I) attains

its maximum (minimum) possible value when the sequence bσ(i), . . . , bσ(I) is increasing

(decreasing).

The main role of Proposition 6, however, is to make it straightforward to obtain

key results for L-comoments as analogues of those for L-moments, with concomitants

in place of order statistics. For example, we obtain for a sample of size n a direct

analogue of (8) and thus the basis for unbiased estimation of comoments:

Proposition 7 For k ≥ 2, and with w
(k)
r:n the same as in (8),

λk [12] = n−1

n∑

r=1

w(k)
r:n E(X

(12)
[r:n]). (25)
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3.3 Estimation of L-Comoments

Proposition 7 yields for the kth L-comoment the unbiased estimator

λ̂k [12] = n−1
n∑

r=1

w(k)
r:nX

(12)
[r:n], (26)

an L-statistic in the concomitants. Further, each λ̂k [12] is a U-statistic, via λk [12] =

E(h(k)((X
(1)
1 ,X

(2)
1 ), . . . , (X

(1)
k ,X

(2)
k ))), with

h(k)((x
(1)
1 , x

(2)
1 ), . . . , (x

(1)
k , x

(2)
k )) = k−1

k−1∑

j=0

(−1)j

(
k − 1

j

)
x

(12)

[k−j:k].

For k = 2 these L- and U-statistic representations are λ̂2 [12] = n−1
∑n

r=1
2r−n−1

n−1
X

(12)

[r:n]

=
(

n
2

)−1∑
1≤i<j≤n(X

(12)
[j:n] −X

(12)
[i:n] )/2, analogous to expressions for the 2nd L-moment,

as expected. (The present U-statistic representation, however, cannot be reexpressed

as one-half the Gini mean difference of the concomitants, because the relevant kernel

in the concomitants, (x
(12)
[2:2] − x

(12)
[1:2])/2, is not the same as the kernel |x(12)

[2:2] − x
(12)
[1:2]|/2

for the Gini mean difference.)

The asymptotic distribution of a vector of L-comoment estimators follows from

standard theory for U-statistics [39]. Defining

g(i)(x(1), x(2)) = i E(h(i)((x(1), x(2)), (X
(1)
2 ,X

(2)
2 ), . . . , (X

(1)
i ,X

(2)
i )))

and ζij = Cov(g(i)(X(1),X(2)), g(j)(X(1),X(2))), 2 ≤ i, j ≤ k, we have

Proposition 8 Under second moment assumptions on X(1), for k ≥ 2 the vector of

sample L-comoments (λ̂2 [12], . . . , λ̂k [12])
′ is asymptotically (k− 1)-variate normal with

mean (λ2 [12], . . . , λk [12])
′ and covariance matrix [ζij]/n.

Alternatively, this follows using (26) with results of Yang [42]. Asymptotic normality

of the vector of scaled versions τ̂i [12], 2 ≤ i ≤ k, follows by standard results on

transformations of asymptotically normal vectors.
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3.4 Multivariate L-Moments

We now define “multivariate L-moments”. For random d-vector X = (X(1), . . . ,X(d))′,

the first order multivariate L-moment is simply the vector mean λ1 = E(X), assumed

finite. For k ≥ 2, the kth multivariate L-moment is the matrix of kth L-comoments

for all pairs (X(i),X(j)), 1 ≤ i, j ≤ d: Λk = (λk [ij])d×d, with Λ2, Λ3, and Λ4 the

L-covariance, L-coskewness, and L-cokurtosis matrices, respectively. Corresponding

versions with scaled elements are given by Λ∗
k = (τk [ij]), the L-comoment coefficient

matrices. The diagonals of Λk and Λ∗
k are the componentwise univariate L-moments

and L-moment coefficients, respectively. In the illustrations of Section 4, we com-

pare with the corresponding central versions, denoted Ξk = (ξk[ij]) and Ξ∗
k = (ψk[ij]),

respectively, k ≥ 2 (Ξ2 and Ξ∗
2 being the usual covariance and correlation matrices).

As with classical correlation, by Proposition 4 the pairwise L-correlations are

assessed through comparison with the values ±1. No such guideline exists in the

case of higher orders, however, neither for central comoment nor L-comoment coef-

ficients, nor for the univariate central counterparts. One compensating approach is

to rely upon suitable reference multivariate distributions as benchmarks. Under cer-

tion assumptions, however, which may be verified for a particular model or assumed

in a nonparametric formulation, we can indeed state upper and lower bounds for

L-comoment coefficients of all orders.

Proposition 9 Assume that the components of X = (X(1), . . . ,X(d))′ have affinely

equivalent marginal distributions and pairwise linear regressions, in the sense of the

conditions of Proposition 3. Then marginal L-moment coefficients agree and likewise
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for marginal central moment coefficients:

τ
(1)
k = . . . = τ

(d)
k = τk, say, (27)

ψ
(1)
k = . . . = ψ

(d)
k = ψk, say, (28)

for k ≥ 3. Further,

ρ[ij] = ρij = ρ[ji], 1 ≤ i, j ≤ d,

yielding, with C = (ρij) = (ρ[ij]),

Λ∗
k = τk C, (29)

Ξ∗
k = ψk C. (30)

This result follows readily from Proposition 3. In each of (29) and (30), the comoment

coefficient matrix is simply the product of the univariate moment coefficient of the

same order and the correlation matrix C. The central comoment and L-comoment

coefficient matrices are both, in this instance, equivalent in structure to the usual

correlation matrix, which thus contains all of the multivariate shape information (in

the scale-free sense).

We note an interesting open characterization issue. The univariate L-moments

determine F in the case of finite mean [5]. In the multivariate case we ask, for

example, to what extent the L-moments and L-comoments together determine the

bivariate distributions.

4 Illustrations and Applications

In the multivariate case, tractable distributions are fewer and parametric approaches

more limited than in the univariate setting. Although univariate L-moments provide

a useful alternative to the classical method of moments in parametric model-fitting,
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and this indeed extends to the multivariate case, the widest and most significant role

of multivariate L-moments lies in providing attractive nonparametric multivariate

estimators and descriptive measures. Using the estimators and theory of Sections 2.2

and 3.3, one may readily compute for a data set sample versions of Λ∗
2, Λ∗

3, and Λ∗
4

and (under second moment assumptions) characterize asymptotic distributions.

In Sections 4.1, 4.2, and 4.3 we illustrate for the normal, Pareto, and Farlie-

Gumbel-Morgenstern multivariate distributions, the first two governed by Proposition

9, the third not. Sections 4.4 and 4.5 indicate the role of multivariate L-moments in

portfolio risk analysis and regional frequency analysis.

4.1 The Multivariate Normal Distribution

For a d-variate normal model with variances σ2
i and covariances σij, the assumptions

of Propositions 1, 3, and 9 are fulfilled with b = σij/σ
2
j , η = σj/σi, and thus bη = ρij.

The comoments are given by λk [ij] = (σij/σ
2
j )λ

(j)
k and ξk [ij] = (σij/σ

2
j )µ

(j)
k , and the

comoment coefficients by τk [ij] = ρijτk and ψk [ij] = ρijψk, k ≥ 2. For odd k ≥ 3, these

quantities are all 0. For even k, the central moment coefficients are invariant over

parameters and readily found to be ψk = (k− 1)(k− 3) · · · 3 · 1. The quantities τk are

more elusive, explicit expressions for the expected values of order statistics for normal

samples in terms of elementary functions being known only for sample sizes ≤ 5. For

a range of larger sample sizes, however, these expected values have been computed

numerically and tabulated, and approximations are available for indefinitely large

sample sizes [22, pp. 94–96]. In particular, the 2nd, 3rd, and 4th normal L-moments

mentioned in Section 1.2 yield τ3 = 0, and τ4 = (30π−1 arctan
√

2 − 9).
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4.2 A Multivariate Pareto Distribution

We consider here the Type II version of the multivariate Pareto distribution of [2],

given by the d-variate joint cdf

F (x(1), . . . , x(d)) = 1 −

[
1 +

d∑

i=1

(
x(i) − θi

σi

)]−α

, (31)

for x(i) > θi and σi > 0, 1 ≤ i ≤ d, and α > 0. The kth moment is finite if k < α.

Many typical applications involve heavy-tailed modeling, with α in the range 1 to 2

for quite diverse data sets (see, for example, [2, Appendix A], [22, p. 575], and [27]).

With θi = σi, 1 ≤ i ≤ d, (31) has long been used in actuarial science and economics.

With θi ≡ 0, (31) arises in reliability theory Nayak [30]. For general discussion of

model (31), see [2] and [24, pp. 380–382 and 603–605].

For parametric inference using this model, one may use the maximum likelihood

method, the classical method-of-moments, or the analogous method-of-L-moments.

We describe below the derivation of tractable formulas for all the relevant L-moments,

L-comoments, central moments, central comoments, and related coefficients.

We also apply model (31) to explore, comparatively with central versions, the

empirical behavior of the sample L-moments, L-comoments, and related coefficients

as nonparametric descriptive measures based on data from an unknown and possibly

heavy-tailed distribution. Some sampling and simulation results are provided below.

4.2.1 Formulas

For X = (X(1), . . . ,X(d))′ having distribution (31), X(i) has marginal distribution

Fi(x
(i)) = 1 − [1 + (σ−1

i (x(i) − θi))]
−α and linear regression on X(j), fulfilling the

assumptions and conclusions of Propositions 1, 3, and 9 with η = σj/σi, b = σi/σjα,

and C = (cij) with cij = 1 or α−1 for i = j or i 6= j. For Fi we obtain λ
(i)
1 =
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θi + σi/(α − 1) = µ
(i)
1 , λ

(i)
k = σi α

∏k−2
j=0(jα + 1)/

∏k
j=1(jα − 1), for k ≥ 2, and thus

τk =
∏k−2

j=0(jα + 1)/
∏k

j=3(jα − 1), for k ≥ 3. For computation of the kth central

moment, we assume without loss of generality that θi = 0 and use [2, (3.3.8)] E(X(i))

= σk
i k!/(α− 1) · · · (α − k), yielding µ

(i)
k and in turn ψk, 2 ≤ k < α. In particular, ψ3

= 2(α + 1)((α − 2)/α)1/2/(α− 3) and ψ4 = 3(3α2 + α + 2)(α− 2)/α(α − 3)(α− 4).

With C, ψk, and τk as above, the comoment coefficient matrices for this model

are now given by (29) and (30). Here the factors τk and ψk depend not only upon

k but also upon the shape parameter α. The use of (29) requires α > 1, while (30)

requires α > k. We thus obtain for this model an extended correlation analysis, since

the formula α−1 for all the Pearson correlations under α > 2 holds also for all the

L-correlations under α > 1. The maximal value 1/2 for the correlation under α > 2

increases to 1 and becomes approached, as α ↓ 1.

4.2.2 Some Empirical Results

To examine the performance of sample L-moments and L-comoments, with special

reference to the case of heavy-tailed data, and to compare with corresponding central

versions, we provide a small simulation study using the above Pareto II model. For

each of α = 1.5, 2.5, 3.5, and 4.5, and sample sizes n = 50 and 500, we generated

20,000 samples from the cdf (31) with d = 3, θi ≡ 0, and σi ≡ 1. Each trivariate

observation X = (X(1),X(2),X(3))′ was obtained via the representation [2, p. 252]X(i)

= Wi/Z, 1 ≤ i ≤ 3, with independent standard exponential random variables W1,

W2, and W3 and gamma(α, 1) random variable Z. For each sample, the L-moments,

L-comoments, central moments, central comoments, and corresponding coefficients

were computed for orders k ≤ 4. With these data, we compare, on the basis of 20,000

observations each, the L-versions and central versions of multivariate nonparametric

descriptive measures for spread, skewness, and kurtosis (taking into account that each
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quantity is measured in a different way by the two versions).

Selected representative results for L-moments and L-comoments of orders 2–4

as well as for L-correlation are provided for α = 1.5 and 4.5 in Tables 1 and 2,

respectively. Table 2 also includes results for central versions (which are defined for α

= 4.5). For each target parameter and sample size, we list the population value and,

based on the 20,000 sample estimates, the mean (mean), median (med), coefficient

of variation (CV), and relative interquartile range (RIQR, defined as IQR/med), of

the estimates. The results in the tables support a number of conclusions: 1. The

CV and RIQR variability measures decrease as sample size n increases. However, for

α = 1.5, the decrease in CV is only slight, reflecting higher sensitivity to extreme

observations. 2. The CV and RIQR measures both increase as the order k increases,

with the increase in CV for the central versions very dramatic. 3. For α = 4.5, the

L-versions are much more stable and efficient than the central versions as estimators

of their respective parameters. For order ≥ 3, the central versions are especially

erratic. 4. For estimation of correlation, α = 4.5 the sample L-correlation and

Pearson correlation are both fairly strong, with the L-version distinctly more stable

and efficient. In the very heavy-tailed case of α = 1.5, however, the sample L-

correlation is noticeably less efficient and the sample Pearson correlation meaningless

(figures not included). 5. The sample L-comoments for λ2[12] and λ2[21] (which are

equal in the present model) behave very consistently for each case of α. 6. Summary

Comment. For nonparametric moment-based description with data from a possibly

heavy-tailed distribution, L-versions offer clear advantages over central versions. The

gain increases with increasing order of moments and with increasing heaviness of tails.
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4.3 Multivariate Farlie-Gumbel-Morgenstern Distributions

An appealing structure for joint distributions having given marginals was introduced

in [28] and [10], with considerable further development leading to so-called Farlie-

Gumbel-Morgenstern (FGM) classes of distributions. Here we consider [24, (44.73)]

F (x(1), . . . , x(d)) = (32)
d∏

i=1

Fi(x
(i)) ×

[
1 +

( ∑

1≤i1<i2≤d

αi1i2 (1 − Fi1(x
(i1))) (1 − Fi2(x

(i2)))

)
+

· · · +

(
α12···d

d∏

i=1

(1 − Fi(x
(i)))

)]
,

with ai1···i` satisfying 1 +
∑

1≤i1<i2≤d αi1i2 εi1 εi2 + · · · + α1 2···d ε1 · · · εd ≥ 0, for all

cases of εi = ±1, a sufficient condition for F (x(1), . . . , x(d)) to be a nondecreas-

ing function of its arguments. In the case of mutually independent components,

αi1···i` ≡ 0. For X = (X(1), . . . ,X(d))′ having cdf (32), X(i) has marginal distribution

Fi(·), yielding marginal L-moments and central moments. For derivation of como-

ments and comoment coefficients, we use the bivariate distributions Fij(x
(i), x(j))

= Fi(x
(i))Fj(x

(j))[1 + αij(1 − Fi(x
(i)))(1 − Fj(x

(j)))], with |αij| ≤ 1, from which

it follows [24, p. 56] that X(i) has linear regression on Fj(X
(j)) with slope b =

4αij Cov(X(i), Fi(X
(i))) = 2αij λ

(i)
2 . Corollary 2 then yields λk [ij] and ξk [ij], k ≥ 2.

Now take all Fj to be continuous. Then the covariance factor in λk [ij] is by (5)

just the kth L-moment of the uniform(0, 1) distribution, which equals 1/6 for k = 2

and 0 for k ≥ 3, by orthogonality of the P ∗
` . The central comoments ξk [12], however,

are nonzero for k ≥ 3. For k = 2, λ2 [ij] = αij λ
(i)
2 /3 and σij = ξ2 [ij] = αij λ

(i)
2 λ

(j)
2 ,

with corresponding correlations ρ[ij] = αij/3 under first moment assumptions and

ρij = αijλ
(i)
2 λ

(j)
2 /σiσj under second moment assumptions. By (7) we thus obtain

|ρij| ≤ |αij |/3 = |ρ[ij]|. Since |αij| ≤ 1, both correlations are thus no greater than
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1/3 in magnitude. This weak dependence is also manifest, in a new way, by the

higher-order L-comoments all being 0, similar to the case of independent variables.

4.4 Modeling for Portfolio Risk Analysis in Finance

Among approaches to portfolio optimization in finance, a central role has long been

played by the Capital Asset Pricing Model (CAPM), initially involving just first and

second moments but recently higher moments also. Skewness measures concern eval-

uation of the downside risk and asymmetric volatility of a portfolio, while spread and

kurtosis measures concern volatility and uncertainty in returns. For detailed discus-

sion, see [1], [7], and [23]. Also increasing is interest in heavy-tailed distributions in

modeling stock returns, raising serious concern regarding higher moment assumptions

and issues of stability and robustness associated with higher order central moments

and comoments. In fact, for the marginal distributions of jointly distributed heavy-

tailed variables in risk analysis, univariate L-moments have already been applied [19].

Such treatments now can be extended using L-comoments.

4.5 Modeling for Regional Frequency Analysis in Environ-

mental Science

Many environmental applications involve, for each variable of interest, for example

streamflow, separate series of observations taken at different measurement sites within

a network. This yields for a given variable multiples samples of similar data, with

possible dependence within as well as between samples. One key goal is to estimate

the upper quantile corresponding to occurrence of a specified “extreme” event. In

many applications the site sample sizes are too small for efficient estimation of upper

quantiles, and data within a suitable region are combined through “regional frequency

analysis” under effective simplifying assumptions. L-moment methods have proved
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effective in providing stable and reliable estimates less sensitive to model assumptions

and extreme observations [20]. In particular, the network is partitioned into approxi-

mately homogeneous regions of sites with very similar distributions for the variable of

interest. For each site, the vector of the first four sample L-moments or coefficients

is obtained and “unusual” sites are identified via a suitable discordancy measure. In

many situations, however, several variables of interest are measured at each site, for

example, streamflow, temperature, precipitation, windspeed, etc. Instead of generat-

ing different partitions separately for each variable, with the multivariate L-moments

approach one can develop an extended regional frequency analysis leading to a single

partition based on all the variables considered jointly.

5 Increased Robustness and Lower Moment As-

sumptions

Trimmed L-Moments

A modification of L-moments to obtain more robustness and reduce moment as-

sumptions is introduced in [8]. Trimmed L-moments are given by increasing the

conceptual sample size for the kth L-moment from k to k + t1 + t2 and using the

k order statistics remaining after trimming the t1 smallest and t2 largest observa-

tions in the conceptual sample. Thus λk given by (1) becomes replaced by λ
(t1,t2)
k =

k−1
∑k−1

j=0 (−1)j
(

k−1
j

)
E(Xk+t1−j:k+t1+t2), k ≥ 1. Except for (t1, t2) = (0, 0), which gives

the usual L-moments, the TL-moments exist under weaker moment assumptions and

eliminate the influence of the most extreme observations. The sample TL-moments

do not, however, improve upon the asymptotic finite sample breakdown point, 0, of

the sample L-moments. See [8], [9] and [18] for detailed development.

Our definitions of L-comoments and L-comoment coefficients carry over easily to
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provide analogous TL-comoments and TL-comoment coefficients. While asymptotic

results are not provided in [8], for (t1, t2) fixed as n→ ∞, the asymptotic results we

have stated for sample L-moments and L-comoments have similar formulations and

derivations for these trimmed versions.

L-Moments on Trimmed Samples

The alternative approach of defining trimmed L-moments simply as ordinary L-

moments defined on a trimmed sample is mentioned in [8] without development.

This yields different versions of trimmed estimators – for example, for first order the

usual trimmed mean, weighting each observation equally after trimming. For (t1, t2)

= (βn, βn) with β > 0, the breakdown point improves from 0 to β. Asymptotic nor-

mality of these sample versions follows, using the U-statistic representations noted in

the present paper, from results of [21] for U-statistics defined on trimmed samples.

Quantiles instead of Expectations

An analogue of L-moments that eliminates moment restrictions entirely consists of

replacing each expectation in (1) by a suitable linear combination of quantiles: λ
(Q)
k =

k−1
∑k−1

j=0 (−1)j
(

k−1
j

)
θp,α(Xk−j:k), where 0 ≤ α ≤ 1/2, 0 ≤ p ≤ 1/2, and θp,α(Xk−j:k) =

pF−1
Xk−j:k

(α) + (1 − 2p)F−1
Xk−j:k

(1/2) = pF−1
Xk−j:k

(1 − α). See [29] for general treatment.

These may be extended to define LQ-comoments and related quantities. Starting

with the representation (24) of L-comoments in terms of concomitants, as given in

Proposition 6, we replace expectations by quantiles to define the kth LQ-comoment

of X(1) with respect to X(2) by λ
(Q)
k [12] = k−1

∑k−1
j=0 (−1)j

(
k−1

j

)
θp,α(X

(12)
[k−j:k]).

Variances and Covariances of Sample Versions

Exact formulae for the variances and covariances of sample L-moments and TL-

moments are developed in [8], [9]. These have the form of a weighted sum of expected
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values of order statistics from a conceptual sample. These can also be derived for

the U-statistic representations we have noted above, via standard expressions for the

variances and covariances of U-statistics. In the same fashion, exact expressions for

the variances and covariances of sample TL-comoments may be obtained.

Distribution-free unbiased estimators of these variances and covariances are also

provided in [8], [9]. We note that, using the weighted sum of expected values from a

conceptual sample to define a corresponding kernel for a U-statistic, distribution-free

unbiased estimators also are given immediately by the corresponding U-statistics.

Acknowledgments

The authors very appreciatively thank William Asquith, Nick Cox, Jon Hosking,

G. L. Thompson, and three anonymous referees for extremely helpful queries and

suggestions that have led to many improvements in the exposition. Support by Na-

tional Science Foundation Grants DMS-0103698 and CCF-0430366 is also gratefully

acknowledged.

References

[1] Adcock, C., Jurczenko, E., and Maillet, B., eds. (2005). Multi-Moment Capital

Asset Pricing Models and Related Topics. Springer-Verlag, Berlin.

[2] Arnold, B. C. (1983). Pareto Distributions. International Cooperative Publishing

House, Fairland, Maryland.

[3] Blom, G. (1980). Extrapolation of linear estimates to larger sample sizes. Journal

of the American Statistical Association 75 912–917.

[4] Bowley, A. L. (1902). Elements of Statistics, 2nd Edition. P. S. King, London.

25



[5] Chan, L. K. (1967). On a characterization of distributions by expected values of

extreme order statistics. American Mathematical Monthly 74 950–951.

[6] David, H. A. and Nagaraja, H. N. (2003). Order Statistics, 3rd Edition. Wiley,

New York.

[7] Dittmar, R. (2002). Nonlinear pricing kernels, kurtosis preference, and evidence

from the cross-section of equity returns. Journal of Finance 57 369–403.

[8] Elamir, E. A. and Seheult, A. H. (2003). Trimmed L-moments. Computational

Statistics and Data Analysis 43 299–314.

[9] Elamir, E. A. and Seheult, A. H. (2004). Exact variance structure of sample

L-moments. Journal of Statistical Planning and Inference 124 337–359.

[10] Farlie, D. J. G. (1960). The performance of some correlation coefficients for a

general bivariate distribution. Biometrika 47 307–323.
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Università di Cagliari 3 3–159.

[13] Hardy, G. H., Littlewood, J. E. and Pólya, G. (1952). Inequalities, 2nd edition.
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Table 1: L-Moment and L-Comoment Sampling Results, α = 1.5.

Sample Values
Target True n = 50 n = 500

Parameter Value mean med CV RIQR mean med CV RIQR

λ2 1.50 1.47 1.09 1.78 0.67 1.52 1.32 1.70 0.32
λ2[12] 1.00 0.97 0.56 2.69 1.09 1.01 0.82 2.54 0.49
λ2[21] 1.00 0.96 0.60 2.93 1.08 1.00 0.82 2.04 0.49
ρ[12] 0.67 0.56 0.58 0.37 0.47 0.63 0.63 0.15 0.19
λ3 1.07 1.05 0.66 2.49 0.95 1.09 0.89 2.37 0.44
λ3[12] 0.71 0.69 0.32 3.75 1.65 0.73 0.53 3.52 0.69
λ4 0.86 0.83 0.45 3.11 1.21 0.87 0.67 2.95 0.56
λ4[12] 0.57 0.54 0.20 4.70 2.27 0.59 0.39 4.37 0.88
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Table 2: L-Moment, L-Comoment, Moment, and Comoment Sampling Results, α =
4.5.

Sample Values
Target True n = 50 n = 500

Parameter Value mean med CV RIQR mean med CV RIQR

λ2 0.161 0.161 0.155 0.25 0.31 0.161 0.160 0.08 0.10
λ2[12] 0.036 0.036 0.032 1.04 1.36 0.036 0.035 0.32 0.43
λ2[21] 0.036 0.036 0.032 1.04 1.37 0.036 0.035 0.32 0.43
ρ[12] 0.222 0.209 0.216 0.90 1.21 0.221 0.221 0.29 0.39
λ3 0.071 0.071 0.065 0.45 0.54 0.071 0.070 0.14 0.18
λ3[12] 0.016 0.016 0.013 1.93 2.81 0.016 0.015 0.59 0.80
λ4 0.042 0.042 0.036 0.41 0.77 0.042 0.041 0.19 0.25
λ4[12] 0.009 0.010 0.007 2.93 4.53 0.009 0.009 0.86 1.15

µ2 0.147 0.150 0.108 1.39 0.86 0.147 0.135 0.45 0.36
ξ2[12] 0.033 0.034 0.019 2.68 1.86 0.032 0.028 0.70 0.63
ρ12 0.222 0.204 0.181 0.98 1.49 0.217 0.267 0.39 0.50
µ3 0.308 0.413 0.138 7.56 1.55 0.388 0.247 3.72 0.77
ξ3[12] 0.068 0.101 0.019 12.5 2.96 0.083 0.046 3.33 1.11
µ4 3.227 2.517 0.185 25.4 2.50 2.485 0.551 19.7 1.40
ξ4[12] 0.717 0.738 0.019 43.3 4.66 0.452 0.091 16.0 1.86
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