
Asynchronous Algorithms for Approximate Distributed
Constraint Optimization with Quality Bounds

Christopher Kiekintveld, Zhengyu Yin, Atul Kumar, and Milind Tambe
University of Southern California

{kiekintv, zhengyuy, atulk, tambe}@usc.edu

ABSTRACT
Distributed Constraint Optimization (DCOP) is a popular frame-
work for cooperative multi-agent decision making. DCOP is NP-
hard, so an important line of work focuses on developing fast in-
complete solution algorithms for large-scale applications. One of
the few incomplete algorithms to provide bounds on solution qual-
ity is k-size optimality, which defines a local optimality criterion
based on the size of the group of deviating agents. Unfortunately,
the lack of a general-purpose algorithm and the commitment to
forming groups based solely on group size has limited the use of
k-size optimality.

This paper introduces t-distance optimality which departs from
k-size optimality by using graph distance as an alternative criteria
for selecting groups of deviating agents. This throws open a new re-
search direction into the tradeoffs between different group selection
and coordination mechanisms for incomplete DCOP algorithms.
We derive theoretical quality bounds for t-distance optimality that
improve known bounds for k-size optimality. In addition, we de-
velop a new efficient asynchronous local search algorithm for find-
ing both k-size and t-distance optimal solutions — allowing these
concepts to be deployed in real applications. Indeed, empirical re-
sults show that this algorithm significantly outperforms the only ex-
isting algorithm for finding general k-size optimal solutions, which
is also synchronous. Finally, we compare the algorithmic perfor-
mance of k-size and t-distance optimality using this algorithm. We
find that t-distance consistently converges to higher-quality solu-
tions in the long run, but results are mixed on convergence speed;
we identify cases where k-size and t-distance converge faster.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

General Terms
Algorithms, Theory, Experimentation

Keywords
DCOP, distributed constraint optimization, asynchronous algorithms,
approximate, incomplete, DALO, experimentation, bounds,
k-Optimality, t-Distance Optimality

Cite as: Asynchronous Algorithms for Approximate Distributed Con-
straint Optimization with Quality Bounds, Christopher Kiekintveld,
Zhengyu Yin, Atul Kumar, and Milind Tambe, Proc. of 9th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2010), van
der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010,
Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Distributed constraint optimization (DCOP) is a common for-

malism for representing multi-agent systems in which agents co-
operate to optimize a global objective. It is well-suited to do-
mains where the primary interactions are between local subsets of
agents, such as sensor networks [17], peer-to-peer networks [5],
and meeting scheduling [14]. There are many complete DCOP al-
gorithms that guarantee global optimality, including ADOPT [12],
DPOP [14], OptAPO [11], and AFB [8]. However, DCOP is NP-
hard [12] so it is necessary to consider faster incomplete methods
for large-scale applications.

Two broad trends have emerged in the literature on incomplete
DCOP algorithms. First, researchers have developed algorithms
that focus on individual agents, varying the information agents col-
lect from others and the decision procedure. Algorithms that fall
into this category include MGM/DBA [13, 17], ALS_DisCOP [18],
and DSA [7]. These algorithms generally do not provide any guar-
antees on the quality of solutions they compute, which may be an
important consideration in some domains. Recent work on max-
sum algorithms [6] has initiated a new trajectory in this area that
offers bounds on solutions quality for specific problem instances.

The second trend is to study approaches for coordinating the
decisions of local groups of agents, instead of having each agent
make an individual choice. The main research thread here is k-
size-optimality — which guarantees that the solution cannot be
improved by any group of k or fewer agents changing their de-
cision [13, 3]. k-size-optimality is the first incomplete method to
offer solution quality bounds that are independent of the problem
instance (in contrast, the bounds for max-sum [6] depend on the
specific problem, including both the constraint graph and reward
matrices). Furthermore, by varying the group size using the k pa-
rameter, this class of algorithms provides the user with a way to
trade off better solution quality (larger k) against the computational
overhead of coordinating larger groups.

While k-size optimality is promising, so far it is the only ap-
proach along this second avenue. There are several fundamental
questions that must be explored to progress this line of work. First,
it is not clear the size of the group is the only way (or the best
way) to define agent groups to coordinate actions. There may be
other criteria that offer better bounds, faster algorithms, or other
advantages. Second, “KOPT" [10] is the only existing algorithm
for k-size optimality that works for arbitrary settings of k; most are
limited to k = 1, with one exception up to k = 3 [13]. Unfor-
tunately, KOPT is synchronous and has significant inefficiencies,
which we show in our experimental results; as a result, applications
of higher settings of k have not been viable.

We contribute four important theoretical, algorithmic, and em-
pirical advances for DCOP. First, we introduce an alternative crite-

133

133-140

ria for local optimality—t-distance optimality— that forms groups
based on the distance between nodes in the constraint graph instead
of strict limits on group size. We derive bounds for t-distance opti-
mality that are stronger than comparable quality bounds for k-size
optimality. This opens the door to future exploration of a broader
class of incomplete algorithms with quality guarantees that vary the
mechanisms for group formation and coordination. Second, we de-
velop an asynchronous local search algorithm for computing either
k-size or t-distance optimality, opening up applications of arbitrary
values of k and t. Third, we evaluate our methods using a new
asynchronous DCOP simulation testbed, using metrics that vary the
relative cost of computation and communication. The experiments
show that our algorithm significantly outperforms KOPT. Finally,
we investigate empirical performance tradeoffs between k-size and
t-distance optimality. While t-distance consistently converges to
higher quality solutions in the long run, we find that relative con-
vergence speed depends on properties of the constraint graph and
the relative costs of computation and communication.

2. DCOP AND K-SIZE OPTIMALITY

2.1 DCOP Definition
A DCOP is defined by sets of variables V := {v1, . . . , vn} and

constraints C := {c1, . . . , cm}. Variables have finite domains and
each variable is controlled by a separate agent. A joint assignment
A := {a1, . . . , an} specifies a value for each variable. We fol-
low the convention in the literature and consider only binary con-
straints. For some pair of variables (vi, vj), a constraint c defines a
real-valued reward for all possible joint assignments, c(ai, aj). The
agents’ objective is to compute an assignment A maximizing the
sum of rewards, R(A) =

P
c∈C c(ai, aj). The constraint graph

has a node for each variable and an edge for each constraint. In the
sequel, we use the terms node, variable and agent interchangeably.
Agents initially know only their own constraints, and can commu-
nicate only with neighbors in the constraint graph. Figure 1 shows
an example DCOP with 3 variables and 3 constraints with identi-
cal reward tables. A = {1, 1, 1} is the optimal assignment with a
reward value of 6.

2.2 k-Size Optimality

v2

v1

v3

0 0 1
0 1 0

vi vj f

1 0 0
1 1 2

Figure 1: An example DCOP
with three binary variables.
Each constraint has the same
reward table.

Pearce et. al. [13]
recently introduced k-size
optimality (called k-optimality
in the original work) as
a local optimality criteria
that offers theoretical guar-
antees on solution quality.
The key idea is that any so-
lution that cannot be im-
proved by simultaneously
changing the assignment of
a subset of the agents is a
local optimum. Varying the
size of the deviating group yields stronger or weaker solutions, with
more or less computational effort.

DEFINITION 1. Let D(A, A′) denote the set of nodes with a
different assignment in A and A′. A DCOP assignment A is k-size
optimal if R(A) ≥ R(A′) for all A′ for which |D(A, A′)| ≤ k.

Consider the DCOP in Figure 1. The assignment {0, 0, 0} is a
k-size optimal solution for k = 1 or k = 2 (with reward of 3), but
not k = 3. It is 1-size optimal because the reward is reduced to 1 if

any single variable changes assignment. If two variables change to
1 the reward decreases to 2 from 3. However, if all three change to
1 the reward increases to 6, so {0, 0, 0} is not 3-size optimal. For
any binary DCOP with n variables, a k-size optimal solution A has
quality R(A) ≥ k−1

2n−k−1
R(A∗), where A∗ is the globally optimal

solution [13]. This bound does not depend on the graph structure,
but tighter bounds are possible given additional information about
the problem [13, 3]. Many incomplete DCOP algorithms includ-
ing MGM and DSA yield 1-size optimal solutions. General k-size
optimality offers a spectrum of solutions with stronger guarantees
in exchange for greater computation. The only existing algorithm
for k-size optimality with arbitrary k is Katagishi and Pearce’s syn-
chronous "KOPT" algorithm [10].

3. T -DISTANCE OPTIMALITY
We introduce a novel local optimality criteria, t-distance opti-

mality, that defines locality based on a group of surrounding nodes
within a fixed distance of a central node. We begin with a formal
definition, and then establish bounds on solution quality. Finally,
we discuss the relationship between k and t optimality.

DEFINITION 2. Let T (vi, vj) be the distance between two vari-
ables in the constraint graph. We denote by Ωt(v) = {u|T (u, v) ≤
t} the t-group centered on v. A DCOP assignment A is t-distance
optimal if R(A) ≥ R(A′) for all A′, where D(A, A′) ⊆ Ωt(v) for
some v ∈ V .

There are at most n distinct t-groups in the constraint graph,
centered on the n variables. There may be fewer than n distinct
groups if some Ωt(v) comprise identical sets of nodes. Consider
again the DCOP in Figure 1. Assignment {0, 0, 0} is 0-distance
optimal, because each t-group contains a single node, equivalent
to k = 1. However, {0, 0, 0} is not 1-distance optimal. A t = 1
group for any variable includes both other variables, so all three can
change to assignment 1 and improve the reward to 6.

3.1 General Solution Quality Bound
We derive a lower bound on the quality of a t-distance optimal

solution, regardless of the graph structure.1

PROPOSITION 1. Consider a DCOP with n variables, mini-
mum constraint arity m, non-negative constraint rewards, and glob-
ally optimal assignment A∗. Any t-distance optimal assignment
Atopt with t > 0 and m + t − 1 ≤ n has a solution quality
R(Atopt) ≥ m+t−1

n
R(A∗).

PROOF. Let Rc(A) denote the reward on constraint c for any as-
signment A. For any subset of constraints S, RS(A) =

P
c∈S Rc(A).

Let σ(c) be the set of variables in c, and π(W) be the set of con-
straints across a subset of nodes W ⊆ V (c ∈ π(W) iff σ(c) ⊆
(W)). Let A′(v) be an assignment derived from Atopt by changing
all assignments in Ωt(v) to their corresponding values in A∗. Since
Atopt is t-distance optimal, R(Atopt) ≥ R(A′(v)), and since con-
straint values are non-negative, R(A′(v)) ≥ Rπ(Ωt(v))(A

′(v)).
Furthermore, A′(v) is identical to A∗ over Ωt(v), so Rπ(Ωt(v))(A

′(v)) =
Rπ(Ωt(v))(A

∗). Therefore, R(Atopt) ≥ Rπ(Ωt(v))(A
∗). Sum-

ming over all t-groups, we have:

nR(Atopt) ≥
nX

i=1

Rπ(Ωt(vi))(A
∗) (1)

Now we count the contribution of each constraint c to the rhs.
For an arbitrary variable v in σ(c), if the t-group Ωt(v) is identical

1The bound applies only for the maximization version of DCOP.

134

to V then R(Atopt) = R(A∗) (thus proving proposition 1). Other-
wise, there exists a vj ∈ V such that T (v, vj) > t. Write the first
t + 1 variables on the shortest path from v to vj as v, v1, . . . , vt.
T (v, vi) = i, which implies that for i > 1, vi /∈ σ(c).

Consider two cases. First, if v1 ∈ σ(c), c appears in π(Ωt(v
′))

for all v′ ∈ σ(c)∪{v2, v3, ..., vt}. This is because for any variable
v′′ in σ(c), T (v′′, vi) ≤ T (v′′, v1) + T (v1, vi) = 1 + i − 1 ≤ t.
Therefore in the rhs of inequality 1, c is counted at least |σ(c)| +
t − 1 ≥ m + t − 1 times (since c has arity ≥ m, |σ(c)| ≥ m).

Now consider when v1 /∈ σ(c). c appears in π(Ωt(v
′)) for all

v′ ∈ σ(c) ∪ {v1, v2, ..., vt−1}. For any v′′ in σ(c), T (v′′, vi) ≤
T (v′′, v)+T (v, vi) = 1+ i ≤ t. Therefore, c will be also counted
at least |σ(c)| + t − 1 ≥ m + t − 1 times. Since c is counted at
least m + t − 1 times in the rhs of inequality 1 in both cases,

R(Atopt) ≥
P

c(m + t − 1)Rc(A
∗)

n
=

(m + t − 1)

n
R(A∗)

PROPOSITION 2. The lower bound in proposition 1 is tight for
t = 1 in DCOPs with binary constraints.

v12 v13v11

v22 v23v21

0 0 1
0 1 0

v1i v2j f

1 0 0
1 1 h

Figure 2: Example showing tightness for t = 1.

PROOF. Consider a complete bipartite graph with 2h binary vari-
ables and constraint payoffs as shown in Figure 2 (for h = 3). Let
S1 = {v11, v12, ..., v1h} and S2 = {v21, v22, ..., v2h}. For any
1 ≤ i, j ≤ h, there is a constraint between v1i and v2j , for a total
of h2 constraints. The global optimum is {1, . . . , 1} with quality
h3. Proposition 1 gives a lower bound of 2

2h
h3 = h2 for t = 1. We

claim that Ā = {0, 0, ..., 0} is 1-distance optimal with quality of
h2. Consider only variable v11, w.l.o.g. due to symmetry. Ω1(v11)
contains all variables in S2 and none in S1. Suppose first that the
value assigned to v11 = 0, and 1 ≤ b ≤ h variables from S2

change to 1. Then the reward decreases to h(h − b) < h2. Now
suppose v11 is assigned 1 and 0 ≤ b ≤ h variables in S2 change to
1. Then the reward is bh + (h − 1)(h − b) = h2 − h + b ≤ h2.
Therefore, Ā is 1-distance optimal.

3.2 Graph-Specific Bounds
In previous work on k-size optimality, linear fractional program-

ming (LFP) was used to find tighter bounds for specific graphs [13].
We use a similar method for t-distance optimality. One LFP vari-
able Rc(Atopt) represents the reward on c in the t-distance opti-
mal solution, and a second Rc(A

∗) represents the reward in the
optimal solution. By definition R(Atopt) ≥ R(A′) for all A′,
where D(Atopt, A

′) ⊆ Ωt(v) for some v ∈ V . Let Θ be the
set of assignments such that A′ ∈ Θ iff D(Atopt, A

′) ⊆ Ωt(v)
for some v ∈ V and agents in D(Atopt, A

′) take the same value

as in A∗. The objective is to minimize
R(Atopt)

R(A∗)
such that ∀A′ ∈

Θ, R(Atopt)−R(A′) ≥ 0. Note that R(Atopt) and R(A∗) can be
expressed as

P
c Rc(Atopt) and

P
c Rc(A

∗). We can transform
the DCOP so that every R(A′) can also be expressed in terms of
sum of Rc(Atopt) and Rc(A

∗).

Figure 3 shows the average graph-specific quality bound over 30
samples for two classes of graphs (see Section 5 for details on prob-
lem generation). The y-axis is the average lower bound, expressed
as a fraction of the optimal solution quality (e.g., a bound of 0.7
implies that T=1 guarantees a minimum of 70% on average of the
global optimum for a 5-node graph). Figure 3(a) varies the num-
ber of nodes for a class of DCOPs with scale-free [1] constraint
graphs, and Figure 3(b) varies the density for 20-node graphs with
uniform random edges. t-distance optimality provides stronger
lower bounds on average than k-size optimality for comparable
t and k (“comparable” t and k explained below), and higher set-
tings of t and k provide substantially stronger bounds. The differ-
ences shown are statistically significant (for example, the p-value
for a comparison of t = 1 and k = 3 on 25-node graphs is
4.58 × 10−24). In addition, k-size optimal bounds tend to degrade
more quickly as density increases, while t-distance optimality is
more stable and improves for very high densities.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25

B
ou

nd
 F

ra
ct

io
n

Number of Nodes

Bounds for Scale Free Graphs
T 1
T 2
K 3
K 5

(a) Scale free density 2

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 2 3 4 5 6 7 8 9

B
ou

nd
 F

ra
ct

io
n

Density

High-Density Random Graphs
T 1
K 3

(b) Random, varying density

Figure 3: Average graph-specific quality bounds.

3.3 Comparison of k and t Optimality
There is a distinct tradeoff between k-size and t-distance opti-

mality. In k-size optimality, the number of nodes in each individ-
ual group is strictly bounded, but the number of distinct k-groups
may be very large, especially in dense graphs. For t-distance op-
timality the situation is reversed; the number of groups is bounded
by the number of variables, but the size of an individual t-group is
unbounded and may be large in dense graphs. One of our primary
contributions in this paper is to empirically test the implications of
this tradeoff for local search methods.

To further understand the link between k-size and t-distance, we
examine some special cases. First, we note that the criteria are
identical for the degenerate case of k = 1 and t = 0, in which
both select groups consisting of individual nodes. The criteria are
also equivalent for appropriate values of k and t in ring graphs.
Consider k = 3 and t = 1 (similarly for any k = 2t + 1 pair).
Every section of 3 connected nodes in the ring is a group for both
k = 3 and t = 1, and no additional groups exist for either case.

There are reasons to believe that t-distance optimality offers ben-
efits over k-size optimality in some cases. First, a t-distance opti-
mal solution always guarantees a k-size optimal solution for k =
2t + 1, since every k-group of this size is contained in a t-group.
The reverse is not true; there are k-size optimal solutions that are
not t-distance optimal for t = (k − 1)/2. For example, consider a
complete graph. A 1-distance optimal solution trivially guarantees
an optimal solution to the DCOP. The lower bound on 3-size opti-
mal solutions in Section 2.2 is known to be tight for this case, so
k-size does not guarantee optimality in this case. Complete graphs
are an extreme (and somewhat artificial) example, but we might
expect similar advantages for t-distance optimality when there are
hub nodes with many connections or densely-connected subgraphs.

135

4. ALGORITHM DESCRIPTION
Both k-size and t-distance optimal solutions can be computed

using local search, and existing algorithms such as MGM[13] and
DSA [7] apply local search to find 1-size (0-distance) optimal solu-
tions. We introduce DALO (Distributed Asynchronous Local Op-
timization), an algorithm which can compute either k-size or t-
distance optimal solutions for any setting of k or t (allowing a
tradeoff in solution quality and computation/communication cost).
DALO-k and DALO-t have the same high-level design, and share
most of their source code in our implementation.

DALO is an anytime algorithm that starts from a random initial
assignment and monotonically improves solution quality.2 Nodes
belong to groups, defined by either k-size or t-distance criteria,
and each group has a unique leader. Fringe nodes of a group are
are directly connected to a group member, but are not members
themselves. DALO has three phases that we describe below:

1. Initialization: Agents send initialization messages to nearby
agents, which are used to find all of the k or t groups in the
constraint graph and assign each group a unique leader.

2. Optimization: Each group leader computes a new optimal
assignment for the group, assuming that all fringe nodes main-
tain their current assignment.

3. Implementation: The group leader implements the new as-
signment if if is an improvement, using an asynchronous
locking/commitment protocol.

The initialization phase is executed once at the beginning, while
phases 2 and 3 are executed in parallel by all groups until quies-
cence. Pseudocode for DALO is presented in Algorithm 1. The
code is structured as a set of message handlers that act on arriving
messages, updating internal state as necessary.

4.1 Initialization and Group Selection
There are two goals for the initialization phase. The first is

to identify all k-size or t-distance groups in the constraint graph
and define a unique leader for each group. The second is to pro-
vide group leaders with the information necessary to compute new
optimal assignments in the optimization phase. Agents begin by
broadcasting discovery information for a limited number of hops.
Full constraint tables are broadcast to a distance of 	 k

2

 or t hops

(line 3), so that group leaders have all constraints for possible group
members. The initial random assignments are sent for 	 k

2

 + 1

or t + 1 hops (line 2), so that group leaders know the current as-
signment of all fringe nodes. No messages are ever sent further
than these initialization messages. From these messages agents
construct a local subgraph of the constraint graph. This is used
to determine which groups the agent could be a leader of, and to
compute a breadth-first spanning tree for future communication.

For k-size groups, we are only interested in connected groups of
size exactly k, since all others are redundant (they are strict subsets
of a larger k-group). A connected group is a set of agents for which
the subgraph containing only these agents is connected. The leader
of the group is one of the central nodes of the group, to minimize
communication costs. If there are multiple central nodes, the one
with the minimum unique id number is the leader.3 Each node uses
a brute-force approach to compute all possible k-size groups that

2In our implementation quality may go down briefly as new assign-
ment for large groups are implemented, but this could be avoided.
3We assume that all nodes have a unique id, included in all mes-
sages (e.g., a MAC address).

Algorithm 1: DALO: Distributed Asynchronous Local Opti-
mization

Initialization ;1
Send_ValueMsg(myNeighbors, myID, myValue, t + 1);2
Send_ConstraintMsg(myNeighbors, myID, myConstraint, t);3

When received ValueMsg(ID, Value, TTL) ;4
Update_LocalView(VariableList, ID, Value);5
if TTL > 0 then6

Send_ValueMsg(myNeighbors, ID, Value, TTL - 1);7
end8
if VariableList[ID].Value != Value and VariableList[ID].IsFringe() then9

changeFlag = true;10
end11

When received ConstraintMsg(ID, Constraint, TTL) ;12
Update_Constraint(ConstraintList, ID, Constraint);13
if TTL > 0 then14

Send_ConstraintMsg(myNeighbors, ID, Constraint, TTL - 1);15
end16

When fringe node value changed (changeFlag is true);17
Solution = Solve(VariableList, ConstraintList);18
LockTreeRoot = ConstructBreadthFirstTree(VariableList, Solution);19
changeFlag = false;20
if find gain then21

if lockingFlag then22
forall child in LockTreeRoot.Children do23

Send_UnlockMsg(VariableList[child.ID], myID, child);24
end25
RelockTimer.activate();26
lockingFlag = false;27

end28
gainFlag = true;29

end30
When there is an unrealized local gain (gainFlag is true);31

if !lockingFlag and RelockTimer is expired then32
LockValue = LockTreeRoot.LockValue;33
forall Node in LockTreeRoot.Children do34

Send_LockMsg(VariableList[Node.ID], myID, Node);35
end36
lockingFlag = true;37

end38
When received LockMsg(ID, Node);39

if not locked or LockValue == Node.LockValue then40
LockSet.add(ID);41
LockValue = Node.LockValue;42
forall child in Node.Children do43

Send_LockMsg(VariableList[child.ID], ID, child);44
end45
Send_AcceptMsg(VariableList[Node.Parent.ID], myID);46

else47
Send_RejectMsg(VariableList[Node.Parent.ID], myID);48

end49
When received UnlockMsg(ID, Node);50

LockSet.remove(ID);51
forall child in Node.Children do52

Send_UnlockMsg(VariableList[child.ID], ID, child);53
end54

When received AcceptMsg(ID);55
AcceptSet.add(ID);56
if AllAccepted(AcceptSet, LockTreeRoot) then57

ChangeValue(LockValue);58
Send_ValueMsg(myNeighbors, myID, myValue, t + 1);59
forall child in LockTreeRoot.Children do60

Send_CommitMsg(VariableList[child.ID], myID, child);61
end62
gainFlag = false;63

end64
When received RejectMsg(ID);65

forall child in LockTreeRoot.Children do66
Send_UnlockMsg(VariableList[child.ID], myID, child);67

end68
RelockTimer.activate();69
ClearAll();70

When received CommitMsg(ID, Node);71
LockSet.remove(ID);72
ChangeValue(LockValue);73
Send_ValueMsg(myNeighbors, myID, myValue, t + 1);74
forall child in Node.Children do75

Send_CommitMsg(VariableList[child.ID], ID, child);76
end77

136

it leads. Each node leads exactly one t-distance group, which con-
tains all nodes within t hops (i.e., all nodes that the leader received
constraint information messages from). However, some groups are
redundant because they are subsumed by or equivalent to another.
We eliminate redundant groups by having each agent send one ad-
ditional message to its neighbors containing the ids of the group
members. When groups are identical only the one with minimum
leader id is used.

4.2 Computing Optimal Group Assignments
After initialization, all group leaders compute new optimal as-

signments for their groups in parallel. The optimization is per-
formed using the same method for DALO-k and DALO-t— the
leader node uses a centralized variable elimination algorithm com-
parable to DPOP [14] to solve the subproblem for the local group.
To do this optimization, the leader must assume that all fringe nodes
maintain their current assignment, known from the initialization
messages. However, nodes can change assignments at any time
while the algorithm is running because they are simultaneously part
of many overlapping groups. When a nodes changes assignment, it
broadcasts the new assignment to a distance of 	 k

2

+ 1 or t + 1 to

ensure that all group leaders have the latest assignment (line 59 and
line 74). As soon as a group leader receives and update assignment
message from any fringe node, the optimization is restarted using
the new information (lines 18–30), where the leader computes the
new optimal assignment in the group and constructs a tree rooted
on LockTreeRoot for forwarding the lock requests. After that,
it switches the changeF lag off to indicate the change on fringe
nodes has been handled. The leader will attempt to lock the entire
group if the new assignment is strictly better and the leader is not
locking. The leader needs to give up the previous lock attempt by
unlocking the entire group if it is locking while receiving updates
from fringe nodes. In that case, it needs to switch the gainF lag
on so that it will consider to implement the new assignment later
on. The computation is not affected by updates to group members,
since the optimization selects the best possible assignment for the
group nodes regardless of the current assignment.

There are several reasons that we adopt a centralized solver for
local groups in DALO-k and DALO-t— providing limited partial
centralization [11] — though in principle any DCOP solver could
be used. It is relatively simple to implement, and allows us to
focus the current analysis on the differences between k-size and
t-distance optimality, rather than the choice of optimization algo-
rithm. The centralized approach also seems to be quite efficient
in this application, where the group sizes are typically small. A
single group may need to optimize several times before the algo-
rithm converges, and sending all of the constraint information once
during initialization may be more efficient than sending constraint
information several times as it is needed.

4.3 Implementing Assignments
Once a group leader has found a new optimal assignment, it

needs to communicate it to the members for them to implement.
Many groups are trying to find and implement new assignments in
parallel, and we want solution quality to improve monotonically
(which also ensures convergence). To ensure monotonicity, we
must ensure that overlapping groups (including fringe nodes) do
not try to change assignments at the same time, which would result
in implementing new assignments based on stale information and
potentially degrade overall solution quality.

Our approach implements new assignments using an asynchronous
protocol based on a standard lock/commit pattern. The leader sends
locks to all group members and fringe nodes (lines 34–36), which

accept the request unless they have already locked on a different
assignment (multiple locks on the same assignment are acceptable,
line 40). Each node maintains a LockSet which represents the
set of nodes that have locked it. A node is added to LockSet
when its lock request is accepted (line 41). If all nodes accept, the
leader sends a commit message and the assignment is implemented
(lines 56–64), where the leader maintains an AcceptSet – the set
of nodes that have accepted the lock request. It needs to switch the
gainF lag off when the group optimal assignment is implemented.
Otherwise, the leader unlocks all nodes and backs off to prevent
deadlock (line 65), waiting for a random interval before attempting
to lock again (line 69). Leaders also delay for a random interval
before the first lock attempt to minimize conflicts. When a node
commits the assignment it broadcasts the new assignment to the
necessary group leaders and is able to accept new lock requests.
Leaders receiving new assignment information unlock any nodes
they have locked and start computing a new optimal assignment.

In our experimental results, we find that our asynchronous ap-
proach is much more efficient than the existing synchronous algo-
rithm. However, the costs of locking and conflicts are still a very
important factor in the performance of the algorithm. We imple-
mented two techniques to improve the locking protocol:

Subset Locking (SL): Subset locking requests locks only from
the subset of nodes that are changing assignment and their imme-
diate neighbors, reducing the probability of conflicts.

Partial Synchronization (PS): In cases where multiple overlap-
ping groups want to change to a new assignment, a very useful
heuristic is to allow the group with the highest gain to change first.
This is easy to implement in a synchronous algorithm, but more
difficult in an asynchronous environment. We can achieve many
of the benefits of this heuristic by "pooling" lock requests at each
node for a small fixed time window. Once the timer expires, the
node accepts the lock request with the largest gain (which is sent in
the initial lock request).

5. EXPERIMENTAL EVALUATION
We test DALO in simulation, using a novel asynchronous testbed

and performance metrics.4 In addition to comparing against KOPT
we examine tradeoffs between k-size and t-distance optimality.

5.1 Testbed and Performance Metrics
Both synchronous and asynchronous DCOP algorithms are com-

monly tested using synchronous simulations. Our experiments use
an asynchronous simulator to provide a more accurate performance
evaluation and highlight differences between synchronous and asyn-
chronous algorithms. We developed a simulator based on DAJ [15],
an open source toolkit that provides low-level messaging support
and visualization for distributed algorithms.

A challenge in evaluating DCOP algorithms is that performance
depends on both messaging and computation costs, which vary
across hardware platforms. Some algorithms may be suited to ap-
plications with relatively cheap messaging, or vice versa. Cycle-
Based Runtime (CBR) [4] is a measure designed to capture both
communication and computation latencies.5 We adapt CBR to an
asynchronous context to define the Computation/Communication
Ratio (CCR) metric. This metric is based on the concept of global
time (instead of synchronized cycles, which do not exist in our sim-

4Code for the DALO algorithm, the testbed framework, and ran-
dom problem instance generators are posted online in the USC
DCOP repository at http://teamcore.usc.edu/dcop.
5Silaghi et al [16] propose an alternative metric, but it is non-trivial
to adapt to our simulation framework.

137

ulations). During a global time step every node is allowed to pro-
cess all incoming messages in it’s queue and send as many mes-
sages as desired to it’s immediate neighbors. Messages are deliv-
ered on the next time step (with no message loss), so communicat-
ing with distant nodes requires multiple time units.

A key difference in our work with synchronous simulators is
that computations may also take more than one time step to com-
plete. Our measure of computation cost is the number of con-
straint checks required (as in CBR), where a check queries the value
of a constraint for a single assignment. The CCR setting defines
the number of constraints assignments that may be evaluated in a
global time step (as defined above). For example, CCR = 0.01 al-
lows each node to process up to 100 checks in a time step. The
results of computations are delayed the requisite number of time
steps, and may be interrupted in the interim. We vary the setting of
CCR in our experiments to test algorithms across a broad range of
possible settings with different relative cost for sending messages
and computation. The setting CCR=0 (zero-cost computation) is
closest to the synchronous setting, although KOPT makes some
additional assumptions as discussed below.

5.2 Benchmark KOPT Algorithm
Katagishi and Pearce’s KOPT [10] is the only existing algorithm

for computing k-size optima for any k. We use it as a benchmark
in our experiments because it has comparable functionality and
has outperformed MGM, DSA, and other incomplete algorithms in
prior experiments [10]. The structure of KOPT is similar to DALO,
in that it finds k-size groups in the graph, computes optimal as-
signments for these groups, and implements these assignments to
monotonically improve global reward. However, KOPT is based on
synchronous mediation, and the details of how each phase operates
are quite different from our methods. We obtained the source code
for KOPT from the authors and modified it as little as possible to
run in the DAJ testbed; the content of messages and computations
was not altered. The KOPT algorithm synchronizes nodes so they
are all executing the same operations at once. This would generally
require additional messages, but we allow the algorithm to synchro-
nize without messages so as not to penalize it in our experiments
(if anything, it has an advantage).

5.3 Results
We present results for three classes of DCOPs with constraint

graphs generated using (1) G(n, M) random graphs [2] (2) Barabasi-
Albert (BA) scale-free graphs [1], and (3) non-linear preferential
attachment (NLPA) graphs based on the BA model, but with a
stronger bias towards having many nodes with few connections. All
graphs have 100 nodes and density four (an average of four edges
per node) unless otherwise noted. Variables have domain size 10,
and rewards are integers drawn from U[0,10000]. All results are
averaged over 50 sample instances.

We compare KOPT, DALO-k, and DALO-t for CCR setting
ranging from low to high computation costs: 0, 0.01, and 0.1. The
results appear in Figures 4(a)–4(j). We plot normalized solution
quality against global time for each algorithm. All algorithms start
from the same random initial assignment. Quality is normalized
by subtracting the reward for the initial assignment and dividing by
the best known reward for each instance (a proxy for the global op-
timum). Error bars are omitted for readability, but spot t-tests are
all significant for the comparisons described below. Both DALO-k
and DALO-t use subset locking and partial synchronization with a
window size of 7 time steps (selected after initial testing).

Plots 4(a)–4(h) test both KOPT and DALO for a wide range of
graph classes and CCR settings, but only include two comparable

Table 1: Statistics for k-size and t-distance groups over 50 in-
stances. Num k is the total number of connected k-groups,
and Max k is the maximum number of groups assigned to any
leader. Size t is the average size of a t-group, Max t is the largest
t-group, and Unique t is the number of non-redundant t-groups
(all k-groups are unique by definition).

Num k Max k Size t Max t Unique t
Random 298 8 5.1 10 96

Scale-free 297 27 5.1 25 90

NLPA 293 65 4.9 53 62

settings of k and t (for readability). NLPA with CCR=0.01 is omit-
ted for space, but shows the same pattern as the other two NLPA
plots. We include three different settings of k and t in plots 4(i)
and 4(j), but omit KOPT for readability. There are two desirable
features of algorithm performance that we focus on. The first is
converging to a high final solution quality in the limit (at the right
edge of a plot). The second is converging more quickly to good so-
lutions, evidenced by higher quality at lower values of global time.

The first important result is that both DALO-k and DALO-t sub-
stantially outperform KOPT for all eight conditions shown in 4(a)–
4(h), converging both more quickly and to higher final solution
quality. When computation is instantaneous (CCR=0) our envi-
ronment is close to a synchronous setting, and even in this case
both DALO algorithms outperform KOPT. The difference is great-
est for high computation costs because KOPT wastes time waiting
for slow computations to finish.

We now turn to comparing DALO-k and DALO-t. DALO-t has
a higher final solution quality in every test case, though in some
the difference is small. Convergence speed depends on both the
graph properties and CCR setting. DALO-k tends to converge
faster in random graphs (4(a)–4(c)), convergence is roughly equiv-
alent in scale free graphs (4(d)–4(f)), and DALO-t converges faster
in NLPA graphs (4(g)–4(f)). DALO-t tends to improve relative
to DALO-k as computation cost increases (higher CCR settings).
For example, DALO-k converges noticeably faster for CCR 0 on
random graphs, but only slightly faster for CCR 0.01 on random
graphs. One factor in these trends is the difference in how DALO-
k and DALO-t handle nodes with many connections, which are
more prevalent in scale-free and NLPA graphs. In DALO-k these
nodes result in many overlapping k-groups, while DALO-t merges
these into a single t-group which is more efficient in many cases.

Figures 4(i) and 4(j) show additional settings of k and t for scale-
free graphs of density 2 and CCR settings of 0 and 0.1. Note that
k = 1 is equivalent to t = 0. As the group size increases with
larger values of k or t, convergence time becomes significantly
slower, but final solution quality improves. The theoretical quality
bounds also improve with higher settings of k and t. We observe
a large improvement in solution quality for moving from k = 1 to
k = 3 or t = 0 to t = 1, and a positive but diminishing return for
additional increases in group size.

The primary tradeoffs between k-size and t-distance are in the
number of groups, their size, and how the group calculations are
handled. Table 1 presents statistics about the number and size of
groups for each class of graphs. For these problems the raw num-
ber of t-groups and the size of k-groups are always 100 and 3,
respectively. The number of k-groups and the average size of a t-
groups remains relatively constant for the different cases, but the
other values change significantly. NLPA graphs are characterized
by large "hub" nodes with many connections. This results in large
t-groups, and more redundant groups (though the problems remain
significantly decentralized). It also results in a very large number

138

Table 2: Number of messages sent and locking conflicts, aver-
aged over 50 random graphs; CCR setting in parentheses.

Msg(0) Conf(0) Msg(.01) Conf(.01) Msg(.1) Conf(.1)

t-opt 56189 569 37727 429 22401 199

k-opt 26958 326 20104 259 10720 59

KOPT 145244 0 42857 0 6689 0

of k-groups that are assigned to a single leader (the Max k col-
umn). Both of these factors tend to result in large computational
burdens on highly-connected nodes in NLPA graphs. We also eval-
uated messaging statistics and the number of locking conflicts on
random graphs, shown in Table 2. DALO-t generally has more
locking conflicts, driven by the larger group sizes. KOPT sends
fewer messages for higher CCR due to periods of inactivity.

The overhead of detecting and resolving conflicts is a large factor
in the performance of DALO. We implemented two techniques to
mitigate this: partial synchronization (PS) and subset locking (SL).
Results using different combinations of PS and SL are presented
in Figure 4(k) for DALO-t. PS and SL substantial improve per-
formance, both individually and in combination. The PS method
is particularly interesting, since it is based on the DCOP-specific
insight that selecting the group with the highest gain to implement
a change is a powerful heuristic in these problems. The final exper-
iment in Figure 4(l) shows the scalability of DALO as we increase
the number of nodes tenfold from 100 to 1000 for random graphs.
The time necessary for both DALO-k and DALO-t to converge is
almost constant across this range of problem size.

6. CONCLUSION
Within the growing literature on incomplete DCOP methods [17,

18, 3, 13, 6] k-size optimality is an important direction because
of the focus on group coordination and the availability of reward-
independent quality bounds. Unfortunately, considering only group
size as a criteria for coordination and the lack of efficient algo-
rithms has so far limited the applicability and impact of this work.
Our four main contributions overcome some of these limitations.
First, t-distance optimality introduces a novel criterion for group
coordination, posing new research questions about how incomplete
algorithms that rely on group coordination should select and coor-
dinate groups. One important insight is that k-size and t-distance
make different tradeoffs in the overall size and number of groups,
impacting theoretical properties and algorithmic performance. Sec-
ond, solution quality bounds we derive for t-distance improve known
bounds for k-size optimality. Third, the asynchronous DALO algo-
rithm provides a general framework for computing both k-size and
t-distance optimality, significantly outperforming KOPT in our ex-
periments and making applications of high values of t and k vi-
able. Fourth, DALO allows us to investigate tradeoffs: DALO-t
consistently converges to better solutions in practice than DALO-
k. DALO-t also converges more quickly that DALO-k in many
settings, particularly when computation is costly and the constraint
graph has large hub nodes. However, DALO-k converges more
quickly on random graphs with low computation costs.

Investigating additional criteria for group selection (e.g., hybrids
of k-size and t-distance) is a key avenue for future work. Another
is to compare the privacy implications of different grouping cri-
teria, which has been an important research thrust in k-size opti-
mality [9]. Finally, it is important to thoroughly study the differ-
ences between k-size/t-distance optimality and the max-sum algo-
rithm [6]. The two classes of algorithms offer different types of
guarantees based on different assumptions, and future work could
clarify tradeoffs of each approach.

Acknowledgements
This research was supported by DARPA SBIR Phase II Contract
W31P4Q- 06-C-0410 via a subcontract from Perceptronics Inc.

7. REFERENCES
[1] A.-L. Barabasi and R. Albert. Emergence of scaling in

random networks. Science, 286(5439), 1999.

[2] B. Bollobas. Random Graphs. Cambridge University Press,
2nd edition, 2001.

[3] E. Bowring, J. P. Pearce, C. Portway, M. Jain, and M. Tambe.
On k-optimal distributed constraint optimization algorithms:
New bounds and algorithms. In AAMAS, 2008.

[4] J. Davin and P. J. Modi. Impact of problem centralization in
distributed constraint optimization algorithms. In AAMAS,
2005.

[5] B. Faltings, D. Parkes, A. Petcu, and J. Shneidman.
Optimizing streaming applications with self-interested users
using M-DPOP. In COMSOC, 2006.

[6] A. Farinelli, A. Rogers, and N. Jennings. Bounded
approximate decentralised coordination using the max-sum
algorithm. In DCR, 2009.

[7] S. Fitzpatrick and L. Meertens. Distributed coordination
through anarchic optimization. In V. Lesser, C. L. Ortiz, and
M. Tambe, editors, Distributed Sensor Networks: A
Multiagent Perspective. Kluwer, 2003.

[8] A. Gershman, A. Meisels, and R. Zivan. Asynchronous
forward-bounding for distributed constraints optimization. In
First International Workshop on Distributed and Speculative
Constraint Processing, 2006.

[9] R. Greenstadt. An analysis of privacy loss in k-optimal
algorithms. In DCR, 2008.

[10] H. Katagishi and J. P. Pearce. KOPT: Distributed DCOP
algorithm for arbitrary k-optima with monotonically
increasing utility. In Ninth DCR Workshop (CP-07), 2007.

[11] R. Mailler and V. Lesser. Using cooperative mediation to
solve distributed constraint satisfaction problems. In
AAMAS, 2004.

[12] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 161(1–2), 2005.

[13] J. P. Pearce, M. Tambe, and R. T. Maheswaran. Solving
multiagent networks using distributed constraint
optimization. AI Magazine, 29(3), 2008.

[14] A. Petcu and B. Faltings. DPOP: A scalable method for
multiagent constraint optimization. In IJCAI, 2005.

[15] W. Schreiner. A java toolkit for teaching distributed
algorithms. In ITCSE, 2002.

[16] M. C. Silaghi, R. N. Lass, E. A. Sultanik, W. C.Regli,
T. Matsui, and M. Yokoo. The operation point units of
distributed constraint solvers. In DCR, 2008.

[17] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributed
stochastic search and distributed breakout: Properties,
comparison and applications to constraint optimization
problems in sensor networks. Artificial Intelligence,
161(1–2), 2005.

[18] R. Zivan. Anytime local search for distributed constraint
optimization. In AAMAS, 2008.

139

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Random Graphs, CCR 0

T 1
K 3

KOPT 3

(a)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Random Graphs, CCR 0.01

T 1
K 3

KOPT 3

(b)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Random Graphs, CCR 0.1

T 1
K 3

KOPT 3

(c)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Scale-free Graphs, CCR 0

T 1
K 3

KOPT 3

(d)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Scale-free Graphs, CCR 0.01

T 1
K 3

KOPT 3

(e)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Scale-free Graphs, CCR 0.1

T 1
K 3

KOPT 3

(f)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

NLPA Graphs, CCR 0

T 1
K 3

KOPT 3

(g)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

NLPA Graphs, CCR 0.1

T 1
K 3

KOPT 3

(h)

 70

 75

 80

 85

 90

 95

 100

 0 100 200 300 400 500 600 700 800N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Scalefree Graphs, CCR 0

T 1
T 2
K 1
K 3
K 5

(i)

 70

 75

 80

 85

 90

 95

 100

 0 100 200 300 400 500 600 700 800N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Scalefree Graphs, CCR 0.1

T 1
T 2
K 1
K 3
K 5

(j)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300N
or

m
al

iz
ed

 Q
ua

lit
y

Global Time

Locking Improvements

PS 0, no SL (original)
PS 2, no SL
PS 4, no SL

PS 0, SL
PS 4, SL

(k)

 0

 50

 100

 150

 200

 250

 300

 350

 100 200 300 400 500 600 700 800 900 1000C
on

ve
rg

en
ce

 T
im

e

Number of Nodes

Scaling to Large Graphs

100% Quality K3
95% Quality K3

100% Quality T1
95% Quality T1

(l)

Figure 4: Experimental results comparing DALO-k, DALO-t, and KOPT.

140

