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Abstract. This paper presengERSE- SEmantic Routing SystEm-— a distributed
multi-agent system composed of specialised agents thaidgorobust and ef-
ficient gathering and aggregation of digital content fromedse resources. The
agents composingeRSEuUse ontological descriptions to search and retrieve se-
mantically annotated knowledge sources, by maintainisgraantic indewf the
instances of the annotation ontology. The efficient realiés made it possible
through the semantic routing mechanism, that permits tatiiyethe agent index-
ing the resources requested by a user query without havingabotain a central
index, and by minimising the number of messages broadctsthd system. The
system is also capable of exhibiting autonomic behavioutoAomic behaviour
is characterised by self configuration and self healing loififes, aimed at per-
mitting the system to manage the failure of one or more ofgenés and ensure
continuous functioning.

1 Introduction

The Semantic Web primarily aims to share knowledge fronritisted, dynamic, and
heterogeneous sources, whose content is expressed in énmaghdable format by
means of languages such as RDF [1] and OWL, in a similar walabih which in-
formation is shared on the World Wide Web. Agents play argirgkrole in this vision;
they use these machine-readable representations to gatthaggregate knowledge, as
well as to reason in order to manage inconsistencies, amfd@orniew facts. Together
with their ability to process Semantic Web content, ageatdribute features, such as
distribution, autonomy, and social ability, that make theanticularly suited to man-
age large, heterogenous, and distributed knowledge biasescent years, many tools
have been developed for managing traditional knowledgecesyubut such approaches
usually imply a centralised, and static environment whbeeeultimate control is cen-
tralised. This type of approach does not promise to scaléta¢he Semantic Web,
which is an open, dynamic, and often chaotic environment.

Distributed, decentralised systems are thought to be artasternative for scalabil-
ity [2]; their architecture is characterised by system congnts each with equal roles
and the capability to exchange knowledge and servicestljineith each other. Peer-
to-peer technology (P2P) such as Edutella [2] or Morphelis[8 possible answer to
this quest for decentralisation. P2P systems are netwdnsers with equal roles and
capabilities, and recently peer-based management systavedeen proposed, which
exploit P2P technology for sharing and retrieving huge amwof data [4]. However,



most approaches are oriented at file sharing, rather thaie addnagement of semanti-
cally enriched content as provided by the Semantic Web. §katgparadigm seems to
offer equally good prospects for the management of senalytEnnotated content: on
the one hand, agents are intrinsically distributed, antiglas for agent oriented pro-
gramming offer standardised communication protocols aadagement mechanisms
(for instance, Jade [5]). On the other hand agents can pdsgihart”, service-based
support for autonomous semantic web tools, and well-auteendiscovery mecha-
nisms for advertising and locating resources within an ofpemework, established
trust and reputation frameworks, and proactive supportdar maintenance [6]. One
way in which the adoption of the agent-oriented paradigmbeabeneficial to semantic
web applications is by making them exhibittonomic behaviouAutonomic comput-
ing is an emerging branch of software engineering promatiegdesign and imple-
mentation of self-managing systems, many of which congiseeeral interacting, au-
tonomous components that in turn comprise large numbergeficting, autonomous,
self-governing components at the next level down [7]. Tyjetof behaviour is intended
to make it easier to manage the complexity and scalabilityoofiplex distributed sys-
tems, such as those to manage Semantic Web content.

In this work we concentrate on thiebustandefficientgathering and aggregation of
digital content from diverse resources. We developed aivagint system composed of
specialised agents that is able to search and retrieve sieaigrannotated knowledge
sources. In addition to searching for digital content, thmantic information used to
annotate resources is used to explore the addition of antiorfeatures to the system,
in order to equip it with self-management and self-healeggbilities, aimed at permit-
ting the system to manage the failure of one or more of its tsggerd ensure continuous
functioning. In this paper we introduce the systesERSE(SEmantic Routing SystEm)
and its main functionalities. This paper extends our previavork in this area [8, 9]
by introducing the autonomic behaviour features exhildiederRSEand by presenting
details of its multi-platform implementation. In the remdér of this paper we describe
the system’s conceptual architecture and the informatmmfiletween the system com-
ponents. We examine the two main functionalities offerethigysystem, namely query
management and autonomic behaviour, and we present a sgbairaents aimed at
evaluating the performance for each of these functioeafti

2 SERSE

SERSES primary goal is to enable the semantic retrieval and agggien of the digital
content of web resourceseRsSEis designed as a multi-agent system composed of spe-
cialised agents capable of functioning in a scalable,salfiaging, open, and dynamic
fashion. The system requires resources to be semanticalbtated according to one or
more ontologies expressed in OWL, and at present is not &apéliscovering anno-
tated resources autonomously. For this pur@eseserelies on the Annotation System
component of Esperonto, that informs it of newly acquireateat providing references

! sersewas developed as part of the now concluded Esperonto p(t§de2001-34373) whose
aim was to provide a set of tools for performing the transifi@m the traditional web to the
semantic web [8]



to both the resources and their RDF annotations. The déserigl the Annotation Sys-
tem is outside the scope of this paper. However, for the mpapbddescribingERSE it
is sufficient to say that annotations are semi-structurptesentations of information
referencing instances (of one or more concepts in the atimotntology) that appear
in the content of web resourcés.

The core of the system is represented by a network of spseeibtigents providing
indexingand routing functionalites, that permit them to efficiently retrievesoerces
based on the semantics of their content. Each agespdsialisedwith respect to a
concept, meaning that it can access the resources whostatong contain instances
of that concept, and it is only aware of those agents spseilvith concepts that are
similar or relatedto its own. Therefore, the agent network is organised ggmantic
neighbourhoodshat mirror the structure of the ontology (in terms of theraiehical
and specific relationships defined in the ontology).

That is, more formally, if we consider the ontology as a diedc labelled graph
G = (N, E), whereN is a finite set of labelled nodes, each corresponding to asginc
in the ontology, andv is a finite set of labelled edges, then the topology of the agtw
of routers is determined by the structureiofthat is by the semantic relations between
the nodes), and there is a one to one correspondence betweradesV and the set
of agents composing the nework For each agent in the netwodl, following [21],
we can define a functioknows C A x A, such thaknows(a;, a;), if there is an edge
ey, between the concept; of the agent:;, and the concept; of the agent:;, or, more
informally, if there is a relationship linking; to ;. The functiorknows is symmetric,
thusknows(a;, aj) = knows(a;, a;). The neighbourhood of an agentis then given
by the setVeighbour,, = {a; € Alknows(a;, a;)}.

Neighbourhoods are partially overlapping, and this pestfie routing mechanism to
find the answer to a query in a limited number of hops, withcaxdifg to browse
the whole ontology and without having to flood the networkhwat large humber of
messages. Semantic neighbourhoods are automaticallyrdetel when the system re-
ceives a notification of new ontological content — received@w concepts are used to
annotate resources. The neighbourhoods are not statibdyutiynamically change as
the system is required to handle further notification of nedotogical content, or if the
ontology is modified (and a new version of the ontology is useithe annotation). In
this way, we have multiple overlapping neighbourhoodshezmtred on one concept,
and agents have knowledge only of the agents composingtéiginbourhood.

Indexing ontological content consists of creating streestihat link resources, iden-
tified through their URLSs, to RDF statements describinganses of the concepts in the
ontologies. The routing functionality permg&ERSEto route queries to the agents that
are capable of retrieving the resources annotated withdheapts they are specialised
on.sersehandles queries expressed in RDQL [10] (an RDF query largdageloped
by HP as part of the Jena toolkit) [11] on any combination ofaapts and concepts
properties (including object properties). Complex queeee decomposed into simple
ones, each regarding a single concept. Each simple quesytisd to one of the agents
in the network of routers, and the agent consults its indedetermine whether it can
answer the query. If the agent cannot answer the query, theates the request to the

2 We are currently working at makingerRSEa standalone system.



agent in its neighbourhood that handles the conckysesto the one in the query. We
evaluate similarity between concepts according to the atefiroposed in the Quick
Ontology Mapping (QOM) approach by [12]. However, we modifibe algorithm so
that it exhibits a greedy but less precise behaviour, impleed through heuristics, and
that provides a higher number of potential matches. Ehriigstaab’s approach is aimed
at ontology mapping, a process that can be taken off line agdires high precision
in order to establish the correct mappings. Semantic rgusiifferent in nature: the
evaluation of similarity should be sufficiently precise &t@mine a new agent to whom
the query can be routed, not necessarilyliestagent. In addition, semantic routing is
a dynamic process executed on line, and therefore it regjfast computation in order
to minimise the time spent by the user waiting for an answer.di¥cuss in more de-
tail the indexing and routing in Section 4, where these fionetities are related to the
component oBERSEs architecture that provides them.

In addition to the main indexing and routing facilities, #estem is also intended to
be self-governing; it uses autonomic computing technitmupseserve index knowledge
and to adjust the index connections when one or more indidbs$nwhe system are
unavailable. Autonomic behaviour is also used to maintaérslystem operative in case
of failure of one or more agent or one platform. Section 5 dbss the mechanisms
used to implement autonomic behaviousiBRSE

3 Conceptual architecture

SERSES conceptual architecture is composed of six types of sised agents provid-
ing different functionalities. The heart of the architaetis composed by the network of
Rout er agent s, providing indexing and routing capabilities. These agamné com-
plemented by a number of other specialised agents provalieglary services, that
implement system management functions. Figure 1 showsffleesaht roles played by
agents ilsErRsEand the message flow in the system.

SERSEIS built within JADE — aFIPA compliant agent deployment environment [5].
The system is designed to be distributed over a numbesbE platforms, on differ-
ent host machines, with each platform containing a part®frdexing system and its
own interface agent set. This enables the system to operatevéhen reduced to one
platform, and to dynamically reconfigure the index netwarke@sponse to temporary
or permanent outages of agents and platforms in the systedsol uses theeNA se-
mantic web toolkit to handle RDFS, OWL, and RDQERSEIs able to use ontological
definitions expressed in either RDFS or OWL (Lite and DL)ngdhe full range of ex-
pressions available. The different roles that agents pi@ersEare described below,
and Figure 2 shows the interactions between the differgrasyf agents on a single
platform and on multiple platforms.

— Rout er Agent s: Router agents provide the core functionalities of theeyst
indexing, routing and self-management. In order to protidese functionalities
these agents maintain two types of indicespatent indexand arouting index The
content index stores the URI identifying the RDF statemeafesrring to instances
of some resources, the statements, and the URLs used tdydeam. The routing
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index stores the communications address and concept litdmdésach of the router
agents that are semantic neighbours. Routing indexesinamties for three types
of neighbour links:

e actuat neighbour concepts which are handled by existing agents;

e ontology neighbouring concepts (according to the ontology) for alhno
agent yet exists; and

e implied: concepts outside the neighbourhood that have still torided to ex-
isting concepts. These links can be implied from the absehome or more
ontology neighbours.

Implied and ontology neighbours are used to provide somleso$elf management
functionalities described in Section 5 and are used to gtieryouters even if the
generation of the network is not complete, and, more in génierall cases when
a path between two agents should have been establishediskeetteey concern
concepts in the ontology that are related, but the link ha®een created, yet. By
means of this mechanism, each agent is responsible for setdithe total system
knowledge and has only localised knowledge of its semagiighbours.

Rout er agent s are also equipped with self management capabilities that al
them to actively respond to changes in the state of theirti@igrhood. In order
to ascertain the actual status of their neighbourhood, &agents employ two
types of messages: they both monitor the result of theiraotgrouting messages
(to verify that they do not return an error), and they peatly sendheartbeat
message§’] that “ping” their neighbour. In addition, Router agemtsriodically
save the state of their content and routing indexes enabitiedgnowledge to be
recovered following any failure of the agent. Router agemts distributed over
multiple platforms, while the other agents described bedosvreplicated for each
of the platforms.

— Rout er Pl atform Agent s: They enable the distribution over multiple plat-
forms and provide management services, such as the credtanewRout er
agent , for each agent platform on which the network of routersstriiuted. The
Rout er Pl at f or m Agent is also responsible for triggering the dynamic cre-
ation and adjustment of the network of routers upon recdigtenotifications of
new content, as described in Section 5

— Noti fication Agents: They are the interface between each platform and the
Annotation System of Esperonto, and receive notificatiegarding the annotation
of new resources, or the addition of new concepts in the ogyolThey decompose
notifications regarding multiple concepts and re-sendsth&smic notifications into
theRout er Agent s network as Agent Communication Language messages.

— I nterface Agents: They provide a connection between each agent platform
and the software components operating outside the platiraoh as the web-based
guery interface, by creating a socket interface and pasgiegy and response ob-
jects across it.

— Query Managenent Agents (QVA):Theydecompose complex queries, that
involve multiple concepts linked by logical connectivagpi atomic queries. The
atomic queries are then sent into fR@ut er Agent network; when the QMA re-
ceives the responses to each query, these are aggregatedpplying the logical



connectives, thus producing a set of web resources thatnttacconstraints ex-
pressed in the complex query. During the process duplioatamces are identified
and removed.

— Portal Agents: They act as a gateway into tiRout er Agent network,
through which all atomic notifications and queries are pdsEach platform in
the system haslor t al Agent, that maintains a list adignificant pointsvithin
the router system, and send messages into the network @afynibuting them to
the most appropriate of these points.

Finally, the other main component sERsSEis the web-based query interface. This
enables the construction of queries using concepts frontigteuontologies, logical
connectives between the concepts, and specification oalies of concept properties.
Responses to queries are displayed as lists of web respidertified by URLs, that
match query constraints together with the URIs of the ingarthat annotate them. In
addition, query replies also contain a list of the concdms are neighbours of each the
responding agents. This enables follow-up queries in wttietoriginal query is modi-
fied by changing property values of concepts, exchangingoneept for a similar one,
broadening or narrowing a query by substituting ontologiteestors or descendents
of a concept, etc.

4 Query management

As mentioned in Section ZeRSEhandles queries specified in RDQL on any combina-
tion of concepts and concept properties (including objeaperties). Queries are sent
fromthe locall nt er f ace Agent to the localQVA, where they are decomposed into
atomic queries. Query decomposition is achieved by syigtlt parsing the query and
identifying blocks that form atomic queries, but presetwe $emantics of the original
query.

The QVA sends each atomic query to the lofalr t al Agent , which forwards
each of them to the mostompetenRout er Agent known to the localPort al
Agent , that is theRout er Agent that has the highest similarity score with the con-
ceptin the atomic query. In the currentimplementatioe R SE these agents are those
which have knowledge of the root nodes of each of the ontektiiat have been no-
tified to the system. The purpose of this initial semantidirguis to enter the router
network in the general semantic area of the queried conogpiiving the efficiency
of the routing process. Although routing first to the root e@djents might potentially
be perceived as a bottleneck, these agents are effecthadg tthat are likely to have
the smallest workload from handling queries. In fact, indlbenain ontologies used by
SERSE as well as in most domain ontologies, the majority of theéainses are direct
instances of very specific concepts (leaf nodes), whilst neales have few (if any)
instances. Therefore, the additional routing effort ofsthagents is compensated by
answering fewer queries. In addition, any set of signifieantty points could become a
bottleneck, and alternatives are constrained by the psoaggaecessary to identify the
best entry point, and message workloads.

Once an atomic query is received by the appropfiRatet er Agent , it extracts
the query constraints expressed in RDQL, then it consusltsdhtent index to check if



it stores the URI of instances of the query concept. Any imsa that match the query
contribute to the answer set, which consists of a list ofueses that are described by
matching instances, and is returned directly to@wa that sent out the query. Included
in the query reply is information about the concepts hanbdiedeighbours of the reply-
ing Rout er Agent and the agent address - which is then used in follow-up gsterie
This then enables users to semantically browse from oneepbtother closely related
concepts, using knowledge about these relationships lyeligiRout er Agent and
revealed by the original query.

If the Rout er agent does not know the queried concept, the query is routed to
the semantic neighbour with the most similar expertise Shimantic routing mecha-
nism is designed to move messages in a series of hops aceossttiork ofRout er
Agent s, until the message is addressed toRo@it er Agent indexing instances of
the concept in the message.

5 Autonomic behaviour

SERSEhas been designed to autonomously react to a number of ¢hahtsn affect its
processing. These include the notification of new ontolbgyalso exceptional events
such as the controlled shut down of an agent. The aim is todaystem that can work
in an open environment, such as the Semantic Web, and thealsbte, robust, and
requires limited human intervention for its functioningrkhis reasonserRsehas been
designed as a multi-agent system in which agents can joiteand the system without
having to take (part of) the system off-line, or without dedjng the performance of the
system.

Autonomic behaviour isERSESuUpervises two main functionalities: dynamic man-
agement of the network of router agents, and failure managem
The management of the router agents consists mainly of ttreeafperations to create
the network of routers from scratch once the system is ndtifietheNot i f i cati on
Agent that a new ontology is available. Failure management cboftke functional-
ities that enable the system to continue to operate desteetmporary or permanent
loss of agents or whole platforms from an existing index meknvAutonomic behaviour
is achieved by a number of different mechanisms:

— Creation request message#d/hen theNoti fi cati on Agent in one of the
platforms receives a notification of new annotation ontglafdetermines au-
tonomously the root concept(s) and generates a creatioiesemessage for each
of these concepts, to be sent to tRReut er Pl at f or m Agent, that in turn,
creates a router agent for each root concept.

— Router network populatiariThe population of the network of routers is triggered
by the notification of new content messages receivedbyse If the message
notifies instances of a concept for which a router agent hagetdeen created,
the Rout er Pl at f or m Agent creates a neWRout er agent, and each of
the neighbouring router agents affected by this event @ptteir neighbourhood
indices, with the pointers to the new actual neighbourshis situation, ontology
and implied links are created, in order to fill gaps betweenekisting routers and
the newly created one.



— Heartbeat monitor Rout er Agent s monitor the success of messages sent to
neighbours, and record this in their routing index. Whensages are unsuccess-
ful the neighbour is first set to a warning level, and if faflwontinues for a short
time the entry is marked as unavailable. The neighbour wiltbnsidered avail-
able again if a message is received from it within a time gkt otherwise will
eventually be removed from the neighbourhood.

— Index backup and backup recoveRput er Agent s periodically save their knowl-
edge to an XML backup file, which enables the recovery of kiedgé follow-
ing the failure of theRout er Agent or platform. The knowledge stored in the
file consists of the contents of both the content index andirgundex. Recov-
ery from failure of a platform is addressed by having Reut er Pl at f orm
Agent on start-up (following a manual platform re-start) check $aved state
files, and, if any are found, re-creati®put er Agent s using the stored knowl-
edge. Recovery from the failure of individudbut er Agent s is addressed by
them contacting the locdkout er Pl at f or m Agent when they shut-down,
and theRout er Pl at f or m Agent will then use the saved state to re-create
theRout er Agent.

— Rout er Agent shutdown proceduraVhenRout er Agent s are subject to a
controlled shut-down of their platform, they immediatesve their knowledge to
file, and then contact each of their neighbours to inform tleérthe shut-down.
This enables the neighbours to reactively adapt their teighhood connections
to reflect the loss of neighbour. Recovery from shut-dowke that for failure, is
initially a manual process but once started®oait er Pl at f or m Agent will
detect the saved-states and restoreRingt er Agent s.

6 Experimental evaluation

We conducted a number of experiments aimed to analyse tlierpance of the two
main functionalities provided by the system: query manag@mand autonomic be-
haviour. In our experiments, we used two ontologies dea@s part of the use-cases
of Esperonto, the Fund Finder and the Cultural Tour ont@ledir which we had also
the annotated documents storing the instances of the ctsnddpe Fund Finder is ex-
pressed in OWL-Lite, and it is composed of around 50 condg@®f which are root
concepts), and of 118 instances. The Cultural Tour onta®gy RDFS ontology com-
posed of 60 concepts, and has more that 61000 instances.

In order to test the performance of the query managemenepsowe measured,
for each ontology, the round-trip reply time for a set of tiyefixed queries, listed in
increasing order of complexity. Figure 5 and Figure 6 ilatt the last query we posed
for each of the ontologies, in order to show the level of caxripy of the queries used
in the experiments. The queries were posed#asEin sequence, and for each query
we performed 100thdependentepetitions, in order to guarantee the reliability of the
results. Since we are using exact queries, the use of tadltinformation Retrieval
measures, such gwecisionand recall makes no sense, since precision will always
be 1. Figure 3 shows the response time, averaged over thitimeys for each of the
ontologies. We have compared these results with thosenautédy querying the static
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RDF model in Jena, the response times averaged over 10Gti@pefor each query
are depicted in Figure 4.

With respect to the autonomic behaviour exhibited4BRSE we measured, for
each of the two ontologies, the query response time in tWergifit scenarios. Scenario
1 aims to test how welsERSEcopes with the notifications of new content. This was
achieved by creating nelRRout er agent s along the route of a query, by means of in-
troducing messages notifying the acquisition of new cantdhat is, of new resources
containing instances of some concept that was not instadttzefore. The experiment
was designed to implement the following procedure:

1. Remove all notifications concerning resources contgiirigtances of a concept,

for instanceOdr gani sat i on Appl i cant in the Fund Finder ontology;

2. Add a new notification for the concepWE, subsumed byx gani sati on

Appl i cant;

3. Build sersE this consists of starting thRout er Pl at f or m agent for the
platforms, loading the ontology model and the notificatj@rsl the dynamic gen-
eration of the network of routers from the notifications;

. Run query no. 1, an atomic query with subjSbE;

Notify one resource with instances@fgani sati on Applicati on;

Run query no. 2, an atomic query with subjSbE;

Notify one resource with instances@npany;

. Run query no. 3, an atomic query with subjSbE;

®~No oA

Figure 7 illustrates the relations existing between thecepts in the ontology that are
used in the notifications and queries of Scenario 1. Sce@aims to test how the sys-
tem responds to an increase in the workload due to introduagients in the semantic
neighbourhood, and hence to the increase in the number @frgensimilarity (and re-
latedness) calculations that need to be performed duremgdmantic routing process.
The process followed to set up the experiment mirrors thegs® followed in Sce-
nario 1, but it uses different parts of the ontologies, areires notifications related to
five concepts.

Figure 8 shows the response times for the queries posed By#tem in both scenar-
ios. The experimental data concerning the round trip resptime to different queries
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Fig. 8. Response times in relation to the queries in Scenario 1 aedaBio 2

shows that the query management process implemenssRiaetakes a longer time to
answer the queries when compared with Jena. This resuliitis jpredictable because
SERSEadds the overhead of the messages exchanged in order te ¢haldeman-
tic routing and the system’s self management . HoweseRrseis still quite efficient,
keeping the response time generally under the second. ingbpect the results ob-
tained are very promising. However, there some anomaligsoquieries number 14, 15,
18, and 19 in the Cultural Tour ontology. We have identifiedienber of reasons that
contribute to these anomalies:

1. Number of instances returned by each atomic query: Fér@gaery we match large
sets of instances by URI, and then we match them with the gporeding resources
by URL.

2. Thetime that RDQL takes to process the RDF model: Thisiamies considerably,
as it can be seen by the values in Figure 3, and it is prop@ttiorthe number of
statements in the RDF model.

3. Large sets of instances and resources returned: théimgsyliery result messages
are quite large and the transmission time increases.

4. Time necessary to check for duplicates when large nunflbesources are returned
as results of complex queries.

5. Number of semantic calculations performed: that is thgtle of the routing path
and the number of neighbours for each of the agents in the phtheffect of the
increase in the number of calculations is, however, ndgkgias confirmed by the
experiments for Scenario 1 and Scenario 2.



With respect to the results obtained when testing the amanbehaviour, we can
see thatERSEIs able to dynamically adjust its network of routers in orttecope with
the natification of new content and with the addition of newertg to the neighbour-
hood, without degrading the performance in terms of respainse. Figure 8 shows
how the increase in response time remains controlled desipitintroduction of new
content and new agents in the neighbourhood.

7 Related work

Autonomic computing is a new engineering paradigm that atigiilding computing
systems that areelf managind7]. Usually, self managing systems are expected to
exhibit four main properties:

1. self configurationthe ability to configure itself according to high level gsal

2. self optimisationthe ability to optimise the use of resources;

3. self healingthe ability toreactto the signs of a possible problem, by detecting it,
and, if possible, fixing it;

4. self protectionthe ability to defend itself from malicious attacks as waslfrom
human error.

These characteristics remind of those defining the noticagehcyand in [7] the au-
thors claim that “autonomy, proactivity, and goal-diretieteractivity with their envi-
ronment are distinguishing characteristics of softwaren#g[13]. Viewing autonomic
elements as agents and autonomic systems as multiagesmnsystakes it clear that
agent-oriented architectural concepts will be criticatyportant”. Hence, it is not sur-
prising that many notions of autonomic computing are foundnulti-agent systems
(MAS) literature. An example is the use of bearbeatmessage broadcasted regularly
in a MAS, organised as in peers or as a network, in order to toiothie status of the
other agents [14].

Self healing has been analysed in [15], where the authosepte team of broker
agents, which share global knowledge about the system gldtisl knowledge is used
to discover that a broker has been disconnected from thefé#se system and to in-
form the other brokers of the event. IBM has developedabiee agent platform [16]
that reduces the workload of the system administrator bpsujng autonomic agents.
Finally, [17] provides a review of the various architectusaues in autonomic comput-
ing.

As mentioned in Section 1, P2P systems have been recentllytaseduce the
complexity of distributed knowledge management appliceti A typical example of
such an application iEDUTELLA [2], a hybrid P2P architecture for sharing metadata,
that implements an RDF-based metadata infrastructureX@A J23]. However, the
emphasis is more on RDF repositories of metadata rathemthaime representation of
semantic information in possibly heavy-weight ontologies

An aspect of peer-to-peer networks that needs to be eslyamialysed iscalabil-
ity. The way in which queries are propagated in the network deters how the net-
work itself will scale. Networks where queries are broatledi$o all peers will hardly
scale, unlike those networks implementing intelligent heedsms for narrowcasting



the queries only to those few selected peers that are ablestees the queries. At this
end several routing protocols have been developed thatgeatistributed indices used
to handle complex queries. Examples of such protocols afé [24] and Chord [25].

Other approaches emphasise the use of semantics repreisemti¢éologies. Among
these there is the SWAP approach [26], and its applicatisunsh as Bibster[21]. In
SWAP, each node is responsible for a single ontology: ogtetomight represent dif-
ferent views of a same domain, multiple domains with ovgrlag concepts, or might
be obtained by partitioning an upper level ontology. Knalge sharing is obtained
through ontology mapping and alignment, however mappingsat dynamically ob-
tained.

8 Conclusion

In this paper we presentestRSE— SEmantic Routing SystEm— a distributed multi-
agent system composed of specialised agents that prowdastrand efficient gath-
ering and aggregation of digital content from diverse resest The agents compos-
ing SERSEUSe ontological descriptions to search and retrieve secadigtannotated
knowledge sources, by maintaining@mantic indexwf the instances of the annotation
ontology. The efficient retrieval is made possible throdghdemantic routing mecha-
nism, that permits to identify the agent indexing the resesrequested by a user query
without having to maintain a central index, and by minimgsthe number of mes-
sages broadcasted to the system. The system is also capa&slemting autonomic
behaviour. Autonomic behaviour is characterised by selfragement and self-healing
capabilities, aimed at permitting the system to managediheré of one or more of its
agents and ensure continuous functioning.

We tested the performance search and retrieval capabitifithe system, and the
experimental data shows thaERsEgenerally maintains the response times under a
second, showing that the overhead produced by the indexidgauting mechanisms
does not impact the system performance. We also tested thecmic behaviour, and
the experimental results show how the system is able toeftigi self configure.
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