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1 Background

In the Introduction to the recent text Troelstra and Schwichtenberg [44], the
authors contrast structural proof theory on the one hand with interpretational
proof theory on the other. They write thus.

Structural proof theory is based on a combinatorial analysis of the
structure of formal proofs; the central methods are cut elimination
and normalization.

In interpretational proof theory the tools are (often semantically
motivated) syntactic translations of one formal theory in another.

We are left in no doubt that proof theory as currently practised is essentially
syntactic in nature. Indeed proof theory has been the poor relation of logic,
at least partly for this very reason. So the reference to semantic motivation is
tantalising and should give one pause.

Reflecting on the notion of semantic motivation, one might crudely distin-
guish between philosophical and mathematical motivation. In the first case one
tries to convince with a telling conceptual story; in the second one relies more
on the elegance of some emergent mathematical structure. If there is a tradition
in logic it favours the former, but I have a sneaking affection for the latter. Of
course the distinction is not so clear cut. Elegant mathematics will of itself tell a
tale, and one with the merit of simplicity. This may carry philosophical weight.
But that cannot be guaranteed: in the end one cannot escape the need to form
a judgement of significance.

Let us first consider interpretational proof theory. I urge an understanding
of the notion of interpretation in logic along the lines of the following slogan.

INTERPRETATION = MODEL + CODING.

By coding I mean that aspect of logic which deals with representability (whether
of functions or of mathematical arguments) in a formal system. If one leaves
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that aside, one has just the model which is the mathematical idea in the inter-
pretation. Such an idea may well arise from philosophical considerations, but it
may equally constitute or give rise to interesting mathematical structure.

Gödel’s Dialectica interpretation [23] represents a particularly interesting
example of the contrast between philosphical and mathematical motivation. The
metamathematical applications mentioned in Gödel’s 1941 Princeton lecture
‘In what sense is intuitionistic logic constructive?’ (reproduced in [16]) may
have been the original motivation, but Gödel himself appears to have moved
towards the position that his interpretation was fundamentally of philosophical
interest.1 Be that as it may, the metamathematical and the philosophical issues
are distinct from the abstract mathematical properties of the interpretation.
These mathematical properties are themselves curious and I shall devote much
of this paper to explaining them.

Turning now to structural proof theory, one may wonder whether it is really
so free of semantic content. Experience of constructive proofs suggests other-
wise. Two different points of view are represented by [22] and [31]: certainly
there is a syntactic approach, and issues that demand it, but there appears to
be more than that. Things become more problematic in the case of classical
proof but still it is natural to hope for some semantic understanding of some of
the central methods. While there has been much stress lately on studying the
‘dynamics of proofs’, there are still things to be done at a simpler level. Seman-
tic motivation in the mathematical sense challenges structural proof theory to
give a mathematically interesting account of the structure of propositions and
proofs.

Categorical Proof Theory is one modern approach to the issue of mathe-
matical structure in the two branches of proof theory. The subject arose out
of the well known connections between constructive logic and typed lambda
calculus2 (Girard et al [22] give a succinct account) and typed lambda calcu-
lus and cartesian closed categories (see Lambek and Scott [30] for example).
There is little systematic in the literature, though Girard’s Linear Logic has
succesfully been treated from this point of view (see amongst others Seely [36]
de Paiva [12] Benton et al [1] [2], Bierman [3] [4]). Probably the best overall
impression of Categorical Proof Theory is given by work in the related area of
Categorical Type Theory (for which see Crole [9], Jacobs [26], Taylor [40]). The
main idea of Categorical Proof Theory is to represent propositions and proofs
in some logical system as the objects and maps in some structured category.
Any interesting version requires some non-trivial notion of equality of proofs.
With that in place, the proof theory itself corresponds to the initial structured
category. This perspective has been reasonably successful in the case of con-
structive and linear proofs, providing both a clear explanation of structure and
clean approaches to the proof of metamathematical results. At the end of this

1For more on this issue see Troelstra’s detailed Introductory Note to the two versions of the
Dialectica interpretation paper in [17]. It is worth comparing these versions one published and
one prepared for publication with the 1941 lecture reproduced with a brief note by Troelstra
in [16].

2This is sometimes called the Curry-Howard isomorphism or (better) correspondence.
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paper I make a suggestion as to how to regard classical proofs from this point
of view.

Of course besides the initial syntactic model there are many other structured
categories which can be read as models for a given style of proof theory. We
can think of these as providing other worlds of propositions and proofs. Since
interpretational proof theory itself provides structured categories corresponding
to the mathematical models, the question of semantics of proofs brings these
two sides of proof theory together. That is one of the merits of Categorical
Proof Theory: it is a kind of ‘Proof Theory in the Abstract’.

This paper contains a number of loosely linked sections. I start by discussing
aspects of the Dialectica interpretation from the point of view of Categorical
Proof Theory. I thereby pay tribute to Troelstra’s work on this interpretation
over many years. His contributions are technical as in [42] and conceptual as in
the contributions to Gödel’s Collected works [17] and [16]. In respect of both, the
community of logicians is much in his debt. Another reason for discussing the
Dialectica interpretation is that of all the standard functional interpretations it
is the most riddling and hence the one for which the possibility of the abstract
analysis of the kind I wish to promote is least obvious. So I hope to give
prominence to the existence of such an analysis by the discussion in Section
2. An abstract view of proofs is particularly revealing for the so-called Diller-
Nahm variant of the Dialectica interpretation. I consider this in some detail in
Section 3, as the excellent structural properties of this interpretation deserve
wider recognition.

I then go on to consider some possibilities for a theory of classical proof.
From the point of view of structural proof theory, the picture today is something
like this. On the one hand constructive proof theory looks in good shape.
The syntactic representations of proofs can be read as intelligible mathematical
descriptions: at one simple level as maps in a cartesian closed category. So we
have a good categorical proof theory.3 On the other hand it used to be said that
classical proof theory does not really exist. Two distinct thoughts lie behind
this conclusion.

• Suppose that C is a cartesian closed category with initial object 0 such that
the contravariant functor (− ⇒ 0) is an involution. Then C is equivalent to
a boolean algebra. (This elementary point is attributed to Joyal.) Thus
any attempt to build on the theory of constructive proof in terms of a
cartesian closed category by adding a strict notion of falsity and requiring
an involution (that is ¬¬A ∼= A) is doomed to triviality: proof reduces to
provability.

• In the classical sequent calculus the process of cut elimination cannot use-
fully be taken as a computation process preserving meaning of proofs. (I
believe this is discussed in Lafont’s dissertation [27].) Given any sequent

3Of course it does not tell the whole story. The equality in the natural categorical for-
mulation is βη-equality, not β-equality and so corresponds to some contextual equality on
proofs. Thus it does not capture all the computational distinctions which naturally arise in
proof theory. But nobody’s perfect.
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calculus proofs π1 and π2 of Γ ⊢ ∆ one has a proof

π1

Γ ⊢ ∆
WEAK

Γ ⊢ ∆, A

π2

Γ ⊢ ∆
WEAK

A,Γ ⊢ ∆
CUT

Γ ⊢ ∆

using Weakening and Cut. (There are also some implicit Contractions.) Elimi-
nating the Cut one gets either π1 or π2. So if cut elimination preserved meaning
all proofs of Γ ⊢ ∆ would be equal.

In response to the first point it is natural to ask what happens if we relax
the conditions given. Double negation translations already provide one answer,
albeit one which relies on a coding into constructive proof theory. I give the
standard category theoretic account of these in Section 4, and investigate what
happens when one applies the ideas to the usual Dialectica and Diller-Nahm
interpretations. The disadvantages with this approach are that the symmetry
of classical logic is lost, and that the interpretation appears coding dependent.

The second of the points is usually glossed by referring to the essential non-
determinism of classical proof. There are two natural kinds of response to that.
On the one hand one can regard classical propositions as being inherently am-
biguous, that ambiguity being resolved by a finer analysis of propositions. Many
finer propositions will correspond to one coarse classical proposition, and the
proof theory of the more refined propositions will be deterministic. This ap-
proach has been investigated in the context of Linear Logic (Girard [19]) by
Girard [20] [21], and by Schellinx [35] and others (see in particular [10]). On
the other hand one can embrace the non-determinism, and regard the sequent
calculus as a kind of process calculus with implicit choice (as between π1 and
π2 above). This idea is obvious enough, but it is hard to give it shape: recent
work on structural proof theory by Bierman and his student Urban does just
that ([46], see also their [47] and Urban’s PhD dissertation [45]). At the end of
Section 5, I briefly consider this approach from the point of view of Categor-
ical Proof Theory. Linear Logic is again involved though in a rather different
way. Troelstra himself was quick to appreciate the potential of Linear Logic
(as witnessed by the books [43], [44] and also the important dissertation of
Schellinx [35]), so I first try to indicate why a categorical analysis of the sequent
calculus makes Linear Logic inevitable by sketching an approach to some very
basic theorems in Categorical Proof Theory. I close by explaining what I think
is the crucial difficulty in the semantic analysis of classical proof.

I am happy to acknowledge the use of (an old version of) Paul Taylor’s
diagram macros and of his prooftree macros in the preparation of this paper.
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2 The Dialectica Interpretation

Gödel lectured on his Dialectica interpretation at Yale in 1941, but the published
paper [23] did not appear until 1958.4 In this section I explain an abstract
form of the Dialectica interpretation and analyze its mathematical structure.
The main points come from de Paiva’s PhD dissertation [11] (for a succinct
account see de Paiva [12] and for related work de Paiva [13]). It is appropriate
to remark at this time that the analysis given by de Paiva owes more than
may be apparent to Troelstra [42]. In a recent survey paper [48] van Oosten
expresses his feeling that the categorical analyses of realizability owe a lot to the
systematic treatment of realizability interpretations in Troelstra [42]. I certainly
think that is correct.5 Similarly, without the stimulus of Troelstra’s treatment
in [42] of the Dialectica interpretation in parallel with other forms of functional
interpretation, the motivation to study the structure from the point of view of
Categorical Proof Theory would have been entirely lacking.

2.1 The Dialectica Category

Suppose that we have a category T which we can think of as interpreting some
type theory; and suppose that over the category T we have a pre-ordered fibra-
tion p : P → T, which we can regard as providing for each I ∈ T a pre-ordered
collection of (possibly non-standard) predicates P(I) = (P(I),⊢). Starting with
this data we construct a new category Dial = Dial(p) which we regard as a
category of propositions and proofs. We do this as follows.

• The objects A of Dial are U,X ∈ T together with α ∈ P(U × X). We
write this in text as A = (U

α
←− X) and in displays as

A= (U ←−−
α
−−7−−−−−X) .

Our understanding of the predicate α is not symmetric as regardsU andX :
we read U

α
←− X as ∃u.∀x.α(u, x), in accord with the form of propositions

in the image of the Dialectica interpretation.

• Maps of Dial from A = (U
α
←− X) to B = (V

β
←− Y ) are diagrams of

the form

4For more historical background see Troelstra’s Introductory notes in [17] and [16].
5Indeed in my first lectures on the Effective Topos I started the course by explaining a

categorical view of the realizability interpretation of higher order arithmetic (HAω) using
the effective operations along Troelstra’s lines. And after that, the passage from Troelstra’s
systematic treatment of functional interpretations of HAS to the topos theoretic point of
view is really one of relatively straightforward abstraction.
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U ←−−
α
−−7−−−−−X

f

|
|
|
↓

@ ր
@� F

@
@

with α(u, F (u, y)) ⊢ β(f(u), y) in P(U × Y ).

V ←−−−−7−−
β
−−− Y

Thus maps A→ B of Dial consist of maps f : U → V and F : U×Y → X

in T such that α(u, F (u, y)) ⊢ β(f(u), y) holds in P(U × Y ). One should
think of this as saying that a proof of ∃u∀xα → ∃v∀yβ is obtained by
transforming to ∀u∃v∀y∃x(α → β) and then Skolemizing along the lines
explained by Troelstra [42] (see also [17]).

• The identity on A = (U
α
←− X) is given by

U ←−−
α
−−7−−−−−X

1

|
|
|
↓

@ ր
@� snd

@
@

where snd : U ×X → X is the second projection.

U ←−−−−7−−
α
−−−X

• Composition of maps A→ B and B → C, that is of

U ←−−
α
−−7−−−−−X V ←−−

β
−−7−−−−− Y

f

|
|
|
↓

@ ր
@� F

@
@

and g

|
|
|
↓

@ ր
@� G

@
@

V ←−−−−7−−
β
−−− Y. W ←−−−−7−−

γ
−−− Z

in Dial, is given by

U ←−−
α
−−7−−−−−X

gf

|
|
|
↓

@ ր
@� H

@
@

where H(u, z) = F (u,G(f(u), z)) .

W ←−−−−7−−
γ
−−− Y.

One sees at once that if

α(u, F (u, y)) ⊢ β(f(u), y) and β(v,G(v, z)) ⊢ γ(g(v), z),
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then

α(u, F (u,G(f(u), z))) ⊢ γ(g(f(u)), z).

So the composite is indeed a map A→ C of Dial.

It is straightforward to check the associativity and identity laws, so we get the
following.

Proposition 2.1 Dial forms a category.

Let us call Dial the Dialectica category; it encapsulates in a pure form the basic
mathematical feature of the Dialectica interpretation, namely its interpretation
of implication.6 The point of view of Categorical Proof Theory is that to treat
the Dialectica interpretation as a theory of proofs is to study the categorical
structure of Dial.

2.2 Natural Structure

In this section I describe structure on the Dialectica category Dial which is
an easy consequence of simple assumptions about the propositional fibration
p : P → T. This resulting structure is natural in the categorical sense that
it is given by natural transformations; and it is the structure of Intuitionistic
Linear Logic. (The basic references are Girard [19], [22] and [43]; for categorical
analyses see Seely [36], Hyland and de Paiva [25], and in particular for the
Intuitionistic version Benton et al [1] [2], and Bierman [3] [4]). In the next
section I shall discuss that further structure which on the one hand is needed
for the applications to constructive logic, but on the other is not (at least in the
technical sense) so natural.

2.2.1 Propositional Logic

Let us start with the simplest condition. Suppose that p : P → T is a product
fibration, that is T has finite products and the fibres P(I) have finite products
preserved by reindexing.7 Then we have the following.

Proposition 2.2 Dial carries the structure of a symmetric monoidal category.

Proof. The tensor product A⊗B of A = (U
α
←− X) and B = (V

β
←− Y ) is

A⊗B = (U × V
α∧β
←− X × Y )

where α ∧ β is the obvious relation α(u, x) ∧ β(v, y) ∈ P(U × V ×X × Y ). The
unit I for this tensor is I = (1

true
←− 1) . The unit and associativity structure is

6In fact as first pointed out by Girard one can regard Dial as arising (as a category of
coalgebras) from a more primitive category. So at a formal level there is yet more to say. For
details see de Paiva [12].

7So p : P → T is a map of finite product categories, and the fibration models simple
conjunctive logic.
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obvious.

To go beyond simple tensor logic we need some function spaces. From now
on we shall assume at least the following structure.

• T is cartesian closed. We write 1 for the terminal object, X × Y for the
product of X and Y , and (Y ⇒ Z) = ZY for the object of functions from
Y to Z (usually called the function space).

• p : P→ T is a fibration over T of (preordered) cartesian closed categories:
that is, each fibre has terminal object, products and function spaces and
reindexing preserves the structure. We use the standard logical notation
⊤,∧,→ for this structure.

Thus our ruling assumption is that T models the simply typed lambda calculus,
and each P(I) models ⊤,∧,→ logic.

Theorem 2.3 With our ruling assumption, Dial is symmetric mononoidal
closed.

Proof. The object B −◦ C of functions from B = (V
β
←− Y ) to C = (W

γ
←− Z)

(that is, the linear function space) is given by

B −◦ C = (V ⇒W )× (V × Z ⇒ Y )←−−
ρ
−−7−−−−− V × Z

where ρ is the relation ρ((g,G), (v, z)) = β(v,G(v, z)) → γ(g(v), z). It is easy
to check the adjunction

Dial(A⊗B,C) ∼= Dial(A,B −◦ C) .

According to this proposition we automatically have a model for the multiplica-
tive fragment of intuitionistic linear logic.

In fact one can get the additive conjunction of intuitionistic linear logic
without much further assumption on p : P → T. Suppose that T has finite
coproducts;8 and suppose also that P(0) ∼= 1 and that the injections X → X+Y
and Y → X + Y induce an equivalence P(X + Y ) ≃ P(X)× P(Y ).

Proposition 2.4 With these assumptions Dial has finite products.

Proof. The product A×B of A = (U
β
←− X) and B = (V

β
←− Y ) is

A×B= (U × V ←−−
π
−−7−−−−−X + Y )

where π ∈ P(U ×V × (X+Y )) ∼= P(U ×V ×X)×P(U ×V ×Y ) is given by the
pair (α(u, x), β(v, y)): the projections A×B → A and A×B → B are obvious.
The terminal object in Dial is the unique relation 1←− 0.

8In the absence of our now ruling assumption that T is cartesian closed we would addition-
ally require distributivity.
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2.2.2 Predicate logic

Up to now we have just considered the Dialectica category Dial as a category
of propositions and proofs. To handle a basic form of quantification we need to
index it over some category to represent the types over which we quantify. The
standard Dialectica treatment of quantification comes from an indexing over T

itself. Clearly one can define for each I ∈ T a parametrized Dialectica category
Dial(I) by carrying I along as a simple parameter throughout. Thus objects
are of the form A = (U

α
←− X) where α ∈ P(I × U × X); and maps from

A = (U
α
←− X) to B = (V

β
←− Y ) are diagrams in the simple slice category9 of

T over I of the form

U ←−−
α
−−7−−−−−X

f

|
|
|
↓

@ ր
@� F

@
@

where α(i, u, F (u, y)) ⊢ β(i, f(u), y) in P(I × U × Y ) .

V ←−−−−7−−
β
−−− Y.

Thus concretely maps A → B of Dial(I) consist of maps f : I × U → V and
F : I × U × Y → X in T such that α(i, u, F (i, u, y)) ⊢ β(i, f(i, u), y) holds in
P(I × U × Y ). Reindexing along maps in T preserves the structure. So we can
put the categories Dial(I) together to get a fibration q : Dial→ T.

We study the treatment of the quantifiers in the Dialectica interpretation by
asking after the existence of adjoints to reindexing along the projections in the
fibration q : Dial → T. This is quite straightforward. Take for simplicity an
object A = (U

α
←− X) in Dial(I) (so that α ∈ P(I × U ×X). Then we define

∃IA by

∃IA = (I × U
α
←− X) with α ∈ P(I × U ×X);

and we define ∀IA by

∀IA = (I ⇒ U
bα
←− I ×X) where α̂(f, (i, x)) = α(f(i), x).

It is easy to see that these provide the required adjoints.

Theorem 2.5 The fibration q : Dial → T has both left and right adjoints to
reindexing along product projections. These adjoints satisfy the Beck-Chevalley
condition.10

One can extend the abstract analysis of the Dialectica interpretation to deal
with interpretations of various kinds of type theories.11 However I leave that
for another occasion.

9For an explanation of the simple fibration obtained from any category with products see
for example Jacobs [26].

10That is they behave appropriately under substitution or reindexing. For a discussion of
the issue see Jacobs [26] or Taylor [40].

11The basic idea is already in Girard [18]. There is an accessible explanation in Troelstra [42].
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2.3 Interpreting intuitionistic logic

The treatment of conjunction and disjunction in the Dialectica interpretation
raise quite different issues. So I deal with them separately.

2.3.1 Conjunction and true

It is well known that the tricky point in the original Dialectica interpretation
is to get an interpretation for the usual rules for conjunction using the tensor
defined above: we want to satisfy the rules

A ⊢ A ∧A and A ∧B ⊢ A;

that is, we want canonical proofs of A ∧ A from A and of A from A ∧ B. The
problem is that the tensor is certainly not the product in the category and the
unit I is not the terminal object. One gets round these two difficulties in rather
different ways.

Diagonals We need a map A→ A⊗A in Dial. For this additional structure
is used. We suppose that p : P → T is equipped with a kind of weak definition
by cases. For φ ∈ P(X) and f, g : X → Y in T, we suppose given a map

cases(φ, f, g) : X → Y ,

which we can also write suggestively as if φ then f else g. This construction is
supposed to have the following properties.

• (Naturality on right.) If u : Z → X , then

cases(φ, f, g).u = cases(u∗φ, f.u, g.u) .

• (Naturality on left.) If v : Y →W , then

v.cases(φ, f, g) = cases(φ, v.f, v.g) .

• (Identity rule.) cases(φ, f, f) = f .

• (Cases condition.) For all ψ ∈ P(Y ),

ψ(g(x)) ⊢ φ(x) implies ψ(cases(φ, f, g)) ⊢ φ(x) ∧ ψ(f(x)).

Observation 1. In the traditional view cases(φ, f, g) depends on the decidabil-
ity of predicates in P. We think of it as arising in the following way. There is
an object bool (of booleans) with 1→ bool acting as a classifier of predicates in
P; so there is a natural isomorphism P(X) ∼= T(X, bool). Further bool ∼= 1 + 1
is a coproduct, so we can construct cases(φ, f, g) : X → Y as the composite

X −−−
(φ, f, g)
−−−−−−−−−−→B × Y × Y ∼= Y × Y + Y × Y −−−

[fst, snd]
−−−−−−−−−−→ Y .

The condition bool ∼= 1+1 corresponds to the decidability of the core predicates
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of the Dialectica interpretation together with the existence of characteristic
functions for them.12

Observation 2. The conditions above are, however, all we really use to define
the (diagonal) comultiplication map. One can find examples of them with no
connection with decidability. For example if we took for T a category of Scott
domains and continuous maps and for P(X) the Scott open subsets of the domain
X , then we could define

cases(φ, f, g) =

{
f(x) if x ∈ φ

f(x) ∧ g(x) otherwise.

It is easy to see that this will satisfy the conditions we set on our weak definition
by cases.

Given a notion of definition by cases, cases(φ, f, g), or if φ then f else g, we
define for A = (U

α
←− X) a comultiplication map A→ A⊗A by

U ←−−−
α
−−7−−−−−− X

∆

|
|
|
↓

@ ր
@� c

@
@

c(u, x1, x2) = if α(u, x1) then x2 else x1.

U × U ←−−−−−7−−−
α× α

−−−X ×X

This provides an interpretation of A ⊢ A ∧ A which I write ∆l : A → A ⊗ A.
The following properties are easy to establish.

• ∆l is a coassociative comultiplication: that is, the diagram

A −−−−
∆l
−−−−−−−→ A⊗A

∆l

|
|
|
↓

|
|
|
↓
∆l ⊗ 1

A⊗A −−−−−−−−−
1⊗∆l

−−→ A⊗A⊗A

commutes. This is a simple consequence of the properties we supposed for
our weak definition by cases. There is however no counit for the comulti-
plication (see the discussion of projections below).

• ∆l is not natural with respect to all maps; but it is natural with respect
to ‘information preserving’ maps, that is, those of the form

12For some historical background see Troelstra’s Introductory Note in [17].
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U ←−−
α
−−7−−−−−X

f

|
|
|
↓

@ ր
@� F

@
@

with α(u, F (u, y)) ⊣⊢ β(f(u), y).

V ←−−−−7−−
β
−−− Y.

• Composing ∆l with the twist map A ⊗ A → A ⊗ A gives an alternative
comultiplication ∆r. This is the familiar symmetric choice of Dialectica
interpretation of A ⊢ A ∧A.

Projections Again we need something extra, but that something is rather
dull. We ask for inhabited types, or more exactly for a choice of element x0 ∈ X
for each X ∈ T. Then we have A→ I given by

U ←−−
α
−−7−−−−−X

|
|
|
↓

@ ր
@� p

@
@

with p(u, ∗) = x0.

1 ←−−−−7−−
true
−−− 1.

This counit is not natural, and there are no good connections between it and
the comultiplication.

The counit gives projections fst : A⊗ B → A and snd : A ⊗B → B:13 here
fst is natural in A and snd in B. The maps fst and snd are interchanged by
the twist giving rise to equations like fst.∆l = snd.∆r; but there are no really
significant mathematical properties.

2.3.2 Disjunction and false

To interpret disjunction one needs some kind of coproduct in Dial. To give this
assume that there is an object bool ∈ T (of Booleans) with maps 1

true
−→ bool

and 1
false
−→ bool such that the induced map P(bool×X) → P(X) × P(X) is an

isomorphism.
Then we define the (weak) sum A+B of A = (U

α
←− X) and B = (V

β
←− Y )

to be

A+B = (bool× U × V
ρ
←− X × Y )

where ρ ∈ P(bool×U × V ×X × Y ) ∼= P(U × V ×X × Y )2 is given by the pair
(α(u, x), β(v, y)): we might suggestively write

ρ(b, u, v, x, y) = [(b = true→ α(u, x)) ∧ (b = false→ β(v, y))] .

13This notation is a bit overloaded but never mind.

12



We get the following properties.

• The operation + extends to give a functor Dial ×Dial → Dial. As so
often occurs with weak coproducts, this functor is not associative.

• There is a natural codiagonal ∇ : A+A→ A given by

bool× U × U ←−−
ρ
−−7−−−−−X ×X

choose

|
|
|
↓

@ ր
@� ∆.fth

@
@

where fth projects onto X , and

U ←−−−−7−−
true
−−− X.

and where choose is bool×U×U ∼= U×U+U×U
[fst,snd]
−→ U . The naturality

is easy to check.

Had we not commited ourselves to considering inhabited types in our dis-
cusion of projections, we would find that if T has an initial object 0, then the
unique relation 0←− X is initial in Dial for any X ∈ T. With inhabited types
however we are restricted to a weak initial object

⊥ = (1
false
←− 1) .

This provides an interpretation for intuitionistic falsity, but there is no natural-
ity, nor any good properties with respect to the weak coproduct. Even⊥+A ∼= A

fails. It follows that we have separately to give injections to interpret the rules

A ⊢ A ∨B and B ⊢ A ∨B .

We define inl : A→ A+B and inr : B → A+B by

U ←−−−−7−−−−− X V ←−−−−7−−−−− Y

true

|
|
|
↓
fst

@ ր
@� snd

@
@

and false

|
|
|
↓
snd

@ ր
@� thd

@
@

bool× U × V ←−−−−7−−−−−X × Y bool× U × V ←−−−−7−−−−−X × Y

respectively. The composites

A
inl−→ A+A

∇
−→ A and A

inr−→ A+A
∇
−→ A

are the identity. And notwithstanding that inl is not natural we have that the
composite

A
inl−→ A+B

f+g
−→ C + C

∇
−→ C

is equal to f : A→ C.
The Dialectica interpretation is usually taken at the level of provability. We

can understand the fact that at that level the interpretation with inhabited
types interprets constructive logic as follows.

13



Theorem 2.6 The poset reflection of our indexed category Dial→ T of proofs
is a ‘first-order hyperdoctine’: we get indexed Heyting algebras and good quan-
tification.

Of course the interpretation applies to arithmetic and stronger systems, and we
have not accounted abstractly for those aspects.

3 The Diller-Nahm Variant

I now give a categorical analysis of the interpretation introduced by Diller and
Nahm in [15]. One value of the categorical approach is that when one strips
interpretations of their coding component one gets a fresh perspective on their
mathematical content. What is usually called the Diller-Nahm variant of the
Dialectica Interpretation is a striking example of this. The description of it as
a ‘variant’ fails utterly to give credit to the elegant mathematical structure of
this interpretation.

3.1 The Diller-Nahm Category

Suppose again that we have a pre-ordered set fibration p : P → T, providing
for each type I ∈ T a collection of (possibly non-standard) predicates P(I) over
I. We need some additional structure. We suppose that p : P→ T is equipped
with a commutative monoid (−)• in the following sense.

• First T is a category with products and (−)• is a strong monad on T such
that each algebra is equipped naturally with the structure of a commuta-
tive monoid.

• Secondly we suppose that we have an indexed extension of (−)• to P.
For φ ∈ P(I × A) we have φ• ∈ P(I × X•).14 For each I ∈ T, the
strength gives an action of (−)• on the (simple slice) category TI . And
the operation φ → φ• just described is an extension of this to the global
category PI → TI .

The example to have in mind here is the finite multiset monad on the category
of sets; of course that is exactly the monad whose algebras are commutative
monoids. This monad extends naturally to the subset lattices: if φ ⊆ I × X
then φ• ⊆ I ×X• is defined by

φ•(i, ξ) if and only if ∀x ∈ ξ.φ(i, x).

From the data just described we construct a new category Dill = Dill(p)
which we again regard as a category of propositions and proofs.

• The objects of Dill are still pairs U,X ∈ T together with α ∈ P(U ×X).
We continue to use the notation introduced for Dial.

14In the notation we suppress the dependence on the parameter I.
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• Maps of Dill from A = (U
α
←− X) to B = (V

β
←− Y ) are now diagrams

of the form

U ←−−
α•

−−7−−−−−X•

f

|
|
|
↓

@ ր
@� F

@
@

α•(u, F (u, y)) ⊢ β(f(u), y) in P(U × Y ) .

V ←−−−−7−−
β
−−− Y.

That is they consist of maps f : U → V and F : U × Y → X• such that
α•(u, F (u, y)) ⊢ β(f(u), y) holds in P(U × Y ). In accord both with the
basic example and with the traditional formulation of the interpretation
(see for example Diller [14]) we read this as

∀x ∈ F (u, y).α(u, x) ⊢ β(f(u), y) .

• The identity on A = (U
α
←− X) is given by

U ←−−
α•

−−7−−−−−X•

1

|
|
|
↓

@ ր
@� in

@
@

where in(u, x) = η(x) ∈ X•,

U ←−−−−7−−
α
−−− X

and with η the unit for the monad (−)•.

• Composition of maps A→ B and B → C, that is of

U ←−−
α•

−−7−−−−−X• V ←−−
β•

−−7−−−−− Y •

f

|
|
|
↓

@ ր
@� F

@
@

and g

|
|
|
↓

@ ր
@� G

@
@

V ←−−−−7−−
β
−−− Y W ←−−−−7−−

γ
−−− Z

is given by

U ←−−
α•

−−7−−−−−X•

gf

|
|
|
↓

@ ր
@� H

@
@

where H(u, z) = F (•)(u,G(f(u), z)) .

W ←−−−−7−−
γ
−−− Y.
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Here we use a construction familiar from models for the computational
lambda calculus. If F : I × Y → X• then we write F (•) : I × Y • → X•

for the composite

I × Y • −−−−−−−−−→ (I × Y )• −−−
F •

−−−−−−→X•• −−−
µ
−−−−−−→X•

One checks easily that if

α•(u, F (u, y)) ⊢ β(f(u), y) and β•(v,G(v, z)) ⊢ γ(g(v), z),

then

α•(u, F (•)(u,G(f(u), z))) ⊢ γ(g(f(u)), z).

So the composite is indeed a map A→ C of Dill.

Again it is straightforward to check the associativity and identity laws so we
get the following.

Proposition 3.1 Dill is a category.

Let us call Dill the Diller-Nahm category. It encapsulates the basic math-
ematical structure of the Diller-Nahm variant of the Dialectica interpretation.
We investigate what properties the category Dill has under some natural as-
sumptions.

3.2 Natural structure

3.2.1 Propositional Logic

To define Dill we used a strong monad (−)• on p : P → T. Now we make our
usual assumption that T is cartesian closed, and that P → T models ⊤,∧,→
logic. In addition we assume (as we did to get the product in Dial) that T has
finite coproducts and that we have natural isomorphisms

P(0) ∼= 1 , and P(X + Y ) ∼= P(X)× P(Y ) ,

the latter induced by the injections. Finally we assume the natural isomorphisms
of commutative monoids

0• ∼= 1 , and (X + Y )• ∼= X• × Y • ,

the latter again induced by the injections.

Theorem 3.2 With the above assumptions, Dill is a cartesian closed category.

Proof. We give details of the structure. The categorical product of the objects
A = (U

α
←− X) and B = (V

β
←− Y ) is

A×B = (U × V
α×β
←− X + Y )

16



where α × β ∈ P(U × V × X + Y ) ∼= P(U × V ×X) × P(U × V × Y ) is given
by the pair of relations (α(u, x), β(v, y)) ∈ P(U × V × X) × P(U × V × Y ).
The terminal object is the unique predicate I = (1←− 0) . The function space
(V

β
←− Y )⇒ (W

γ
←− Z) is given by

(V ⇒W )× (V × Z ⇒ Y •)←−−
ρ
−−7−−−−− V × Z

where ρ((g,G), (v, z)) is β•(v,G(v, z))→ γ(g(v), z). We leave the details of the
adjunction to the reader.

What this result shows is that with the Diller-Nahm variant, the ⊤,∧,→ frag-
ment of intuitionistic logic automatically gets an interpretation simply because
Dill is a cartesian closed category. One can regard the fact that the natural
deduction view of proof and the Diller-Nahm interpretation both give rise to
cartesian closed categories as a delightful confirmation of the intuitions behind
the interpretation as described for example in the introduction to Diller [14].

Weak coproducts Note first that if T has an initial object 0 then Dill has an
initial object (0←− 0). (In fact all objects of the form (0←− X) are isomorphic
in Dill!)

We can define a weak coproduct A ⊞ B of the objects A = (U
α
←− X) and

B = (V
β
←− Y ) by

A⊞B = (U + V
α+β
←− X + Y )

where α+ β ∈ P(U + V ×X + Y ) ≃ P(U × V ×X)× P(U × V × Y ) is given by
the pair of relations (α(u, x), β(v, y)) ∈ P(U × V ×X) × P(U × V × Y ). Then
one can extend ⊞ to maps in Dill in such a way that ⊞ is functorial. Further
there are canonical (natural) choices of codiagonal maps

∇ : A⊞A→ A

and the initial object provides insertion maps

inl : A→ A⊞B and inr : B → A⊞B

(The basic point is that wherever we might not be sure how to define a map,
we have a canonical choice of the identity for multiplication in a standard com-
mutative monoid provided by (−)• to help us out.) This gives ⊞ the structure
of a weak coproduct in the following sense. There is a natural retraction

Dill(A,C)×Dill(B,C) ⊳Dill(A⊞B,C) .

3.2.2 Predicate Logic

Just as we did for Dial, we can consider Dill as a category fibred over T.
Objects are still of the form U

α
←− X where α ∈ P(I ×U ×X); and maps from

U
α
←− X to V

β
←− Y are diagrams of the form

17



U ←−−
α
−−7−−−−−X•

f

|
|
|
↓

@ ր
@� F

@
@

α(•)(i, u, F (u, y)) ⊢ β(i, f(u), y) in P(I × U × Y ) .

V ←−−−−7−−
β
−−− Y

in the simple slice category. Thus maps of Dill(I) consist of maps f : I×U → V

and F : I × U × Y → X in T such that the entailment above which we read
intuitively as ∀x ∈ F (i, u, y).α(i, u, x) ⊢ β(i, f(i, u), y) holds in P(I × U × Y ).
Reindexing along maps in T preserves the structure defined above. This gives
us a fibration q : Dill→ T.

We study the the quantifiers in the Diller-Nahm interpretation by asking
after the existence of adjoints to reindexing along projections in q : Dill → T.
This goes through exactly as for the case of Dial. Take an object A = (U

α
←− X)

in Dill(I). We have the two definitions

∃IA = (I × U
α
←− X) (with α ∈ P(I × U ×X))

∀IA = (I ⇒ U
bα
←− I ×X) where α̂(f, (i, x)) = α(f(i), x).

Theorem 3.3 The fibration q : Dill → T has both left and right adjoints to
reindexing along product projections. These adjoints satisfy the Beck-Chevalley
condition.

Again one can extend the abstract analysis of the Diller-Nahm variant to
deal with interpretations of various kinds of type theories.

The properties of the Diller-Nahm variant are already so good at the level
of proofs that there is no point in stating a theorem at the level of provability.
These good properties suggest that it is more flexible than Gödel’s original
interpretation. This seems to be confirmed by recent work of Burr [6]; it would
certainly be interesting to have an abstract analysis of the interpretation of set
theory studied by Burr.

4 Coding Classical Proof

I rehearse here some background to double-negation translations. There are
any number of ways to prove the following basic limitative result. (This is
folklore generally associated with Joyal, but I include a proof as I have no ready
reference.)

Proposition 4.1 Suppose that C is a cartesian closed category with initial ob-
ject 0.
(i) Any object of the form ¬A = (A⇒ 0) is a subobject of 1; and the subcategory
of such objects forms a boolean algebra.
(ii) If ¬¬A ∼= A for all A ∈ C then C is equivalent to boolean algebra.
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Proof. First since −×A is a left adjoint, 0×A ∼= 0. Secondly

A×B −−−
1× g
−−−−−−−−→ A×D

f × 1

|
|
|
↓

|
|
|
↓
1× g

C ×B −−−−−−−−−
1× g

−−→ C ×D

is a pullback; and applying this to 0→ 1 and 0→ A we deduce that

0 −−−−−−−−−→ 0

|
|
|
↓

|
|
|
↓

0 −−−−−−−−−→ A

is a pullback and hence that 0 → A is monic. So in particular 0 → 1 is monic.
So as (−)A is a right adjoint, 0A → 1A ∼= 1 is monic. This shows each ¬A is a
subobject of 1.
Now the subobjects of 1 form a poset modelling ⊤,∧,→ logic and with a
(strict15) initial object modelling ⊥. The subobjects of the form ¬A, are the
regular subobjects; and they automatically form a boolean algebra.
Finally if ¬¬A ∼= A, then every object is a regular subobject of 1 and C is
equivalent to a boolean algebra.

It seems possible that if we weaken (ii) of the above by asking perhaps oddly
that ¬¬A be a retract of A, we may get models with interesting proof theory.16

I should like to have a compelling example.

4.1 Double negation translations

Here I briefly explain the mathematical context in which we can most simply
explain some double negation translations. The ideal set-up is this. Suppose we
have a cartesian closed category C with finite sums. Take any R ∈ C. We can
identify two ‘double negation categories’.

• The full subcategory RC of C on those objects A = RA = (A⇒ R) which
are powers of R.

• The Kleisli category CR for the double negation monad (− ⇒ R)⇒ R.

15Strictness of 0 is not really needed but is easy: if X → 0 take the product of it and 0 → 1

to get the pullback
0 → X

↓ ↓

0 → 0
showing X ∼= 0.

16After all in the constructive setting, realizability certainly has interest despite its crude
treatment of negated formulae.
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Observe that

RC(RA, RB) ∼= C(RA, RB) ∼= C(B,RR
A

) ∼= CR(B,A) .

Thus RC ≃ (CR)op, and the categories are opposites of one another.

Theorem 4.2 RC is a cartesian closed category with weak finite coproducts;
and for each object A ∈R C there is a natural retraction A ⊳ ¬¬A in RC where
¬¬A = (A⇒ R)⇒ R.

Proof. This is well known, and I just give the structure for completeness.

Terminal Object 1 ∼= R0

Binary Products A×B = RA ×RB ∼= RA+B

Function space B ⇒ C = RB ⇒ RC ∼= RB×C

Weak coproducts A⊞B = RA ⊞RB ∼= RA×B

Weak initial object R ∼= R1

The basic properties are routine. The only point worth stressing is that the
weak coproduct ⊞ is not functorial, but rather carries premonoidal structure in
the sense of Power and Robinson [34].

Both the categories RC and CR model some form of classical proof theory.
They can be regarded as corresponding to different choices in the cut elimination
process. One can express this in terms of computation paradigms for Parigot’s
λµ-calculus (see Parigot [32]). A precise connection was given by Hofmann and
Streicher [24]. As explained in detail by Selinger [37], RC corresponds to the
call-by-name λµ-calculus, and CR to the call by value. All this is related to the
continuation passing style (CPS); however one should be cautious as the basic
content of CPS can be analyzed in more primitive terms. Thielecke [41] gives
a clear account of the categorical structure of continuation passing in terms
of premonoidal structure with a self adjunction; and he is able to handle real
programming language features in terms of his formulation. Below we compare
the models we construct with Thielecke’s notion.

4.2 Shoenfield’s Version of Dialectica

In his classic text Shoenfield [38] considers an interpretation which he describes
in terms of formulae A = ∀u∃xα(u, x). The description is purely formal and it
is best for us to regard such a formula as being of the form A = ¬∃u∀xα(u, x).
More precisely we take A = (A −◦ R) in Dial where R = ⊥ = (1

false
←− 1). So

A is an object of the double negation category R(Dial). We give a concrete
description of this category.

• The objects A of the category are of the form A −◦ R for A ∈ Dial. Thus
formally we have

A = ((U ⇒ X)←−−
α(u, φ(u))
−−−−−7−−−−−−−− U)
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which we interpret by means of the formulae

A = ((∃u∀xα(u, x)) −◦ R) = ∃φ(U⇒X).∀uα(u, φ(u))

• Maps in RDial from an object

A = (U ⇒ X
α(u,φ(u))
←− U)

to an object

B = (V ⇒ Y
β(v,ψ(v))
←− V )

are given by maps

f : (U ⇒ X)→ (V ⇒ Y ) and F : (U ⇒ X)× V → U

or equivalently

(f, F ) : (U ⇒ X)× V → U × Y

such that

α(F (φ, v), φ(F (φ, v))) ⊢ β(v, f(φ, v)) holds in P((U ⇒ X)× V ) .

Since the above expresses exactly the maps in RDial, these slightly implausi-
ble maps compose associatively.17 Following through the definitions one sees
that what we have defined corresponds exactly to Shoenfield’s version of the
Dialectica interpretation as presented in Shoenfield [38]. This makes precise the
observation of Troelstra (see [42]) that Shoenfield’s interpretation results from
combining the Dialectica and the double negation translations.

Of course since in Dial we did not start with the ideal situation of a cartesian
closed category with coproducts we cannot use the general observations of the
previous section to analyze the structure of the category R(Dial). It turns out
however that it does have some good structure.

We suppose without further ado that we are in the indexed situation dis-
cussed in Section 2.2.2, so we deal with propositional connectives and quantifiers
together. We write objects as A = (A −◦ R), B = (B −◦ R) and so on. Then
we can define the following logical operations.

Disjunction A ∨B = (A⊗B −◦ R) = RA⊗B

Falsity ⊥ = R

Implication A −◦ B = (A⊗B −◦ R) = RA⊗B

Negation ¬A = A −◦ R = RA

Universal quantification ∀z.A = ((∃zA) −◦ R) = R∃zA

We make a number of points about how the logic is represented in the categorical
structure of RDial.

17The composition more or less forces itself on one. There is just one sensible thing to do.
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1. The falsity ⊥ is a unit for the disjunction ∨. However ∨ is not monoidal.
Rather it is premonoidal in the sense of Power and Robinson [34]. As

usual maps A→ B of the form Rf : RA → RB for f : B → A are central.

2. We could regard A −◦ B = ¬A∨B as a derived operation. It is functorial
and we have a natural isomorphism

RDial(C,¬A ∨B) ∼= RDial(A,¬C ∨B) ;

so A −◦ B ∼= ¬A ∨B is a closed structure on RDial.

3. While A −◦ B gives a closed structure, the corresponding tensor is missing

as RA⊗RB is not of the form RC for any C. In fact we can read RA⊗RB

as

∃φ : XU∃ψ : Y V ∀u∀v.α(u, φ(u)) ∧ β(v, ψ(v)) ,

that is essentially as the Henkin quantified formula18

(
∀u ∃x
∀v ∃y

)
α(u, x) ∧ β(v, y) .

4. We could regard negation ¬A = A −◦ ⊥ as a derived operation. It is
certainly not an involution though we have A a retract of ¬¬A for all A.

5. The correctness of the definition of universal quantification follows from
the natural isomorphisms

Dial(C, ∃zA −◦ R) ∼= Dial(∃zA,C −◦ R)
∼= Dial(A,∆Z(C −◦ R))
∼= Dial(A,∆Z(C) −◦ R)
∼= Dial(∆ZC,A −◦ R)
∼= Dial(C, ∀z(A −◦ R))

where we have not distinguished between R and ∆ZR.

6. Finally we can consider the opposite category DialR. We get a pre-
monoidal ∧ dual to ∨ and we get the natural isomorphism

DialR(A ∧ ¬B,C) ∼= DialR(A ∧ ¬C,B) .

One can compare this with Thielecke’s notion of a ⊗¬-category (see Thi-
elecke [41]). We get much of what Thielecke requires, but ∧ is emphatically
not a product in the centre of DialR. I do not know if there is (any in-
terest in) a variant of the CPS calculus corresponding to the structure of
DialR. But at least the example shows the independence of the cartesian
assumption from some other components of the structure.

18The identification of a sufficiently simple tensor as a Henkin quantifier is a common feature
of a number of interpretations of Linear Logic.
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4.3 Double negation Diller-Nahm

In this section I give a brief description of what we get by applying a gener-
alised double negation translation to the Diller-Nahm interpretation. That is
I consider the category RDill for R = (1

false
←− 1).19 Again we give a concrete

description of the category.

• The objects A of the category are of the form A −◦ R for A ∈ Dill. Thus
formally we have

A = ((U ⇒ X•)←−−
α•(u, φ(u))
−−−−−7−−−−−−−− U)

which we give also in logical notation

A = ((∃u∀xα(u, x)) −◦ R) = ∃φ(U⇒X•).∀u.∀x ∈ φ(u).α(u, x) .

• Maps in RDill from an object

A = (U ⇒ X• α
•(u,φ(u))
←− U)

to an object
B = (V ⇒ Y • β

•(v,ψ(v))
←− V )

are given by maps

f : (U ⇒ X•)→ (V ⇒ Y •) and F : (U ⇒ X•)× V → U•

or equivalently

(f, F ) : (U ⇒ X•)× V → U• × Y •

such that an entailment which I write

(α•)•(F (φ, v), φ(F (φ, v))) ⊢ β•(v, f(φ, v))

holds in P((U ⇒ X•) × V ). This notation is ambiguous so I give its
interpretation in logical notation.

∀u ∈ F (φ, v).∀x ∈ φ(F (φ, v)).α(u, x) → ∀y ∈ f(φ, v).β(v, y) .

I wonder whether anyone has written down this interpretation of implica-
tion before.

Since the above describes the maps in the category RDill there is indeed an
associative composition.20

We are now closer to the ideal situation of Section 4.1 in that Dill is carte-
sian closed. But it does not have coproducts, so we cannot deduce that RDill

19The category Dill has an initial object 0, but in view of Proposition 4.1 we do not want
to consider the double negation category 0Dill.

20I leave it to the reader to think that through. Again there is just one sensible thing to do.
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is cartesian closed. Again we suppose that we are in the indexed situation dis-
cussed in Section 3.2.2, and deal with propositional connectives and quantifiers
together. We write objects of RDill as A = (A −◦ R), B = (B −◦ R) and so
on. Then we can define the following logical operations.

Disjunction A ∨B = (A×B ⇒ R) = RA×B

Falsity ⊥ = R

Implication A⇒ B = (A×B ⇒ R) = RA×B

Negation ¬A = A⇒ R = RA

Universal quantification ∀z.A = ((∃zA)⇒ R) = R∃zA

We briefly compare the associated categorical structure of RDill with that of

RDial which we treated in the previous section.

1. Again falsity ⊥ is a unit for the disjunction ∨, and ∨ is not monoidal but
premonoidal in the sense of Power and Robinson [34]. Maps A → B of

the form Rf : RA → RB for f : B → A are central.

2. As before, we can regard A ⇒ B = ¬A ∨ B as a derived operation. It is
functorial and we have a natural isomorphism

RDial(C,¬A ∨B) ∼= RDial(A,¬C ∨B) ;

so A⇒ B ∼= ¬A ∨B is a closed structure on RDill.

3. A ⇒ B is a cartesian closed structure in that the corresponding tensor

would be a cartesian product; but that product is missing as RA ⊗RB is

not of the form RC for any C. (It is a retract of RA⊞B.) So we do not
have a control category in the sense of Selinger [37]. But we are close; for
example Thielecke’s proof [41] identifying the focal and central maps goes
through.

4. Again we can regard negation ¬A = A ⇒ ⊥ as a derived operation; it is
not an involution though we have A a retract of ¬¬A for all A.

5. The correctness of the definition of universal quantification is justified
exactly as for RDial.

6. We can consider the opposite category DillR where we get a premonoidal
∧ dual to ∨ and the natural isomorphism

DialR(A ∧ ¬B,C) ∼= DialR(A ∧ ¬C,B) .

Now ∧ is a product in the centre of DillR, so we get an example of a ⊗¬-
category in the sense of Thielecke [41]. This is a natural example of the
situation where we have the structure analyzed by Thielecke, but simply
do not have to hand the additional structure of a co-control category in
the sense of Selinger [37].
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5 Classical Proof

In the previous section I discussed approaches to classical proof theory which
depend on some form of the double negation translation. These do not respect
the symmetry of classical logic which is expressed in the sequent calculus. It
is natural to ask for a direct coding-free formulation of that notion of classical
proof implicit in the sequent calculus. As indicated in the introduction, we have
then to confront the inherent non-determinism exemplified by cutting weakened
formulae: one wants a notion of equality of proof, but this equality cannot be
preserved by cut elimination. One obvious idea is to regard a proof as being a
non-deterministic choice between the various cut-free proofs to which it reduces.
This is a bit crude as just expressed and as yet we have no satisfactory semantics
for proofs along these lines. As a prelude to a suggestion as to the shape of such
a semantics, I discuss first the basic semantics of the sequent calculus and its
relation with Linear Logic. At least this provides an illustration of Categorical
Proof Theory in action.

5.1 Polycategories

Many years ago Szabo gave a categorical formulation of the core of the sequent
calculus in terms of the notion of a polycategory (Szabo [39]). More recently
a number of variants of the basic idea have been considered ([28], [29], [7], [8],
[5]). In the last two references one can find a syntactic proof of a conservative
extension result: essentially that any polycategory embeds fully and faithfully
in the free linearly distributive category which it generates.21 The proof in
particular of faithfulness is really quite involved and makes heavy use of an
intricate analysis of proof nets in [5].

As an illustration of the value of abstract proof theory I give here an abstract
category theoretic proof of the result. I shall do this in the simple symmetric
case which is the fundamental case for traditional logic, though the reader will
see that other versions follow the same lines.

I recall the idea of polycategory. First let us consider a general form of the
core of the sequent calculus. Suppose we have a collection of propositions A, B,
C, and so on; and suppose further that we have, for sequences Γ, ∆ of propo-
sitions, collections of proofs of Γ ⊢ ∆. Suppose finally that this collection of
proofs contains identity proofs, is closed under the cut rule and under exchange.
So the basic structural rules are

Identity
A ⊢ A

Γ ⊢ ∆, A A,Π ⊢ Σ
Cut

Γ,∆ ⊢ Π,Σ

and we have in addition the general rule

Γ ⊢ ∆
Exchange

σΓ ⊢ τ∆
21This is not quite how Cockett and Seely [8] describe the matter, but the difference is

inessential.
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where σ and τ are arbitrary permutations. We can model this fragment of proof
theory in a symmetric polycategory.

A symmetric polycategory (henceforth just polycategory) P consists in the
first instance of the following data.

• A collection obP of objects of P .

• For each pair of finite sequences Γ and ∆ of objects, a collection P(Γ; ∆)
of maps from Γ to ∆.

First this data is required to satisfy symmetry conditions corresponding to the
exchange rule.22 Secondly we require the following data.

• For each object A an identity 1A ∈ P(A;A).

• For each Γ, ∆, A, Π, Σ a composition

P(Γ; ∆, A)× P(A,Π; Σ)→ P(Γ,Π; ∆,Σ) .

This data satisfies identity and associativity laws, compatibly with the symme-
tries. For details of more or less the same definition and for related ideas, see
[39]), [28], [7] or [8].

In [7] and more fully in [8] Cockett and Seely consider the notion of a linearly
distributive category. In essence this is a category modelling the positive part
of multiplicative linear logic: that is, multiplicative linear logic without the
involutive duality. So there are (symmetric) monoidal structures (I,⊗) and
(⊥

..........................................
.........
.......
........
............................. ) on D and a linear distributivity, that is, a natural transformation

A⊗ (B
..........................................
.........
.......
........
............................. C)→ (A⊗B)

..........................................
.........
.......
........
............................. C

satisfying simple coherence conditions (for these see in particular [8]).
Obviously any linearly distributive category D gives rise to a polycategory

Poly(D) = PolyD where

PolyD(Γ; ∆) = D(⊗Γ,
..........................................
.........
.......
........
............................. ∆) .

There is a sensible way to make Poly into a 2-functor between the obvious 2-
categories: Poly : LinDist → Poly. Conversely given a polycategory P we
can freely construct a linearly distributive category LinDist(P) = LinDistP
generated as such by the objects of P and by maps ⊗Γ→

..........................................
.........
.......
........
............................. ∆ corresponding to

the polymaps Γ → ∆, where we require that the respective composites agree.
(Cockett and Seely have a slightly different formulation of all this.) This con-
struction provides a 2-functor LinDist : Poly → LinDist. It is easy to see
that one has a 2-adjunction LinDist ⊣ Poly, and one main theorem of Cockett
and Seely [8] is the following conservativity result.

22We can express these conditions as follows. Any pair Γ, ∆ can be regarded as a pair of
objects in the free symmetric strict monoidal category on the collection of propositions. Maps
in that free category are given by object preserving bijections between the strings. Any such
pair of maps σ : Γ → σΓ and τ : ∆ → τ∆ induces a bijection (σ; τ) : P(Γ; ∆) → P(σΓ; σ∆).
And these bijections compose in the natural way.
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Theorem 5.1 In the 2-adjunction LinDist ⊣ Poly the unit

P → Poly(LinDist(P))

is full and faithful on each polycategory P.

Fullness can be derived by a cut elimination argument, but the argument for
faithfulness given in Cockett and Seely [8] depends on the careful syntactic
analysis of Blute, Cockett, Seely and Trimble [5]. Here I explain how the result
can be derived purely categorically, essentially by a Yoneda argument. Just
as the Yoneda embedding is one of the basic constructions of pure category
theory, the embedding described here seems to be a basic one for categorical
proof theory.

A bimodule (or plain module as we consider no others)M over P , is a family
of setsM(Γ; ∆) satisfying symmetry conditions as for P above, and with natural
left actions

P(Π; Σ, A)×M(A,Γ; ∆)→M(Π,Γ; Σ,∆) ,

and right actions

M(Γ; ∆, A)× P(A,Π; Σ)→M(Γ,Π; ∆,Σ) ,

which commute. The naturality conditions parallel the identity and associativity
laws for P . Note that P itself is a bimodule: it has both left and right actions
by P and these commute by the associativity of polycategory composition. Let
us now agree to drop the ‘bi’ and refer only to modules.

A map (or natural transformation) α : M → N of modules consists of an
indexed family αΓ;∆ :M(Γ; ∆) → N (Γ; ∆) respecting the actions: for the left
action one has

P(Π; Σ, A)×M(A,Γ; ∆) −−−−−−−−−→M(Π,Γ; Σ,∆)

|
|
|
↓

|
|
|
↓

P(Π; Σ, A)×N (A,Γ; ∆) −−−−−−−−−→ N (Π,Γ; Σ,∆)

commuting, and similarly for the right action.
We also have the notion of representable modules. The left representable

module AP is defined by AP(Π; Σ) = P(A,Π; Σ). The right representable mod-
ule PA is defined by PA(Γ; ∆) = P(Γ; ∆, A).

5.2 The envelope

Suppose that P is a polycategory. Define Env(P), the envelope of P , to be the
following category.
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• Objects of Env(P) are pairs U , X of modules equipped with a natural
map

α : U(Γ; ∆)×X (Π; Σ)→ P(Π,Γ; Σ,∆) .

We write such an object simply as α : U × X → P .

• Maps of Env(P) from α : U × X → P to β : V × Y → P are given by
natural maps φ0 : U → V and φ1 : Y → X such that

U(Γ; ∆)× Y(Π; Σ) −−−
1× φ1
−−−−−−−−→ U(Γ; ∆)×X (Π; Σ)

φ0 × 1

|
|
|
↓

|
|
|
↓

V(Γ; ∆)×X (Π; Σ) −−−−−−−−−−−→ P(Π,Γ; Σ,∆)

commutes.23

We shall now show that the category Env(P) carries the structure of a
∗-autonomous category. There is an obvious involution of the form

(U × X → P)⊥ = (X × U → P).

Given that, it is enough to define a suitable tensor product. For α : U ×X → P
and β : V × Y → P , we define their tensor product α ⊗ β : (U ⊗ V)×M → P
as follows. First we let U ⊗ V be given by

(U ⊗ V)(Γ; ∆) =
∑
{U(Γ1; ∆1)× V(Γ2; ∆2) |Γ = Γ1 + Γ2 , ∆ = ∆1 + ∆2} ,

where the sum is taken over all ways of decomposing the strings. Then we define
M by setting M(Π; Σ) to be the set of all pairs (χ0, χ1) with

χ0 : V(Φ; Ψ)→ X (Π,Φ; Ψ,Σ), and χ1 : U(Φ; Ψ)→ Y(Π,Φ; Ψ,Σ) ,

natural in Φ and Ψ, and such that the obvious diagram of the form

U(Φ1; Ψ1)× V(Φ2; Ψ2) −−−−−−−−−→U(Φ1; Ψ1)×X (Π,Φ2; Ψ2,Σ)

|
|
|
↓

|
|
|
↓

V(Φ2; Ψ2)× Y((Π,Φ1; Ψ1,Σ) −−−−−−−−−→ P(Π,Φ1,Φ2; Ψ1,Ψ2,Σ)

commutes. The action α⊗ β is defined as follows.

Take (u, v) ∈ U⊗V(Γ; ∆), and (χ0, χ1) ∈M(Π; Σ). We have u ∈ U(Γ1; ∆1) and
v ∈ V(Γ2; ∆2) for some decomposition; then x = (χ0)Γ2;∆2

(v) ∈ X (Π,Γ2; ∆2,Σ)
and y = (χ1)Γ1;∆1

(u) ∈ Y(Π,Γ1; ∆1,Σ) are such that α(u, x) = β(v, y); this is
the value for (α⊗ β)((u, v), (χ0, χ1)).

One checks that this action is functorial; and then it is routine to work through
the details of the proof of the following proposition.

23There is a clear sense in which the envelope construction combines the idea of a category
of presheaves with that of the Chu construction.
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Proposition 5.2 With the structure just defined Env(P) is a ∗-autonomous
category.

To each object A of P we associate the object γA : PA × AP → P obtained
by composing the right and left representable modules in P . One should think
of this object γA as the operation ‘cut on a formula A’. Now any polymap
f ∈ P(Γ; ∆) induces an obvious map

γf : ⊗
C∈Γ

γC →
..........................................
.........
......
......
................................

D∈∆
γD

in Env(P); and γf depends naturally on f in the obvious sense, so that there is
a map of polycategories P → Poly(Env(P)). Then a Yoneda argument shows
the following.

Proposition 5.3 For any polycategory P, the map P → Poly(Env(P)) is full
and faithful.

We shall refer to the map P → Poly(Env(P)) as the Yoneda embedding for
polycategories. One can think of it as suggesting (though after the event) that
the basic idea of the sequent calculus gives rise inevitably to multiplicative lin-
ear logic.

We observed that Env(P) is ∗-autonomous and so in particular linearly
distributive. Hence by the 2-adjunction we get a map Lindist(P) → Env(P)
of linearly distributive categories so that the above Yoneda embedding factors

P → Poly(Env(P)) = P → Poly(Lindist(P))→ Poly(Env(P))

through the unit P → Poly(Lindist(P)). As P → Poly(End(P)) is faithful
so also is the unit P → Poly(Lindist(P)). This proves the faithful half of
Theorem 5.1.24

5.3 ∗-polycategories

To complete the picture I mention the notion of ∗-polycategory, which models
a symmetric form of the sequent calculus.

Suppose we have a collection of propositions A, B, C, and so on, equipped
with an involution (−)⊥. Suppose further that we have for sequences Γ, ∆ of
propositions collections of proofs of Γ ⊢ ∆. Suppose finally that this collection
of proofs contains identity proofs and is closed under cut and under exchange
as before; and that in addition it is closed under the classical rules for negation.

Γ, A ⊢ ∆
Negation− right

Γ ⊢ A⊥,∆

Γ ⊢ A,∆
Negation− left

Γ, A⊥ ⊢ ∆

We can model this fragment of logic in a ∗-polycategory.
A symmetric ∗-polycategory (henceforth just ∗-polycategory) P consists in

the first instance of the following data.

24One can in fact get the full result by a use of a glueing argument along lines due to Lafont.
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• A collection obP of objects of P closed under an involutory negation (−)⊥.

• For each pair of finite sequences Γ and ∆ of objects, a collection P(Γ; ∆)
of maps from Γ to ∆.

This data is required to satisfy conditions corresponding to the exchange rule
and the rules for negation.25 Secondly we require the following data.

• For each object A an identity 1A ∈ P(A;A).

• For each Γ, ∆, A, Π, Σ a composition

P(Γ; ∆, A)× P(A,Π; Σ)→ P(Γ,Π; ∆,Σ) .

This data satisfies identity and associativity laws, compatibly with the symme-
tries. I omit the details.

Recall that the multiplicative fragment of linear logic corresponds to the no-
tion of a ∗-autonomous category. It is easy to see that a ∗-autonomous category
A gives rise to a ∗-polycategory SPoly(A) = SPolyA, where

SPolyA(Γ; ∆) = A(⊗Γ,
..........................................
.........
.......
........
............................. ∆)

A duality is a contravariant structure and hence neither ∗Aut nor ∗Poly are
naturally 2-categories; rather they are naturally enriched in groupoids. Then
SPoly extends to a groupoid enriched functor SPoly : ∗Aut → ∗Poly. Con-
versely, given a ∗-polycategory P , we can freely construct a ∗-autonomous cat-
egory SAut(P) generated by the objects and polymaps and subject to obvious
identifications as before. Then SAut : ∗Poly → ∗Aut is a groupoid enriched
functor, and we have a groupoid enriched adjunction SAut ⊣ SPoly. There is
a corresponding conservativity result.

Theorem 5.4 In the groupoid enriched adjunction SAut ⊣ SPoly, the unit

P → SPolySAut(P)

is full and faithful for any ∗-polycategory P.

The faithfulness is again a consequence of a Yoneda argument. Env(P) is a
∗-autonomous category for any polycategory P . If P is itself a ∗-polycategory
then A→ (γA : PA×AP → P) is a map of ∗-polycategoriesP → SPolyEnv(P).
Then the same Yoneda argument as before gives the following proposition.

Proposition 5.5 For any ∗-polycategory P, the map P → SPolyEnv(P) is
full and faithful.

25We can express these conditions as follows. Any pair Γ, ∆ gives us a sequence Γ⊥,∆ which
we can regard as an object in the free symmetric strict monoidal category on the collection
of propositions. Maps in that free category are given by object preserving bijections between
the strings. Each such map σ : Γ⊥,∆ → Π⊥,Σ induces a map σ∗ : P(Γ; ∆) → P(Π; Σ). And
these compose in the natural way.
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This is the Yoneda embedding for ∗-polycategories. Now for any ∗-polycategory
P , the groupoid enriched adjunction gives a map SAut(P) → Env(P) of ∗-
autonomous categories so that the Yoneda embedding factors

P → SPolyEnv(P) = (P → SPolySAut(P)→ SPolyEnv(P)

through the unit P → SPolySAut(P). As P → SPolyEnv(P) is full and
faithful, so also is the unit P → SPolySAut(P). This proves the faithful part
of Theorem 5.4.26

5.4 Modelling Classical Sequent Calculus

I now describe in outline an approach to the semantics of proofs in the classical
sequent calculus which is intended to be faithful to its essential mathematical
structure. This approach comes from a consideration of the system for annotat-
ing proofs developed by Bierman and Urban and analyzed in detail in Urban’s
PhD dissertation [45]. The papers [46] and [47] give a compressed account of
some of the work.

So what should we regard as the essential mathematical structure of the
sequent calculus? The basic idea is surely that we compose proofs by cuts. If
we think of this as plugging proof modules together, the order of the plugging
should not matter and we expect at least to identify sequent calculus proofs up
to naturally commuting cuts. Thus we expect there to be a ∗-polycategory C of
propositions and classical proofs. We start with the following intuitions.

• We should identify proofs up to commutative conversions as is the basic
idea of proof nets.

• The key step of cut elimination, that of eliminating logical a cut at a
critical formula, should be regarded as unproblematic and performing such
a cut should leave the meaning of a proof unchanged.

• More generally we expect to identify proofs when the cut elimination pro-
cess transforms a cut in only one way. However when the cut elimination
process has a choice we get no identification.27

Now the ∗-polycategory C will contain a core category C of propositions and
proofs. Clearly C must (in some sense) be equipped with the structure, true,
and, false, or, not of classical logic: we write this structure as 1, ∧, 0, ∨ and
(−)⊥, the last being the involutory negation.

The critical question is whether or not polymaps in C are represented in C

by ∧ and ∨: that is, in effect, whether or not C is a ∗-autonomous category

26Again the full result will follow from a more complex argument following Lafont.
27Many have had the obvious thought to regard the proof as a non-deterministic choice

between the two results; but without careful caveats that is not faithful to the dynamics of
proofs. In any case what is proposed here is more innocent in that it makes no preemptive
assumptions about meaning.
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with SPoly(C) ∼= C.28 The idea that we have SPoly(C) ∼= C seems appealing
in terms of mathematical elegance, so let us see what it means. It amounts
requiring that proofs of Γ, A ∧ B ⊢ ∆ coincide with proofs of Γ, A,B ⊢ ∆, or
dually whether proofs of Γ ⊢ A ∨ B,∆ coincide with proofs of Γ ⊢ A,B,∆.
Suppose we start (for example) with a proof of Γ, A,B ⊢ ∆, form from it a
proof of Γ, A ∧ B ⊢ ∆ in the obvious way, and then cut that with the simple
proof of A,B ⊢ A ∧B. Then our intuition is surely that we are back where we
started.29 However it is not quite so plausible that all proofs of Γ, A ∧ B ⊢ ∆
are (equivalent to) ones deriving directly from proofs of Γ, A,B ⊢ ∆. Indeed
some computational intuition is against that.

We can look at the issue from another point of view. Note that given proofs
A ⊢f B and C ⊢g D, there is a canonical proof A ∧C ⊢f∧g B ∧D given by the
following

A ⊢f B C ⊢g D
∧−right

A,C ⊢ B ∧D
∧−left .

A ∧ C ⊢ B ∧D

Similarly we have f∨g a proof of A∨C ⊢ B∨D. Thus we have operations ∧ and
∨ on maps and the question then is whether or not these operations on maps
are functorial. If we take the full range of possibilities in the sequent calculus
seriously then simple experiments will show that making ∧ and ∨ functorial
would force us to identify proofs which are intuitively distinct; so we should not
assume functoriality. Now if ∧ and ∨ represent multimaps then they will be
functorial.30 So by the same token ∧ and ∨ should not represent multimaps.

Suppose we agree that ∧ and ∨ are not be functorial on C: then we are
left with the question of exactly what properties these operations should have.
Since the problems arise out of the structural rules, it seems natural to require
that linear proofs should play a special role. So without further ado, here is a
modest proposal for the abstract definition of a semantics for classical proof. A
static model for classical propositional logic consists of the following data.

• An identity on objects faithful functor L → C. (We think of C as be-
ing a category of propositions and classical proofs; and of L as being a
subcategory of the same propositions but with linear proofs.)

• The structure of a ∗-autonomous category on L. We write the structure
as 1, ∧, 0, ∨ and the involution as (−)⊥.

• An extension of (−)⊥ to an involution on C.

28Of course we cannot have C ∗-autonomous and the diagonal A ⊢ A ∧ A and codiagonal
A ∨ A ⊢ A natural. For then C would be a self dual cartesian closed category and so by
Proposition 4.1 a Boolean algebra.

29Thus, despite the difficulties we are about to discuss, it seems possible to give a model in
purely categorical rather than polycategorical terms.

30With natural assumptions there is in fact a converse.
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• Extensions of ∧ and ∨ to act on maps of C, preserving the duality by (−)⊥.
These extensions (are not functorial, but) satisfy naturality conditions
with respect to the maps of L. Thus if

A −−−
f
−−−−−−→ B C −−−

g
−−−−−−→ D

r

|
|
|
↓

|
|
|
↓
s and t

|
|
|
↓

|
|
|
↓
u

A′ −−−−−−−
f ′
−−→ B′ C′ −−−−−−−

g′
−−→D′

commute in C with r, s, t and u in L, then

A ∧ C −−−
f ∧ g
−−−−−−−−→ B ∧D A ∨C −−−

f ∨ g
−−−−−−−−→ B ∨D

r ∧ t

|
|
|
↓

|
|
|
↓
s ∧ u and r ∨ t

|
|
|
↓

|
|
|
↓
s ∨ u

A′ ∧ C′ −−−−−−−−−
f ′ ∧ g′

−−→ B′ ∧D′ A′ ∨C′ −−−−−−−−−
f ′ ∨ g′

−−→ B′ ∨D′

commute.
In addition the linear distributivity A∧ (B ∨C)→ (A∧B)∨C from L is
natural in C.

• Maps A→ A∧A, A→ 1, and A∨A→ A and 0→ A in C, again dual with
respect to (−)⊥. These again satisfy naturality conditions with respect to
L. If r : A→ B in L, then the diagrams

A −−−−−−−−−→ 1 A −−−−−−−−−→ A ∧A

r

|
|
|
↓

|
|
|
↓

r

|
|
|
↓

|
|
|
↓
r ∧ r

B −−−−−−−−−→ 1 B −−−−−−−−−→B ∧B

0 −−−−−−−−−→ A A ∨A −−−−−−−−−→ A

|
|
|
↓

|
|
|
↓
r r ∨ r

|
|
|
↓

|
|
|
↓
r

0 −−−−−−−−−→B B ∨B −−−−−−−−−→ B

all commute.

I stress that this is very much a preliminary and tentative suggestion.31 Its most
definite merit is formal: it fits well with the philosophy proposed by Power [33].
According to that categorical semantics should be formulated in terms of some

31Recent investigations by Christian Urban suggest at least one refinement.
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kind of algebraic structure in a suitable enriched setting.32 The definition is
certainly crude in one probably inessential respect: it fails to account for the
intuition that a proof Γ ⊢ ∆ may be linear in some arguments and not in others.
However the main problems relate to semantics. I am still trying to find a non-
trivial natural mathematical semantics, so for that if no other reason the value
of the suggestion must be in doubt.

The key features of the definition are that ∧ and ∨ are not functorial with
respect to all maps, and that the diagonal A → A ∧ A and multiplication
A ∨ A → A are not natural with respect to all maps. The second of these
‘negative’ features does not seem too bad. However the existence of an extension
of ∧ and ∨ to all maps natural with respect to composition with linear maps,
but not generally functorial seems beyond the scope of current models.

Let us review the situation in the language of polycategories. We distin-
guish between linear and classical proofs in the sequent calculus. Thus we
expect to have two ∗-polycategories, one L of linear proofs and the other C of
classical proofs. There will be an embedding L → C. Now we aim for some
relation between the initial category theoretic model L → C and L → C. Cut
elimination is unproblematic for linear logic, and this finds expression in the
natural L(Γ,∆) ∼= L(∧∆,∨Γ). We can read this as saying L ∼= SPoly(L). It
would be mathematically appealing to ask also that C be ∗-autonomous with
C ∼= SPoly(C). Prima facie there is nothing to say against this. Models given
by a ∗-autonomous embedding L → C would be relatively easy to understand.
Unease arises from the fact that this simple idea conflicts with some kind of
(admittedly tenuous) computational intuition about the sequent calculus. The
alternative suggestion made here, roughly based on a proof theoretic analy-
sis ([46] and [47]), is perhaps equally unsatisfactory in that we have no good
mathematical models.

We began the paper with reflections on the contrast between philosophical
and mathematical ways of giving semantic motivation for a theory of proofs; but
I have focussed throughout on mathematical motivation arising from elegance
of structure. So it is instructive that our brief look at a possible semantics for
classical proof finds tension between different kinds of mathematical motivation.
Such tension may not be easy to resolve at the technical level. But if that
means we need a better conceptual analysis, we shall I fear be falling back on
philosophical motivation in the last resort.
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editors. Kurt Gödel: Collected Works, volume III. Oxford University Press,
1995.

[17] S. Feferman, J. W. Dawson, S. C. Kleene, G. H. Moore, R. M. Solovay,
and J. van Heijenoort, editors. Kurt Gödel: Collected Works, volume II.
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