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Abstract. Network Denial of Service (DoS) attacks are increasing in
frequency, severity and sophistication, making it desirable to measure
the resilience of systems to DoS attacks. In this paper, we propose a
simulation-based methodology and apply it to attacks on object location
services such as DNS. Our results allow us to contrast the DoS resilience
of three distinct architectures for object location.

1 Introduction

Today’s exponential growth in storage, bandwidth, and computational resources
has fundamentally changed the way that applications are constructed. A single
networked computer can now access vast distributed databases, execute pro-
grams on remote supercomputers, and communicate with billions of other de-
vices. Opportunities are limited only by the imagination.

Unfortunately, with networking comes the potential for Denial of Service
(DoS) attacks, where a DoS attack is any malicious action that reduces the
availability of a resource to one or more users. From 1989-1995 the number of
DoS attacks increased 50% per year [13]. Additionally, a 1999 CSI/FBI survey
reported that 32% of respondents detected DoS attacks directed at their sys-
tems [15]. More recently, Yankee Group, an Internet research firm, estimated
that DoS attacks cost $1.2 billion in lost revenues in 2000 [9]. Given the prolif-
eration of DoS attacks, many mission-critical applications claim DoS resilience.
To test these claims, there is a desire for a general methodology to measure the
resilience of a system or service to network DoS attacks.

As the first step towards this ambitious goal, we explore DoS resilience in an
important component of many networked applications: the object location ser-
vice (OLS). Object location services map abstract names to physical locations;
a well-known example is the Domain Name Service (DNS). In addition to ad-
ministrative convenience, the presence of an object location service permits the
system to create copies of objects close to where they are needed, thereby maxi-
mizing locality, availability and reliability. Given its central importance to many
applications, the object location service is a natural target for DoS attacks.

We explore three architectures for object location services: a centralized di-
rectory, a replicated directory, and a distributed directory. We subject a realistic
simulation of these services to two classes of denial of service attacks, namely
flooding attacks andcorruption attacks. We then contrast the DoS resilience of
these architectures and conclude with some thoughts about methodology.
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Fig. 1. A Centralized Directory  Fig. 2. A Distributed Directory (Tapestry): Nodes
Service (CDS): Clients contact  connected via links (solid arrows). Nodes route to
a single directory to discover  nodes one digit at a time: e.g. 1010 — 2218 — 9098
the location of a close replica. — 7598 — 4598. Objects are associated with one
Clients subsequently contact the  particular “root” node (e.g. 4598). Servers publish
replica directly. A Replicated  replicas by sending messages toward Toot, leaving
Directory Service (RDS) pro-  back-pointers (dotted arrows). Clients route directly
vides multiple directories. to replicas by sending messages toward root until

encountering pointer (e.g. 0325 — B4F8 — 4432).

2 Architectures for Object Location

Networked applications are extending their reach to a variety of devices and
services over the Internet. Applications expanding to leverage these network
resources find that locating objects on the wide-area is an important prob-
lem. Further, the read-mostly model of shared access, widely popularized by
the World-Wide-Web, has led to extensive object replication, compounding the
problem of object location. Work on location services has been done in a vari-
ety of contexts [8,12,14,27]. These approaches can be roughly categorized into
three groups: Centralized Directory Services (CDS), Replicated Directory Ser-
vices (RDS), and Distributed Directory Services (DDS).

2.1 Centralized and Replicated Directory Services

A centralized directory service (CDS) resides on a single server and provides
location information for every object on the network. See Figure 1. Because it
resides on a single server, it is extremely vulnerable to DoS attacks. A variant of
this is the replicated directory service (RDS) which provides multiple directory
servers. An RDS provides higher availability, but suffers consistency overhead.

2.2 Distributed Directory Services: the Tapestry Infrastructure

Networking researchers have begun to explore decentralized location services [27,
21, 24]. Such services offer a distributed infrastructure for locating objects quickly,
with guaranteed success and locality. Rather than depending on a single server



to locate an object, a query in this model is passed around the network until
it reaches a node that knows the location of the requested object. The lack of
a single target in decentralized location services means they provide very high
availability even under attack; the effects of successfully attacking and disabling
a set of nodes is limited to a small set of objects.

We chose Tapestry [27] as our example of this type of service. Tapestry is an
IP overlay network that uses a distributed, fault-tolerant architecture to track
the location of every object in the network. Tapestry has two components: a
routing mesh and a distributed directory service.

Tapestry Routing Mesh: Figure 2 shows a portion of Tapestry. Each Tapestry
node has a unique hexadecimal address drawn from a random distribution.
Tapestry nodes are connected via neighbor links of varying levels; these are
shown as solid arrows. The level-1 links (L1) from a node connect to the 16
closest, nodes' with different values in the lowest digit of the address. Level-2
links (L2) connect to the 16 closest nodes that match in the lowest digit and
have different second digits, etc.. Such neighbor links provide a route from every
node to every other node; the routing process resolves the destination address
one digit at a time. This routing scheme is based on the hashed-suffix routing
structure originally presented by Plaxton, Rajaraman, and Richa [19].

Tapestry Distributed Directory Service: Tapestry assigns a globally-unique
name (GUID) to every object. It then deterministically maps each GUID to a
unique root node. Storage servers publish objects by sending messages toward
the roots, depositing location pointers at each hop. Figure 2 shows two repli-
cas and the Tapestry root for an object. Location pointers are shown as dotted
arrows that point back to replica servers. To locate an object, a client sends
a message toward the object’s root. When the message encounters a pointer,
it routes directly to the object. It is shown in [19] that the average distance
traveled in locating an object is proportional to the distance from that object.

The root of the tree must know where one or more replicas of the object reside
in order to guarantee that replicas can be located. This makes it an obvious target
for a DoS attack. We will exploit this vulnerability later?.

3 Assessing the Risk

DoS attacks are difficult to analyze because they are system-wide phenomena.
Viewing components or attackers in isolation often fails to expose interesting
behavior. As a consequence, we choose to observe a simulation of a complete
system, including realistic network topology, client workloads, server architec-
ture, and attack profiles. Section 4 will describe the simulation environment in
detail. Here we wish to understand the types of attacks that might be mounted
against object location services and how we can assess their impact.

! «Closest” with respect to network latency.
% The Tapestry infrastructure in [27] employs multiple roots; we did not simulate this.
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Fig. 3. Structure of a distributed DDoS attacks

3.1 Threat Models

Denial of Service attacks come in many shapes and sizes. In fact, the CERT
Coordination Center [6] has proposed the following taxonomy:

— Consumption of network connectivity and/or bandwidth

— Consumption of other resources, i.e. CPU cycles or kernel data structures
Destruction or alteration of configuration information

— Physical destruction or alteration of network components

Specializing this set for object location services, we identify two general classes
of attack: Flooding Attacks and Corruption Attacks:

Flooding Attacks: The most popular network DoS attack is the flooding at-
tack, in which the attacker sends superfluous requests at a high rate. Flooding
attacks overload the victim’s resources (such as queues and CPU), and also
swamp the local routers, gateways and links. These DoS attacks can be clas-
sified as point-to-point or distributed. There are four major point-to-point DoS
attacks: TCP SYN flooding, UDP flooding, ICMP flooding and Smurf attacks
[10].

Distributed Dos (DDoS) attacks combine point-to-point DoS attacks with
distributed and coordinated control. Figure 3 shows the structure of a DDoS
attack, with one or more attackers controlling handlers, with each handler con-
trolling multiple agents®. Handlers and agents are extra layers introduced to
increase the rate of packet traffic as well as hide the attackers from view. Each
agent can choose the size and type of packets as well as the duration of flood-
ing. While the victim may be able to identify some agents and have them taken
off-line, the attacker can monitor the effects of the attack and create new agents
accordingly [10]. In general, attack simulation parameters should be chosen to
cover a sufficient spectrum of attack traffic versus legitimate traffic to show in-
teresting results.

3 Compromised hosts responsible for generating packet streams directed at the victim.



Corruption Attacks: When an attacker corrupts or destroys information, we
call this a corruption attack. There are numerous variants on this type of attack.
For instance an attacker might alter configuration information to prevent the use
of a computer or network. Or, an attacker might corrupt routing tables, causing
victim nodes to redirect traffic toward the attacker, which would subsequently
drop or deny requests. It is not possible to test all attacks, so typical examples
of this category should be simulated and measured.

3.2 Measuring Resilience

DoS attacks reduce resource availability. Here, availability refers to a spectrum
of service quality, not simply “up” versus “down”. Though the choice of Qual-
ity of Service (QoS) metrics depends on the system or service being studied,
Brown and Patterson have suggested performance, completeness, accuracy and
capacity as starting points [4]. For our particular study, we consider metrics of
response latency, request throughput, and time to recover*. We examine the level
degradation of a service under attack to assess the resilience of that service.

Of course, Denial of Service is multidimensional in that system A may be
more resilient than system B for one type of attack but less resilient for an-
other. Usually, the particular threat-model under consideration defines a set of
dimensions, one for each class of threat. Combining these dimensions to yield a
particular resilience ranking is a very system-specific task and hard to general-
ize. Our solution is to be sufficiently specific in the definition of the threat model
and only quantify the resilience in that model.

4 Experimental Setup

We built a complete system on top of ns [3]. All of our nodes function as both
clients and hosts with a subset providing the directory service. Clients send
lookup requests to the directory service, which either returns the location of a
replica or forwards the request directly to the replica. We selected some nodes
to be attackers and measured changes in the availability of system resources.

We used 1000 node network topologies generated by GT-ITM [26] using a
transit-stub model. We then extended these topologies with common network
bandwidths as recommended in [16]. Our routers use simple drop-tail queuing
(we assumed attackers will spoof their IP addresses, defeating any filtering done
by more complicated queuing policies). More details are in [5].

4.1 Client Operation

We generated synthetic client workloads using both Zipf’s law [1] and hot-
cold [20] models. Zipf’s law states that if objects are ranked according to their

% A corrupted directory service could prevent service entirely, but this is beyond the
scope of the current study.



access frequency, then the number of requests of the object with rank ¢ is propor-
tional to 1/i. In a hot-cold model, a small portion of the objects (10%) receive
the majority (90%) of the requests. Our network has 500 objects, each with three
replicas placed on three randomly chosen nodes. The sizes of objects were chosen
randomly from the interval 5kB - 50kB. Nodes request a data object, wait for
the data and then request another, such as when a user is following a series of
web links.

4.2 Directory Server Operation
We used five different directory services in our simulations:

CDSr The simplest directory service is the Centralized Directory Server(CDS).
Here, one non-transit node is chosen to be the directory server. Object re-
quests are made in two stages. First, the directory server is queried and
returns the location of a random replica of the object. Second, the request-
ing node communicates directly with the node hosting the replica and the
data is returned.

CDSo Same as above, except that the directory server returns the location of
the replica which is closest to the requesting node.

RDSr The Replicated Directory Service(RDS) is placed on four random, widely-
distributed, non-transit nodes. Queries are made as above, except that a
node must choose one of the servers to fulfill its request. Here, the choice is
made randomly for each request. The replica is also randomly chosen by the
directory server as in the CDSr.

RDSo Same as the RDSr, except that each node sends requests to the nearest
directory server. (Replica choice is still random).

DDS For the DDS, we implemented a simplified version of Tapestry as an ex-
tension to ns. All messages between nodes are passed by ns’s full TCP/IP
agent. Messages route through the object’s tree to the statistically closest
object replica, and the replica responds by sending the data contents directly
to the requesting node. Our Tapestry data structures are statically built at
the start of the simulation using full knowledge of the topology, and using
hop count as the network distance metric. It should also be noted that our
implementation is un-optimized and is likely slower than a real implementa-
tion would be.

4.3 The Attacks

We modeled two types of attacks in our simulations:

Flooding Attacks The first attacks we simulated flood some important node(s)
and overload their queues to reduce the number of legitimate requests that get
through. We randomly designated some nodes “agents”; the agents then stream
a constant bit rate at the victim. We varied the number of agents as well as the



severity (bit rate) of flooding. The life time of each agent was randomly chosen
from 0 - 200 seconds with new agents immediately replacing those taken off-line.

For the CDS and RDS, we attacked the directory server(s). We attacked the
closest analogy in Tapestry, the root of a hot object. For comparison with the
CDS (RDS), we flood the root of one (four) hot object(s), keeping the number
of attacked nodes the same.

Corruption Attacks As these attacks are system/service-specific, we only
simulated two attacks here as examples.

The first attack forces an important node to believe there is a link with
negligible latency between the nodes which are actually the farthest apart. We
attack the directory server of the CDS, a random directory server of the RDS
and the Tapestry root node of a hot object for comparison.

The second attack is specific to Tapestry; a malicious Tapestry node claims to
be the root node of all objects. By replying with a negative result to any request
it receives, this node can potentially convince clients that requested objects do
not exist, denying them access to an existing resource. The question we ask here
is “how many nodes are affected?”

5 Results

5.1 Flooding Attacks

We performed simulations of flooding attacks on the CDS, RDS, and Tapestry
with hot-cold and Zipf’s law workloads. The results were similar for both work-
loads, so we present, only hot-cold results.

Comparison of CDS and Tapestry: First, we compare the performance of
CDS with Tapestry. We simulated one attacker at a rate of 500 or 2000 bytes
every 5 ms or four attackers at rates between 500 bytes every 20ms and 500 bytes
every 5ms. The results are shown in Figures 4 and 5. These figures reveal that
a single attacker does not significantly influence performance, while distributed
attackers, each flooding at the same high rate, cause severe denial of service.

While a CDS suffers greatly under severe attacks, Tapestry shows some resis-
tance. This can be explained by the distributed nature of Tapestry. Furthermore,
Tapestry satisfies many requests before they reach the root: if we observe the
attacked object exclusively, it retains more than 50% of its normal throughput.

One interesting observation, as shown by the two rightmost sets of data in
Figures 4 and 5, is that distributed attackers cause more severe DoS than a
single attacker, even when injecting the same amount of flood traffic. The reason
for this is that point-to-point attackers are limited by the bottleneck bandwidth
from attacker to the victim.

Figures 6 and 7 show the dynamics of the most severe flooding attacks on
CDS and Tapestry. The attack(s) start at 40 seconds and end at 110 seconds.
Given our simulation setup, the time to recover for CDS with both policies is 40
seconds. As Tapestry is not really affected much, its time to recover is negligible.
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Comparison of RDS and Tapestry: To explore replicated directory service,
we put four servers on widely-distributed, non-transit nodes. We investigated
two policies: either the client contacts a random directory server (RDSr) or the
closest one (RDSo). We did not simulate consistency traffic between directories.

Again, the single flooding attack has little effect, so we only present results of
DDoS attacks in Figure 8 and 9. We randomly selected four non-transit nodes as
attackers. Each of these nodes attacks a directory server in a different subnet or
the DDS root of a hot object; these attacks have little effect. We also randomly
selected sixteen non-transit attack agents in groups of four, each from different
subnets. Each group attacked one RDS directory server or the DDS root of a
hot object. The attack rate varied from 500 bytes every 10ms to 500 bytes every
1ms, with each agent set to the same rate.

Both forms of RDS and Tapestry are far more resilient to DoS than CDS
(observe the difference in flooding rates along the X-axes). Thus, replication and
topology-aware locality can significantly increase resilience to DoS attacks. In
our simulations, the optimal RDS always performs better than Tapestry. This
is because Tapestry may be forced to make traverse bottleneck links multiple
times, whereas the clients in the same subnet as an RDS directory server can
avoid the bottlenecks entirely. A more interesting observation, however, is that



35000

1
&

30000 @ Tapestry =
Erandom RDS
r Ooptimal RDS ||

@ Tapestry
W random ROS
O optimal RDS
10000

T

no atk dist atks, 4*  dist atks, 16* dist atks, 16% dist atks, 16% no atk dist atks, 4% dist atks, 16% dist atks, 16* dist atks, 16%

%)
=}

26000

o

20000

16000 1

=

a

average response latency (100ms)

number of requests satisfied in 200 seconds

o
=

500B/Sms  500B/10ms  500B/Sms S00BMms 500B/Ams  500BA0ms  500B/Sms A00B/1 ms
Fig. 8. Average response latency of RDS  Fig.9. Throughput of RDS vs. Tapestry
vs. Tapestry on DDos flooding attacks on DDos flooding attacks

Fig. 10. Nodes accessing each replica of an attacked object. Neighbor table corruption
at the black square node renders all nodes enclosed by round-corner rectangles unable
to locate the object. Simulation of 100 nodes and 60 objects (15% hot).

Tapestry comes very close to optimal RDS; as the number of objects and size of
network increases, the number of replicated directory servers required to compete
with the self-organizing nature of Tapestry is likely to increase, making Tapestry
a better overall choice. Meanwhile, Tapestry outperforms the random RDS on
severe attacks, lending credence to the locality properties of Tapestry.

5.2 Corruption Attacks

When we compromised routing information at important nodes, the CDS and
RDS, which access a random replica, are not affected®. The performance of the
CDS which returns the optimal replica was degraded to 85%. The impact to
Tapestry is negligible, with overall performance reduced by only 2.2%. We also

® We assume that the directory server(s) are not routers or gateways.



Directory services Flooding Corruption |Node spoofing|Total score|Rank
attack (80%)|attack (10%)|attack (10%)

CDS, random replica 0.027 N/A N/A 0.2216 4

CDS, optimal replica 0.023 0.85 N/A 0.2034 5

RDS, random dir server || 0.17 N/A N/A 0.336 3

RDS, optimal dir server || 0.48 N/A N/A 0.584 1

DDS 0.35 0.978 0.76 0.4538 2

Table 1. Attempting to rank the five different directory services

simulated the Tapestry-specific node spoofing attack. The effects of the attack
are displayed in Figure 10. The attack affects 24% of the network.

5.3 Resiliency Ranking

How might we combine the results of previous sections into a single ranking?
As suggested in Section 3, we might assign weights to different types of attacks
based on perceived severity or frequency. For instance, if we assign 80% weight
to flooding attacks and 10% each to two “corruption” attacks, we can roughly
rank the directory services as in Table 1. Here we simulate all eight attacks in
Figures 4, 5, 8 and 9 for all three types of directory services and report a weighted
sum of normalized throughputs. The weights are assigned in proportion to the
amounts of flood traffic and the normalization is based on the corresponding di-
rectory service performance without attack; this will vary from system to system,
but does give an idea how these services differ in terms of DoS resilience.

6 Limitations and Generalizations

While our study is very specific we feel that some of our methodology can be
applied in a more general setting. In particular, our approach of simulating a
complete, well-behaved system and then injecting malicious faults and measuring
the consequences should be generally applicable. Of course, we only simulated
static clients, servers, and attackers; one future task will be to incorporate more
dynamic behavior. We also hope to extend the scope of our simulations to more
applications. Note that the specifics, from system setup to the threat model, vary
greatly from system to system. We hope to explore techniques for combining
results across multiple dimensions, possibly extending the automated approach
for weight generation suggested by Bayuk [2]. As more attempts are made to
quantify the DoS resilience of different systems, we hope to more completely
understand both the nature of DoS attacks and how to measure their impact.

7 Related Work

Early work by Gligor and Yu [11,25] built on the classic notion of a trusted
computing base to define a “DoS Protection Base”. Yu and Gligor also pointed



out that denial of service is in fact an attack on resource availability. Millen
believed that DoS is a problem of improper resource allocation [18], while Mead-
ows has characterized the susceptibility of network services to DoS attacks on
resources used before remote host authentication [17]. Some attacks rely on pro-
tocol weaknesses to consume resources with minimal attacker effort, as in TCP
SYN flooding [22]; other attacks depend simply on the ability of an attacker to
produce sufficient traffic to overwhelm a victim by brute force [7].

In [22], the authors investigated several approaches to fighting TCP SYN
attacks and developed a tool which actively monitored the network for suspi-
cious attack behavior and terminated dangling connections left by the attacker.
In [23], the authors describe the use of an end-to-end resource accounting in
the Scout operating system to protect against resource-based DoS attacks. Both
these works present microbenchmarks testing the effectiveness of the proposed
countermeasure. Our approach differs partly in that we investigate attacks on
availability of a service, rather than on a particular server.

Brown and Patterson [4] investigate the use of fault injection to benchmark
availability and apply their methodology to software RAID systems. Our work
is similarly based on injecting faults into a workload and investigating the effect,
but our faults are malicious in nature.

8 Conclusions

In this paper, we explored the resilience of several object location services under
denial of service attacks. We did this by creating a complete simulation envi-
ronment, including realistic network topologies, server architectures and client
behaviors. We then injected malicious attacks into the system and measured the
availability of the attacked services. Not surprisingly, we discovered that dis-
tributed organizations are more resilient to DoS attacks than centralized ones.
Our simulation framework is a first attempt to quantify the network DoS re-
silience of arbitrary systems and services.
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