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Abstract. We propose a novel deformable model with statistical and
deterministic components for LV segmentation in cardiac magnetic res-
onance (MR) cine images. The statistical deformable component learns
a global reference model of the LV using Principal Component Analy-
sis (PCA) while the deterministic deformable component consists of a
finite-element deformable surface superimposed on the reference model.
The statistical model accounts for most of the global variations in shape
found in the training set while the deterministic skin accounts for the
local deformations consistent with the detailed image features. Intensity
gradient-based image forces are applied to the model to segment and re-
construct LV shape. We validate our model on the MICCAI Grand Chal-
lenge dataset using leave-one-out training. Comparing the automated
segmentation to the manual segmentation yields a Mean Perpendicular
Distance (MPD) of 3.65 mm and a Dice coefficient of 0.86.

1 Introduction

The myocardial wall in the left ventricle (LV) is the main pumping structure
of the heart and its function is important in the assessment of cardiovascular
disease. By accurately segmenting the LV in cine MR images, cardiac contrac-
tile function can be quantified according to LV volumes and ejection fractions.
Manual segmentation in MR images is a tedious process performed by clinicians,
which is subject to inter- and intra-observer variability that can lead to incon-
sistent diagnosis. These issues have motivated researchers to develop automated
methods that aspire to match the ability of expert clinicians to segment LV
shape. The recent survey [1] provides an overview of different methods that have
been applied to LV segmentation in MR images.

Deformable models have revolutionized model-based image analysis and their
variational approach has been successfully applied to segmentation and track-
ing in medical images [2]. For example, the deformable model in [3] involves a
regularization energy, which controls smoothness of the surface, and an image
energy, which is generated from image features. The shape of the surface evolves
under the influence of external forces to attain a minimum-energy configuration.
Such models provide local control over the surface and include only weak shape
priors that impose anatomical constraints yielding smooth, closed LV shapes in
MR short axis images.



The Deformable Superquadric Model (DSM) formulation in [4] includes a
stronger shape prior in the form of a global superquadric shape. A finite-element
locally deformable skin is superimposed on this global parameterized reference
shape. The global and local degrees of freedom of the deformable model evolve
under the influence of external forces, leading to the optimal fit of the reference
shape and skin. As we show in the present paper, this formulation is appropriate
for introducing statistically learned global reference shapes.

The statistical deformable model-based analysis of images was pioneered by
the introduction of the Active Shape Model (ASM) [5] and the Active Appear-
ance Model (AAM) [6], which use Principal Component Analysis (PCA) to learn
appropriate shape/deformation priors from hand-segmented data. The AAM has
been successfully applied to LV segmentation from cardiac MR images [7-10].
These methods provide a strong prior for shape and texture, such that the result-
ing shape is influenced by the variations present in the training set. PCA-based
methods provide global control of shape and appearance, but the PCA priors can
often be too restrictive and may not generalize well to variations not observed
in the training set. Such uncommon variations can occur in pathological cases
such as myocardial infarction and cardiomyopathy.

The above considerations have motivated our efforts to combine statistical
and deterministic deformable models. In [11] we combined AAMs and DSMs in
a multi-model, multi-stage approach. In the present paper, we further develop
our approach by proposing a novel unified deformable model that replaces the
superquadric reference shape with a statistically-learned PCA reference shape.

With similar motivations, a PCA shape prior is embedded in the internal
energy formulation of a deformable mesh in [13]. At each iteration, the inter-
nal energy is dictated by the projection of the resulting shape on the modes of
variation. The gradient-based data term is part of the external energy, and is
responsible for pulling the mesh towards features of interest. Our model is more
generic in the sense that any kind of external forces (gradient, inertial, or optical
flow) can be applied to influence shape without any change to the model’s for-
mulation. The PCA parameters evolve simultaneously along with the pose and
local displacement parameters, all under the influence of external forces. Such
abstraction of external forces facilitates the design of image potential functions
that influence the shape of the model. For example, we can design a potential
based on optical flow to change the shape of the model according to the LV mo-
tion across phases in the images. Finally, the finite element skin provides good
control over the smoothness of the surface, and by virtue of its ability to evolve
independently, it is able to assume shapes that may not have been captured by
the learned deformations of the PCA reference shape.

2 Model Formulation

Our formulation combines the strengths of deterministic and statistical de-
formable models. On the one hand, a PCA statistical component provides a
strong learned shape prior that captures the global variations in the training
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set. On the other hand, a deterministic deformable component affords local vari-
ations in shape that are dictated by the observed image features. The formula-
tion of our model mainly involves embedding the PCA reference as illustrated
in Fig. 1.

2.1 Geometry

The model is a closed surface that has u = (u,v) as its material coordinates.
Principal Component Analysis (PCA) is applied to a set of aligned 3D LV shapes
to obtain a discrete reference shape s(u) as

s(u) = 5(u) + P, (w)a,(w)", 1)

where S is the mean shape, the columns of matrix P are the modes of variation,
and q; are the shape or the PCA parameters. The translational offsets across the
training shapes are removed by translating the respective centroids to the origin,
and the rotational offsets are removed using Ordinary Procrustes Analysis. The
Jacobian of the PCA reference shape s is given by

_ 0s(u)
T = Daw)

thus characterizing how the shape changes when the parameters q5 change. The
Jacobian is key to the interaction of external forces with the model dynamics
described later.

A finite element deformable skin is superimposed on the reference shape
(Fig. 2) to account for local deformations. The local displacements d(u) are ex-
pressed as a linear combination of finite element basis functions b;(u) as follows:

d(u) =} diag(bi(w)a; = Saa, 3)

= Ps(u)a (2)



where q4 = (..., q;, )T is a set of local displacements q; at each mesh node i
and S holds the basis functions. In addition to the PCA parameters qs and the
local displacement parameters qg, the unified model also has global translation
and rotation parameters q. and qg. All the degrees of freedom (DOF) for the

model are collected in a single vector

a=(al,q5.9;,a;)". (4)

2.2 Dynamics

Given a new set of MR image slices for a patient, the vector q yielding a model
that best fits the images must be computed. Applying Lagrangian dynamics, the
model is made dynamic in q, thus characterizing the evolution of q under the
influence of external forces. The equations of motion are given as

Ca+Kq =, (5)

where q is the time derivative of the DOF, Cq are damping forces, Kq are elastic
forces and f; are external forces applied to the model. The stiffness matrix K
determines the material/elastic properties of the finite element skin.

We impose a spline deformation energy on the local displacements qq as

B(d) = /wl(u) ((?DQ 4 (221)2) + wo(w)d? dudv, (6)

where wp(u) controls the magnitude of the local deformation and w;(u) controls
its variation across adjacent nodes on the skin.

The equations of motion in (5) are integrated through time using an explicit
Euler method. The degrees of freedom in the vector q are updated from time ¢
to time t + At as follows:

q(t+At) _ q(t) + At (C(t))—l <f(§t) _ Kq(t)) . (7)

Such a system will come to rest when the internal (damping and elastic) and
external (image) forces equilibrate. Additional background details about the
formulation and implementation are provided in [4].

2.3 Image Forces

The model, initialized with a mean PCA reference shape, is placed in the 3D
volume formed by the MR slice stack, and deformed under the influence of image
forces. The image forces are designed to attract the surface of the model towards
the respective myocardial boundaries (endo and epi). The first step in designing
forces is to define a gradient-based potential function on an image I as

P =|V(Gy 1), (8)
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Fig. 2. PCA reference (left). Finite Element skin (center). Skin pulled away from the
reference (right).

where the Gaussian smoothing width ¢ determines the range of influence of the
forces. Multiple smoothing widths (Fig. 3) are used to attain equilibrium faster.
Such a potential function presents image forces that attract the surface of the
model towards image intensity edges. The force distribution is the gradient of
the potential function:

f=j3VP, (9)

where [ controls the scale of the force. The values for 3, the stiffness parameters
wi (u) and wg(u), and the time step At are carefully selected to maintain sta-
bility. In our implementation, we have used constant values w; = 4 x 1072 and
wg =2 x 1078, 8 = 30, and At = 1. The image smoothing and normalization
methods affect the choice of these values.

We apply two different kinds of forces to the inner and outer walls of our
model to differentiate between the endocardial wall (LV blood pool-myocardium
interface) and the epicardial wall (myocardium/right ventricle (RV) and my-
ocardium/outer organs interfaces). Since the blood pool and the pericardial fat
appear bright and the myocardium appears dark in cine MR images, we can
make use of the information present in the direction of the image gradients. At
the endocardial border, the image gradients are oriented towards the LV blood
pool, whereas at the epicardial border, the image gradients are oriented away
from the LV blood pool. Thus, the endocardial forces f; and the epicardial forces
f, are given as

ﬁm){ﬂu% if VI-x(u) <0 (10)

0, otherwise,

(11)

f(u), if VI-x(u)>0
0, otherwise,

where the tests involve the projection of the image gradient on the position
vectors x(u) of the points on the model surface whose centroid is at the origin.



Fig. 3. Image potentials at multiple smoothing widths (4, 3, 2, 0 mm)

[MPD |ED-Epi|ED-Endo[[Dice  [ED-Epi|ED-Endo]
MEAN]| 3.6 3.7 |[MEAN| 0.88 | 0.84
STD | 052 | 0.62 |[|STD | 0.02 | 0.04
MAX | 489 | 4.68 |MAX | 093 | 091
MIN | 211 | 216 |[MIN | 0.81 | 0.75

Table 1. Mean Perpendicular Distance (mm) and Dice coefficient (45 cases)

3 Results

We validated the segmentation ability of our model using leave-one-out train-
ing on end-diastolic (ED) images of the 45 MICCAI Grand Challenge datasets.
The leave-one-out validation was fully automated and the mean reference model
was initialized in the volume such that the centroid of the model coincided with
the center of the mid-slice. Initially, the model was subject only to translational
forces designed using optical flow potentials across phases. Such forces approx-
imately localize the myocardium and help in moving the initial mean reference
closer to the actual solution. Subsequently, all the parameters (rigid and non-
rigid) were stepped forward in time. The PCA parameters g, are restricted
within +2 and —2 standard deviations (which can be obtained from the corre-
sponding eigenvalues) from the mean in order to prevent unlikely shapes. The
deformation of the skin is controlled by the w; and wg constants. The model
is stepped forward across multiple Gaussian smoothing widths (4, 3, 2, 0 mm),
finally converging at the myocardial boundaries.

Due to the ambiguous gradient information at the myocardium interface with
lungs and other organs, the epicardial boundary is harder to localize. By virtue
of the model having the MICCAT Grand Challenge trained PCA reference shape,
the papillary muscles were included in the blood pool (Fig. 4). We used the Mean
Perpendicular Distance (MPD) and Dice coeflicients (Table 1) to compare the
positioning errors of automated contours with respect to the expert-delineated
contours. The average Dice coefficient and the average MPD for the ED seg-
mentation are 0.86 and 3.65 mm respectively, and these are close to the results
presented in [14], [15], and [16]. The automated contours for the mid-slices are



Fig. 4. Examples of automated contour segmentation for four cases

more accurate than those for the slices towards the apex due to partial volume
effects.

4 Conclusion

We have proposed a novel deformable model for LV segmentation in cardiac
MR images, which combines a strong statistical prior learned from manually-
segmented training data through PCA with a finite element deformable skin.
Our model is unique in the sense that the PCA reference shape is embedded
in its physical formulation and it evolves under the influence of external image
forces. Leave-one-out validation on the 45 MICCAI Grand Challenge datasets
yields good results. Our work brings us a step closer to the automation of all
phases of LV segmentation in cardiac cine MRI.
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