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Abstract
This paper presents new and effective algorithms for learning kernels. In particular, as shown by

our empirical results, these algorithms consistently outperform the so-called uniform combination
solution that has proven to be difficult to improve upon in the past, as well as other algorithms for
learning kernels based on convex combinations of base kernels in both classification and regression.
Our algorithms are based on the notion of centered alignment which is used as a similarity measure
between kernels or kernel matrices. We present a number of novel algorithmic, theoretical, and
empirical results for learning kernels based on our notion of centered alignment. In particular, we
describe efficient algorithms for learning a maximum alignment kernel by showing that the problem
can be reduced to a simple QP and discuss a one-stage algorithm for learning both a kernel and a
hypothesis based on that kernel using an alignment-based regularization. Our theoretical results
include a novel concentration bound for centered alignment between kernel matrices, the proof of
the existence of effective predictors for kernels with high alignment, both for classification and for
regression, and the proof of stability-based generalization bounds for a broad family of algorithms
for learning kernels based on centered alignment. We also report the results of experiments with
our centered alignment-based algorithms in both classification and regression.

Keywords: Kernel methods, learning kernels, feature selection.

1. Introduction

One of the key steps in the design of learning algorithms is the choice of the features. This choice
is typically left to the user and represents his prior knowledge, but it is critical: a poor choice makes
learning challenging while a better choice makes it more likely to be successful. The general objec-
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tive of this work is to define effective methods that partially relieve the user from the requirement
of specifying the features.

For kernel-based algorithms the features are provided intrinsically via the choice of a positive-
definite symmetric kernel function (Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik, 1998).
To limit the risk of a poor choice of kernel, in the last decade or so, a number of publications
have investigated the idea of learning the kernel from data (Cristianini et al., 2001; Chapelle et al.,
2002; Bousquet and Herrmann, 2002; Lanckriet et al., 2004; Jebara, 2004; Argyriou et al., 2005;
Micchelli and Pontil, 2005; Lewis et al., 2006; Argyriou et al., 2006; Kim et al., 2006; Cortes et al.,
2008; Sonnenburg et al., 2006; Srebro and Ben-David, 2006; Zien and Ong, 2007; Cortes et al.,
2009a, 2010a,b). This reduces the requirement from the user to only specifying a family of kernels
rather than a specific kernel. The task of selecting (or learning) a kernel out of that family is then
reserved to the learning algorithm which, as for standard kernel-based methods, must also use the
data to choose a hypothesis in the reproducing kernel Hilbert space (RKHS) associated to the kernel
selected.

Different kernel families have been studied in the past, but the most widely used one has been
that of convex combinations of a finite set of base kernels. However, while different learning kernel
algorithms have been introduced in that case, including those of Lanckriet et al. (2004), to our
knowledge, in the past, none has succeeded in consistently and significantly outperforming the
uniform combination solution, in binary classification or regression tasks. The uniform solution
consists of simply learning a hypothesis out of the RKHS associated to a uniform combination of
the base kernels. This disappointing performance of learning kernel algorithms has been pointed
out in different instances, including by many participants at different NIPS workshops organized on
the theme in 2008 and 2009, as well as in a survey talk (Cortes, 2009) and tutorial (Cortes et al.,
2011b). The empirical results we report further confirm this observation. Other kernel families
have been considered in the literature, including hyperkernels (Ong et al., 2005), Gaussian kernel
families (Micchelli and Pontil, 2005), or non-linear families (Bach, 2008; Cortes et al., 2009b;
Varma and Babu, 2009). However, the performance reported for these other families does not seem
to be consistently superior to that of the uniform combination either.

In contrast, on the theoretical side, favorable guarantees have been derived for learning kernels.
For general kernel families, learning bounds based on covering numbers were given by Srebro
and Ben-David (2006). Stronger margin-based generalization guarantees based on an analysis of
the Rademacher complexity, with only a square-root logarithmic dependency on the number of
base kernels were given by Cortes et al. (2010b) for convex combinations of kernels with an L1

constraint. The dependency of theses bounds, as well as others given for Lq constraints, were
shown to be optimal with respect to the number of kernels. These L1 bounds generalize those
presented in Koltchinskii and Yuan (2008) in the context of ensembles of kernel machines. The
learning guarantees suggest that learning kernel algorithms even with a relatively large number of
base kernels could achieve a good performance.

This paper presents new algorithms for learning kernels whose performance is more consis-
tent with expectations based on these theoretical guarantees. In particular, as can be seen by our
experimental results, several of the algorithms we describe consistently outperform the uniform
combination solution. They also surpass in performance the algorithm of Lanckriet et al. (2004) in
classification and improve upon that of Cortes et al. (2009a) in regression. Thus, this can be viewed
as the first series of algorithmic solutions for learning kernels in classification and regression with
consistent performance improvements.
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ALGORITHMS FOR LEARNING KERNELS BASED ON CENTERED ALIGNMENT

Our learning kernel algorithms are based on the notion of centered alignment which is a sim-
ilarity measure between kernels or kernel matrices. This can be used to measure the similarity of
each base kernel with the target kernel KY derived from the output labels. Our definition of cen-
tered alignment is close to the uncentered kernel alignment originally introduced by Cristianini et al.
(2001). This closeness is only superficial however: as we shall see both from the analysis of several
cases and from experimental results, in contrast with our notion of alignment, the uncentered kernel
alignment of Cristianini et al. (2001) does not correlate well with performance and thus, in general,
cannot be used effectively for learning kernels. We note that other kernel optimization criteria sim-
ilar to centered alignment, but without the key normalization have been used by some authors (Kim
et al., 2006; Gretton et al., 2005). Both the centering and the normalization are critical components
of our definition.

We present a number of novel algorithmic, theoretical, and empirical results for learning kernels
based on our notion of centered alignment. In Section 2, we introduce and analyze the properties
of centered alignment between kernel functions and kernel matrices, and discuss its benefits. In
particular, the importance of the centering is justified theoretically and validated empirically. We
then describe several algorithms based on the notion of centered alignment in Section 3.

We present two algorithms that each work in two subsequent stages (Sections 3.1 and 3.2):
the first stage consists of learning a kernel K that is a non-negative linear combination of p base
kernels; the second stage combines this kernel with a standard kernel-based learning algorithm such
as support vector machines (SVMs) (Cortes and Vapnik, 1995) for classification, or kernel ridge
regression (KRR) for regression (Saunders et al., 1998), to select a prediction hypothesis. These
two algorithms differ in the way centered alignment is used to learn K. The simplest and most
straightforward to implement algorithm selects the weight of each base kernel matrix independently,
only from the centered alignment of that matrix with the target kernel matrix. The other more
accurate algorithm instead determines these weights jointly by measuring the centered alignment
of a convex combination of base kernel matrices with the target one. We show that this more
accurate algorithm is very efficient by proving that the base kernel weights can be obtained by
solving a simple quadratic program (QP). We also give a closed-form expression for the weights
in the case of a linear, but not necessarily convex, combination. Note that an alternative two-stage
technique consists of first learning a prediction hypothesis using each base kernel and then learning
the best linear combination of these hypotheses. But, as pointed out in Section 3.3, in general, such
ensemble-based techniques make use of a richer hypothesis space than the one used by learning
kernel algorithms. In addition, we present and analyze an algorithm that uses centered alignment
to both select a convex combination kernel and a hypothesis based on that kernel, these two tasks
being performed in a single stage by solving a single optimization problem (Section 3.4).

We also present an extensive theoretical analysis of the notion of centered alignment and algo-
rithms based on that notion. We prove a concentration bound for the notion of centered alignment
showing that the centered alignment of two kernel matrices is sharply concentrated around the cen-
tered alignment of the corresponding kernel functions, the difference being bounded by a term in
O(1/

√
m) for samples of size m (Section 4.1). Our result is simpler and directly bounds the dif-

ference between these two relevant quantities, unlike previous work by Cristianini et al. (2001)
(for uncentered alignments). We also show the existence of good predictors for kernels with high
centered alignment, both for classification and for regression (Section 4.2). This result justifies
the search for good learning kernel algorithms based on the notion of centered alignment. We
note that the proofs given for similar results in classification for uncentered alignments by Cris-
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tianini et al. (2001, 2002) are erroneous. We also present stability-based generalization bounds for
two-stage learning kernel algorithms based on centered alignment when the second stage is kernel
ridge regression (Section 4.3). We further study the application of these bounds in the case of our
alignment maximization algorithm and initiate a detailed analysis of the stability of this algorithm
(Appendix B).

Finally, in Section 5, we report the results of experiments with our centered alignment-based al-
gorithms both in classification and regression, and compare our results with L1- and L2-regularized
learning kernel algorithms (Lanckriet et al., 2004; Cortes et al., 2009a), as well as with the uniform
kernel combination method. The results show an improvement both over the uniform combina-
tion and over the one-stage kernel learning algorithms. They also demonstrate a strong correlation
between the centered alignment achieved and the performance of the algorithm.1

2. Alignment definitions

The notion of kernel alignment was first introduced by Cristianini et al. (2001). Our definition of
kernel alignment is different and is based on the notion of centering in the feature space. Thus, we
start with the definition of centering and the analysis of its relevant properties.

2.1 Centered kernel functions

Let D be the distribution according to which training and test points are drawn. A feature mapping
Φ: X → H is centered by subtracting from it its expectation, that is forming it by Φ−Ex[Φ], where
Ex denotes the expected value of Φ when x is drawn according to the distribution D. Centering
a positive definite symmetric (PDS) kernel function K : X × X → R consists of centering any
feature mapping Φ associated to K. Thus, the centered kernel Kc associated to K is defined for all
x, x′ ∈ X by

Kc(x, x′) = (Φ(x)− E
x
[Φ])>(Φ(x′)− E

x′
[Φ])

= K(x, x′)− E
x
[K(x, x′)]− E

x′
[K(x, x′)] + E

x,x′
[K(x, x′)].

This also shows that the definition does not depend on the choice of the feature mapping associated
to K. Since Kc(x, x′) is defined as an inner product, Kc is also a PDS kernel.2 Note also that for
a centered kernel Kc, Ex,x′ [Kc(x, x′)] = 0, that is, centering the feature mapping implies centering
the kernel function.

2.2 Centered kernel matrices

Similar definitions can be given for a finite sample S = (x1, . . . , xm) drawn according to D: a
feature vector Φ(xi) with i ∈ [1,m] is centered by subtracting from it its empirical expectation, that

1. This is an extended version of (Cortes et al., 2010a) with much additional material, including additional empirical
evidence supporting the importance of centered alignment, the description and discussion of a single-stage algorithm
for learning kernels based on centered alignment, an analysis of unnormalized centered alignment and the proof of
the existence of good predictors for large values of centered alignment, generalization bounds for two-stage learning
kernel algorithms based on centered alignment, and an experimental investigation of the single-stage algorithm.

2. For convenience, we use a matrix notation for feature vectors and use Φ(x)>Φ(x′) to denote the inner product be-
tween two feature vectors and similarly Φ(x)Φ(x′)> for the outer product, including in the case where the dimension
of the feature space is infinite, in which case we are using infinite matrices.
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is forming it with Φ(xi)−Φ, where Φ = 1
m

∑m
i=1 Φ(xi). The kernel matrix K associated to K and

the sample S is centered by replacing it with Kc defined for all i, j ∈ [1,m] by

[Kc]ij = Kij −
1
m

m∑
i=1

Kij −
1
m

m∑
j=1

Kij +
1

m2

m∑
i,j=1

Kij . (1)

Let Φ = [Φ(x1), . . . ,Φ(xm)]> and Φ = [Φ, . . . ,Φ]>. Then, it is not hard to verify that Kc =
(Φ − Φ)(Φ − Φ)>, which shows that Kc is a positive semi-definite (PSD) matrix. Also, as with
the kernel function, 1

m2

∑m
i,j=1[Kc]ij = 0. Let 〈·, ·〉F denote the Frobenius product and ‖ · ‖F the

Frobenius norm defined by

∀A,B ∈ Rm×m, 〈A,B〉F = Tr[A>B] and ‖A‖F =
√
〈A,A〉F .

Then, the following basic properties hold for centering kernel matrices.

Lemma 1 Let 1 ∈ Rm×1 denote the vector with all entries equal to one, and I the identity matrix.

1. For any kernel matrix K ∈ Rm×m, the centered kernel matrix Kc can be expressed as follows

Kc =
[
I− 11>

m

]
K

[
I− 11>

m

]
.

2. For any two kernel matrices K and K′,

〈Kc,K′
c〉F = 〈K,K′

c〉F = 〈Kc,K′〉F .

Proof The first statement can be shown straightforwardly from the definition of Kc (Equation (1)).
The second statement follows from

〈Kc,K′
c〉F = Tr

[[
I− 11>

m

]
K

[
I− 11>

m

][
I− 11>

m

]
K′

[
I− 11>

m

]]
,

the fact that [I − 1
m11>]2 = [I − 1

m11>], and the trace property Tr[AB] = Tr[BA], valid for all
matrices A,B ∈ Rm×m.

We shall use these properties in the proofs of the results presented in Section 4.

2.3 Centered kernel alignment

In the following sections, in the absence of ambiguity, to abbreviate the notation, we often omit the
variables over which an expectation is taken. We define the alignment of two kernel functions as
follows.

Definition 2 (Kernel function alignment) Let K and K ′ be two kernel functions defined over X ×
X such that 0 < E[K2

c ] < +∞ and 0 < E[K ′
c
2] < +∞. Then, the alignment between K and K ′ is

defined by

ρ(K, K ′) =
E[KcK

′
c]√

E[K2
c ] E[K ′

c
2]

.
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Since |E[KcK
′
c]| ≤

√
E[K2

c ] E[K ′
c
2] by the Cauchy-Schwarz inequality, we have ρ(K, K ′) ∈

[−1, 1]. The following lemma shows more precisely that ρ(K, K ′) ∈ [0, 1] when K and K ′ are
PDS kernels.

Lemma 3 For any two PDS kernels K and K ′, E[KK ′] ≥ 0.

Proof Let Φ be a feature mapping associated to K and Φ′ a feature mapping associated to K ′. By
definition of Φ and Φ′, and using the properties of the trace, we can write:

E
x,x′

[K(x, x′)K ′(x, x′)] = E
x,x′

[Φ(x)>Φ(x′)Φ′(x′)>Φ′(x)]

= E
x,x′

[
Tr[Φ(x)>Φ(x′)Φ′(x′)>Φ′(x)]

]
= 〈E

x
[Φ(x)Φ′(x)>], E

x′
[Φ(x′)Φ′(x′)>]〉F = ‖U‖2

F ≥ 0,

where U = Ex[Φ(x)Φ′(x)>].

The lemma applies in particular to any two centered kernels Kc and K ′
c which, as previously shown,

are PDS kernels if K and K ′ are PDS. Thus, for any two PDS kernels K and K ′, the following
holds:

E[KcK
′
c] ≥ 0.

We can define similarly the alignment between two kernel matrices K and K′ based on a finite
sample S = (x1, . . . , xm) drawn according to D.

Definition 4 (Kernel matrix alignment) Let K ∈ Rm×m and K′ ∈ Rm×m be two kernel matrices
such that ‖Kc‖F 6= 0 and ‖K′

c‖F 6= 0. Then, the alignment between K and K′ is defined by

ρ̂(K,K′) =
〈Kc,K′

c〉F
‖Kc‖F ‖K′

c‖F
.

Here too, by the Cauchy-Schwarz inequality, ρ̂(K,K′) ∈ [−1, 1] and in fact ρ̂(K,K′) ≥ 0 since the
Frobenius product of any two positive semi-definite matrices K and K′ is non-negative. Indeed, for
such matrices, there exist matrices U and V such that K = UU> and K′ = VV>. The statement
follows from

〈K,K′〉F = Tr(UU>VV>) = Tr
(
(U>V)>(U>V)

)
= ‖U>V‖2

F ≥ 0. (2)

This applies in particular to the kernel matrices of the PDS kernels Kc and K ′
c:

〈Kc,K′
c〉F ≥ 0.

Our definitions of alignment between kernel functions or between kernel matrices differ from
those originally given by Cristianini et al. (2001, 2002):

A =
E[KK ′]√

E[K2] E[K ′2]
Â =

〈K,K′〉F
‖K‖F ‖K′‖F

,

which are thus in terms of K and K ′ instead of Kc and K ′
c and similarly for matrices. This may

appear to be a technicality, but it is in fact a critical difference. Without that centering, the definition
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Figure 1: (a) Representation of the distribution D. In this simple two-dimensional example, a frac-
tion α of the points are at (−1, 0) and have the label −1. The remaining points are at
(1, 0) and have the label +1. (b) Alignment values computed for two different definitions
of alignment. The solid line in black plots the definition of alignment computed accord-
ing to Cristianini et al. (2001) A = (α2 + (1− α)2)1/2, while our definition of centered
alignment results in the straight dotted blue line ρ = 1.

of alignment does not correlate well with performance. To see this, consider the standard case where
K ′ is the target label kernel, that is K ′(x, x′) = yy′, with y the label of x and y′ the label of x′, and
examine the following simple example in dimension two (X = R2), where K(x, x′) = x · x′ + 1
and where the distribution D is defined by a fraction α ∈ [0, 1] of all points being at (−1, 0) and
labeled with −1, and the remaining points at (1, 0) with label +1, as shown in Figure 1.

Clearly, for any value of α ∈ [0, 1], the problem is separable, for example with the simple
vertical line going through the origin, and one would expect the alignment to be 1. However, the
alignment A calculated using the definition of the distribution D admits a different expression.
Using

E[K ′2] = 1,

E[K2] = α2 · 4 + (1− α)2 · 4 + 2α(1− α) · 0 = 4
(
α2 + (1− α)2

)
,

E[KK ′] = α2 · 2 + (1− α)2 · 2 + 2α(1− α) · 0 = 2
(
α2 + (1− α)2

)
,

gives A = (α2 + (1−α)2)1/2. Thus, A is never equal to one except for α = 0 or α = 1 and for the
balanced case where α = 1/2, its value is A = 1/

√
2 ≈ .707 < 1. In contrast, with our definition,

ρ(K, K ′) = 1 for all α ∈ [0, 1] (see Figure 1).
This mismatch between A (or Â) and the performance values can also be seen in real world

datasets. Instances of this problem have been noticed by Meila (2003) and Pothin and Richard
(2008) who have suggested various (input) data translation methods, and by Cristianini et al. (2002)
who observed an issue for unbalanced data sets. Table 1, as well as Figure 2, give a series of
empirical results in several classification and regression tasks based on datasets taken from the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/) and Delve datasets (http://
www.cs.toronto.edu/˜delve/data/datasets.html). The table and the figure illustrate the fact
that the quantity Â measured with respect to several different kernels does not always correlate
well with the performance achieved by each kernel. In fact, for the splice classification task, the
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KINEMATICS IONOSPHERE GERMAN SPAMBASE SPLICE

(REGR.) (REGR.) (CLASS.) (CLASS.) (CLASS.)
ρ̂ 0.9624 0.9979 0.9439 0.9918 0.9515
Â 0.8627 0.9841 0.9390 0.9889 -0.4484

Table 1: The correlations of the alignment values and error-rates of various kernels. The top row re-
ports the correlation of the accuracy of the base kernels used in Section 5 with the centered
alignments ρ̂, the bottom row the correlation with the non-centered alignment Â.

Figure 2: Detailed view of the splice and kinematics experiments presented in Table 1. Both the
centered (plots in blue) and non-centered alignment (plots in orange) are plotted as a
function of the accuracy (for the regression problem in the kinematics task “accuracy”
is 1 - RMSE). It is apparent from these plots that the non-centered alignment can be
misleading when evaluating the quality of a kernel.

non-centered alignment is negatively correlated with the accuracy, while a large positive correlation
is expected of a good quality measure. The centered notion of alignment ρ̂ however, shows good
correlation along all datasets and is always better correlated than Â.

The notion of alignment seeks to capture the correlation between the random variables K(x, x′)
and K ′(x, x′) and one could think it natural, as for the standard correlation coefficients, to consider
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the following definition:

ρ′(K, K ′) =
E[(K − E[K])(K ′ − E[K ′])]√

E[(K − E[K])2] E[(K ′ − E[K ′])2]
.

However, centering the kernel values, as opposed to centering the feature values, is not directly
relevant to linear predictions in feature space, while our definition of alignment ρ is precisely related
to that. Also, as already shown in Section 2.1, centering in the feature space implies the centering of
the kernel values, since E[Kc] = 0 and 1

m2

∑m
i,j=1[Kc]ij = 0 for any kernel K and kernel matrix K.

Conversely, however, centering the kernel does not imply centering in feature space. For example,
consider any kernel where all the row marginals are not all equal.

3. Algorithms

This section discusses several learning kernel algorithms based on the notion of centered alignment.
In all cases, the family of kernels considered is that of non-negative combinations of p base kernels
Kk, k ∈ [1, p]. Thus, the final hypothesis learned belongs to the reproducing kernel Hilbert space
(RKHS) HKµ associated to a kernel of the form Kµ =

∑p
k=1 µkKk, with µ≥ 0, which guarantees

that Kµ is PDS, and ‖µ‖=Λ≥0, for some regularization parameter Λ.
We first describe and analyze two algorithms that both work in two stages: in the first stage, these

algorithms determine the mixture weights µ. In the second stage, they train a standard kernel-based
algorithm, e.g., SVMs for classification, or KRR for regression, in combination with the kernel
matrix Kµ associated to Kµ, to learn a hypothesis h ∈ HKµ . Thus, these two-stage algorithms
differ only by their first stage, which determines Kµ. We describe first in Section 3.1 a simple
algorithm that determines each mixture weight µk independently, (align), then, in Section 3.2,
an algorithm that determines the weights µks jointly (alignf) by selecting µ to maximize the
alignment with the target kernel. We briefly discuss in Section 3.3 the relationship of such two-
stage learning algorithms with algorithms based on ensemble techniques, which also consist of two
stages. Finally, we introduce and analyze a single-stage alignment-based algorithm which learns µ
and the hypothesis h ∈ HKµ simultaneously in Section 3.4.

3.1 Independent alignment-based algorithm (align)

This is a simple but efficient method which consists of using the training sample to independently
compute the alignment between each kernel matrix Kk and the target kernel matrix KY = yy>,
based on the labels y, and to choose each mixture weight µk proportional to that alignment. Thus,
the resulting kernel matrix is defined by:

Kµ ∝
p∑

k=1

ρ̂(Kk,KY )Kk =
1

‖KY ‖F

p∑
k=1

〈Kk,KY 〉F
‖Kk‖F

Kk. (3)

When the base kernel matrices Kk have been normalized with respect to the Frobenius norm, the
independent alignment-based algorithm can also be viewed as the solution of a joint maximization
of the unnormalized alignment defined as follows, with a L2-norm constraint on the norm of µ.

Definition 5 (Unnormalized alignment) Let K and K ′ be two PDS kernels defined over X × X
and K and K′ their kernel matrices for a sample of size m. Then, the unnormalized alignment
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ρu(K, K ′) between K and K ′ and the unnormalized alignment ρ̂u(K,K′) between K and K′ are
defined by

ρu(K, K ′) = E
x,x′

[Kc(x, x′)K ′
c(x, x′)] and ρ̂u(K,K′) =

1
m2

〈Kc,K′
c〉F .

Since they are not normalized, the alignment values a and â are no longer guaranteed to be in the
interval [0, 1]. However, assuming the kernel function K and labels are bounded, the unnormalized
alignment between K and KY are bounded as well.

Lemma 6 Let K be a PDS kernel. Assume that for all x ∈ X , Kc(x, x) ≤ R2 and for all output
label y, |y| ≤ M . Then, the following bounds hold:

0 ≤ ρu(K, KY ) ≤ MR2 and 0 ≤ ρ̂u(K,KY ) ≤ MR2.

Proof The lower bounds hold by Lemma 3 and Inequality (2). The upper bounds can be obtained
straightforwardly via the application of the Cauchy-Schwarz inequality:

ρ2
u(K, KY ) = E

(x,y),(x′,y′)
[Kc(x, x′)yy′]2 ≤ E

x,x′
[K2

c (x, x′)] E
y,y′

[yy′]2 ≤ R4M2

ρ̂u(K,K′) =
1

m2
〈Kc,KY 〉F ≤

1
m2

‖Kc‖F ‖Ky‖F ≤
mR2mM

m2
= R2M,

where we used the identity 〈Kc,KY c〉F = 〈Kc,KY 〉F from Lemma 1.

We will consider more generally the corresponding optimization with an Lq-norm constraint on µ
with q > 1:

max
µ

ρ̂u

( p∑
k=1

µkKk,KY

)
=

〈 p∑
k=1

µkKk,KY

〉
F

(4)

subject to:
p∑

k=1

µq
k ≤ Λ.

An explicit constraint enforcing µ ≥ 0 is not necessary since, as we shall see, the optimal solution
found always satisfies this constraint.

Proposition 7 Let µ∗ be the solution of the optimization problem (4), then µ∗k ∝ 〈Kk,KY 〉
1

q−1

F .

Proof The Lagrangian corresponding to the optimization (4) is defined as follows,

L(µ, β) = −
p∑

k=1

µk〈Kk,KY 〉F + β(
p∑

k=1

µq
k − Λ),

where the dual variable β is non-negative. Differentiating with respect to µk and setting the result
to zero gives

∂L

∂µk
= −〈Kk,KY 〉F + qβµq−1

k = 0 =⇒ µk ∝ 〈Kk,KY 〉
1

q−1

F ,

which concludes the proof.

Thus, for q = 2, µk ∝ 〈Kk,KY 〉F is exactly the solution given by Equation (3) modulo normal-
ization by the Frobenius norm of the base matrix. Note that for q = 1, the optimization becomes
trivial and can be solved by simply placing all the weight on µk with the largest coefficient, that is
the µk whose corresponding kernel matrix Kk has the largest alignment with the target kernel.

10
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3.2 Alignment maximization algorithm

The independent alignment-based method ignores the correlation between the base kernel matrices.
The alignment maximization method takes these correlations into account. It determines the mixture
weights µk jointly by seeking to maximize the alignment between the convex combination kernel
Kµ =

∑p
k=1 µkKk and the target kernel KY = yy>.

This was also suggested in the case of uncentered alignment by Cristianini et al. (2001); Kandola
et al. (2002a) and later studied by Lanckriet et al. (2004) who showed that the problem can be
solved as a QCQP (however, as already discussed in Section 2.1, the uncentered alignment is not
well correlated with performance). In what follows, we present even more efficient algorithms for
computing the weights µk by showing that the problem can be reduced to a simple QP. We start by
examining the case of a non-convex linear combination where the components of µ can be negative,
and show that the problem admits a closed-form solution in that case. We then partially use that
solution to obtain the solution of the convex combination.

3.2.1 LINEAR COMBINATION

We can assume without loss of generality that the centered base kernel matrices Kkc are indepen-
dent, i.e. no linear combination is equal to the zero matrix, otherwise we can select an independent
subset. This condition ensures that ‖Kµc‖F > 0 for arbitrary µ and that ρ̂(Kµ,yy>) is well defined
(Definition 4). By Lemma 1, 〈Kµc,KY c〉F = 〈Kµc,KY 〉F . Thus, since ‖KY c‖F does not depend
on µ, the alignment maximization problem maxµ∈M ρ̂(Kµ,yy>) can be equivalently written as
the following optimization problem:

max
µ∈M

〈Kµc,yy>〉F
‖Kµc‖F

, (5)

where M = {µ : ‖µ‖2 = 1}. A similar set can be defined via the L1-norm instead of L2. As
we shall see, however, the direction of the solution µ? does not change with respect to the choice
of norm. Thus, the problem can be solved in the same way in both cases and subsequently scaled
appropriately. Note that, by Lemma 1, Kµc = UmKµUm with Um = I− 11>/m, thus,

Kµc = Um

( p∑
k=1

µkKk

)
Um =

p∑
k=1

µkUmKkUm =
p∑

k=1

µkKkc.

Let

a = (〈K1c,yy>〉F , . . . , 〈Kpc,yy>〉F )>,

and let M denote the matrix defined by

Mkl = 〈Kkc,Klc〉F ,

for k, l ∈ [1, p]. Note that, in view of the non-negativity of the Frobenius product of symmetric PSD
matrices shown in Section 2.3, the entries of a and M are all non-negative. Observe also that M is

11
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a symmetric PSD matrix since for any vector X = (x1, . . . , xp)>∈ Rp,

X>MX =
p∑

k,l=1

xkxlMkl

= Tr
[ p∑

k,l=1

xkxlKkcKlc

]
= Tr

[
(

p∑
k=1

xkKkc)(
p∑

l=1

xlKlc)
]

= ‖
p∑

k=1

xkKkc‖2
F > 0.

The strict inequality follows from the fact that the base kernels are linearly independent. Since this
inequality holds for any non-zero X, it also shows that M is invertible.

Proposition 8 The solution µ? of the optimization problem (5) is given by µ? = M−1a
‖M−1a‖ .

Proof With the notation introduced, problem (5) can be rewritten as µ? = argmax‖µ‖2=1
µ>a√
µ>Mµ

.

Thus, clearly, the solution must verify µ?>a ≥ 0. We will square the objective and yet not enforce
this condition since, as we shall see, it will be verified by the solution we find. Therefore, we
consider the problem

µ? = argmax
‖µ‖2=1

(µ>a)2

µ>Mµ
= argmax

‖µ‖2=1

µ>aa>µ
µ>Mµ

.

In the final equality, we recognize the general Rayleigh quotient. Let ν = M1/2µ and ν? =
M1/2µ?, then

ν? = argmax
‖M−1/2ν‖2=1

ν>
[
M−1/2aa>M−1/2

]
ν

ν>ν
.

Hence, the solution is

ν? = argmax
‖M−1/2ν‖2=1

[
ν>M−1/2a

]2

‖ν‖2
2

= argmax
‖M−1/2ν‖2=1

[[
ν

‖ν‖

]>
M−1/2a

]2

.

Thus, ν? ∈ Vec(M−1/2a) with ‖M−1/2ν?‖2 = 1. This yields immediately µ? = M−1a
‖M−1a‖ , which

verifies µ?>a = a>M−1a/‖M−1a‖ ≥ 0 since M and M−1 are PSD.

3.2.2 CONVEX COMBINATION (alignf)

In view of the proof of Proposition 8, the alignment maximization problem with the set M′ =
{‖µ‖2 = 1 ∧ µ ≥ 0} can be written as

µ∗ = argmax
µ∈M′

µ>aa>µ
µ>Mµ

. (6)

The following proposition shows that the problem can be reduced to solving a simple QP.

12
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Proposition 9 Let v? be the solution of the following QP:

min
v≥0

v>Mv − 2v>a. (7)

Then, the solution µ∗ of the alignment maximization problem (6) is given by µ? = v?/‖v?‖.

Proof Note that problem (7) is equivalent to the following one defined over µ and b

min
µ≥0,‖µ‖2=1

b>0

b2µ>Mµ− 2bµ>a, (8)

where the relation v = bµ can be used to retrieve v. The optimal choice of b as a function of µ
can be found by setting the gradient of the objective function with respect to b to zero, giving the
closed-form solution b∗ = µ>a

µ>Mµ
. Plugging this back into (8) results in the following optimization

after straightforward simplifications:

min
µ≥0,‖µ‖2=1

− (µ>a)2

µ>Mµ
,

which is equivalent to (6). This shows that v? = b∗µ∗ where µ∗ is the solution of (6) and concludes
the proof.

It is not hard to see that this problem is equivalent to solving a hard margin SVM problem, thus,
any SVM solver can also be used to solve it. A similar problem with the non-centered definition of
alignment is treated by Kandola et al. (2002b), but their optimization solution differs from ours and
requires cross-validation.

Also, note that solving this QP problem does not require a matrix inversion of M. In fact, the
assumption about the invertibility of matrix M is not necessary and a maximal alignment solution
can be computed using the same optimization as that of Proposition 9 in the non-invertible case. The
optimization problem is then not strictly convex however and the alignment solution µ not unique.

We now further analyze the properties of the solution v of problem (7). Let ρ̂0(µ) denote the
partially normalized alignment maximized by (5):

ρ̂0(µ) = ‖yy>‖2
F ρ̂(µ) =

〈Kµc,yy>〉F
‖Kµc‖F

=
µ>a√
µ>Mµ

=
〈µ,M−1a〉M√

µ>Mµ
=
〈µ,M−1a〉M

‖µ‖M
.

The following proposition gives a simple expression for ρ̂0(µ).

Proposition 10 For µ = v/‖v‖, with v 6= 0 solution of the alignment maximization problem (7),
the following identity holds:

ρ̂0(µ) = ‖v‖M.

Proof Since ‖v‖2
M − 2v>a = ‖v‖2

M − 2〈v,M−1a〉M = ‖v − M−1a‖2
M − ‖M−1a‖2

M the
optimization problem (7) can be equivalently written as

min
v≥0

‖v −M−1a‖2
M.

13
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This implies that the solution v is the M-orthogonal projection of M−1a over the convex set
{v : v ≥ 0}. Therefore, v −M−1a is M-orthogonal to v:

〈v,v −M−1a〉M = 0 =⇒ ‖v‖2
M = 〈v,M−1a〉M.

Thus,

‖v‖M =
〈v,M−1a〉M

‖v‖M
=
〈µ,M−1a〉M

‖µ‖M
= ρ(µ),

which concludes the proof.

Thus, the proposition gives a straightforward way of computing ρ0(µ), thereby also ρ(µ), from the
M-norm of the solution vector v that µ is derived from.

3.3 Relationship with ensemble techniques

An alternative two-stage technique for learning with multiple kernels consists of first learning a
prediction hypothesis hk using each kernel Kk, k ∈ [1, p], and then of learning the best linear
combination of these hypotheses: h =

∑p
k=1 µkhk. But, such ensemble-based techniques make

use of a richer hypothesis space than the one used by learning kernel algorithms such as that of
Lanckriet et al. (2004). For ensemble techniques, each hypothesis hk, k ∈ [1, p], is of the form
hk =

∑m
i=1 αikKk(xi, ·) for some αk = (α1k, . . . , αmk)>∈ Rm with different constraints ‖αk‖ ≤

Λk, Λk ≥ 0, and the final hypothesis is of the form

p∑
k=1

µkhk =
p∑

k=1

µk

m∑
j=1

αikKk(xi, ·) =
m∑

i=1

p∑
k=1

µkαikKk(xi, ·).

In contrast, the general form of the hypothesis learned using kernel learning algorithms is

m∑
i=1

αiKµ(xi, ·) =
m∑

i=1

αi

p∑
k=1

µkKk(xi, ·) =
p∑

k=1

m∑
i=1

µkαiKk(xi, ·),

for some α ∈ Rm with ‖α‖ ≤ Λ, Λ ≥ 0. When the coefficients αik can be decoupled, that is
αik = αiβk for some βks, the two solutions seem to have the same form but they are in fact dif-
ferent since in general the coefficients must obey different constraints (different Λks). Furthermore,
the combination weights µi are not required to be positive in the ensemble case. We present a
more detailed theoretical and empirical comparison of the ensemble and learning kernel techniques
elsewhere (Cortes et al., 2011a).

3.4 Single-stage alignment-based algorithm

This section analyzes an optimization based on the notion of centered alignment, which can be
viewed as the single-stage counterpart of the two-stage algorithm discussed in Sections 3.1 - 3.2.

As in Sections 3.1 and 3.2, we denote by a the vector (〈K1c,yy>〉F , . . . , 〈Kpc,yy>〉F )> and
let M ∈ Rp×p be the matrix defined by Mkl = 〈Kkc,Klc〉F . The optimization is then defined
by augmenting standard single-stage learning kernel optimizations with an alignment maximization
constraint. Thus, the domain M of the kernel combination vector µ is defined by:

M = {µ : µ ≥ 0 ∧ ‖µ‖ ≤ Λ ∧ ρ(Kµ,yy>) ≥ Ω},

14
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for non-negative parameters Λ and Ω. The alignment constraint ρ(Kµ,yy>) ≥ Ω can be rewritten
as Ω

√
µ>Mµ− µ>a ≤ 0, which defines a convex region. Thus, M is a convex subset of Rp.

For a fixed µ ∈ M and corresponding kernel matrix Kµ, let F (µ,α) denote the objective
function of the dual optimization problem minimizeα∈AF (µ,α) solved by an algorithm such as
SVM, KRR, or more generally any other algorithm for which A is a convex set and F (µ, ·) a
concave function for all µ ∈ M, and F (·,α) convex for all α ∈ A. Then, the general form of a
single-stage alignment-based learning kernel optimization is

min
µ∈M

max
α∈A

F (µ,α).

Note that, by the convex-concave properties of F and the convexity of M and A, von Neumann’s
minimax theorem applies:

min
µ∈M

max
α∈A

F (µ,α) = max
α∈A

min
µ∈M

F (µ,α).

We now further examine this optimization problem in the specific case of the kernel ridge regression
algorithm. In the case of KRR, F (µ,α) = −α>(Kµ + λI)α + 2α>y. Thus, the max-min problem
can be rewritten as

max
α∈A

min
µ∈M

−α>(Kµ + λI)α + 2α>y.

Let bα denote the vector (α>K1α, . . . ,α>Kpα)>, then the problem can be rewritten as

max
α∈A

−λα>α + 2α>y − max
µ∈M

µ>bα,

where λ = λ0m in the notation of equation (4.3). We first focus on analyzing only the term
−maxµ∈Mµ>bα. Since the last constraint in M is convex, standard Lagrange multiplier theory
guarantees that for any Ω there exists a γ ≥ 0 such that the following optimization is equivalent to
the original maximization over µ.

min
µ

− µ>bα + γ(Ω
√

µ>Mµ− µ>a)

subject to µ ≥ 0 ∧ ‖µ‖ ≤ Λ ∧ γ ≥ 0.

Note that γ is not a variable, but rather a parameter that will be hand-tuned. Now, again applying
standard Lagrange multiplier theory we have that for any (γΩ) ≥ 0 there exists an Ω′ such that the
following optimization is equivalent:

min − µ>(γa + bα)

subject to µ ≥ 0 ∧ ‖µ‖ ≤ Λ ∧ γ ≥ 0 ∧ µ>Mµ ≤ Ω′2.

Applying the Lagrange technique a final time (for any Λ there exists a γ′ ≥ 0 and for any Ω′2 there
exists a γ′′ ≥ 0) leads to

min − µ>(γa + bα) + γ′µ>µ + γ′′µ>Mµ

subject to µ ≥ 0 ∧ γ, γ′, γ′′ ≥ 0.
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This is a simple QP problem. Note that the overall problem can now be written as

max
α∈A,µ≥0

−λα>α + 2α>y + µ>(γa + bα)− γ′µ>µ− γ′′µ>Mµ.

This last problem is not convex in (α,µ), but the problem is convex in each variable. In the case
of kernel ridge regression, the maximization in α admits a closed form solution. Plugging in that
solution yields the following convex optimization problem in µ:

min
µ≥0

y>(Kµ + λI)−1y − γµ>a + µ>(γ′′M + γ′I)µ.

Note that multiplying the objective by λ using the substitution µ′ = 1
λµ results in the following

equivalent problem,

min
µ′≥0

y>(Kµ′ + I)−1y − λ2γµ′>a + µ′>(λ3γ′′M + λ3γ′I)µ′,

which makes clear that the trade-off parameter λ can be subsumed by the γ, γ′ and γ′′ parameters.
This leads to the following simpler problem with a reduced number of trade-off parameters,

min
µ≥0

y>(Kµ + I)−1y − γµ>a + µ>(γ′′M + γ′I)µ. (9)

This is a convex optimization problem. In particular, µ 7→ y>(Kµ + I)−1y is a convex funtion by
convexity of f : M 7→ y>M−1y over the set of positive definite symmetric matrices. The convexity
of f can be seen from that of its epigraph, which, by the property of the Schur complement, can be
written as follows (Boyd and Vandenberghe, 2004):

epi f = {(M, t) : M � 0,y>M−1y ≤ t} = {(M, t) :
(
M y
y> t

)
� 0,M � 0}.

This defines a linear matrix inequality in (M, t) and thus a convex set. The convex optimization (9)
can be solved efficiently using a simple iterative algorithm as in (Cortes et al., 2009a). In practice,
the algorithm converges within 10-50 iterations.

4. Theoretical results

This section presents a series of theoretical guarantees related to the notion of kernel alignment.
Section 4.1 proves a concentration bound of the form |ρ − ρ̂| ≤ O(1/

√
m), which relates the

centered alignment ρ to its empirical estimate ρ̂. In Section 4.2, we prove the existence of accurate
predictors in both classification and regression in the presence of a kernel K with good alignment
with respect to the target kernel. Section 4.3 presents stability-based generalization bounds for the
two-stage alignment maximization algorithm whose first stage was described in Section 3.2.2.

4.1 Concentration bounds for centered alignment

Our concentration bound differs from that of Cristianini et al. (2001) both because our definition
of alignment is different and because we give a bound directly on the quantity of interest |ρ − ρ̂|.
Instead, Cristianini et al. (2001) give a bound on |A′ − Â|, where A′ 6= A can be related to A by
replacing each Frobenius product with its expectation over samples of size m.

The following proposition gives a bound on the essential quantities appearing in the definition
of the alignments.
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Proposition 11 Let K and K′ denote kernel matrices associated to the kernel functions K and K ′

for a sample of size m drawn according to D. Assume that for any x ∈ X , K(x, x) ≤ R2 and
K ′(x, x) ≤ R′2. Then, for any δ > 0, with probability at least 1− δ, the following inequality holds:∣∣∣∣〈Kc,K′

c〉F
m2

− E[KcK
′
c]
∣∣∣∣ ≤ 18R2R′2

m
+ 24R2R′2

√
log 2

δ

2m
.

Note that in the case K ′(xi, xj) = yiyj , we then have R′2 ≤ maxi y
2
i .

Proof The proof relies on a series of lemmas given in the Appendix. By the triangle inequality and
in view of Lemma 19, the following holds:∣∣∣∣〈Kc,K′

c〉F
m2

− E[KcK
′
c]
∣∣∣∣ ≤ ∣∣∣∣〈Kc,K′

c〉F
m2

− E
[
〈Kc,K′

c〉F
m2

]∣∣∣∣ +
18R2R′2

m
.

Now, in view of Lemma 18, the application of McDiarmid’s inequality (McDiarmid, 1989) to
〈Kc,K′

c〉F
m2 gives for any ε > 0:

Pr
[∣∣∣∣〈Kc,K′

c〉F
m2

− E
[
〈Kc,K′

c〉F
m2

]∣∣∣∣ > ε

]
≤ 2 exp[−2mε2/(24R2R′2)2].

Setting δ to be equal to the right-hand side yields the statement of the proposition.

Theorem 12 Under the assumptions of Proposition 11, and further assuming that the conditions of
the Definitions 2-4 are satisfied for ρ(K, K ′) and ρ̂(K,K′), for any δ > 0, with probability at least
1− δ, the following inequality holds:

|ρ(K, K ′)− ρ̂(K,K′)| ≤ 18β

[
3
m

+ 8

√
log 6

δ

2m

]
,

with β = max(R2R′2/ E[K2
c ], R2R′2/ E[K ′

c
2]).

Proof To shorten the presentation, we first simplify the notation for the alignments as follows:

ρ(K, K ′) =
b√
aa′

ρ̂(K,K′) =
b̂√
ââ′

,

with b = E[KcK
′
c], a = E[K2

c ], a′ = E[K ′
c
2] and similarly, b̂ = (1/m2)〈Kc,K′

c〉F , â =
(1/m2)‖Kc‖2, and â′ = (1/m2)‖K′

c‖2. By Proposition 11 and the union bound, for any δ > 0,
with probability at least 1 − δ, all three differences a − â, a′ − â′, and b − b̂ are bounded by

α = 18R2R′2

m + 24R2R′2
√

log 6
δ

2m . Using the definitions of ρ and ρ̂, we can write:

|ρ(K, K ′)− ρ̂(K,K′)| =
∣∣∣ b√

aa′
− b̂√

ââ′

∣∣∣ =
∣∣∣b√ââ′ − b̂

√
aa′√

aa′ââ′

∣∣∣
=

∣∣∣(b− b̂)
√

ââ′ − b̂(
√

aa′ −
√

ââ′)√
aa′ââ′

∣∣∣
=

∣∣∣(b− b̂)√
aa′

− ρ̂(K,K′)
aa′ − ââ′√

aa′(
√

aa′ +
√

ââ′)

∣∣∣.
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Since ρ̂(K,K′) ∈ [0, 1], it follows that

|ρ(K, K ′)− ρ̂(K,K′)| ≤ |b− b̂|√
aa′

+
|aa′ − ââ′|√

aa′(
√

aa′ +
√

ââ′)
.

Assume first that â ≤ â′. Rewriting the right-hand side to make the differences a − â and a′ − â′

appear, we obtain:

|ρ(K, K ′)− ρ̂(K,K′)| ≤ |b− b̂|√
aa′

+
|(a− â)a′ + â(a′ − â′)|√

aa′(
√

aa′ +
√

ââ′)

≤ α√
aa′

[
1 +

a′ + â√
aa′ +

√
ââ′

]
≤ α√

aa′

[
1 +

a′√
aa′

+
â√
ââ′

]
≤ α√

aa′

[
2 +

√
a′

a

]
=

[
2√
aa′

+
1
a

]
α.

We can similarly obtain
[

2√
aa′

+ 1
a′

]
α when â′ ≤ â. Both bounds are less than or equal to

3 max(α
a , α

a′ ).

Equivalently, one can set the right hand side of the high probability statement presented in Theo-
rem 12 equal to ε and solve for δ, which shows that Pr

[
|ρ(K, K ′)− ρ̂(K,K′)| > ε

]
≤ O(e−mε2).

4.2 Existence of good alignment-based predictors

For classification and regression tasks, the target kernel is based on the labels and defined by
KY (x, x′) = yy′, where we denote by y the label of point x and y′ that of x′. This section shows the
existence of predictors with high accuracy both for classification and regression when the alignment
ρ(K, KY ) between the kernel K and KY is high.

In the regression setting, we shall assume that the labels have been normalized such that E[y2] =
1. In classification, y = ±1 and thus E[y2] = 1 without any normalization. Denote by h∗ the
hypothesis defined for all x ∈ X by

h∗(x) =
Ex′ [y′Kc(x, x′)]√

E[K2
c ]

.

Observe that by definition of h∗, Ex[yh∗(x)] = ρ(K, KY ). For any x ∈ X , define γ(x) =√
Ex′ [K

2
c (x,x′)]

Ex,x′ [K
2
c (x,x′)] and Γ = maxx γ(x). The following result shows that the hypothesis h∗ has high

accuracy when the kernel alignment is high and Γ not too large.3

Theorem 13 (classification) Let R(h∗) = Pr[yh∗(x) < 0] denote the error of h∗ in binary classi-
fication. For any kernel K such that 0 < E[K2

c ] < +∞, the following holds:

R(h∗) ≤ 1− ρ(K, KY )/Γ.

3. A version of this result was presented by Cristianini, Shawe-Taylor, Elisseeff, and Kandola (2001) and Cristianini,
Kandola, Elisseeff, and Shawe-Taylor (2002) for the so-called Parzen window solution and non-centered kernels.

However, both proofs are incorrect since they rely implicitly on the fact that maxx

ˆ Ex′ [K2(x,x′)]
Ex,x′ [K2(x,x′)]

˜ 1
2 =1, which can

only hold in the trivial case where the kernel function K2 is a constant: by definition of the maximum and expectation
operators, maxx

ˆ
Ex′ [K2(x, x′)]

˜
≥ Ex

ˆ
Ex′ [K2(x, x′)]

˜
, with equality only in the constant case.
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Proof Note that for all x ∈ X ,

|yh∗(x)| = |y Ex′ [y′Kc(x, x′)]|√
E[K2

c ]
≤

√
Ex′ [y′2] Ex′ [K2

c (x, x′)]√
E[K2

c ]
=

√
Ex′ [K2

c (x, x′)]√
E[K2

c ]
≤ Γ.

In view of this inequality, and the fact that Ex[yh∗(x)] = ρ(K, KY ), we can write:

1−R(h∗) = Pr[yh∗(x) ≥ 0]
= E[1{yh∗(x)≥0}]

≥ E
[
yh∗(x)

Γ
1{yh∗(x)≥0}

]
≥ E

[
yh∗(x)

Γ

]
= ρ(K, KY )/Γ,

where 1ω is the indicator function of the event ω.

A probabilistic version of the theorem can be straightforwardly derived by noting that by Markov’s
inequality, for any δ > 0, with probability at least 1− δ, |γ(x)| ≤ 1/

√
δ.

Theorem 14 (regression) Let R(h∗) = Ex[(y − h∗(x))2] denote the error of h∗ in regression. For
any kernel K such that 0 < E[K2

c ] < +∞, the following holds:

R(h∗) ≤ 2(1− ρ(K, KY )).

Proof By the Cauchy-Schwarz inequality, it follows that:

E
x
[h∗2(x)] = E

x

[
Ex′ [y′Kc(x, x′)]2

E[K2
c ]

]
≤ E

x

[
Ex′ [y′2] Ex′ [K2

c (x, x′)]
E[K2

c ]

]
=

Ex′ [y′2] Ex,x′ [K2
c (x, x′)]

E[K2
c ]

= E
x′

[y′2] = 1.

Using again the fact that Ex[yh∗(x)] = ρ(K, KY ), the error of h∗ can be bounded as follows:

E[(y − h∗(x))2] = E
x
[h∗(x)2] + E

x
[y2]− 2 E

x
[yh∗(x)] ≤ 1 + 1− 2ρ(K, KY ),

which concludes the proof.

The hypothesis h∗ is closely related to the hypothesis h∗S derived as follows from a finite sample
S = ((x1, y1), . . . , (xm, ym)):

hS(x) =
1
m

∑m
i=1 yiKc(x, xi)√

1
m2

∑m
i,j=1 Kc(xi, xj)2

√
1

m2

∑m
i,j=1(yiyj)2

.

Note in particular that Êx[yhS(x)] = ρ̂(K,KY), where we denote by Ê the expectation based on
the empirical distribution. Using this and other results of this section, it is not hard to show that with
high probability |R(h∗)−R(h∗S)| ≤ O(1/

√
m) both in the classification and regression settings.
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For classification, the existence of a good predictor g∗ based on the unnormalized alignment ρu

(see Definition 5) can also be shown. The corresponding guarantees are simpler and do not depend
on a term such as Γ. However, unlike the normalized case, the loss of the predictor g∗S derived from
a finite sample may not always be close to that of g∗. Note that in classification, for any label y,
|y| = 1, thus, by Lemma 6, the following holds: 0 ≤ ρu(K, KY )|≤R2. Let g∗ be the hypothesis
defined by:

g∗(x) = E
x′

[y′Kc(x, x′)].

Since 0 ≤ ρu(K, KY )| ≤ R2, the following theorem provides strong guarantees for g∗ when the
unnormalized alignment a is sufficiently large, that is close to R2.

Theorem 15 (classification) Let R(g∗) = Pr[yg∗(x) < 0] denote the error of g∗ in binary classi-
fication. For any kernel K such that supx∈X Kc(x, x) ≤ R2, we have:

R(g∗) ≤ 1− ρu(K, KY )/R2.

Proof Note that for all x ∈ X ,

|yg∗(x)| = |g∗(x)| = |E
x′

[y′Kc(x, x′)]| ≤ R2.

Using this inequality, and the fact that Ex[yg∗(x)] = ρu(K, KY ), we can write:

1−R(g∗) = Pr[yg∗(x) ≥ 0] = E[1{yg∗(x)≥0}]

≥ E
[
yg∗(x)

R2
1{yh∗(x)≥0}

]
≥ E

[
yg∗(x)

R2

]
= ρu(K, KY )/R2,

which concludes the proof.

4.3 Generalization bounds for two-stage learning kernel algorithms

This section presents stability-based generalization bounds for two-stage learning kernel algorithms.
The proof of a stability-based learning bound hinges on showing that the learning algorithm is sta-
ble, that is the pointwise loss of a learned hypothesis does not change drastically if the training
sample changes only slightly. We refer the reader to Bousquet and Elisseeff (2000) for a full intro-
duction.

We present learning bounds for the case where the second stage of the algorithm is kernel ridge
regression (KRR). Similar results can be given in classification using algorithms such as SVMs in
the second stage. Thus, in the first stage, the algorithms we examine select a combination weight
parameter µ∈Mq ={µ :µ≥0, ‖µ‖q

q =Λq} which defines a kernel Kµ, and in the second stage use
KRR to select a hypothesis from the RKHS associated to Kµ. While several of our results hold in
general, we will be more specifically interested in the alignment maximization algorithm presented
in Section 3.2.2.
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Recall that for a fixed kernel function Kµ with associated RKHS HKµ and training set S =
((x1, y1), . . . , (xm, ym)), the KRR optimization problem is defined by the following constraint op-
timization problem:

min
h∈HKµ

G(h) = λ0‖h‖2
Kµ

+
1
m

m∑
i=1

(h(xi)− yi)2.

We first analyze the stability of two-stage algorithms and then use that to derive a stability-based
generalization bound (Bousquet and Elisseeff, 2000). More precisely, we examine the pointwise
difference in hypothesis values obtained on any point x when the algorithm has been trained on two
datasets S and S′ of size m that differ in exactly one point.

In what follows, we denote by ‖K‖s,t = (
∑p

k=1 ‖Kk‖t
s)

1/t the (s, t)-norm of a collection of
matrices and by ∆µ the difference µ′ − µ of the combination vector µ′ and µ returned by the first
stage of the algorithm by training on S, respectively S′.

Theorem 16 (Stability of two-stage learning kernel algorithm) Let S and S′ be two samples of
size m that differ in exactly one point and let h and h′ be the associated hypotheses generated by a
two-stage KRR learning kernel algorithm with the constraint µ∈M1. Then, for any s, t ≥ 1 with
1
s + 1

r = 1 and any x ∈ X :

|h′(x)− h(x)| ≤ 2Λ1R
2M

λ0m

[
1 +

‖∆µ‖s‖Kc‖2,t

2λ0

]
,

where M is an upper bound on the target labels and R2 = supk∈[1,p]
x∈X

Kk(x, x).

Proof The KRR algorithm returns the hypothesis h(x) =
∑m

i=1 αiKµ(xi, x), where α = (Kµ +
mλ0I)−1y. Thus, this hypothesis is parametrized by the kernel weight vector µ, which defines the
kernel function, and the sample S, which is used to populate the kernel matrix, and will be explicitly
denoted hµ,S . To estimate the stability of the overall two-stage algorithm, ∆hµ,S = hµ′,S′ − hµ,S ,
we use the decomposition

∆hµ,S = (hµ′,S′ − hµ′,S) + (hµ′,S − hµ,S)

and bound each parenthesized term separately. The first parenthesized term measures the pointwise
stability of KRR due to a change of a single training point with a fixed kernel. This can be bounded
using Theorem 2 of (Cortes et al., 2009a). Since, for all x ∈ X , Kµ(x, x) =

∑p
k=1 µkKk(x, x) ≤

R2
∑p

k=1 µk ≤ Λ1R
2, using that theorem yields the following bound:

∀x ∈ X , |hµ,S′(x)− hµ,S(x)| ≤ 2Λ1R
2M

λ0m
.

The second parenthesized term measures the pointwise difference of the hypotheses due to the
change of kernel from Kµ′ to Kµ for a fixed training sample when using KRR. By Proposition 1 of
(Cortes et al., 2010c), this term can be bounded as follows:

∀x ∈ X , |hµ′,S(x)− hµ,S(x)| ≤ Λ1R
2M

λ2
0m

‖Kµ′ −Kµ‖.
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The term ‖Kµ′ −Kµ‖ can be bounded using Hölder’s inequality as follows:

‖Kµ′ −Kµ‖ = ‖
p∑

k=1

(∆µk)Kk‖ ≤
p∑

k=1

|∆µk| ‖Kk‖ ≤ ‖∆µ‖s‖K‖2,t,

which completes the proof.

The pointwise stability result just presented can be used directly to derive a generalization bound
for two-stage learning kernel algorithms as in (Bousquet and Elisseeff, 2000).

For a hypothesis h, we denote by R(h) its generalization error and by R̂(h) its empirical error
on a S = ((x1, y1), . . . , (xm, ym)):

R(h) = E
x,y

[(hS(x)− y)2] R̂(h) =
1
m

m∑
i=1

(hS(xi)− yi)2.

Theorem 17 (Stability-based generalization bound) Let hS denote the hypothesis returned by a
two-stage KRR kernel learning algorithm with the constraint µ ∈M1 when trained on sample S.
For any s, t ≥ 1 with 1

s + 1
r = 1, with probability at least 1 − δ over samples S of size m, the

following bound holds:

R(hS) ≤ R̂(hS) +
2M1M2

m
+

(
1 +

16M2

M1

)M1M2

4

√
log 1

δ

2m
,

with M1 = 2
[
1 +

√
Λ1R2

λ0

]
M and M2 = 2Λ1R2

λ0

[
1 + ‖∆µ‖s‖Kc‖2,t

2λ0

]
M .

Proof Since hS is the minimizer of the objective (4.3) and since 0 belongs to the hypothesis space,

G(hS) ≤ G(0) =
1
m

m∑
i=1

(0− yi)2 ≤ M2.

Furthermore, since the mean squared loss is non-negative, we can write: λ0‖hS‖2
Kµ

≤ G(hS).

Therefore, ‖hS‖2
Kµ

≤ M2

λ0
. By the reproducing property, for any x ∈ X ,

|hS(x)| = |〈hS ,Kµ(x, ·)〉Kµ | ≤ ‖hS‖Kµ

√
Kµ(x, x)

=
√

M

λ0

√√√√ p∑
k=1

µkKk(x, x)

≤
√

M

λ0

√
‖µ‖1R2 ≤ RM

√
Λ1

λ0
.

Thus, for all x ∈ X and y ∈ [−M,M ], the squared loss can be bounded as follows

|hS(x)− y| ≤
(
M + RM

√
Λ1

λ0

)
=

M1

2
.
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This implies that the squared loss is M1-Lipschitz and by Theorem 16 that the algorithm is stable
with a uniform stability parameter β ≤ M1M2

m bounded as follows:

|(hS′(x)− y)2 − (hS(x)− y)2| ≤ M1|hS′(x)− hS(x)| ≤ M1M2

m
.

The application of Theorem 12 of (Bousquet and Elisseeff, 2000) with the bound on the loss M1
2

and the uniform stability parameter β directly yields the statement.

The inequality just presented holds for all two-stage learning kernel algorithms. To determine its
convergence rate, the term ‖∆µ‖s‖Kc‖2,t must be bounded. Let s = 1 and t = ∞, and assume
that the base kernels Kk, k ∈ [1, p], are trace-normalized as in our experiments (Section 3), then a
straightforward bound can be given for this term:

‖∆µ‖1‖Kc‖2,∞ ≤ (‖µ′‖1 + ‖µ‖1) max
k∈[1,k]

‖Kkc‖2 ≤ max
k∈[1,k]

2Λ1 Tr[Kkc] ≤ 2Λ1.

Thus, in the statement of Theorem 17, M2 can be replaced with 2Λ1R2

λ0

[
1 + Λ1

λ0

]
M and, for Λ1 and

λ0 constant, the learning bound converges in O(1/
√

m).
The straightforward upper bound on ‖∆µ‖s‖Kc‖2,t applies to all such two-stage learning kernel

algorithms. For a specific algorithm, finer or more favorable bounds could be derived. We have
initiated this study in the specific case of the alignment maximization algorithm. The result given
in Proposition 21 (Appendix B) can be used to bound ‖∆µ‖2 and thus ‖∆µ‖2‖Kc‖2,2.

Note that in the specific case of the alignment maximization algorithm, if µ∗ is the solution
obtained for the constraint µ∈M2, then it is also the alignment maximizing solution found in the
set µ∈M1 with Λ1 = ‖µ∗‖1≤

√
p‖µ‖2≤

√
pΛ2. This makes the dependence on p explicit in the

case of the constraint µ∈M2.

5. Experiments

This section compares the performance of several learning kernel algorithms for classification and
regression. We compare the alignment-based two-stage learning kernel algorithms align and
alignf, as well as the single-stage algorithm presented in Section 3 with the following algorithms:

Uniform combination (unif): this is the most straightforward method, which consists of choosing
equal mixture weights, thus the kernel matrix used is,

Kµ =
Λ
p

p∑
k=1

Kk.

Nevertheless, improving upon the performance of this method has been surprisingly difficult for
standard (one-stage) learning kernel algorithms (Cortes, 2009; Cortes et al., 2011b).

Norm-1 regularized combination (l1-svm): this algorithm optimizes the SVM objective

min
µ

max
α

2α>1−α>Y>KµYα

subject to: µ ≥ 0,Tr[Kµ] ≤ Λ,α>y = 0,0 ≤ α ≤ C,
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KINEMATICS IONOSPHERE GERMAN SPAMBASE SPLICE

SIZE 1000 351 1000 1000 1000
γ -3, 3 -3, 3 -4, 3 -12, -7 -9, -3

unif
.138± .005 .479± .033 .259± .018 .187± .028 .152± .022
.158± .013 .246± .033 .089± .008 .138± .031 .122± .011

1-stage
.137± .005 .470± .032 .260± .026 .209± .028 .153± .025
.155± .012 .251± .035 .082± .003 .099± .024 .105± .006

align
.125± .004 .456± .036 .255± .015 .186± .026 .151± .024
.173± .016 .261± .040 .089± .008 .140± .031 .123± .011

alignf
.115± .004 .444± .034 .242± .015 .180± .024 .139± .013
.176± .017 .278± .057 .093± .009 .146± .028 .124± .011

REGRESSION CLASSIFICATION

Table 2: Error measures (top) and alignment values (bottom) for unif, 1-stage (l2-krr or
l1-svm), align and alignf with kernels built from linear combinations of Gaussian
base kernels. The choice of γ0, γ1 is listed in the row labeled γ and the total size of
the dataset used is listed under SIZE. The results are shown with ±1 standard deviation
measured by 5-fold cross-validation. Further measures of significance are shown in Ap-
pendix C, Table 4.

as described by Lanckriet et al. (2004). Here, Y is the diagonal matrix constructed from the labels
y and C is the regularization parameter of the SVM.

Norm-2 regularized combination (l2-krr): this algorithm optimizes the kernel ridge regression
objective

min
µ

max
α

− λα>α−α>Kµα + 2α>y

subject to: µ ≥ 0, ‖µ− µ0‖2 ≤ Λ.

The L2 regularized method is used for regression since it is shown in (Cortes et al., 2009a) to
outperform the alternative L1 regularized method in similar settings. Here, λ is the regularization
parameter of KRR and µ0 is an additional regularization parameter for the kernel selection.

In all experiments, the error measures reported are for 5-fold cross validation, where, in each
trial, three folds are used for training, one used for validation, and one for testing. For the two-
stage methods, the same training and validation data is used for both stages of the learning. The
regularization parameter Λ is chosen via a grid search based on the performance on the validation
set, while the regularization parameters C for l1-svm and λ for l2-krr are fixed since only the
ratios C/Λ and λ/Λ are important. More explicitly, for the KRR algorithm, scaling the vector µ by
Λ results in a scaled dual solution: α = (KµΛ + λI)−1y = Λ−1(Kµ + λ

ΛI)−1y. In turn, we see
that the primal solution h(x) =

∑m
i=1 Λ−1αiΛKµ(x, xi) =

∑m
i=1 αiKµ(x, xi) is equivalent to the

solution of the KRR algorithm that uses a regularization parameter equal to λ/Λ without scaling µ
and, thus, it suffices to vary only one regularization parameter. In the case of SVMs, the scale of
the hypothesis does not change its sign (or the binary prediction) and thus the same property can be
shown to hold. The µ0 parameter is set to zero in our experiments.
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Figure 3: A scatter plot comparison of the different kernel combination weight values obtained by
optimally tuned one-stage and two-stage algorithms on the kinematics dataset.

5.1 General kernel combinations

In the first set of experiments, we consider combinations of Gaussian kernels of the form

Kγ(xi,xj) = exp(−γ‖xi − xj‖2),

with varying bandwidth parameter γ ∈ {2γ0 , 2γ0+1, . . . , 21−γ1 , 2γ1}. The values γ0 and γ1 are
chosen such that the base kernels are sufficiently different in alignment and performance. Each
base kernel is centered and normalized to have trace one. We test the algorithms on several datasets
taken from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/) and Delve
(http://www.cs.toronto.edu/˜delve/data/datasets.html).

Table 2 summarizes our results. For regression, we compare against the l2-krr method and
report RMSE. For classification, we compare against the l1-svm method and report the misclassi-
fication percentage. In general, we see that performance and alignment are well correlated. In all
datasets, we see improvement over the uniform combination as well as the one-stage kernel learning
algorithms. Note that although the align method often increases the alignment of the final kernel,
as compared to the uniform combination, the alignf method gives the best alignment since it di-
rectly maximizes this quantity. Nonetheless, align provides an inexpensive heuristic that increases
the alignment and performance of the final combination kernel.

In our experiments with the one-stage KRR algorithm presented in Section 3.4, there was no
significant improvement found over the two-stage alignf algorithm with respect to the kinematics
and ionosphere datasets. In fact, for optimally cross-validated parameters γ, γ′ and γ′′ the solu-
tion combination weights were found to closely coincide with the alignf solution (see Figure 3).
This would suggest the use of the two-stage algorithm over the one-stage, since there are fewer
parameters to tune and the problem can be solved as a standard QP.

To the best of our knowledge, these are the first kernel combination experiments for alignment
with general base kernels. Previous experiments seem to have dealt exclusively with rank-one base
kernels built from the eigenvectors of a single kernel matrix (Cristianini et al., 2001). In the next
section, we also examine rank-one kernels, although not generated from a spectral decomposition.
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BOOKS DVD ELEC KITCHEN

unif
1.442± .015 1.438± .033 1.342± .030 1.356± .016
0.029± .005 0.029± .005 0.038± .002 0.039± .006

l2-krr
1.410± .024 1.423± .034 1.318± .033 1.333± .015
0.036± .008 0.036± .009 0.050± .004 0.056± .005

align
1.401± .035 1.414± .017 1.308± .033 1.312± .012
0.046± .006 0.047± .005 0.065± .004 0.076± .008

REGRESSION

BOOKS DVD ELEC KITCHEN

unif
0.258± .017 0.243± .015 0.188± .014 0.201± .020
0.030± .004 0.030± .005 0.040± .002 0.039± .007

l1-svm
0.286± .016 0.292± .025 0.238± .019 0.236± .024
0.030± .011 0.033± .014 0.051± .004 0.058± .007

align
0.243± .020 0.214± .020 0.166± .016 0.172± .022
0.043± .003 0.045± .005 0.063± .004 0.070± .010

CLASSIFICATION

Table 3: The error measures (top) and alignment values (bottom) on four sentiment analysis do-
mains using kernels learned as combinations of rank-one base kernels corresponding to
individual features. The results are shown with ±1 standard deviation as measured by 5-
fold cross-validation. Further measures of significance are shown in Appendix C, Table 5.

5.2 Rank-one kernel combinations

In this set of experiments we use the sentiment analysis dataset version 1 from Blitzer et al. (2007):
books, dvd, electronics and kitchen. Each domain has 2,000 examples. In the regression setting,
the goal is to predict a rating between 1 and 5, while for classification the goal is to discriminate
positive (ratings ≥ 4) from negative reviews (ratings ≤ 2). We use rank-one kernels based on the
4,000 most frequent bigrams. The kth base kernel, Kk, corresponds to the kth bigram count vk,
Kk = vkv>k. Each base kernel is normalized to have trace one and the labels are centered.

The alignf method returns a sparse weight vector due to the constraint µ ≥ 0. As is demon-
strated by the performance of the l1-svm method, Table 3, and also previously observed by Cortes
et al. (2009a), a sparse weight vector µ does not generally offer an improvement over the uniform
combination in the rank-one setting. Thus, we focus on the performance of align and compare
it to unif and one-stage learning methods. Table 3 shows that align significantly improves both
the alignment and the error percentage over unif and also improves somewhat over the one-stage
l2-krr algorithm. Evidence of statistical significance is provided in Appendix C, Table 5. Note
that, although the sparse weighting provided by l1-svm improves the alignment in certain cases, it
does not improve performance.
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6. Conclusion

We presented a series of novel algorithmic, theoretical, and empirical results for learning kernels
based on the notion of centered alignment. Our experiments show a consistent improvement of the
performance of alignment-based algorithms over previous learning kernel techniques, as well as
the straightforward uniform kernel combination, which has been difficult to surpass in the past, in
both classification and regression. The algorithms we described are efficient and easy to implement.
All the algorithms presented in this paper are available in the open-source C++ library available at
www.openkernel.org. They can be used in a variety of applications to improve performance.
We also gave an extensive theoretical analysis which provides a number of guarantees for centered
alignment-based algorithms and methods. Several of the algorithmic and theoretical results pre-
sented can be extended to other learning settings. In particular, methods based on similar ideas
could be used to design learning kernel algorithms for dimensionality reduction.

The notion of centered alignment served as a key similarity measure to achieve these results.
Note that we are not proving that good alignment is necessarily needed for a good classifier, but
both our theory and empirical results do suggest the existence of accurate predictors with a good
centered alignment. Different methods based on possibly different efficiently computable similarity
measures could be used to design effective learning kernel algorithms. In particular, the notion of
similarity suggested by Balcan and Blum (2006), if it could be computed from finite samples, could
be used in a equivalent way.
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Appendix A. Lemmas supporting proof of Proposition 11

For a function f of the sample S, we denote by ∆(f) the difference f(S′)− f(S), where S′ is
a sample differing from S by just one point, say the m-th point is xm in S and x′m in S′. The
following perturbation bound will be needed in order to apply McDiarmid’s inequality.

Lemma 18 Let K and K′ denote kernel matrices associated to the kernel functions K and K ′ for
a sample of size m according to the distribution D. Assume that for any x ∈ X , K(x, x) ≤ R2 and
K ′(x, x) ≤ R′2. Then, the following perturbation inequality holds when changing one point of the
sample:

1
m2

|∆(〈Kc,K′
c〉F )| ≤ 24R2R′2

m
.

Proof By Lemma 1, we can write:

〈Kc,K′
c〉F = 〈Kc,K′〉F = Tr

[[
I− 11>

m

]
K

[
I− 11>

m

]
K′

]
= Tr

[
KK′ − 11>

m
KK′ −K

11>

m
K′ +

11>

m
K

11>

m
K′

]
= 〈K,K′〉F −

1>(KK′ + K′K)1
m

+
(1>K1)(1>K′1)

m2
.
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The perturbation of the first term is given by

∆(〈K,K′〉F ) =
m∑

i=1

∆(KimK′
im) +

∑
i6=m

∆(KmiK′
mi).

By the Cauchy-Schwarz inequality, for any i, j∈ [1,m],

|Kij | = |K(xi, xj)|≤
√

K(xi, xi)K(xj , xj) ≤ R2

and the product can be bound as |Ki,jK′
i,j | ≤ |Ki,j ||K′

ij| ≤ R2R′2. The difference of products is
then bound as |∆(Ki,jK′

i,j)| ≤ 2R2R′2. Thus,

1
m2

|∆(〈K,K′〉F )| ≤ 2m− 1
m2

(2R2R′2) ≤ 4R2R′2

m
.

Similarly, for the first part of the second term, we obtain

1
m2

∣∣∣∣∆(
1>KK′1

m

)∣∣∣∣ =
∣∣∣∣∆( m∑

i,j,k=1

KikK′
kj

m3

)∣∣∣∣
=

∣∣∣∣∆(∑m
i,k=1 KikK′

km +
∑

i,j 6=m KimK′
mj

m3
+

∑
k 6=m,j 6=m KmkK′

kj

m3

)∣∣∣∣
≤ m2 + m(m− 1) + (m− 1)2

m3
(2R2R′2) ≤ 3m2 − 3m + 1

m3
(2R2R′2)

≤ 6R2R′2

m
.

Similarly, we have:
1

m2

∣∣∣∣∆(
1>K′K1

m

)∣∣∣∣ ≤ 6R2R′2

m
.

The final term is bounded as follows,

1
m2

∣∣∣∣∆(
(1>K1)(1>K′1)

m2

)∣∣∣∣ ≤ ∣∣∣∣∆(∑
i,j,k KijK′

km +
∑

i,j,k 6=m KijK′
mk

m4
+∑

i,j 6=m,k 6=m KimK′
jk +

∑
i6=m,j 6=m,k 6=m KmiK′

jk

m4

)∣∣∣∣
≤ m3 + m2(m− 1) + m(m− 1)2 + (m− 1)3

m4
(2R2R′2)

≤ 8R2R′2

m
.

Combining these last four inequalities leads directly to the statement of the lemma.

Because of the diagonal terms of the matrices, 1
m2 〈Kc,K′

c〉F is not an unbiased estimate of
E[KcK

′
c]. However, as shown by the following lemma, the estimation bias decreases at the rate

O(1/m).
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Lemma 19 Under the same assumptions as Lemma 18, the following bound on the difference of
expectations holds:

∣∣∣∣ E
x,x′

[Kc(x, x′)K ′
c(x, x′)]− E

S

[
〈Kc,K′

c〉F
m2

]∣∣∣∣ ≤ 18R2R′2

m
.

Proof To simplify the notation, unless otherwise specified, the expectation is taken over x, x′ drawn
according to the distribution D. The key observation used in this proof is that

E
S
[KijK′

ij ] = E
S
[K(xi, xj)K ′(xi, xj)] = E[KK ′], (10)

for i, j distinct. For expressions such as ES [KikK′
kj ] with i, j, k distinct, we obtain the following:

E
S
[KikK′

kj ] = E
S
[K(xi, xk)K ′(xk, xj)] = E

x′
[E
x
[K] E

x
[K ′]]. (11)

Let us start with the expression of E[KcK
′
c]:

E[KcK
′
c] = E

[(
K − E

x′
[K]− E

x
[K] + E[K]

)(
K ′ − E

x′
[K ′]− E

x
[K ′] + E[K ′]

)]
. (12)

After expanding this expression, applying the expectation to each of the terms, and simplifying, we
obtain:

E[KcK
′
c] = E[KK ′]− 2 E

x

[
E
x′

[K] E
x′

[K ′]
]
+ E[K] E[K ′].

〈Kc,K′
c〉F can be expanded and written more explicitly as follows:

〈Kc,K′
c〉F = 〈K,K′〉F −

1>KK′1
m

− 1>K′K1
m

+
1>K′11>K1

m2

=
m∑

i,j=1

KijK′
ij −

1
m

m∑
i,j,k=1

(KikK′
kj + K′

ikKkj) +
1

m2
(

m∑
i,j=1

Kij)(
m∑

i,j=1

K′
ij).
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To take the expectation of this expression, we use the observations (10) and (11) and similar identi-
ties. Counting terms of each kind, leads to the following expression of the expectation:

E
S

[
〈Kc,K′

c〉F
m2

]
=

[
m(m− 1)

m2
− 2m(m− 1)

m3
+

2m(m− 1)
m4

]
E[KK ′]

+
[
−2m(m− 1)(m− 2)

m3
+

2m(m− 1)(m− 2)
m4

]
E
x

[
E
x′

[K] E
x′

[K ′]
]

+
[
m(m− 1)(m− 2)(m− 3)

m4

]
E[K] E[K ′]

+
[

m

m2
− 2m

m3
+

m

m4

]
E
x
[K(x, x)K ′(x, x)]

+
[
−m(m− 1)

m3
+

2m(m− 1)
m4

]
E[K(x, x)K ′(x, x′)]

+
[
−m(m− 1)

m3
+

2m(m− 1)
m4

]
E[K(x, x′)K ′(x, x)]

+
[
m(m− 1)

m4

]
E
x
[K(x, x)] E

x
[K ′(x, x)]

+
[
m(m− 1)(m− 2)

m4

]
E
x
[K(x, x)] E[K ′]

+
[
m(m− 1)(m− 2)

m4

]
E[K] E

x
[K ′(x, x)].

Taking the difference with the expression of E[KcK
′
c] (Equation 12), using the fact that terms of

form Ex[K(x, x)K ′(x, x)] and other similar ones are all bounded by R2R′2 and collecting the terms
gives∣∣∣∣E[KcK

′
c]− E

S

[〈Kc,K′
c〉F

m2

]∣∣∣∣ ≤ 3m2 − 4m + 2
m3

E[KK ′]− 2
4m2 − 5m + 2

m3
E
x

[
E
x′

[K] E
x′

[K ′]
]

+
6m2 − 11m + 6

m3
E[K] E[K ′] + γ,

with |γ| ≤ m−1
m2 R2R′2. Using again the fact that the expectations are bounded by R2R′2 yields∣∣∣∣E[KcK

′
c]− E

S

[〈Kc,K′
c〉F

m2

]∣∣∣∣ ≤ [
3
m

+
8
m

+
6
m

+
1
m

]
R2R′2 ≤ 18

m
R2R′2,

and concludes the proof.

Appendix B. Stability bounds for alignment maximization algorithm

Lemma 20 Let µ=v/‖v‖ and µ′=v′/‖v′‖. Then, the following identity holds for ∆µ=µ′ −µ:

∆µ =
[

∆v
‖v′‖

− (∆v)>(v + v′)v
‖v‖‖v′‖(‖v‖+ ‖v′‖)

]
.
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Proof By definition of ∆µ, we can write

∆µ = ∆
(

v
‖v‖

)
=

[
v′ − v
‖v′‖

− v‖v′‖ − v‖v‖
‖v‖‖v′‖

]
=

[
∆v
‖v′‖

− v∆(‖v‖)
‖v‖‖v′‖

]
. (13)

Observe that:

∆(‖v‖) =
∆(‖v‖2)
‖v‖+ ‖v′‖

=
∆(

∑p
i=1 v2

i )
‖v‖+ ‖v′‖

=
∑p

i=1 ∆(vi)(vi + v′i)
‖v‖+ ‖v′‖

=
(∆v)>(v + v′)
‖v‖+ ‖v′‖

.

Plugging in this expression in (13) yields the statement of the lemma.

Consider the minimization (7) shown by Proposition 9 to provide the solution of the alignment
maximization problem for a convex combination. The matrix M and vector a are functions of the
training sample S. To emphasize this dependency, we rewrite that optimization for a sample S as

min
v≥0

F (S,v), (14)

where F (S,v) = v>Mv− 2v>a = ‖v‖2
M− 2v>a. The following lemma provides a stability result

for this optimization problem.

Proposition 21 Let S and S′ denote two samples of size m differing by only one point. Let v and
v′ be the solution of (14), respectively, for sample S and S′. Then, the following inequality holds
for ∆v = v′ − v:

‖∆v‖2
M ≤

[
∆a− (∆M)v′

]>∆v.

Proof Since C = {v : v ≥ 0} is convex, for any s ∈ [0, 1], v+ s∆v and v′− s∆v are in C. Thus,
by definition of v′ and v,

F (S,v) ≤ F (S,v + s∆v) and F (S′,v′) ≤ F (S′,v′ − s∆v).

Summing up these inequalities, we obtain

‖v‖2
M − ‖v + s∆v‖2

M + ‖v′‖2
M′ − ‖v′ − s∆v‖2

M′

≤ 2v>a− 2(v + s∆v)>a + 2v′>a′ − 2(v′ + s∆v)>a′

= −2[sa>∆v − sa′>∆v] = 2s(∆a)>∆v.

The left-hand side of this inequality can be rewritten as follows after expansion and using the identity
‖v′ − s∆v‖2

M′ − ‖v′ − s∆v‖2
M = ‖v′ − s∆v‖2

∆M:

− ‖s∆v‖2
M − 2sv>M∆v + ‖v′‖2

M′ − ‖v′‖2
M − ‖s∆v‖2

M + 2sv′>M(∆v)− ‖v′ − s∆v‖2
∆M

= 2s(1− s)‖∆v‖2
M + ‖v′‖2

∆M − ‖v′ − s∆v‖2
∆M.

Then, expanding ‖v′ − s∆v‖2
∆M results in the final inequality

2s(1− s)‖∆v‖2
M − s2‖∆v‖2

∆M + 2sv′>(∆M)(∆v) ≤ 2s(∆a)>∆v.

Dividing by s and setting s=0 yields

‖∆v‖2
M + v′>(∆M)(∆v) ≤ (∆a)>∆v,

which concludes the proof of the lemma.
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Table 4: Significance tests for general kernel combination results presented in Table 2. An entry of
1 indicates that the algorithm listed in the column has a significantly better accuracy than
the algorithm listed in the row.

Appendix C. Significance tests for empirical results

Tables 4 and 5 show the results of paired-sample one-sided T-tests for all pairs of algorithms com-
pared across all datasets presented in Section 5 for both regression and classification. Each entry
of the tables indicates whether the mean error of the algorithm listed in the column is significantly
less than the mean error of the algorithm listed in the row at significance level p = 0.1. An entry
of 1 indicates a significant difference, while an entry of 0 indicates that the null hypothesis (that the
errors are not significantly different) cannot be rejected.

Table 4 indicates that the alignf method offers significant improvement over unif in all
datasets with the exception of spambase and significantly improves over the compared one-stage
method in all datasets apart from splice. Table 5 indicates that the align method significantly
improves over both the uniform and one-stage combination in all datasets apart from dvd in the
regression setting, where improvement over l2-krr is not deemed significant.
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Table 5: Significance tests for rank-one kernel combination results presented in Table 3. An entry
of 1 indicates that the algorithm listed in the column has a significantly better accuracy
then the algorithm listed in the row.
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