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Abstract. We introduce an algorithm for the numerical solution of electrical
impedance tomography (EIT) in two dimensions, with partial boundary
measurements. The algorithm is an extension of the one in [11, 49] for EIT
with full boundary measurements. It is based on resistor networks that arise
in finite volume discretizations of the elliptic partial differential equation for the
potential, on so-called optimal grids that are computed as part of the problem.
The grids are adaptively refined near the boundary, where we measure and
expect better resolution of the images. They can be used very efficiently in
inversion, by defining a reconstruction mapping that is an approximate inverse
of the forward map, and acts therefore as a preconditioner in any iterative
scheme that solves the inverse problem via optimization. The main result in
this paper is the construction of optimal grids for EIT with partial measurements
by extremal quasiconformal (Teichmüller) transformations of the optimal grids for
EIT with full boundary measurements. We present the algorithm for computing
the reconstruction mapping on such grids, and we illustrate its performance with
numerical simulations. The results show an interesting trade-off between the
resolution of the reconstruction in the domain of the solution and distortions due
to artificial anisotropy induced by the distribution of the measurement points on
the accessible boundary.

1. Introduction

This paper is concerned with the numerical approximation of solutions of the inverse
problem of electrical impedance tomography (EIT) in two dimensions, with partial
boundary measurements. In EIT [13, 6] we wish to determine the positive and bounded
coefficient σ in the elliptic equation

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω, (1.1)

from measurements of the Dirichlet-to-Neumann (DtN) map Λσ. The domain Ω is an
open, bounded and simply connected set in R

2, with boundary B. By the Riemann
mapping theorem all such sets are conformally equivalent, so we take from now on
Ω = D, the unit disk in R

2. The coefficient σ is called the conductivity, and u ∈ H1(D)
is the potential, satisfying Dirichlet boundary conditions

u(x)|B = φ(x), (1.2)
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for φ ∈ H1/2(B). The DtN map Λσ : H1/2(B) → H−1/2(B) takes the boundary
potential φ and returns the normal boundary flux (current)

Λσφ = σ
∂u

∂ν

∣∣∣∣
B

, (1.3)

where ν is the outward unit normal at B.
EIT with full boundary measurements corresponds to the case where all possible

boundary excitations and measurements are available. We consider the EIT problem
with partial boundary measurements [27] on the accessible subset BA of the boundary.
The inaccessible boundary BI = B \ BA is assumed grounded‡. The problem is to
determine σ given the knowledge of the operator ΛA

σ : H1/2(BA) → H−1/2(BA) defined
as

ΛA
σ

(
φ|BA

)
= σ

∂u

∂ν

∣∣∣∣
BA

, (1.4)

where φ from (1.2) obeys an additional condition supp φ ⊂ BA.
The uniqueness of solution of the EIT problem with full boundary measurements

was established in [48, 42] under some smoothness assumptions on σ, and more recently
in [2], for bounded σ. The uniqueness of solution of the EIT problem with partial
boundary measurements, and for real-analytic or piecewise real-analytic σ, follows
from [21, 22, 33, 34]. The first global uniqueness result was obtained more recently
in [12], in three or more dimensions and for a restrictive measurement setup. The
uniqueness result that is relevant to our formulation is given in [27], for σ of class
C3+ε in the closure of the domain, where ε > 0.

Even with full boundary measurements the EIT problem is unstable. There
exist stability estimates [1, 4] under some assumptions on the regularity of σ, but
they cannot be better than logarithmic [40]. That is, given two sufficiently regular
conductivities σ1 and σ2, the following estimate holds

‖σ1 − σ2‖L∞(D) ≤ C
∣∣∣log ‖Λσ1

− Λσ2
‖H1/2(B)→H−1/2(B)

∣∣∣
−α

, (1.5)

where C and α are positive constants. See also the stability estimates in [32], that
deal with cases where due to noise, the measured data is no longer a DtN map. These
estimates are also of logarithmic type. Thus, one needs an exponentially good fit of
the data in order to obtain a noticeable improvement of the estimated conductivity.
We are not aware of any stability results for EIT with partial boundary measurements
(1.4). There is a stability estimate in dimensions three or higher for a less general
measurement setup [26], which is of log-log type. Nevertheless, it is clear that if
stability estimates existed, they could not be better than the estimate (1.5) for the
full boundary measurements case.

Naturally, any numerical method that seeks an approximate solution of the
EIT problem uses finitely many measurements of potentials and boundary currents.
Despite having a finite number of measurements, we say that we have full boundary
data when the measurement points are distributed on the entire boundary. By partial
measurements we mean that the points are confined to the accessible boundary
BA. The uniqueness and stability of the numerical estimate of σ depends on its

‡ We make this assumption so that we can use existing results on the solvability of the discrete

and continuum inverse problems. The case of insulated boundary σ
∂u

∂ν

∣∣∣
BI

= 0, which may arise in

applications, can be handled using convex duality.
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parametrization. If we seek too many parameters, the numerical method becomes
unstable, and it must be regularized [25] using for example prior assumptions on σ.
We assume no such prior information, and use instead a regularization approach based
on sparse parametrizations of the conductivity.

Regularization by sparse representation of the unknown in some preassigned basis
of functions has been proposed and analyzed for linear inverse problems in [16]. The
question is how to choose the basis and how to obtain fast inversion algorithms that
can work for the nonlinear and exponentially ill posed EIT problem.

We follow the approach in [11, 49] and parametrize the unknown conductivity
on adaptive grids which we call optimal. The number of grid points is limited by
the precision of the measurements and their location is determined as part of the
inverse problem. The resulting grids are refined near the boundary, where we make
the measurements, and they are coarse inside the domain, thus capturing the gradual
loss of resolution of the reconstructions away from B.

Other adaptive grids for EIT have been proposed in [31, 38, 37]. They are called
distinguishability grids because they are constructed with a linearization argument
that looks for the smallest support of a perturbation δσ at a given location in the
domain, that can be distinguished at the boundary from a constant σ.

The optimal grids considered in [11, 49] and in this paper are computed with
an approach based on rational approximation techniques. They are called optimal
because they give spectral accuracy of the DtN map with finite volumes on coarse
grids. Optimal grids were introduced and anlyzed in [3, 23, 24, 29], for forward
problems. The first inversion method on optimal grids was proposed in [7], for Sturm-
Liouville inverse spectral problems in one dimension. Then, it was shown in [8] that
optimal grids provide a necessary and sufficient condition for convergence of solutions
of discrete inverse spectral problems to the true solution of the continuum problem.

The first inversion method on optimal grids for two dimensional EIT with full
boundary measurements was proposed and analyzed in [11, 49]. It is based on the
rigorous theory of discrete inverse problems for circular resistor networks developed
in [14, 15, 28, 17, 18]. The circular networks arise in the discretization of equation
(1.1) with a five point stencil finite volumes scheme on the optimal grids computed as
part of the inverse problem. The networks are critical, i.e., they have no redundant
connections, so that they can be determined uniquely by the discrete boundary
measurements. They can also be recovered from the measurements with a fast, non-
iterative layer peeling algorithm [14] that can be regularized by restricting the number
of layers. This implies restricting the number of grid points.

The algorithm in [11, 49] approximates the solution of the EIT problem with full
boundary measurements, as follows: First, it uses the optimal grids and the resistor
networks to define a nonlinear reconstruction mapping Qn from the boundary data
space to the space of bounded and positive conductivity functions. This mapping
is called a reconstruction because it is an approximate inverse of the forward map,
which takes the conductivity to the data. Then, it uses Qn as a preconditioner in a
Gauss-Newton iteration for estimating σ. The iteration converges in one or two steps,
and the method is fast, because the evaluation of Qn reduces to solving two inverse
problems for circular resistor networks, one for the reference conductivity, another for
the unknown conductivity.

In this paper we extend the inversion approach introduced in [11, 49] to the case
of partial boundary measurements. All the steps of the algorithm, except the essential
one that defines the reconstruction mapping Qn, are independent of the distribution
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of the measurement points on B. They are therefore the same as in [11, 49], and we
do not repeat them here. Our result is the construction of the optimal grids and thus
of mapping Qn for partial measurements.

The optimal grids for full boundary measurements are based on the rotational
symmetry of the continuum problem for constant σ. They maintain the symmetry
in the discrete setting, by being tensor product grids with uniform angular spacing.
They are adaptive in the radial direction, with optimally placed radial nodes so that
finite volume discretizations compute exactly the measurements§ of the DtN map
for constant σ. The grids have nice extrapolation properties, i.e. they give good
approximations of the discrete measurements for a wide class of conductivities, and
this is why we can use them in combination with the solution of discrete inverse
problems for resistor networks to obtain the reconstruction mapping Qn.

For partial boundary measurements there is no rotational symmetry in the
problem, so it is not immediately clear what class of grids should we look for, and
how to construct them so that they have good approximation properties in some class
of conductivity functions. Our main result in this paper is that the grids can be
constructed with an elegant approach based on extremal quasiconformal mappings
[45] that transform the problem with partial measurements to a problem with full
boundary measurements.

There are many transformations (diffeomorphisms) of the unit disk D to itself
that take the EIT problem with measurements of Λσ on BA to the EIT problem
with measurements of Λσ̃ on B. Here σ̃ is the transformed conductivity, and it is
matrix valued (anisotropic), in general. Anisotropic conductivities are not uniquely
recoverable from the DtN map [47], so our mappings should either preserve the
isotropy of σ (i.e., be conformal) or, at least minimize its anisotropy (i.e., be extremal
quasiconformal) [35]. In other words, we can obtain grids for partial boundary
measurements that have good approximation properties for a class of conductivity
functions, including constant ones, via extremal quasiconformal mappings of the
optimal grids for full boundary measurements.

The paper is organized as follows: We begin in section 2 with a brief review
of the inversion algorithm on optimal grids introduced in [11, 49] for the EIT
problem with full boundary measurements. Then, we consider in section 3 conformal
and quasiconformal coordinate transformations of the EIT problem with partial
measurements, which we then use to obtain the numerical results in section 4. The
conformal mappings are easy to compute (they are Möbius transforms) and they
preserve the isotropy of the conductivity. However, as we show in section 3.2, they
produce grids with a particular distribution of the measurement points in BA, and
they are refined only near the center of BA. This leads to reconstructions with poor
resolution away from the center of the accessible boundary. Our construction of the
extremal quasiconformal (Teichmüller) mappings is based on their decomposition in
terms of two conformal maps and an affine coordinate stretch [44], as described in
section 3.3. The quasiconformal grids can be used for more general distributions
of the measurement points in BA and they have better (more uniform) refinement
properties, as shown in section 3.5. The algorithm for computing the reconstruction
mapping Qn is in section 4.1 and the details of its implementation are in section 4.2.
The numerical results are in sections 4.3 and 4.4. We end in section 5 with a summary

§ Here, by measurements we mean a measurement operator that takes Λσ to a discrete set of data
at boundary points. See section 2.3.
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and conclusions.

2. EIT with resistor networks

At the core of our inversion method is the solution of the discrete EIT problem of
finding conductances of resistors in a network from discrete measurements of the DtN
map. We begin in section 2.1 by motivating the resistor networks in the context of
discretizing equation (1.1) with a finite volumes scheme. The inverse problem for
resistor networks is stated in section 2.2, where we also review the existence and
uniqueness of its solution. The connection between the continuum and discrete DtN
maps is given in section 2.3. Then, we describe in section 2.4 the optimal grids, which
are essential for obtaining an approximate solution of the continuum EIT problem
from the solution of the discrete one. Finally, we conclude with some properties of the
optimal grids in section 2.5.

Note that the optimal grids reviewed in this section apply to the case of full
boundary measurements. The construction of the optimal grids for partial boundary
measurements is the main result of this paper, and we give it in section 3.

2.1. Finite volume discretization and resistor networks

In finite volumes, we discretize equation (1.1) on a staggered grid consisting of
interlacing primary and dual grid lines, which may be curvilinear. The potential
u is discretized at the primary nodes, which are the intersections of the primary grid
lines. The current fluxes σ∇u are discretized at the dual nodes, where the dual grid
lines intersect.

Let Pi,j be a primary grid node in D, as shown in figure 1, and integrate equation
(1.1) over the dual grid cell Vi,j with boundary ∂Vi,j given by the union of four edges

∂Vi,j = Σi,j+ 1
2
∪ Σi+ 1

2 ,j ∪ Σi,j− 1
2
∪ Σi− 1

2 ,j . (2.1)

Here Σi,j+ 1
2
=
(
Pi− 1

2 ,j+ 1
2
, Pi+ 1

2 ,j+ 1
2

)
and the remaining edges are defined similarly. We

obtain the balance of current fluxes across ∂Vi,j

∫

Vi,j

∇ · (σ∇u)dV =



∫

Σ
i,j+ 1

2

+

∫

Σ
i+ 1

2
,j

+

∫

Σ
i,j− 1

2

+

∫

Σ
i− 1

2
,j


σ

∂u

∂ν
dΣ = 0, (2.2)

which we approximate with a one-point quadrature rule. For example, the first term
in (2.2) becomes

∫

Σ
i,j+ 1

2

σ
∂u

∂ν
dΣ ≈ σ(Pi,j+ 1

2
)
∂u

∂ν

∣∣∣∣
P

i,j+ 1
2

L
(
Pi+ 1

2 ,j+ 1
2
, Pi− 1

2 ,j+ 1
2

)
(2.3)

≈ σ(Pi,j+ 1
2
)
L(Pi+ 1

2 ,j+ 1
2
, Pi− 1

2 ,j+ 1
2
)

L(Pi,j+1, Pi,j)
(u(Pi,j+1) − u(Pi,j)) , (2.4)

where Pi,j+ 1
2

is the intersection of the primary grid line (Pi,j , Pi,j+1) with Σi,j+ 1
2
, and

L(P,Q) denotes the arc length between adjacent nodes P and Q along the primary
and dual grid lines. The grid lines are assumed orthogonal in (2.4).

We obtain a linear system of difference equations for all Pi,j ∈ D,

γi,j+ 1
2

(ui,j+1 − ui,j) + γi+ 1
2 ,j (ui+1,j − ui,j) +

γi,j− 1
2

(ui,j−1 − ui,j) + γi− 1
2 ,j (ui−1,j − ui,j) = 0,

(2.5)
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P
i, j

P
i, j+1

P
i, j−1

P
i+1, j

P
i−1, j

P
i+1/2, j+1/2

P
i+1/2, j−1/2

P
i−1/2, j+1/2

P
i−1/2, j−1/2

P
i, j+1/2

Figure 1. Finite volume discretization on a staggered tensor-product
grid. Primary grid lines are solid, dual grid lines are dashed. Primary
grid nodes are ×, dual grid nodes are ◦ . Resistor is a white rectangle
with a midpoint �.

where we introduced the notation

γi,j+ 1
2

= σ(Pi,j+ 1
2
)
L(Pi+ 1

2 ,j+ 1
2
, Pi− 1

2 ,j+ 1
2
)

L(Pi,j+1, Pi,j)
. (2.6)

These equations can be interpreted as Kirchhoff’s node law for a resistor network
with topology determined by the primary grid. The nodes of the network are the
primary grid nodes and the primary grid lines are the network edges with conductances
γα,β > 0, where α, β are indices of the edges.

Note that since for σ ≡ 1 we have

γ(1)

i,j+ 1
2

=
L(Pi+ 1

2 ,j+ 1
2
, Pi− 1

2 ,j+ 1
2
)

L(Pi,j+1, Pi,j)
, (2.7)

we can rewrite (2.6) as

γi,j+ 1
2

= σ(Pi,j+ 1
2
)γ(1)

i,j+ 1
2

. (2.8)

We use this observation in section 2.4, where we introduce the optimal grid.

2.2. The discrete EIT problem

Similar to the continuum case, we can define the DtN map of a network. We begin
with some notation. Let Γ = (V,E) be the planar graph of the resistor network.
The set of nodes V is the union of two disjoint sets B and I, and E is the set of
edges connecting the nodes in V . We are interested in circular planar graphs, with Γ
embedded in the unit disk D. The embedding is such that the nodes in I lie strictly
inside the unit disk and the nodes in B lie on the unit circle B = ∂D. Therefore, we
call I the set of interior nodes, and B the set of boundary nodes.

Let u : V → R be a potential function. We denote its restriction to the interior
nodes by uI and to the boundary nodes by uB. Let also γ : E → R

+ be a conductance
function that assigns a positivitive conductance γ(e) to each edge e ∈ E. The potential
satisfies Kirchhoff’s node law (2.5) at all the interior nodes. The boundary conditions
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C(4, 9) C(5, 11)

Figure 2. Circular resistor networks C(l, n) with critical graphs:
l = (n−1)/2. Interior nodes given as dots, boundary nodes as crosses.

uB can be set arbitrarily, and the resulting boundary currents are denoted by JB. The
DtN map of the network is the linear operator with matrix Λγ ∈ R

n×n, such that

ΛγuB = JB . (2.9)

Here n is the cardinality of B (n = |B|).
The discrete EIT problem is to determine the function γ from the DtN map Λγ .

It has been shown in [15] that the problem is uniquely solvable for networks with
critical graphs, whose definition we now recall.

Let π(Γ) be the set of all circular pairs connected through Γ by disjoint paths.
A circular pair (P,Q) consists of two subsets of boundary nodes P and Q, of equal
cardinality |P | = |Q| = k, such that the nodes in P and Q lie on two disjoint arcs
of B. The nodes are ordered according to the orientation of B. This order is called
circular. The circular pair is said to be connected if there exist k disjoint paths in Γ
connecting the nodes in P and Q.

Definition 1. The graph Γ is called critical, if removing any edge breaks some

connection in π(Γ).

Following [11, 49] we consider in this paper networks with a special topology, as
illustrated in figure 2. These networks are called in [14] circular resistor networks,
and are denoted by C(l, n). The notation indicates that the network has l layers
and n resistors in each layer. These resistors may be aligned along the radius (radial
resistors), or they may be transversal to the radius (angular resistors). The layers
of radial and angular resistors alternate, with the innermost layer being radial. It
is shown in [11, 49] that the graph of C(l, n) is critical if and only if n is odd and
l = (n− 1)/2. This is why we consider in this paper circular resistor networks of the
form C ((n− 1)/2, n), with odd n.

The discrete EIT problem for networks C(l, n) can be solved with at least two
approaches. The first approach is a direct layer peeling method [14] which solves
the nonlinear EIT problem in a finite number of algebraic operations. It begins by
determining the conductances in the outermost layer adjacent to the boundary nodes.
Then it peels off the layer and proceeds inwards. The algorithm stops when the
innermost layer of resistors is reached. The advantage of layer peeling is that it is fast
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and explicit. The disadvantage is that it quickly becomes unstable, as the number
of layers grows. The second approach is to solve the discrete EIT problem with non-
linear, regularized least squares, as in [9]. In general, it is unclear how to regularize
the least squares for network recovery using penalty terms, because we cannot speak
of regularity assumptions (such as total variation) in the discrete setting. We have
recovered in [9] networks with optimization using a Gauss-Newton iteration regularized
with the SVD truncation of the Jacobian. Adaptive SVD truncation of the Jacobian
allows the Gauss-Newton iteration to converge without the use of artificial penalty
terms. The advantage of optimization is that in general it allows the recovery of
larger networks than layer peeling. The downside is the increased computational cost.
All the computations in this paper use the layer peeling algorithm from [14].

2.3. The measurements of the continuum DtN map as a discrete DtN map

To connect the continuum EIT problem with the discrete one for circular networks,
we first define the discrete DtN map Λγ in terms of the continuum one Λσ, using a
measurement operator Mn,

Λγ = Mn(Λσ). (2.10)

In the simplest case considered in [14, 28], Mn takes point values of Λσ. Here we
describe the more general measurement operator introduced [11, 49], which lumps
fluxes over disjoint segments (electrode supports) ‖ of the boundary.

Let χ1, . . ., χn be nonnegative functions in H1/2(B), with disjoint supports,
numbered in circular order on B. These functions are normalized by

∫ 2π

0

χj(θ)dθ = 1, j = 1, . . . , n, (2.11)

and we can interpret them as models of the electrode supports. The operator Mn

maps Λσ to the symmetric n× n matrix Λγ , with off-diagonal entries given by

(Λγ)i,j = (Mn(Λσ))i,j = 〈χi,Λσχj〉, i 6= j, (2.12)

where 〈·, ·〉 is the duality pairing betweenH1/2(B) andH−1/2(B). The diagonal entries
of Λγ are determined by the conservation of currents

(Λγ)i,i = (Mn(Λσ))i,i = −
∑

j 6=i

(Mn(Λσ))i,j , i = 1, . . . , n. (2.13)

It follows from [11, 49] that Mn(Λσ) is a DtN map of a circular resistor network
with critical graph. This is shown in [11, 49] using the complete characterization of
the set Dn of DtN maps of circular resistor networks with critical graphs given in
[15, 14, 18] and the characterization of the kernel of the continuum DtN map in [30].

Thus, the measurements Mn(Λσ) are consistent with a unique resistor network
C((n−1)/2, n), with odd number n of boundary nodes and conductance γ. This is not
sufficient however to obtain an approximate solution of the continuum EIT problem.
We observe from relation (2.8) that in order to estimate σ(Pα,β) we need γ(1)

α,β , as well
as the points Pα,β of intersection of the grid lines. Thus, to obtain an approximate

‖ Other measurement operators that use more accurate electrode models, such as the “complete
electrode” model can be used in principle. The extension of the theory to such models requires a
proof of consistency of such measurements with the DtN maps of critical circular resistor networks,
the analogue of Theorem 1 in [11]. If such consistency holds, the solution of the discrete inverse
problem is obtained the same way as with the operator Mn considered here.
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solution to the continuum inverse problem we must know the discretization grid. We
describe next the approach in [11, 49] that approximates the conductivity on optimal

grids.

2.4. From the discrete inversion to continuum: the optimal grids

We now review briefly the results in [11, 49], which use optimal grids to solve
the EIT problem with full boundary measurements. The optimal grids are defined
in [11, 49] as the grids given by (2.7), in terms of the conductances γ(1)

α,β of the
network C ((n− 1)/2, n) with the measured DtN map corresponding to the constant
conductivity

Λγ(1) = Mn(Λ1), (2.14)

where Λ1 is the continuum DtN map for σ ≡ 1. That is, the term optimal refers to
the fact that the finite volume discretization on these grids gives the exact DtN map
(2.14).

The continuum EIT problem with full boundary measurements has the important
property of rotational invariance for layered conductivities σ(r, θ) = σ(r), which of
course includes the case σ ≡ 1. To maintain this rotational invariance in the discrete
setting, the measurements of the DtN map are centered at equidistant points on
B. Explicitly, the measurement functions χj(θ) are angular translations of the same
function χ,

χk(θ) = χ(θ − θk), (2.15)

such that suppχ ⊂ (θ̂0, θ̂1), where θk = 2π(k − 1)/n and θ̂k = 2π(k − 1/2)/n are the
primary and dual boundary grid nodes respectively, for k = 1, . . . , n.

Then, the problem simplifies for layered conductivities, because when taking
Fourier transforms in θ, the problem becomes one dimensional. The same
simplification can be made in the discrete seting, by taking the discrete Fourier
transform, provided that we have a tensor product discretization grid with the
boundary nodes given above. The placement of the radial nodes in this tensor product
grid is obtained as we describe below.

Let us introduce an integer parameter m and a binary m1/2 ∈ {0, 1}, such that
the number of layers is l = 2m +m1/2 + 1, where m1/2 determines if the outer layer
in C(l, n) is radial (m1/2 = 0) or circular (m1/2 = 1). The grid is staggered and the
primary radii rj and the dual radii r̂j are ordered as

1 = r1 = r̂1 > r2 > r̂2 > . . . > rm+1 > r̂m+1 > rm+2 > 0, for m1/2 = 0, (2.16)

1 = r̂1 = r1 > r̂2 > r2 > . . . > rm+1 > r̂m+2 > rm+2 > 0, for m1/2 = 1. (2.17)

To determine these radii, we must solve a discrete EIT problem to get γ(1) from (2.14).
The method of solution is similar to that of finding γ from (2.10). In our numerical
computations we determine γ(1) and γ with the layer peeling algorithm described in
[14].

Consistent with the notation in (2.16) and (2.17), we denote by γj,k the
conductances of radial resistors and by γ̂j,k the conductances of the angular resistors.
The formulas (2.6) become

γj,k = σ(r̂j+m1/2
, θk)

r̂j+m1/2
hθ

rj − rj+1
, j = 1, . . . ,m+ 1, k = 1, . . . , n, (2.18)

γ̂j,k = σ(rj , θ̂k)
r̂j+m1/2−1 − r̂j+m1/2

rjhθ
, j = 2 −m1/2, . . . ,m+ 1, k = 1, . . . , n, (2.19)
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where hθ = 2π/n is the angular grid step. We refer to these equations as the averaging

formulas.
Since the family of measurement functions χk(θ) is chosen to be rotationally

invariant, the matrix Mn(Λ1) is circulant. Thus, in the case σ ≡ 1, the solution γ(1)

j,k,

γ̂(1)

j,k of (2.14) does not depend on the angular index k, and the resulting optimal grid

is indeed a tensor product grid. Once the conductances γ(1)

j , γ̂(1)

j are known, the radii
of the optimal grid are obtained sequentially from equations (2.18)–(2.19), starting at
the boundary with r1 = r̂1 = 1. We obtain

rj+1 = rj − hθ r̂j+m1/2
/γ(1)

j , j = 1, . . . ,m+ 1, (2.20)

r̂j+1 = r̂j − hθrj+1−m1/2
γ̂(1)

j+1−m1/2
, j = 1, . . . ,m+m1/2 (2.21)

The main result in [11, 49] is that the optimal grid (2.20)–(2.21) can be used to
find an approximate solution of the continuum EIT problem. Explicitly, the grid is
used in [11, 49] to define a nonlinear mapping Qn : Dn → S from the discrete data
Λγ ∈ Dn to the space S of positive and bounded conductivities. Depending on the
smoothness of the unknown conductivity, this mapping is an approximate inverse of
the forward map

Fn : S → Dn, Fn(σ) = Mn(Λσ) ∈ Dn.

It acts therefore as a preconditioner of Fn, for a Newton type iteration that seeks an
approximate solution of the continuum EIT problem.

The map Qn is defined as follows. First, we compute the solution γα,β of the
discrete inverse problem (2.10) with data Λγ = Mn(Λσ). Then, we estimate from
(2.8) the values of the unknown conductivity at the intersections Pα,β of the primary
and dual grid lines

σ(Pα,β) ≈ γα,β

γ(1)

α,β

. (2.22)

The map Qn(Λγ) returns the interpolation (linear) in D of the values (2.22) at the
optimal grid nodes Pα,β . We refer to Qn(Λγ) as the reconstruction. It can be improved
further, with an iterative scheme, as described in [11, 49].

Note that the averaging formulas (2.18)-(2.19) correspond to the discretization of
the forward problem. However, we use them for the conductances γj,k and γ̂j,k that
solve the discrete inverse problem. These conductances are not the same as in the
forward problem, unless we use a grid that makes the averaging formulas exact. The
results in [11, 49] show that the optimal grids that make the averaging formulas exact
in the case σ ≡ 1, also give a good approximation for a wider class of conductivities.
This is the justification of approximation (2.22).

Note also that formulas (2.18)–(2.19) and (2.20)–(2.21) are not the only possible
relations that can be used to determine the grid from the solution γ(1)

j , γ̂(1)

j of (2.14).
In fact a different set of relations was used in [11, 49]. We refer to these relations as
log-averaging, and give their definition in Appendix A.

Finally, there are alternative choices of the measurement operator. In particular,
in the case of layered conductivities, there exists a measurement operator M∗

n, that
leads to an explicit solution of the discrete EIT problem [5], which can then be used
to prove certain properties of the optimal grids. This is done in detail in Appendix A.
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0 0.2 0.4 0.6 0.8 1
r

Figure 3. Radial optimal grids for different choices of averaging
formulas and measurement operators (n = 31). Top two grids
(red) correspond to M∗

n(Λ1), bottom two grids (blue) correspond
to Mn(Λ1). Log-averaging formulas: primary ×, dual ◦ . Averaging
formulas (2.20)–(2.21): primary F, dual �.

2.5. Properties of optimal grids

We show in figure 3 the radial optimal grids corresponding to the measurement
operators Mn(Λ1) and M∗

n(Λ1) and two choices of averaging formulas: The formulas
(2.18)–(2.19) and the log-averaging formulas used in [11, 49] and described in Appendix
A. We observe that the grids obtained from the same averaging formulas but different
measurement operators are almost indistinguishable. There is a slight difference
between the grids given by the two averaging formulas, but this difference is mostly
near the origin r = 0. We have observed from extensive numerical experiments, for
a variety of grid sizes, that the optimal grids are robust with respect to the choice of
measurement operator and averaging formulas.

The grids presented in figure 3 share two common properties. First, they are
indeed staggered with interlacing primary and dual nodes. Second, they are refined
near the boundary of the unit disk r = 1, where the DtN map is measured. The
gradual refinement towards the boundary accounts for the loss of resolution of the EIT
problem inside the domain. These properties were observed in numerical experiments
in [11, 49]. We prove them in Appendix A, using the results of [5].

3. Coordinate transformations and the EIT

Our main result in this paper is the extension of the reconstruction mapping Qn(Λγ) to
the case of partial boundary measurements. The other steps in the inversion method
are the same as in the full boundary measurement case, and they are presented in
detail in [11, 49]. This is why we do not repeat them here, and we focus our attention
solely on Qn(Λγ), for Λγ measured on the accessible boundary BA ⊂ B.

The key idea is to map the partial data discrete EIT problem to the problem
with measurements at equidistant points all around the boundary, where we already
know how to define the optimal grids. Both problems are solved in D, so we consider
diffeomorphisms of the unit disk to itself.

Denote such a diffeomorphism by F and its inverse by G. If u solves (1.1), then
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ũ(x) = u(F (x)) satisfies a similar equation with conductivity σ̃ given by

σ̃(x) =
G′(y)σ(y) (G′(y))

T

|detG′(y)|

∣∣∣∣∣
y=F (x)

, (3.1)

where G′ denotes the Jacobian of G. The conductivity σ̃ in (3.1) is the push forward

of σ by G, and it is denoted by G∗(σ). Note that if G′(y) (G′(y))
T 6= I, then σ̃ is a

symmetric positive definite tensor provided detG′(y) 6= 0. Thus, in general the push
forward of an isotropic conductivity is anisotropic.

To write the transformed DtN map, we use the restrictions of diffeomorphisms G
and F to the boundary g = G|B and f = F |B. Then, the push forward of the DtN
map g∗Λσ is

((g∗Λσ)ψ)(θ) = (Λσ(ψ ◦ g))(τ)|τ=f(θ) , θ ∈ [0, 2π), (3.2)

for ψ ∈ H1/2(B). As shown in [47], the DtN map is invariant under the push forward
in the following sense

g∗Λσ = ΛG∗σ. (3.3)

This invariance tells us that given a diffeomorphism F , its boundary restriction
f = F |B, their respective inverses G and g, and the DtN map Λσ, we can compute
the push forward of the DtN map, solve the inverse problem for g∗Λσ to obtain σ̃, and
then map it back using the inverse of (3.2). We will use the discrete analogue of this
fact to transform the discrete measurements Λγ of Λσ on BA to discrete measurements
at the equidistant points θk, from which we can estimate σ̃ with the method described
in section 2.4.

Note however that the EIT problem is uniquely solvable only for isotropic
conductivities. Anisotropic conductivities can be determined from the DtN map only
up to a boundary-preserving diffeomorphism [47]. To overcome this ambiguity we
propose two distinct approaches described in the next sections. The first approach is
based on conformal mappings, which preserve the isotropy of the conductivity, at the
expense of rigid placement of the measurement points in BA. The second approach
uses extremal quasiconformal mappings, that minimize the artificial anisotropy of
the reconstructed conductivity introduced by a general placement of the boundary
measurement points in BA.

3.1. Conformal mappings and inversion grids

To ensure that the push forward (3.1) of the isotropic σ is isotropic itself, the mapping
must satisfy G′

(
(G′)T

)
= I or, equivalently, F ′

(
(F ′)T

)
= I. It means that F is

conformal and the resulting conductivity is

G∗(σ) = σ ◦ F. (3.4)

Since all conformal mappings of the unit disk to itself belong to the family of Möbius
transforms [36], F must be of the form

F (z) = eiω z − a

1 − az
, z ∈ D, ω ∈ [0, 2π), a ∈ C, |a| < 1, (3.5)

where we associate R
2 with the complex plane C.

It remains to determine the constant parameters ω and a in (3.5). Let the
accessible boundary BA be the circular segment

BA =
{
eiτ | τ ∈ [−β, β]

}
, (3.6)
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α = θn+1

2

−α = θn+3

2

β = τ n+1

2

−β = τ n+3

2

Figure 4. The optimal grid with n = 15 under the conformal mapping
F , with β = 3π/4. Left: the optimal grid; right: the image of the
optimal grid under F . Primary grid lines are solid black, dual grid
lines are dotted black. Boundary grid nodes: primary ×, dual ◦.
Accessible boundary is solid red.

with β ∈ (0, π). The inaccessible boundary is BI = B\BA. The restriction of (3.5) to
B is denoted by

f(θ) = F (eiθ). (3.7)

It maps the boundary grid nodes θk, θ̂k defined in section 2.4 to the transformed
grid nodes τk, τ̂k in BA, for k = 1, . . . , n. We assume point-like measurements (2.15)
(χk have very small support), so that we can map any primary interval (θk, θk+1)
to BI . Specifically, we take the interval (θ(n+1)/2, θ(n+3)/2) shown in figure 4. Let
α = π(1 − 1/n), then the condition

f
(
(θ(n+1)/2, θ(n+3)/2)

)
= BI (3.8)

becomes F (e±iα) = e±iβ and the parameters of the Möbius transform are

a =
cosα− cosβ

1 − cos(α+ β)
, ω = 0. (3.9)

We show in figure 4 the transformation ¶ of the optimal grid, which we name the
conformal mapping grid. Note that by enforcing the condition (3.8), we have exhausted
all degrees of freedom of the Möbius transform, and thus, we have no control over the
placement of the boundary grid nodes τk, τ̂k. The resulting grid is refined towards the
middle of the accessible boundary, and it is very sparse near the inaccessible boundary.
This behavior persists as we increase the number n of primary boundary points, as
we now explain.

3.2. The limit distribution of boundary nodes in conformal mapping grids

To describe the asymptotic distribution of the boundary nodes under the conformal
mappings, it is convenient to renumber τk, τ̂k. We define τ̃l = f(π + lπ/n),

¶ The grid is obtained with the log-averaging formulas and the M∗
n measurements described in

Appendix A.
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β = ξ−1

−β = ξ1

π = ξ0

ξ−2

ξ2

ξ−3

ξ3

ξ−4

ξ4

ξ−5

ξ5

ξ−6

ξ6

Figure 5. Limiting behavior (n = 37) of the image of the optimal
grid under F , with β = 3π/4. Primary grid lines are solid, dual grid
lines are dotted. Boundary grid nodes: primary τk are ×, dual τ̂k are
◦. Limiting nodes ξl = lim

n→∞
τ̃l for l = −6, . . . , 6 are 5.

l = −n + 1, . . . , n, so that when l is odd, τ̃l is a primary node and when l is even, it
is a dual node. Then, we obtain after substituting (3.9) in (3.5), that

cos ξl = lim
n→∞

cos τ̃l =
l2 − 1 + (l2 + 1) cosβ

l2 + 1 + (l2 − 1) cosβ
, (3.10)

sin ξl = lim
n→∞

sin τ̃l =
2l sinβ

l2 + 1 + (l2 − 1) cosβ
. (3.11)

This limit distribution has a unique accumulation point at τ = 0, as l → ∞.
We illustrate the asymptotic behavior of the grid in figure 5. We observe that

already for n = 37 the leftmost 13 nodes τ̃l are very close to their limit values ξl,
l = −6, . . . , 6. That is, as we increase n, there will be no further angular refinement
of the grid in that region.

Note that as n→ ∞ and therefore α→ π, the parameter a defined by (3.9) tends
to −1. Thus, the pole 1/a of the Möbius transform (3.5) approaches −1 ∈ B, and the
mapping F degenerates in D.

The limiting behavior of the optimal grid under conformal automorphisms of D

may suggest that the conformal mapping approach is not useful for solving the partial
data EIT problem. After all, it is natural to expect the inversion grid to provide a
converging scheme for the solution of the forward problem, for which grid refinement
is a necessary condition. However, the instability of the EIT problem implies that
we cannot improve the resolution of the reconstructions by simply taking more
measurement points. Put otherwise, the limit n → ∞ is not practically important
in this problem. The numerical results in section 4 demonstrate that the conformal
mapping approach gives reasonable reconstructions of the conductivity σ.
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3.3. Quasiconformal mappings and anisotropy

So far we have identified two features of the conformal mapping grids, that may
present problems for inversion. First, once the number of boundary grid nodes n and
the size of the inaccessible boundary are fixed, we have no control over the positioning
of the boundary grid nodes τk, where the measurements are made. Second, the grid
does not refine asymptotically as n → ∞. This is because the group of conformal
automorphisms of the unit disk is too rigid. A more general approach would be to
use a richer family of transforms at a price of introducing some anisotropy in the
reconstruction. A suitable family of mappings that allows the control of the artificial
anisotropy of the reconstruction consists of quasiconformal mappings.

A quasiconformal mapping W (z) is defined as a diffeomorphism that obeys the
Beltrami equation

∂W

∂z
= µ(z)

∂W

∂z
, (3.12)

where the Beltrami coefficient µ(z) is a complex valued measurable function satisfying

‖µ‖∞ = ess sup|µ(z)| < 1. (3.13)

The Beltrami coefficient, also known as the complex dilatation µ(z) provides a measure
of how much the mapping W differs from a conformal one. A conformal mapping
corresponds to µ(z) ≡ 0, in which case (3.12) reduces to the Cauchy-Riemann
equation. In this paper we consider quasiconformal self mappings of the unit disk,
so (3.12) and (3.13) hold for z ∈ D.

Now let us describe the connection between the dilatation of the quasiconformal
mapping and the anisotropy of the push-forward of an isotropic conductivity. Let σ̃(z)
be an anisotropic conductivity with eigenvalues λ1(z) ≥ λ2(z) > 0. Its anisotropy at
z is defined by

κ(σ̃, z) =

√
L(z) − 1√
L(z) + 1

, (3.14)

where L(z) = λ1(z)/λ2(z), and

κ(σ̃) = sup
z
κ(σ̃, z) (3.15)

is the maximum anisotropy. It is easy to show that the anisotropy of the push forward
of an isotropic conductivity σ by a quasiconformal mapping W satisfies

κ (W∗(σ), z) = |µ(z)|. (3.16)

Thus, the L∞ norm of the dilatation gives us a measure of the maximum anisotropy
introduced by W to an isotropic conductivity

κ (W∗(σ)) = ‖µ‖∞. (3.17)

Since the true unknown conductivity is isotropic, we would like to minimize the
amount of anisotropy introduced into the reconstruction by the mapping W . This
leads us to the extremal quasiconformal mappings, which minimize the maximum
anisotropy ‖µ‖∞ under some constraints. In our case the constraints come in the
form of prescribing the boundary value f = W |B, which gives us control over the
positioning of the measurement points τk = f(θk).
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3.4. Extremal quasiconformal mappings

It is known [45] that for sufficiently regular boundary values f , there exists a unique
extremal quasiconformal mapping that is a Teichmüller mapping, i.e. its Beltrami
coefficient satisfies

µ(z) = ‖µ‖∞
φ(z)

|φ(z)| , (3.18)

for some holomorphic function φ(z) in D. Using this in (3.16), we obtain that the
push forward of an isotropic conductivity by a Teichmüller mapping has a uniform
anisotropy throughout D.

Similar to (3.18), we can define the dilatation of W−1 in terms of a holomorphic
function ψ. Then, according to [43], we can decompose a Teichmüller mapping W
into

W = Ψ−1 ◦AK ◦ Φ, (3.19)

where

Φ(z) =

∫ √
φ(z)dz, Ψ(ζ) =

∫ √
ψ(ζ)dζ, (3.20)

and AK is affine. The mappings Φ and Ψ are conformal away from zeros of φ and
ψ respectively. The only source of anisotropy in decomposition (3.19) is the affine
mapping AK , that we take to be

AK(x+ iy) = Kx+ iy, x, y ∈ R, (3.21)

where the constant parameter K > 0 determines the anisotropy

κ (W∗(σ)) = ‖µ‖∞ =

∣∣∣∣
K − 1

K + 1

∣∣∣∣ . (3.22)

To obtain the terms Φ and Ψ in the decomposition (3.19) of the Teichmüller
mapping, we use the constraints on the boundary values f = W |B. Since we work
with point-like boundary measurements, it is only important to have control over the
behavior of the Teichmüller mapping at the measurement points eiθk . This leads us to
consider the extremal polygonal quasiconformal mappings. A polygon in this context
is a unit disk D with n distinguished points on B, called the vertices of the polygon
(in our case eiθk).

The extremal polygonal quasiconformal mapping W takes the boundary points
eiθk to prescribed points eiτk , while minimizing the maximum dilatation. According
to [46], the integrals Φ and Ψ in its decomposition map the unit disk conformally onto
polygons comprised of a number of rectangular strips. But conformal mappings of
the unit disk to polygons are Schwartz-Christoffel mappings [20], given by the general
formula

S(z) = A+B

∫ z N∏

q=1

(
1 − ζ

zq

)αq−1

dζ, (3.23)

where A,B ∈ C are constants, N is the number of vertices of a polygon, zq ∈ B are the
pre-images of the vertices and παq are the interior angles of the polygon. Moreover,
for the polygons comprised of rectangular strips αq ∈ {1/2, 3/2}.

Comparing the definitions (3.20) of Φ and Ψ with (3.23) we observe that φ and ψ
are rational functions with first order poles at vertices with angle π/2 and first order
zeros at vertices with angle 3π/2. This behavior is illustrated in detail in figure 6,
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Φ AK Ψ
−1

Figure 6. Teichmüller mapping decomposed into conformal mappings
Φ and Ψ, and an affine transform AK , K = 3/4. The poles of φ and
ψ and their images under Φ and Ψ are F, the zeros of φ and ψ and
their images under Φ and Ψ are �.

along with the behavior of each mapping in the decomposition (3.19). Note that we
construct the mappings Φ, Ψ so that they are symmetric with respect to the real axis.
This is done to maintain the symmetry of the optimal grid under W .

We have established that in order to map the unit disk to a polygon comprised of
several rectangular strips it is necessary for φ and ψ to have zeros and poles on B. In
what follows we construct φ and ψ so that the zeros are at the dual grid nodes and the
poles are at the primary grid nodes. Such construction gives us an extremal mapping,
since according to [43], every Teichmüller mapping of the form (3.19) is extremal for
the boundary values that it induces.

3.5. Teichmüller mappings and inversion grids

We illustrate the behavior of the optimal grids under the extremal quasiconformal
mappings in figure 7. The number n of boundary primary grid nodes and the size of
the accessible boundary are the same as for the conformal mapping example in figure 4,
so that we can compare the two approaches. Similar to the conformal mapping case,
we map the primary boundary grid interval (θ(n+1)/2, θ(n+3)/2) to the inaccessible
boundary.

The grids for two different values of the affine stretching constant K are presented
in figure 7, with the larger value of K corresponding to less artificial anisotropy. For
K = 0.8 we already observe that the clustering of the boundary grid nodes around 1
is much less pronounced then for the conformal mapping grid. As we decrease K to
0.66 the grid nodes move further away from the middle of BA towards the inaccessible
boundary. One should keep in mind that although the distribution of the grid nodes
becomes more uniform for smaller values of K, the conductivity reconstructed on such
grid would have a larger amount of artificial anisotropy, as shown in the numerical
examples in the next section.

4. Numerical results

In this section we present numerical results for the reconstructions of smooth and
piecewise constant conductivities. We begin in section 4.1 with the outline of the
inversion method. Then, we describe our numerical implementation of the inversion
method in section 4.2. The numerical results are in sections 4.3 and 4.4.
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Figure 7. The optimal grid with n = 15 under the quasiconformal
Teichmüller mappings W with different K. Left: K = 0.8; right:
K = 0.66. Primary grid lines are solid black, dual grid lines are
dotted black. Boundary grid nodes: primary ×, dual ◦. Accessible
boundary is solid red.

4.1. The inversion method

What we mean by inversion method, is the computation of the reconstruction Qn(Λγ)
from the discrete measurements Λγ = Mn(Λσ) made at the accessible boundary BA.
This reconstruction can be viewed as an image of the unknown conductivity σ, as we
show below with numerical simulations. Moreover, as explained in section 2.4, the
reconstruction mapping Qn : Dn → S, from the set Dn of discrete DtN maps to the
set S of positive and bounded conductivities, can be used as a preconditioner of the
forward map

Fn : S → Dn, Fn(σ) = Mn(Λσ), (4.1)

in a Newton type iteration that solves the nonlinear minimization problem

min
σ̃∈S

‖Qn ◦ Fn(σ̃) −Qn [Mn(Λσ)]‖ . (4.2)

This iteration is studied in detail in [11, 49], and we do not repeat here.
The algorithm that computes the reconstruction Qn consists of the following

steps:

Step 1. Compute the discrete DtN maps Λγ = Mn(Λσ) and Λγ(1) = Mn(Λ1) using
the measurement operator Mn defined in section 2.3. This implies choosing the odd
number n of boundary measurements and the distribution of measurement points
eiτk ∈ BA, for k = 1, . . . , n.

Step 2. Solve the discrete EIT problem for the circular resistor network with discrete
DtN map Λγ computed at step 1. This gives the conductances γj,k and γ̂j,k of the
resistors.

Step 3. Solve the discrete EIT problem for the circular resistor network with DtN
map Λγ(1) computed at step 1, for the uniform conductivity σ(1) ≡ 1. This gives the

conductances γ(1)

j,k and γ̂(1)

j,k.
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Step 4. Compute the extremal quasiconformal mapping T that takes the uniformly
distributed points eiθk ∈ B to the measurement points eiτk ∈ BA,

eiτk = T (eiθk), k = 1, . . . , n. (4.3)

Use this mapping to compute the grid nodes T (r̂je
iθk) and T (rje

iθ̂k), where rj , r̂j
are the radii of the rotationally symmetric optimal grid, and θk = 2π(k − 1)/n,

θ̂k = 2π(k − 1/2)/n are the equidistant angular grid nodes. In the particular case
of τk distributed as in section 3.1, the mapping T is a conformal one.

Step 5. The reconstruction

σ? = Qn [Mn(Λσ)] ∈ S (4.4)

is given by the piecewise linear interpolation of the following values at the transformed
grid nodes

σ?
(
T (r̂j+m1/2

eiθk)
)

= γj,k/γ
(1)

j,k, j = 1, . . . ,m+ 1, k = 1, . . . , n, (4.5)

σ?
(
T (rje

iθ̂k)
)

= γ̂j,k/γ̂
(1)

j,k, j = 2 −m1/2, . . . ,m+ 1, k = 1, . . . , n. (4.6)

4.2. Numerical implementation

In step 1 of the inversion algorithm we choose the number n of boundary nodes. The
choice of n is studied in [11, 49], and it is related to the amount of noise present in the
measured data. Recall that the theory of discrete inverse problems for networks with
circular planar graphs described in section 2.2 provides an exact relation between
the number of boundary nodes and the number of layers of a uniquely recoverable
network. The discrete EIT problem is exponentially ill-conditioned, loosing roughly
one digit of accuracy for each layer recovered. Hence the number of layers that can
be stably recovered is limited by the noise level in the data, thus limiting n. A simple
heuristic was proposed in [11, 49] to determine n by solving a sequence of discrete
inverse problems for increasing n, until the layer peeling method [14] fails to produce
positive conductances. In the numerical examples n = 21 (m = 4, m1/2 = 1), and
it is well below the heuristic limit, which guarantees a stable solution of the discrete
inverse problem.

We use measurement functions χk with small supports, so the size of the
inaccessible boundary is slightly smaller that the image of the primary grid cell(
θ(n+1)/2, θ(n+3)/2

)
that is mapped to BI according to (3.8). We take χk(θ) as the

indicator functions of intervals centered around the primary boundary grid nodes
eiθk and occupying 10% of the corresponding dual boundary grid interval. They are
transformed to χ̃k(τ) = χk(g(τ)) by the boundary restriction g of the inverse of T . We
indicate with small red squares the end points of the supports of χ̃k(τ) in figures 9–13.
Note that the measurements Mn(Λ1) and Mn(Λσ) in steps 2 and 3 of the algorithm
are computed using transformed functions χ̃k(τ). The continuum DtN maps Λ1 and
Λσ are approximated with a finite difference scheme on a fine tensor product grid with
300 uniformly spaced nodes in angle and 100 uniformly spaced nodes in radius.

We solve the discrete inverse problems in steps 2 and 3 of the algorithm using
the layer peeling method introduced in [14]. Being a direct method, the layer peeling
is extremely fast, which makes our inversion algorithm computationally inexpensive.
In fact, recovering all conductances in a network with layer peeling is faster than
computing the Jacobian of the discrete DtN map with respect to the conductances.
Thus, the layer peeling recovers the whole network faster than one iteration of
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Figure 8. The conductivities used in the numerical experiments. Left:
smooth conductivity sigX ; right: piecewise constant chest phantom
phantom1.

any gradient-based optimization method, which may take hundreds of iterations to
converge considering the ill-conditioning of the problem.

Note that since the transformed measurement functions χ̃k(τ) are not rotationally
symmetric in the sense of (2.15), the conductances γ(1)

j,k and γ̂(1)

j,k obtained in step 3
depend on the angular index k, even though the conductivity σ(1) ≡ 1 is rotationally
invariant.

The Teichmüller mapping T in step 4 is computed using the decomposition (3.19)
for a fixed value of the affine stretching constant K. Choosing K is a tradeoff between
the resolution and the distortion of the reconstruction, as shown in the numerical
examples below. The conformal mappings Φ and Ψ in decomposition (3.19) are
computed numerically using the Schwartz-Christoffel toolbox [19]. In case K = 0
the mapping T is conformal, so we can use (3.5), with the parameters given by (3.9)
to obtain T = F .

Recall from the numerical results in section 2.5 that the optimal grid depends
weakly on the choice of averaging formulas and of the measurement operator. In all
the numerical results presented below, we use the radii rj , r̂j that correspond to log-
averaging formulas and the measurement operator M∗

n, for which these radii can be
computed exactly (see Appendix A).

To compare the reconstructions for partial measurements with those for full
boundary measurements, we present numerical results for the same conductivity
functions considered in [11, 49]. They are shown in figure 8. The first one is a
smooth conductivity (sigX ), given by the superposition of two Gaussians. The second
one is piecewise constant (phantom1 ), and it models a chest phantom [41].

It appears from the examples of optimal grids in figures 4 and 7, that the
reconstructions will have better resolution near the accessible boundary. To explore
this phenomenon, we rotate the accessible boundary (and therefore the grid) by ω0
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Figure 9. Reconstructions of the smooth conductivity sigX, β =
3π/4, n = 21. Top row: ω0 = 3π/10; bottom row: ω0 = −π/10. Left
column: conformal mapping; right column: quasiconformal mapping,
K = 0.7. BA is solid red. Percentages: mean relative errors [E].

to move the high resolution region around the domain. Note that both sigX and
phantom1 have axes of symmetry. We specifically choose ω0 so that the axis of
symmetry of the grid z = teiω0 , t ∈ R, is neither collinear with nor orthogonal to the
axis of symmetry of σ.

For each reconstruction we compute the pointwise relative error for every z ∈ D

using the formula

E(z) =

∣∣∣∣
σ?(z)

σ(z)
− 1

∣∣∣∣ . (4.7)
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Figure 10. Pointwise relative error E(z) for the reconstructions of
the smooth conductivity sigX given in figure 9. Percentages: mean
relative errors [E].

The mean relative error is

[E] =

∫
H
E(z)dz∫
H
dz

· 100%, (4.8)

where H is the convex hull of the optimal grid nodes, where the reconstruction σ?(z)
is defined. We give [E] in the top right corner of every reconstruction plot .

4.3. Reconstructions of smooth conductivity

We begin with reconstructions of the smooth conductivity sigX. In figure 9 we show
reconstructions for two different values of ω0, which demonstrate how the resolution
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of our method depends on the relative position of the accessible boundary and the
features of the conductivity. We refer to the two distinct features of the hammer-like
conductivity sigX as the “head” and the “handle”.

For ω0 = 3π/10 the region of high resolution is close to the head feature for
both the conformal and quasiconformal mapping reconstructions. As expected, the
conformal mapping reconstruction looses quickly resolution away from the middle
of the accessible boundary. The quasiconformal reconstruction has a more uniform
resolution throughout the domain. However, we observe that the quasiconformal
reconstruction is somewhat distorted compared to the true conductivity, which is
the reason why it has a slightly larger mean relative error. We believe that this
is a manifestation of the artificial anisotropy that is implicitly introduced by the
quasiconformal mapping. Such distortions are observed for all reconstructions that
we consider, both for the smooth and piecewise constant conductivities.

In the case ω0 = −π/10 the difference between the conformal and the
quasiconformal reconstructions becomes more pronounced. The middle of the
accessible boundary is away from both features of the conductivity, so the conformal
mapping reconstruction is very coarse. The quasiconformal mapping reconstruction
captures both features much better. However, similar to the case ω0 = 3π/10, we
observe some distortion in the reconstruction, especially where the handle is connected
to the head, which leads to a larger relative error compared to the conformal case.

The distribution of the relative error throughout D for all four reconstructions
of the smooth conductivity sigX is given in figure 10. As expected, in the conformal
case the error is small close to the middle of BA. The error in the quasiconformal case
is concentrated around the features of the conductivity, which shows that the main
source of error is the distortion.

4.4. Reconstructions of piecewise constant conductivity

Let us now consider the reconstructions of the piecewise constant chest phantom.
Unlike in the smooth conductivity case, we study the behavior of the reconstructions
not only for different values of ω0, but also for different choices of β. We refer to the
low and high conductivity features of the phantom as the “lungs” and the “heart”
respectively.

We show in figure 11 the reconstructions for ω0 = −π/10, and two sizes of the
accessible boundary corresponding to β = 4π/3 and β = 2π/3, respectively. The
middle of the accessible boundary is located close to the bottom of the right lung, and
so the conformal mapping reconstruction captures the right lung quite well. However,
the left lung is basically indistinguishable, and both the position and the conductivity
value of the heart are captured poorly. The quasiconformal mapping reconstruction
does a better job of imaging both the right lung and the heart, and even the left lung
can be distinguished as a separate feature. This behavior becomes more pronounced
as the accessible boundary is shrunk further.

The choice of ω0 in figures 12 and 13 allows us to focus the reconstruction on
the lungs and the heart respectively. We notice again that the conformal mapping
reconstruction captures the geometry and the magnitude of the conductivity features
in its high resolution region very well. None of the two approaches has a clear
advantage over the other in terms of the relative error. Overall, the relative errors
are higher for the reconstructions of the piecewise constant chest phantom than
those for the smooth conductivity reconstruction. This is in part due to a behavior
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Figure 11. Reconstructions of piecewise constant conductivity
phantom1, ω0 = −π/10, n = 21. Top row: β = 3π/4, K = 0.7;
bottom row: β = 2π/3, K = 0.63. Left column: conformal mapping;
right column: quasiconformal mapping. BA is solid red. Percentages:
mean relative errors [E].

similar to Gibbs phenomenon, which can be clearly observed in the quasiconformal
reconstruction with β = 2π/3,K = 0.63 in figure 11. It manifests itself as a couple of
spurious oscillations to the left from the right lung.

We can now conclude that both the conformal and quasiconformal approaches can
be useful in different situations. If we have some a priori information on where the
features of interest of the conductivity may be located, and if we have enough control
over where the DtN map is measured, we can lump the measurements at the points
prescribed by a conformal mapping, choosing the middle of the accessible boundary
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Figure 12. Reconstructions of piecewise constant conductivity
phantom1, ω0 = 3π/10, n = 21. Top row: β = 3π/4, K = 0.7;
bottom row: β = 2π/3, K = 0.63. Left column: conformal mapping;
right column: quasiconformal mapping. BA is solid red. Percentages:
mean relative errors [E].

close to the suspected location of the features of interest. When no a priori information
is available, or the accessible boundary is small, the quasiconformal approach is
superior to the conformal one, because it has a better resolution throughout the
domain.
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Figure 13. Reconstructions of piecewise constant conductivity
phantom1, ω0 = −2π/5, n = 21. Top row: β = 3π/4, K = 0.7;
bottom row: β = 2π/3, K = 0.63. Left column: conformal mapping;
right column: quasiconformal mapping. BA is solid red. Percentages:
mean relative errors [E].

5. Summary

This paper is concerned with the extension of the two dimensional EIT inversion
algorithm introduced in [11, 49] to the case of partial boundary measurements. The
algorithm uses a model reduction approach that encodes the information about the
unknown conductivity function σ in a few parameters. The reduced models are well
connected, critical resistor networks that are consistent with discrete measurements
of the Dirichlet-to-Neumann (DtN) map at n boundary points, and are uniquely
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determined by them. The resistor networks arise in finite volume discretizations of
the partial differential equation for the potential on staggered, so-called optimal grids
that are computed as part of the inversion. The grids are called optimal because
they give spectral accuracy of finite volume approximations of the DtN map on sparse
grids (with few grid points). In particular, we compute them so that they compute
exactly the action of specific measurement operators on the DtN map Λ1, for constant
conductivity σ ≡ 1.

The optimal grids are the key to the connection between the continuum EIT
problem and the discrete reduced models, the resistor networks. It is shown in [11, 49]
that they have nice extrapolation properties for a class of conductivity functions that
contains σ ≡ 1. That is, when we compute the grids to reproduce exactly the
measurements of Λ1, they also approximate very well the measurements of Λσ, for
σ 6= 1. This is why we can use them to define a reconstruction mapping Qn that takes
the measurements and returns an approximation of the conductivity.

The optimal grids for EIT with full boundary measurements are constructed
in [11, 49] based on the rotational symmetry of the problem in the disk D, and
for σ ≡ 1. They are tensor product grids with uniform angular discretization and
optimally determined radial layers. The grids are staggered and refined near the
boundary, where we make the measurements and we expect the best resolution of the
reconstructions. These were observations of numerical results in [11, 49], but we prove
them here.

The EIT problem with partial boundary measurements is not rotationally
symmetric, so it is not immediately clear how to define the optimal grids from the
construction in [11, 49]. The main result of this paper is the construction of the optimal
grids and of the mapping Qn for EIT with partial boundary measurements, using
extremal quasiconformal (Teichmüller) mappings. The idea is to map the problem
with n partial measurements on the accessible part BA of the boundary B, to the
problem with n equidistantly distributed measurements on the entire B. The latter
is the problem with full boundary measurements, which can be solved as in [11, 49],
using the transformed measurements.

There are many diffeomorphisms of the disk D to itself, but in general they
transform the unknown conductivity σ to an anisotropic, matrix valued σ̃. Matrix
valued conductivities are not uniqueley determined by the transformed (push forward)
DtN map, so its seems that we should restrict the mappings to conformal ones,
which preserve the isotropy of σ under the transformation. We show however that
such mappings may not be the best choice, because they correspond to very special
distributions of the measurement points, which are clustered in the centered of the
accessible region. Therefore, the conformal grids are refined near the center of BA and
the reconstructions have poor resolution in the remainder of the domain. In order to
get better resolution in a larger part of the domain, and to measure at more general
distributions of n points in BA, we must introduce some anisotropy in the problem.
This is why we use extremal quasiconformal (Teichmüller) mappings, which transform
the EIT problem with partial measurements for the unknown σ to an EIT problem
with full boundary measurements for a transformed σ̃ that is anisotropic, but has
minimum and uniform anisotropy.

An interesting conclusion of our study is that the distribution of boundary points
in BA has a strong effect on the reconstructions. There is a trade-off between achieving
very good reconstructions in a small region near the middle of BA and having resolution
spread out more uniformly in D. The former is best achieved by grids obtained with
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conformal mappings or at least by Teichmüller mappings with almost zero dilatation
parameter. They require an accumulation of the measurement points in the center of
BA. When the measurement points are spread out throughout BA, the quasiconformal
grids give better resolution throughout D, but they produce a reconstruction mapping
Qn with some distortion, due to the artificial anisotropy. This is in fact a consequence
of the topology of the grids and resistor networks, and it may be circumvented by
considering different topologies, as shown in [39] and in a forthcoming article [10].

We end with the observation that since we proved that the optimal grids for the
EIT problem with full boundary measurements are refined near the boundary and
staggered, we can conclude the same about the grids for partial measurements. This
is because the grids are transformations of each other via diffeomorphisms. This fact
is also illustrated in the numerical results.
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Appendix A. Alternative measurement and averaging formulas

Recall from section 2.4 that the case of layered conductivity σ(r, θ) = σ(r) has a
particular importance for the construction of the optimal radial grids for the uniform
discretization in angle. From the rotational symmetry of the layered problem it follows
that eikθ are the eigenfunctions of the DtN map

Λσe
ikθ = Rσ(k)eikθ, k ∈ Z, (A.1)

where the eigenvalues Rσ(k) = Rσ(−k) > 0 are given in terms of the admittance

function Rσ, which can be extended to the whole complex plane in terms of the
spectral measure of the differential operator (1.1). A trivial calculation in the case
σ ≡ 1 shows that

R1(λ) = |λ|. (A.2)

Thus, we can formally write

Λ1 =

√
− ∂2

∂θ2
. (A.3)

In what follows it is convenient to define βσ(λ) = Rσ(λ)/|λ|.
Our goal is to derive a discrete analogue of (A.3), which is possible if we

introduce a measurement operator M∗
n defined below. Instead of using a single set

of measurement functions χk, we consider two families ζk and ηj , where ζk are the

eigenfunctions of Λσ, and ηj are the indicator functions of intervals (θ̂j , θ̂j+1). Then
the vector of measured currents J (k) is given by

J (k)

j =

∫ 2π

0

ηj(θ) (Λσζk) (θ)dθ = βσ(k)

2π
n (j+1/2)∫

2π
n (j−1/2)

|k|eikθdθ, (A.4)
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where j = 1, . . . , n and k = −(n− 1)/2, . . . , (n− 1)/2.

Let ζ(k)

j = ζk(θj) = ei 2πkj
n be the components of the vector of boundary potential

at the primary grid nodes. The action of the measurement operator M∗
n(Λσ) on

vectors ζ(k) is

M∗
n(Λσ)ζ(k) = J (k). (A.5)

Rewriting (A.4) we observe that

J (k)

j = 2βσ(k)

∣∣∣∣sin
(
πk

n

)∣∣∣∣ e
i 2πkj

n . (A.6)

Using notation ω(n)

k = 2| sin(πk/n)| we finally arrive at

M∗
n(Λσ)ζ(k) = βσ(k)ω(n)

k ζ(k), k = −n− 1

2
, . . . ,

n− 1

2
. (A.7)

Let us define a symmetric circulant matrix ∆(n) ∈ R
n×n with the entries

∆(n)

i,j = −2δi,j + δi+1,j + δi,j+1 + δi,1δj,n + δi,nδj,1. (A.8)

Up to a scaling factor 1/h2
θ (A.8) is a finite difference discretization of the second

derivative on a three point stencil at equidistant nodes θj . Since ∆(n) is circulant, its
eigenvectors are ζ(k) and its eigenvalues λk are the discrete Fourier transform of its
first column

λk = −2 + ei 2πk
n + e−i 2πk

n = −
(
ω(n)

k

)2
. (A.9)

Combining (A.7) with (A.9) it is easy to observe that (A.7) for σ ≡ 1 (β1 ≡ 1) is a
discrete analogue of (A.3)

M∗
n(Λ1) =

√
−∆(n). (A.10)

It follows from the results of [28] that M∗
n(Λσ) is a DtN map of a resistor network,

and in the case σ ≡ 1 the conductances admit an analytic expression

γ(1)

j = tan

(
π(2m+ 3 − 2j)

n

)
, j = 1, . . . ,m+ 1, (A.11)

γ̂(1)

j = cot

(
π(2m+ 4 − 2j)

n

)
, j = 2 −m1/2, . . . ,m+ 1, (A.12)

as shown in [5].
Expressions (A.11)–(A.12) allow us to establish the interlacing and refinement

properties of the optimal grids. It is easier to do so for the log-averaging formulas
used in [11, 49] instead of the averaging formulas (2.18)–(2.19). The log-averaging
formulas are

γj,k = σ(r̂j+m1/2
, θk)

hθ

log
(

rj

rj+1

) , j = 1, . . . ,m+ 1, k = 1, . . . , n, (A.13)

γ̂j,k = σ(rj , θ̂k)

log

(
r̂j+m1/2−1

r̂j+m1/2

)

hθ
, j = 2 −m1/2, . . . ,m+ 1, k = 1, . . . , n. (A.14)

The radii of the optimal grid take the form

rj+1 = exp

(
−hθ

j∑

s=1

1

γ(1)
s

)
, j = 1, . . . ,m+ 1 (A.15)

r̂j+m1/2
= exp


−hθ

j∑

s=2−m1/2

γ̂(1)

s


 , j = 2 −m1/2, . . . ,m+ 1. (A.16)
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Note, that according to (A.11)–(A.12) the conductances form a monotone
interlacing sequence in the sense of

(
γ̂(1)

1

)
<

1

γ(1)

1

< γ̂(1)

2 <
1

γ(1)

2

< . . . < γ̂(1)

m+1 <
1

γ(1)

m+1

. (A.17)

Summing (A.17) we can perform transformations

−hθ

j∑

s=1

1

γ(1)
s

> − hθ

j∑

s=1

γ̂(1)

s+1 > −hθ

j∑

s=1

1

γ(1)

s+1

, (A.18)

−hθ

j∑

s=1

1

γ(1)
s

> − hθ

j+1∑

s=2

γ̂(1)

s − hθm1/2γ̂
(1)

1 > −hθ

j+1∑

s=2

1

γ(1)
s

− hθm1/2γ̂
(1)

1 , (A.19)

−hθ

j∑

s=1

1

γ(1)
s

> − hθ

j+1∑

s=2−m1/2

γ̂(1)

s > −hθ

j+1∑

s=2

1

γ(1)
s

− hθ
1

γ(1)

1

, (A.20)

which become after the exponentiation the interlacing condition

rj+1 > r̂j+2 > rj+2. (A.21)

A similar argument can be used to show grid refinement
rj

rj+1
<

rj+1

rj+2
.
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