
The Sather 1.1
Specification

David Stoutamire1 Stephen Omohundro

TR-96-012

August 18, 1996

Abstract

This document is a concise specification of Sather 1.1. Sather is an object
oriented language designed to be simple, efficient, safe, flexible and non-
proprietary. Sather has parameterized classes, object-oriented dispatch,
statically-checked strong (contravariant) typing, separate implementation
and type inheritance, multiple inheritance, garbage collection, iteration
abstraction, closures, exception handling, assertions, preconditions, post-
conditions, and class invariants.

This 1.1 specification significantly polishes and improves the 1.0 language
specification with an introduction, index, and examples. New constructs
include `out’ arguments, less restrictive overloading, and improved exter-
nal language interfaces.

1. Direct email correspondence to the Sather group at sather@icsi.berkeley.edu

This page intentionally blank.

Table of Contents 3

ABOUT SATHER

INTRODUCTION 9
 The Name .9

IMPORTANT CONCEPTS 10
 Garbage Collection and Checking .10
 No Implicit Calls .10
 Separation of Subtyping and Code Inclusion .11
 Iterators .11
 Closures .12
 Immutable and Reference Objects .13
 pSather .13

USING SATHER 14
 Obtaining the compiler .15
 How do I ask questions? .15

HISTORY 15
 Acknowledgments .16
 References .17

THE SATHER 1.1 SPECIFICATION

INTRODUCTION 18
 About This Document .18
 Basic Concepts .18

LEXICAL STRUCTURE 19

4 Table of Contents

TYPES AND CLASSES 20
 Type specifiers .21
 Signatures .22
 Sather source files .23
 Abstract classes .24
 Concrete classes .26
 Parameterization .27

CLASS ELEMENTS 28
 Constant definitions .29
 Shared attribute definitions .30
 Attribute definitions .30
 Routine definitions .32
 Iterator definitions .32
 Code inclusion and include clauses .33
 Stubs .34

BASIC STATEMENTS 35
 Declaration statements .36
 Assignment statements .36

if statements .37
return statements .38
case statements .38
typecase statements .39
Expression statements .39

LITERAL EXPRESSIONS 40
 Boolean literal expressions .40
 Character literal expressions .40
 String literal expressions .41
 Integer literal expressions .42
 Floating point literal expressions .42

Table of Contents 5

BASIC EXPRESSIONS 43
self expressions .43

 Local variable access expressions .43
 Method call expressions .44

void expressions .46
void test expressions .47
new expressions .47

 Creation expressions .47
 Array creation expressions .48

and expressions .48
or expressions .49

 Syntactic sugar expressions .49

LOOPS AND ITERATORS 51
loop statements .51
yield statements .51
quit statements .52
while! expressions .52
until! expressions .52
break! expressions .53

CLOSURES 54
 Closure creation expressions .54
 Closure calls .55

EXCEPTIONS 57
protect statements .57
raise statements .58
exception expressions .58

SAFETY FEATURES 58
 Pre- and post-conditions .58

assert statements .59
initial expressions .59
result expressions .60

6 Table of Contents

SPECIAL FEATURE NAMES 60
invariant . 60
main . 60

BUILT-IN CLASSES 61

CONVENTIONS 62
 Object Creation .63
 Naming .63
 Object Identity .64
 Nil and void .65
 IEEE Floating-Point .65

SATHER 1.1 EXTENSIONS

LANGUAGE INTERFACE EXTENSIONS 67
 Interfacing with Fortran .68
 Interfacing with ANSI C .69

THREADED EXTENSION 71
par and fork statements .72
parloop statement .73

SYNCHRONIZATION EXTENSION 74
lock statement .74
unlock statement .76
$LOCK classes .76

 Attach statement .77
$ATTACH classes .78
sync statement .80

 Memory consistency .81
SYS class .82

Table of Contents 7

DISTRIBUTED EXTENSION 83
 The ‘@’ operator .83
 Location expressions. .84

with-near statement .84

8 Table of Contents

Introduction 9

About Sather

1.1 INTRODUCTION

Sather is an object oriented language designed to be simple, efficient, safe, and non-propri-
etary. It aims to meet the needs of modern research groups and to foster the development
of a large, freely available, high-quality library of efficient well-written classes for a wide
variety of computational tasks. It was originally based on Eiffel but now incorporates ideas
and approaches from several languages. One way of placing it in the ‘space of languages’
is to say that it attempts to be as efficient as C, C++, or Fortran, as elegant but safer than
Eiffel or CLU, and to support higher-order functions as well as Common Lisp, Scheme, or
Smalltalk.

Sather has garbage collection, statically-checked strong (contravariant) typing, multiple in-
heritance, separate implementation and type inheritance, parameterized classes, dynamic
dispatch, iteration abstraction, higher-order routines and iters, exception handling, asser-
tions, preconditions, postconditions, and class invariants. Sather code can be compiled
into C code and can efficiently link with object files of other languages. pSather, the paral-
lel and distributed extension, presents a shared memory abstraction to the programmer
while allowing explicit placement of data and threads.

Sather has a very unrestrictive license aimed at encouraging contribution to the public li-
brary without precluding the use of Sather for proprietary projects.

1.1.1 The Name

Sather was developed at the International Computer Science Institute, a research institute
affiliated with the computer science department of the University of California at Berkeley.
The Sather language gets its name from the Sather Tower (popularly known as the Cam-
panile), the best-known landmark of the campus. A symbol of the city and the university,
it is the Berkeley equivalent of the Golden Gate bridge across the bay. Erected in 1914, the
tower is modeled after St. Mark's Campanile in Venice, Italy. It is smaller and a bit younger
than the Eiffel tower. The way most people say the name of the language rhymes with
‘bather’.

10 Important Concepts

The name ‘Sather’ is a pun of sorts - Sather was originally envisioned as an efficient,
cleaned-up alternative to the language Eiffel. However, since its conception the two lan-
guages have evolved to be quite distinct.

1.2 IMPORTANT CONCEPTS

This section briefly introduces some concepts important to Sather that the reader may
not have been exposed to in C++ [2]. It isn’t meant as a complete language tutorial.
More information of a tutorial nature is available from the WWW page:

http://www.icsi.berkeley.edu/Sather

1.2.1 Garbage Collection and Checking

Like many object-oriented languages, Sather is garbage collected, so programmers never
have to free memory explicitly. The runtime system does this automatically when it is
safe to do so. Idiomatic Sather applications generate far less garbage than typical Small-
talk or Lisp programs, so the cost of collecting tends to be lower. Sather does allow the
programmer to manually deallocate objects, letting the garbage collector handle the re-
mainder. With checking compiled in, the system will catch dangling references from
manual deallocation before any harm can be done.

More generally, when checking options have been turned on by compiler flags, the result-
ing program cannot crash disastrously or mysteriously. All sources of errors that cause
crashes are either eliminated at compile-time or funneled into a few situations (such as ac-
cessing beyond array bounds) that are found at run-time precisely at the source of the er-
ror.

1.2.2 No Implicit Calls

Sather does as little as possible behind the user's back at runtime. There are no implicitly
constructed temporary objects, and therefore no rules to learn or circumvent. This ex-
tends to class constructors: all calls that can construct an object are explicitly written by
the programmer. In Sather, constructors are ordinary routines distinguished only by a
convenient but optional calling syntax (page 47). With garbage collection there is no
need for destructors; however, explicit finalization is available when desir ed (page 62).

Sather never converts types implicitly, such as from integer to character, integer to floating
point, single to double precision, or subclass to superclass. With neither implicit construc-
tion nor conversion, Sather resolves routine overloading (choosing one of several similarly

Important Concepts 11

named operations based on argument types) much more clearly than C++. The program-
mer can easily deduce which routine will be called (page 45).

In Sather, the redefinition of operators is orthogonal to the rest of the language. There is
‘‘syntactic sugar’’ (page 49) for standard infix mathematical symbols such as ‘ +’ and ‘^’ as
calls to otherwise ordinary routines with names ‘plus’ and ‘pow’. ‘a+b’ is just another way
of writing ‘a.plus(b)’. Similarly, ‘a[i]’ translates to ‘a.aget(i)’ when used in an expression.
An assignment ‘a[i] := expr’ translates into ‘a.aset(i,expr)’.

1.2.3 Separation of Subtyping and Code Inclusion

In many object-oriented languages, the term ‘inheritance’ is used to mean two things si-
multaneously. One is subtyping, which is the requirement that a class provide implemen-
tations for the abstract methods in a supertype. The other is code inheritance (called code
inclusion in Sather parlance) which allows a class to reuse a portion of the implementa-
tion of another class. In many languages it is not possible to include code without sub-
typing or vice versa.

Sather provides separate mechanisms for these two concepts. Abstract classes represent in-
terfaces: sets of signatures that subtypes of the abstract class must provide. Other kinds of
classes provide implementation. Classes may include implementation from other classes
using a special ‘include’ clause; this does not affect the subtyping relationship between
classes. Separating these two concepts simplifies the language considerably and makes it
easier to understand code. Because it is only possible to subtype from abstract classes, and
abstract classes only specify an interface without code, sometimes in Sather one factors
what would be a single class in C++ into two classes: an abstract class specifying the inter-
face and a code class specifying code to be included. This often leads to cleaner designs.

Issues surrounding the decision to explicitly separate subtyping and code inclusion in
Sather are discussed in the ICSI technical report TR 93-064: ‘‘Engineering a Programming
Language: The Type and Class System of Sather,’’ also published as [7]. It is available at
the Sather WWW page.

1.2.4 Iterators

Early versions of Sather used a conventional ‘until...loop...end’ statement much like other
languages. This made Sather susceptible to bugs that afflict looping constructs. Code
which controls loop iteration is known for tricky ‘‘fencepost errors’’ (incorrect initializa-
tion or termination). Traditional iteration constructs also require the internal implementa-
tion details of data structures to be exposed when iterating over their elements.

Simple looping constructs are more powerful when combined with heavy use of cursor ob-
jects (sometimes called ‘iterators’ in other languages, although Sather uses that term for

12 Important Concepts

something else entirely) to iterate through the contents of container objects. Cursor objects
can be found in most C++ libraries, and they allow useful iteration abstraction. However,
they have a number of problems. They must be explicitly initialized, incremented, and
tested in the loop. Cursor objects require maintaining a parallel cursor object hierarchy
alongside each container class hierarchy. Since creation is explicit, cursors aren't elegant
for describing nested or recursive control structures. They can also prevent a number of
important optimizations in inner loops.

An important language improvement in Sather 1.0 over earlier versions was the addition
of iterators. Iterators are methods that encapsulate user defined looping control structures
just as routines do for algorithms. Code using iterators is more concise, yet more readable
than code using the cursor objects needed in C++. It is also safer, because the creation, in-
crement, and termination check are bound together inviolably at one point. Each class may
define many sorts of iterators, whereas a traditional approach requires a different yet inti-
mately coupled class for each kind of iteration over the major class. Sather iterators are part
of the class interface just like routines.

Iterators act as a lingua-franca for operating on collections of items. Matrices define itera-
tors to yield rows and columns; tree classes have recursive iters to traverse the nodes in
pre-order, in-order, and post-order; graph classes have iters to traverse vertices or edges
breadth-first and depth-first. Other container classes such as hash tables, queues, etc. all
provide iters to yield and sometimes to set elements. Arbitrary iterators may be used to-
gether in loops with other code.

The rationale of the Sather iterator construct and comparisons with related constructs in
other languages can be found in the ICSI technical report TR 93-045: ‘‘Sather Iters: Object-
Oriented Iteration Abstraction,’’ also published as [5]. It is available at the Sather WWW
page.

1.2.5 Closures

Sather provides higher-order functions through method closures, which are similar to clo-
sures and function pointers in other languages. These allow binding some or all argu-
ments to arbitrary routines and iterators but defer the remaining arguments and
execution until a later time. They support writing code in an applicative style, although
iterators eliminate much of the motivation for programming that way. They are also use-
ful for building control structures at run-time, for example, registering call-backs with a
windowing system. Like other Sather methods, method closures follow static typing
and behave with contravariant conformance.

Important Concepts 13

1.2.6 Immutable and Reference Objects

Sather distinguishes between reference objects and immutable objects. Imutable objects
never change once they are created. When one wishes to modify an immutable object, one
is compelled to create a whole new object that reflects the modification.

Experienced C programmers immediately understand the difference when told about the
internal representation the ICSI compiler uses: immutable types are implemented with
stack or register allocated C ‘struct’s while reference types are pointers to the heap. Because
of that difference, reference objects can be referred to from more than one variable (aliased),
but immutable objects never appear to be. Many of the built-in types (integers, characters,
floating point) are immutable classes. There are a handful of other differences between ref-
erence and immutable types; for example, reference objects must be explicitly allocated,
but immutable objects ‘just are’.

Immutable types can have several performance advantages over reference types. Immuta-
ble types have no heap management overhead, they don't reserve space to store a type tag,
and the absence of aliasing makes more compiler optimizations possible. For a small class
like ‘CPX’ (complex number), all these factors combine to give a significant win over a ref-
erence class implementation. Balanced against these positive factors in using an immuta-
ble object is the overhead that some C compilers introduce in passing the entire object on
the stack. This problem is worse in immutable classes with many attributes. Unfortunately
the efficiency of an immutable class is directly tied to how smart the C compiler is; at this
time ‘gcc’ is not very bright in this respect, although other compilers are.

Immutable classes aren’t strictly necessary; reference classes with immutable semantics
work too. For example, the reference class ‘INTI’ implements immutable infinite precision
integers and can be used like the built-in immutable class ‘INT’. The standard string class
‘STR’ is also a reference type but behaves with immutable semantics. Explicitly declaring
immutable classes allows the compiler to enforce immutable semantics and provides a hint
for good code generation. Common immutable classes are defined in the standard librar-
ies; defining a new immutable class is unusual.

1.2.7 pSather

Parallel Sather (pSather) is a parallel extension of the language, developed and in use at IC-
SI. It extends serial Sather with threads, synchronization, and data distribution.

pSather differs from concurrent object-oriented languages that try to unify the notions of
objects and processes by following the actors model [1]. There can be a grave performance
impact for the implicit synchronization this model imposes on threads even when they do
not conflict. While allowing for actors, pSather treats object-orientation and parallelism as
orthogonal concepts, explicitly exposing the synchronization with new language con-
structs.

14 Using Sather

pSather follows the Sather philosophy of shielding programmers from common sources of
bugs. One of the great difficulties of parallel programming is avoiding bugs introduced by
incorrect synchronization. Such bugs cause completely erroneous values to be silently
propagated, threads to be starved out of computational time, or programs to
deadlock. They can be especially troublesome because they may only manifest themselves
under timing conditions that rarely occur (race conditions) and may be sensitive enough
that they don't appear when a program is instrumented for debugging (heisenbugs).
pSather makes it easier to write deadlock and starvation free code by providing structured
facilities for synchronization. A lock statement automatically performs unlocking when its
body exits, even if this occurs under exceptional conditions. It automatically
avoids deadlocks when multiple locks are used together. It also guarantees reasonable
properties of fairness when several threads are contending for the same lock.

pSather allows the programmer to direct data placement. Machines do not need to have
large latencies to make data placement important. Because processor speeds are outpacing
memory speeds, attention to locality can have a profound effect on the performance
of even ordinary serial programs. Some existing languages can make life difficult for the
performance-minded programmer because they do not allow much leeway in expressing
placement. For example, extensions allowing the programmer to describe array layout
as block-cyclic is helpful for matrix-oriented code but of no use for general data structures.

Because high performance appears to require explicit human-directed placement, pSather
implements a shared memory abstraction using the most efficient facilities of the target
platform available, while allowing the programmer to provide placement directives for
control and data (without requiring them). This decouples the performance-related place-
ment from code correctness, making it easy to develop and maintain code enjoying the
language benefits available to serial code. Parallel programs can be developed on simula-
tors running on serial machines. A powerful object-oriented approach is to write both se-
rial and parallel machine versions of the fundamental classes in such a way that a user's
code remains unchanged when moving between them.

1.3 USING SATHER

At the time of this writing, the only compiler implementing the 1.1 language specifica-
tion is available from ICSI. It is freely available, includes source for class libraries and
the compiler, and compiles into ANSI C. This compiler has been ported to a wide range
of UNIX and PC operating systems.

History 15

1.3.1 Obtaining the compiler

The ICSI Sather 1.1 compiler can be obtained by anonymous ftp at

ftp.icsi.berkeley.edu: /pub/sather

Other sites also mirror the Sather distribution. The distribution includes installation in-
structions, ‘man’ pages, the standard libraries and source for the compiler (in Sather). Doc-
umentation, tutorials and up-to-date information are also available at the Sather WWW
page:

http://www.icsi.berkeley.edu/~sather

ICSI also maintains a library of contributed Sather code at this page.

There is a newsgroup devoted to Sather:

comp.lang.sather

There is also a Sather mailing list if you wish to be informed of Sather releases; to subscribe,
send email to:

sather-request@icsi.berkeley.edu

It is not necessary to be on the mailing list if you read the Sather newsgroup.

1.3.2 How do I ask questions?

If it appears to be a problem that others would have encountered (on platform ‘X’, I tried
to install it but the it failed to link with the error ‘Y’), then the newsgroup is a good place
to ask. If you have problems with the compiler or questions that are not of general inter-
est, mail to one of

sather-bugs@icsi.berkeley.edu
psather-bugs@icsi.berkeley.edu

This is also where you want to send bug reports and suggestions for improvements.

1.4 HISTORY

Sather is still growing rapidly. The initial Sather compiler (for ‘Version 0’ of the language)
was written in Sather (bootstrapped by hand-translating to C) over the summer of 1990.
ICSI made the language publicly available (version 0.1) June of 1991 [4]. The project has
been snowballing since then, with language updates to 0.2 and 0.5, each compiler boot-
strapped from the previous. These versions of the language are most indebted to Stephen

16 History

Omohundro, Chu-Cheow Lim, and Heinz Schmidt. pSather co-evolved with primary ear-
ly contributions by Jerome Feldman, Chu-Cheow Lim, and Franco Mazzanti. The first
pSather compiler [3] was implemented by Chu-cheow Lim on the Sequent Symmetry,
workstations and the CM-5.

Sather 1.0 was a major language change, introducing bound routines, iterators, proper sep-
aration of typing and code inclusion, contravariant typing, strongly typed parameteriza-
tion, exceptions, stronger optional runtime checks and a new library design [6]. The 1.0
compiler was a completely fresh effort by Stephen Omohundro and David Stoutamire. It
was written in 0.5 with the 1.0 features introduced as they became functional. The 1.0 com-
piler was first released in the summer of 1994, and Stephen left the project shortly after-
wards. The pSather 1.0 design was largely due to Stephan Murer and David Stoutamire.

This document describes Sather 1.1, released the summer of 1996. That compiler is prima-
rily the work of David Stoutamire, Michael Philippsen, Claudio Fleiner and Boris Vay-
sman. Unlike previous specifications, pSather is now an extension that is part of the 1.1
specification.

A group at the University of Karlsruhe under the direction of Gerhard Goos created a com-
piler for Sather 0.1. The language their compiler supports, Sather-K, diverged from the
ICSI specification when Sather 1.0 was released. Karlsruhe has created a large class library
called Karla using Sather-K. More information about Sather-K can be found at:

http://i44www.info.uni-karlsruhe.de/~frick/SatherK

1.4.1 Acknowledgments

Sather has adopted ideas from a number of other languages. Its primary debt is to Eiffel,
designed by Bertrand Meyer, but it has also been influenced by C, C++, Cecil, CLOS,
CLU, Common Lisp, Dylan, ML, Modula-3, Oberon, Objective C, Pascal, SAIL, School,
Self, and Smalltalk.

Steve Omohundro was the original driving force behind Sather, keeping the language
specification from being pillaged by the unwashed hordes and serving as point man for the
Sather community until he left in 1994. Chu-Cheow Lim bootstrapped the original compil-
er and was largely responsible for the original 0.x compiler and the first implementation of
pSather. David Stoutamire took over as language tsar and compiler writer after Stephen
left.

Sather has been very much a group effort; many, many other people have been involved
in the language design discussions including: Subutai Ahmad, Krste Asanovic, Jonathan
Bachrach, David Bailey, Joachim Beer, Jeff Bilmes, Chris Bitmead, Peter Blicher, John Boy-
land, Matthew Brand, Henry Cejtin, Alex Cozzi, Richard Durbin, Jerry Feldman, Carl Fey-
nman, Claudio Fleiner, Ben Gomes, Gerhard Goos, Robert Griesemer, Hermann Häertig,
John Hauser, Ari Huttunen, Roberto Ierusalimschy, Arno Jacobsen, Matt Kennel, Holger

History 17

Klawitter, Phil Kohn, Franz Kurfess, Franco Mazzanti, Stephan Murer, Michael Phil-
ippsen, Thomas Rauber, Steve Renals, Noemi de La Rocque Rodriguez, Hans Rohnert, Hei-
nz Schmidt, Carlo Sequin, Andreas Stolcke, Clemens Szyperski, Martin Trapp, Boris
Vaysman, and Bob Weiner. Countless others have assisted with practical matters such as
porting the compiler and libraries.

1.4.2 References

[1] G. Agha, ‘‘Actors: A Model of Concurrent Computation in Distributed
Systems’’, The MIT Press, Cambridge, Massachusetts, 1986.

[2] S. Burson, ‘‘The Nightmare of C++’’, Advanced Systems November 1994, pp.
57-62. Excerpted from The UNIX-Hater's Handbook, IDG Books, San Mateo, CA,
1994.

[3] C. Lim. “A Parallel Object-Oriented System for Realizing Reusable and
Efficient Data Abstractions,” PhD thesis, University of California at Berkeley ,
October 1993. Available at the Sather WWW page.

[4] C. Lim, A. Stolcke. ‘‘Sather language design and performance evaluation.’’ TR-
91-034, International Computer Science Institute, May 1991. Also available at
the Sather WWW page.

[5] S. Murer, S. Omohundro, D. Stoutamire, C. Szyperski, ‘‘Iteration abstraction in
Sather’’, Transactions on Programming Languages and Systems, Vol. 18, No. 1, Jan
1996 p. 1-15. Available at the Sather WWW page.

[6] S. Omohundro. ‘‘The Sather programming language.’’ Dr. Dobb’s Journal, 18
(11) pp. 42-48, October 1993. Available at the Sather WWW page.

[7] C. Szyperski, S. Omohundro, S. Murer. “Engineering a programming
language: The type and class system of Sather,” In Jurg Gutknecht, ed.,
Programming Languages and System Architectures, p. 208-227. Springer Verlag,
Lecture Notes in Computer Science 782, November 1993. Available at the
Sather WWW page.

18 Introduction

The Sather 1.1 Specification

2.1 INTRODUCTION

2.1.1 About This Document

When important terms are first defined, they are formatted like this. Most sections begin
with an example of a syntactic construct followed by corresponding grammar rules. The
grammar rules are expressed in a variant of Backus-Naur form. Nonterminal symbols be-
gin with a letter and are represented by strings of letters and underscores in an italic font.
The nonterminal symbol on the lefthand side of a grammar rule is followed by a double
arrow ‘ ’ and the right-hand side of the rule. The terminal symbols consist of Sather key-
words and special symbols and are typeset in the Helvetica font. Vertical bars ‘...|...’ sepa-
rate alternatives, parentheses ‘(...)’ are used for grouping, square brackets ‘[...]’ enclose
optional clauses and braces ‘{...}’ enclose clauses which may be repeated zero or more
times. Multi-line examples are indented after the first line, and an ellipsis ‘...’ indicates code
that has been left out for clarity. Semicolons are used to separate examples only if, when
taken together, the examples could be a legitimate section of Sather code. Trailing semico-
lons, which are optional, are not shown.

2.1.2 Basic Concepts

Data structures in Sather are constructed from objects, each of which has a specific concrete
type that determines the operations that may be performed on it. Abstract types specify a
set of operations without providing an implementation and correspond to sets of concrete
types. The implementation of concrete types is defined by textual units called classes; ab-
stract types are specified by textual units called abstract classes. Sather programs consist of
classes and abstract class specifications. Each Sather variable has a declared type which de-
termines the types of objects it may hold.

Classes define the following features: attributes which make up the internal state of objects,
shareds and constants which are shared by all objects of a type, and methods which may be

⇒

Lexical Structure 19

either routines or iterators. Any features are by defaultpublic, but may be declaredprivate to
allow only the class in which it appears access to it. An attribute or shared may instead be
declared readonly to allow only the class in which it appears to modify it. Accessor routines
are automatically defined for reading or writing attributes, shareds, and constants. The set
of non-private methods in a class defines the interface of the corresponding type. Method
definitions consist of statements; for their construction expressions are used. There are spe-
cial literal expressions for boolean, character, string, integer, and floating point objects.

Certain conditions are described as fatal errors. These conditions should never occur in cor-
rect programs and all implementations of Sather must be able to detect them. For efficiency
reasons, however, implementations may provide the option of disabling checking for cer-
tain conditions.

2.2 LEXICAL STRUCTURE

The character set used in source files is defined by the Sather implementation, but it
must include at least the characters which appear in the syntactic constructs in this speci-
fication. Sather implementations may be based on ASCII, but this is not r equired. The
case of characters in source files is significant. All syntactic constr ucts except identifiers
and certain literals may be separated by an arbitrary number of whitespace characters and
comments. The seven whitespace characters are space, tab, newline, vertical tab, back-
space, carriage return, and form feed. Sather comments consist of two dashes ‘--’ outside
of a string (page 41) or character literal (page 40) and all following text until a newline.

Sather identifiers are used to name class features, method arguments, and local variables.
Most consist of letters, decimal digits, and the underscore character, and begin with a letter.
Iterator names additionally end with the ‘!’ character. Abstract type names and class names
are similar, but the letters must be uppercase and abstract type names begin with ‘$’. There
are no restrictions on the lengths of Sather identifiers or class names. Identifiers, class
names, and keywords must be followed by a character other than a letter, decimal digit, or
underscore. This may force the use of white-space after an identifier.

 identifier letter {letter | decimal_digit | _}

 uppercase_identifier uppercase_letter {uppercase_letter | decimal_digit | _}

 abstract_class_name $ uppercase_identifier

 iter_name [identifier]!

 letter lowercase_letter | uppercase_letter

 lowercase_letter a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

 uppercase_letter A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U
| V | W | X | Y | Z

⇒

⇒

⇒

⇒

⇒

⇒

⇒

20 Types and Classes

 decimal_digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Sather keywords are used to identify the fundamental syntactic constructs and may not be
used as identifiers. Some keywords are reserved for language extensions (page 67). The
keywords are:

 keyword abstract | and | any | assert | attr | bind | break! | builtin | case | class
| clusters | clusters! | cohort | const | else | elsif | end | exception | external
| false | far | fork | guard | if | immutable | inout | include | initial | is | ITER
| lock | loop | near | new | once | or | out | par | parloop | post | pre | private | protect
| quit | raise | readonly | result | return | ROUT | SAME | self | shared | sync
| then | true | typecase | unlock | until! | void | when | while! | with | yield

The syntax also makes use of the following special symbols:

 special_symbol (|) | [|] | { | } | , | . | ; | : | $ | _ | + | - | * | / | = | < | > | # | ^ | % | ~ | | | !
| /= | <= | >= | := | :: | -> | @ | :-

2.3 TYPES AND CLASSES

Sather programs are textually made up of classes. Classes are used to define the code and
storage that make up types. Each object is an instance of a type. T ypes can be thought of
as representing sets of objects at runtime. Objects never change their type.

There are four kinds of objects in Sather: immutable (e.g. integers), reference (e.g. strings),
closures, and external (used to r epresent entities in other languages). Ther e are four corre-
sponding concrete types: immutable, reference, closure, and external types. Ther e are also
abstract types, which represent sets of concrete types. Immutable, reference, external,
and abstract types are defined textually by immutable, reference, external, and abstract class-
es. Partial classes define code that does not have corr esponding objects or types, and
may be included by other classes to obtain implementation.

The type graph for a program is a directed acyclic graph that is constructed from the pro-
gram’s source text. Its nodes are types and its edges represent the subtype relationship. If
there is a path in this graph from a type t1 to a type t2, we say that t2 is a subtype of t1 and
that t1 is a supertype of t2. Subtyping is reflexive; any type is a subtype of itself. Only abstract
types and method closures can be supertypes (see pages 24 and 54); closure types can only
be supertypes of other closure types.

Every Sather variable has a declared type. The fundamental typing rule is: An object can
only be held by a variable if the object’s type is a subtype of the variable’s type. It is not possible for
a program which compiles to violate this rule (i.e. Sather is statically type-safe).

⇒

⇒

⇒

Types and Classes 21

2.3.1 Type specifiers

Syntax:

type_specifier (uppercase_identifier | abstract_class_name) [{ type_specifier_list }]
| method_closure_type_specifier
| SAME

method_closure_type_specifier routine_closure_type_specifier
| iter_closure_type_specifier

routine_closure_type_specifier ROUT
[{ routine_mode type_specifier { , routine_mode type_specifier } }]
[: type_specifier]

iter_closure_type_specifier ITER
[{ iter_mode type_specifier { , iter_mode type_specifier } }]
[: type_specifier]

In source text, Sather types are specified by one of the following forms of type specifier:

• The name of a class or abstract class (e.g. ‘A’ or ‘$A’). This may be followed by a list of
parameter type specifiers in braces (e.g. ‘A{B,C}’). The parameter values must not
cause the generation of an infinite number of types (e.g. ‘FOO{FOO{T}}’ within the
class ‘FOO{T}’).

• The name of a type parameter within the body of a parameterized class or abstract
type definition (e.g. ‘T’ in the body of ‘class B{T} is ... end’).

• The keyword ‘ROUT’ or ’ITER’ optionally followed by a list of argument types in
braces, optionally followed by a colon and return type (e.g. ‘ROUT{A,B}:C’,
’ITER{A,B}:C’). This is used for closure types (page 54).

• The special type specifier ‘ SAME,’ which denotes the type of the class in which it oc-
curs.

Examples: INT
A{B,C{$D}}
$IS_EQ{T}
ROUT{A,B,C}:D
ITER{INT}:INT
SAME

⇒

⇒

⇒

⇒

22 Types and Classes

2.3.2 Signatures

Syntax:

 abstract_signature abstract_routine_signature | abstract_iter_signature

 abstract_routine_signature identifier
[(routine_argument { , routine_argument })] [: type_specifier]

 routine_argument routine_mode identifier_list : type_specifier

 routine_mode [(out | inout)]

 abstract_iter_signature iter_name
[(iter_argument { , iter_argument })] [: type_specifier]

 iter_argument iter_mode identifier_list : type_specifier

 iter_mode [(out | inout | once)]

 identifier_list identifier { , identifier }

Operations are performed on objects by calling methods on them, which are either routines
(page 32) or iterators (page 32). All method arguments have a mode, which is one of: in, out,
inout, or once. The signature of a method consists of its name, the modes and types of its ar-
guments, if any, and its return type, if any. Abstract classes specify a set of abstract signa-
tures, an interface without an implementation. Concrete classes specify a set of concrete
signatures which do define an implementation.

We say that the method signature f conflicts with g when

1. f and g have the same name and number of arguments,
2. f and g either both return a value or neither does,
3. each argument mode in f is the same as the corresponding mode in g, or the mode in

one is ‘in’ while the other is ‘once’,
4. and each argument type in f is neither a subtype nor a supertype of the corresponding

argument type in g, unless both are concrete.

This rule for signature conflict defines which methods may be overloaded (page 45).
Sather permits overloading based on the number, type and mode of arguments, as well as
whether or not a return value is present. However, overloading is not permitted between
‘in’ and ‘once’ modes.

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

Types and Classes 23

We say that the method signature f conforms to g when

1. f and g have the same name and number of arguments,
2. f and g either both return a value or neither does,
3. the mode of each argument is the same (in, out, inout or once),
4. contravariant conformance:

for any ‘in’ or ‘once’ arguments, the type in g is a subtype of the type in f;
for any ‘inout’ arguments, the type in f is the same type as in g;
for any ‘out’ arguments, the type in f is a subtype of the type in g; and
if it has one, the return type of f is a subtype of the return type of g.

The set of methods that may be called on a type is called the interface of that type. A type
interface may not contain conflicting signatures. An interface I1 conforms to an interface I2
if for every method f2 in I2 there is a unique conforming method f1 in I1. The basic subtyping
rule is: ‘The interface of each type must conform to the interfaces of each of its supertypes.’ This
ensures that calls made on a type can be handled by any of its subtypes.

2.3.3 Sather source files

Syntax:

source_file [abstract_class_definition | class] { ; [abstract_class_definition | class] }

Sather source files consist of semicolon separated lists of classes. Execution of a Sather pro-
gram begins with a routine named ‘main’ in a specified class (page 60), usually ‘MAIN’.

Example: abstract class $PLANET is ... end;
class GAS_GIANT < $PLANET is ... end;

⇒

24 Types and Classes

2.3.4 Abstract classes

Syntax:

abstract_class_definition abstract class abstract_class_name [parameterization]
[subtyping_clause] [supertyping_clause]
is [abstract_signature] { ; [abstract_signature] } end

 subtyping_clause < type_specifier_list

 supertyping_clause > type_specifier_list

 type_specifier_list type_specifier { , type_specifier}

Abstract class definitions specify interfaces without implementations. Abstract class names
must be entirely uppercase and must begin with a dollar sign ‘$’ (page 19); this makes it
easy to distinguish abstract type specifications from other types, and may be thought of as
a reminder that operations on objects of these types might be more expensive since they
may involve dynamic dispatch. The scope of abstract type names is the entire program.
Two abstract class definitions may be parameterized (see page 27) and may have the same
name only if they specify a different number of type parameters.

A subtyping clause (‘<’ followed by type specifiers) adds to the type graph an edge from
each type in the type_specifier_list to the type being defined. In the example, the subtyping
clause is ‘< $CONTAINER{T}’. Each listed type must be abstract. Every type is automati-
cally a subtype of $OB (page 61). There must be no cycle of abstract types such that each
appears in the subtype list of the next, ignoring the values of any type parameters but not
their number. A subtyping clause may not refer to ‘SAME’.

A supertyping clause (‘>’ followed by type specifiers) adds to the type graph an edge from
the type being defined to each type in the type_specifier_list . These type specifiers may not
be type parameters (though they may include type parameters as components) or external
types. There must be no cycle of abstract classes such that each class appears in the super-
type list of the next, ignoring the values of any type parameters but not their number. A
supertyping clause may not refer to ‘SAME’.

If both subtyping and supertyping clauses are present, then each type in the supertyping
list must be a subtype of each type in the subtyping list using only edges introduced by
subtyping clauses. This ensures that the subtype relationship can be tested by examining
only definitions reachable from the two types in question, and that errors of supertyping
are localized.

Example: abstract class $SHIPPING_CRATE{T} < $CONTAINER{T}
is

destination:$LOCATION;
weight:FLT;

end

⇒

⇒

⇒

⇒

Types and Classes 25

The body of an abstract class definition consists of a semicolon separated list of abstract sig-
natures. Each specifies the signature of a method without providing an implementation at
that point. The argument names are required for documentation purposes only and are ig-
nored. The abstract signatures of all types listed in the subtyping clause are included in the
interface of the type being defined. Explicitly specified signatures override any conflicting
signatures from the subtyping clause. If two types in the subtyping clause have conflicting
signatures that are not equal, then the type definition must explicitly specify a signature
that overrides them. The interface of an abstract type consists of any explicitly specified sig-
natures along with those introduced by the subtyping clause.

2.3.4a Abstract class examples

Here’s an example from the standard li-
brary. The abstract class ‘$STR’ represents
the set of types that have a way to construct
a string suitable for output. All of the stan-
dard types such as ‘INT’, ‘FLT’, ‘BOOL’ and
‘CPX’ know how to do this, so they are sub-
types of ‘$STR’. Attempting to subtype
from ‘$STR’ a concrete class that didn’t pro-
vide a ‘str’ method would cause an error at
compile time.

abstract class $STR is
-- Subtypes of this define "str:STR".
-- This should be a reasonable
-- string representation of an object.

str:STR;-- String form of object.
end

Here’s another abstract class that subtypes
from ‘$STR’. In addition to requiring the
‘str’ method, it adds a ‘create’ method for
creating from the string representation.

abstract class $FROM_STR < $STR is
-- Subtypes of this must define
-- methods for going to and from
-- the STR representation.

create(s:STR):$FROM_STR;
end

In this illegal abstract class, A and B do not
conflict because their arguments are con-
crete and are not the same type. However,
because the argument of C is abstract and
unrelated it conflicts with both A and B. D
does not conflict with A, B or C because it
has a different number of parameters.

abstract class $FOO is
foo(arg:INT); -- method A
foo(arg:BOOL); -- method B
foo(arg:$FOO); -- method C
foo(a, b:INT) -- method D

end

26 Types and Classes

2.3.5 Concrete classes

Syntax:

class [immutable | partial | external identifier]
class uppercase_identifier [parameterization] [subtyping_clause]
is [class_element] { ; [class_element] } end

There are three types that have implementations: reference, immutable, and external types.
They are defined by classes beginning with ‘class’, ‘immutable class’, and ‘external lan-
guage class’, respectively. Reference types may be aliased and usually are allocated on a
dynamic heap. Immutable types (such as complex numbers) are immune to aliasing and
usually do not require heap allocation (see page 13). External types are used to allow
Sather variables to refer to entities of other languages, and are discussed further on page
67. Partial classes have no associated type and contain code that may only be included by
other classes. Partial classes may not be instantiated: no routine calls from another class
into a partial class are allowed, and no variables may be declared in another class of such
a type.

Class names must be entirely uppercase (page 19). The scope of class names is the entire
program and two classes may have the same name only if they specify a different number
of parameters (page 27).

Subtyping clauses introduce edges into the type graph. Each type listed in the subtyping
clause must be abstract. There is an edge in the type graph from each type in the list to the
type being defined. Every type is automatically a subtype of $OB (page 61). A subtyping
clause may not refer to ‘SAME’. When a subtyping clause is used with a partial class, it does
not introduce an edge into the type graph, but does enforce the basic subtyping rule (page
23) between the interface(s) of the abstract class(es) and the partial class. Only partial class-
es may have stubs (page 34).

Examples: class VIEWER{DATA < $VIEWER_DATA} is ... end;
immutable class QUATERNION is ... end;
external FORTRAN class BLAS is ... end;
partial class MIXIN is ... end

⇒

Types and Classes 27

2.3.5a Concrete class example

2.3.6 Parameterization

Syntax:

parameterization { parameter_declaration { , parameter_declaration } }

parameter_declaration uppercase_identifier [< type_specifier]

Class definitions may optionally have one or more parameters within enclosing braces. Pa-
rameters are placeholders for actual types that are filled in at a point of use. Whenever a
parameterized class is referred to, its formal parameters are instantiated with type specifi-
ers. Parameter names are local to the class definition in which they appear and they shad-
ow non-parameterized types with the same name. Parameter names must be all
uppercase, and they may be used within the class definition as type specifiers. Partial
classes may not be used as parameters. There is no implicit type relationship between dif-
ferent parameterizations of a class.

If a parameter declaration is followed by a type constraint clause (‘ <’ followed by a type
specifier), then the parameter may only be replaced by subtypes of the constraining type.
If a type constraint is not explicitly specified, then ‘< $OB’ is taken as the constraint. A type
constraint clause may not refer to ‘SAME’. A class definition must satisfy all typing rules
when its parameters are replaced by any potential subtype of their constraining type. This
allows type-safe independent compilation: classes may be checked once for all parameter-
izations by type checking using prototypical unique subtypes of the type constraints.

An instantiated parameterized class definition is very similar to a non-parameterized copy
of the original definition in which each formal parameter occurrence is replaced by the
specified actual type. Parameterization may be thought of as a structured macro facility;
however, it is not the same as simple textual replacement, because the resolution of over-
loading uses type constraints instead of actual parameter types (page 45). Note: at this time
the ICSI compiler efficiently but incorr ectly resolves overloading based on fully instantiated types
rather than type constraints.

The complex number class from the stan-
dard library is a good example of a immuta-
ble class. ‘CPX’ is immutable (see page 13)
because it is small and behaves with a math-
ematical semantics. Here we also see that
complex numbers can be tested for equality
with other objects (‘$IS_EQ’) and has a rou-
tine (str: STR) for conversion to a string
(‘$STR’).

immutable class CPX < $IS_EQ, $STR
is

is_eq(s: $OB): BOOL is ... end;
str: STR is end;
...

end

⇒

⇒

28 Class Elements

2.3.6a Parameterization examples

2.4 CLASS ELEMENTS

Syntax:

class_element const_definition | shared_definition | attr_definition
| routine_definition | iter_definition | include_clause | stub

The main body of each class is a semicolon separated list of elements which define the fea-
tures of the class. The semantics of a class is independent of the textual order of its class
elements. All features are named. Some features may contribute a reader and a writer rou-
tine of the same name to the class interface. The scope of feature names is the class body
and is separate from the class namespace. If a feature is private, then it may only be referred
to from within the class and is not part of the class interface.

There are language-specific restrictions on the elements that may appear in external classes
(page 67). Some names (‘main’ and ‘invariant’) are reserved for special purposes (page 60).

Most Sather code resides in ordinary ref-
erence classes. A frequently used class
from the standard library is ‘ARRAY{T}’,
which is a conventional array of the pa-
rameterized type ‘T’. Here we show the
method ‘contains’, which uses ‘T’. For ex-
ample, an ‘ARRAY{INT}’ would support
the call ‘contains(5)’.

class ARRAY{T} is
...
contains(e:T):BOOL is

...
end;
...

end

The priority queue abstraction requires
parameter type constraints. Elements
need to be comparable to each other, no
matter what the parameter instantiation
is. This is specified by the parameter type
constraint ‘< $IS_LT{T}’, which itself uses
the parameter ‘T’.

abstract class $PQ{T < $IS_LT{T}} < ... is
top: T;
pop: T;
insert(e: T);
clear;
is_empty: BOOL;

end;

⇒

Class Elements 29

2.4.1 Constant definitions

Syntax:

 const_definition [private] const identifier
(: type_specifier := expression | [:= expression] [, identifier_list])

Constants are accessible by all objects in a class and may not be assigned to. If a type is spec-
ified, then the construct defines a single constant attribute named identifier and it must be
initialized by the expression expression. This must be a constant expression which means
that it is:

1. a character, boolean, string, integer or floating point literal expression (page 40),
2. a void or void test expression (page 46),
3. an and or or expression (page 48), each of whose components is a constant expression,
4. an array creation expression (page 48), each of whose components is a constant ex-

pression,
5. a routine call applied to a constant expression, each of whose arguments is a constant

expression other than void, or
6. a reference to another constant in the same class or in another class using the ‘::’ nota-

tion.

There must not be cyclic dependencies among constant initializers. The libraries are de-
signed so that no observable side-effects can occur during constant initialization.

If a type specifier is not provided, then the construct defines one or more successive integer
constants. The first identifier is assigned the value zero by default; its value may also be
specified by a constant expression of type ‘INT’. The remaining identifiers are assigned
successive integer values. This is the way to do enumeration types in Sather. It is an error
if no type specifier is provided and there is an assignment that is not of type ‘INT’.

Each constant definition causes the implicit definition of a reader routine with the same
name. It takes no arguments and returns the value of the constant. Its return type is the con-
stant’s type. The routine is private if and only if the constant is declared ‘private’.

Examples: const r:FLT:=45.6;
private const a,b,c;
private const d:=4,e,f

⇒

30 Class Elements

2.4.2 Shared attribute definitions

Syntax:

shared_definition [private | readonly] shared
(identifier : type_specifier := expression | identifier_list : type_specifier)

Shared attributes are global variables that reside in a class namespace. When only a single
shared attribute is defined, a constant initializing expression may be provided (page 29).
If no initializing expression is provided, the shared is initialized to the value ‘void’ (page
46).

Each shared definition causes the definition of a reader routine and a writer routine, both
with the same name. The reader routine takes no arguments and returns the value of the
shared. Its return type is the shared’s type. The reader routine is private if the shared is
declared ‘private’. The writer routine sets the value of the shared, taking a single argument
whose type is the shared’s type, and has no return value. The writer routine is private if
the shared is declared either ‘private’ or ‘readonly’.

2.4.3 Attribute definitions

Syntax:

attr_definition [private | readonly] attr identifier_list : type_specifier

An object’s state consists of the attributes defined in its class together with an optional ar-
ray portion. The array portion appears if there is an include path (page 33) from the type to
AREF for reference types or to AVAL for immutable types (page 61). Closure and reference
objects must be explicitly allocated as described on pages 47 and 54. Variables have the val-
ue ‘void’ until an object is assigned to them (page 46). There must be no cycle of immutable
types such that each type has an attribute whose type is in the cycle.

Each attribute definition causes the definition of a reader and a writer routine with the
same name. The reader routine takes no arguments and returns the value of the attribute.
Its declared return type is the attribute’s type. It is private if the attribute is declared ‘pri-
vate’.

Examples: private shared i,j:INT;
shared s:STR:="name";
readonly shared c:CHAR:=’x’

Examples: attr a,b,c:INT;
private attr c:CHAR;
readonly attr s1,s2:STR

⇒

⇒

Class Elements 31

The writer routine takes different forms for reference and immutable types. For reference
types, the writer routine takes a single argument whose type is the attribute’s type and has
no return value. Its effect is to modify the object by setting the value of the attribute. For
immutable types, it takes a single argument whose type is the attribute’s type, and returns
a copy of the object with the attribute set to the specified new value, and whose type is the
type of the object. Object attribute writer routines are private if the corresponding attribute
is declared either ‘private’ or ‘readonly’.

2.4.3a Attribute, shared and constant examples

Here’s an example of a tree node class. Each
node has attributes for storing child nodes
as well as the data at that node. ‘datum’ and
‘total_nodes_created’ are marked readonly,
so they may not be written by code in other
classes. The ‘total_nodes_created’ field is
presumably incremented in the create rou-
tine, and all nodes will see the same value.

The ‘lchild’ attribute implicitly defines two
signatures: ‘lchild:NODE{T}’ for reading
and ‘lchild(NODE{T})’ for writing.

class NODE{T} is

attr lchild, rchild:SAME;
readonly attr datum:T;

readonly shared
total_nodes_created:INT;

const min_balanced_depth:INT:=5;

...
end

This example shows three different ways to
modify an attribute. ‘n’ is a reference type,
so the ‘lchild’ field can be modified by as-
signment, or by calling the implicit writer
routine for the attribute. ‘c’ is an immutable
type, so its implicit writer routine returns a
new object instead of modifying the object
in place.

n:NODE{T}; c:CPX;
...
n.lchild := x; -- These two lines
n.lchild(x); -- are equivalent.
...
c := c.re(1.0); -- attr of immutable type

32 Class Elements

2.4.4 Routine definitions

Syntax:

routine_definition [private] identifier
[(routine_argument { , routine_argument })] [: type_specifier]
[pre expression] [post expression] [is statement_list end]

A routine definition may begin with the keyword ‘private’ to indicate that the routine may
be called from within the class but is not part of the class interface. The identifier specifies
the name of the routine.

If a routine has arguments, the declaration list is enclosed in parentheses. The mode, name
and type of each argument is specified in this list. The types of consecutive arguments may
be declared with a single type specifier. Each argument’s mode defaults to ‘in’ if neither
‘out’ nor ‘inout’ is specified (page 45). If a routine has a return value, it is declared by a colon
and a specifier for the return type. SAME is permitted only for a return type or out argu-
ments.

The ‘pre’ and ‘post’ clauses specify optional pre- and post-conditions, and are discussed
further on page 58. The body of a routine definition is a list of statements (page 35).

2.4.5 Iterator definitions

Syntax:

iter_definition [private] iter_name
[(iter_argument { , iter_argument })] [: type_specifier]
[pre expression] [post expression] is statement_list end

Iterators are similar to routines but encapsulate iteration abstractions. Their names end
with an exclamation point ‘!’ and they may only be called within loop statements (page 51).
Iterator arguments that are not marked ‘once’ are called hot and cause re-evaluation of that
argument at each iteration (see also page 45). As with routines, SAME is permitted only
for a return type or out arguments.

Examples: a(f:FLT):FLT
pre f>1.2 post result<4.3

is ... end;
b is ... end;
private d:INT is ... end;
c(s1,s2,s3:STR) is ... end

Example: elts!(once i:INT, x:FLT):T is ... end

⇒

⇒

Class Elements 33

The description of routine arguments and pre and post constructs also applies to iterator
definitions. Iters may contain yield (page 38) and quit (page 52) statements but may not con-
tain return statements (page 38). The semantics of iterator calls is described in the section
on loop statements (page 51). The pre clause must be true each time the iterator is called
and the post clause must be true each time it yields. The post clause is not evaluated when
an iterator quits.

The semantics of iterators and loops are discussed in more detail on page 51.

2.4.6 Code inclusion and include clauses

Syntax:

include_clause [private] include type_specifier
[feature_modifier { , feature_modifier }]

feature_modifier (identifier | iter_name) ->
[[private | readonly] (identifier | iter_name)]

Implementation inheritance is defined by include clauses. These cause the incorporation of
the implementation of the specified type, possibly undefining or renaming features with
feature_modifier clauses. The include clause may begin with the keyword ‘private’, in which
case any unmodified included feature is made private. We say that there is an include path
from one type to another if there is a sequence of types between them such that each in-
cludes the next in the sequence.

The included type specified by the type_specifier may not be a closure type or a type param-
eter (though type parameters may appear as components of the type specifier). Partial
classes may be included. External classes may be included if the interface to the language
permits this; external Fortran (page 68) and C (page 69) classes may not be included. There
mustn’t be include paths from reference types to AVAL or from immutable types to AREF
(page 61). There must be no cycle of classes such that each class includes the next, ignoring
the values of any type parameters but not their number. If SAME occurs in an include
clause, it is interpreted as the eventual type of the class (as late as possible).

Each feature_modifier clause specifies an identifier which must be the name of at least one
feature in the included class. If no clause follows the ‘->’ symbol, then the named features
are not included in the class. If an identifier follows the ‘->’ symbol, then it becomes the
new name for the features. In this case, the listed features are included as part of the public
interface unless they are specified as ‘private’ or ‘readonly’. Identifiers may only be re-
named as identifiers and iterator names may only be renamed by iterator names. It is an

Examples: include A a->b, c->, d->private d;
private include D e->readonly f;

⇒

⇒

34 Class Elements

error if there are no appropriate methods to rename in the included class, and both a reader
and a writer method (page 30) must exist if ‘readonly’ is used.

A class may not explicitly define two methods whose signatures conflict (page 22). A class
may not define a routine whose signature conflicts with either the reader or the writer rou-
tine of any of its attributes (whether explicitly defined or included from other classes). If a
method is explicitly defined in a class, it overrides all conflicting methods from included
classes. The implicit reader and writer routines of a class’s attributes, shareds, and con-
stants also override any included routines and must not conflict with each other. If an in-
cluded method is not overridden, then it must not conflict with another included method;
feature modification clauses can be used to resolve any conflicts.

2.4.7 Stubs

Syntax:

stub abstract_signature

A stub feature may only be present in a partial class. They have no body and are used to
reserve a signature for redefinition by an including class. If code in a partial class contains
calls to an unimplemented method, that method must be explicitly provided as a stub

2.4.7a Code inclusion examples.

Example: stub register_object(ob:FOO);

The class ‘ARRAY{T}’ in the standard li-
brary is not a primitive data type. It is based
on a built-in class ‘AREF{T}’ which pro-
vides objects with an array portion. ‘AR-
RAY’ obtains this functionality using an
‘include’, but chooses to modify the visibili-
ty of some of the methods. It also defines
additional methods such a ‘contains’, ‘sort’,
etc. The methods ‘aget’, ‘aset’ and ‘asize’
are defined as ‘private’ in ‘AREF’, but ‘AR-
RAY’ redefines them to be public.

class ARRAY{T} is
private include AREF{T}

-- Make these public.
aget->aget,
aset->aset,
asize->asize;

...
contains(e:T):BOOL is ... end
...

end

Basic Statements 35

2.5 BASIC STATEMENTS

Syntax:

statement_list [statement] { ; [statement] }

statement declaration_statement | assign_statement | if_statement
 | return_statement | case_statement | typecase_statement
 | expression_statement | loop_statement | yield_statement
 | quit_statement | protect_statement | raise_statement
 | assert_statement

The body of a method is a semicolon separated list of statements. The statements in a state-
ment list are executed sequentially unless a return, quit, yield, or raise statement is executed.
In a routine with a return value, the final statement along each execution path must be ei-
ther a return statement or a raise statement.

This code demonstrates the use of partial
classes. Each MIXIN class provides a differ-
ent way of prompting the user; each can be
combined with COMPUTE to make a com-
plete program. The stub in COMPUTE al-
lows that class to be type checked without
needing either mix-in class.

Only COMPUTE_A and COMPUTE_B may
actually be instantiated.

This style of code reuse is very flexible be-
cause the stub routines can access private
data in COMPUTE. Such flexibility requires
extra care, because it bypasses ordinary
class encapsulation.

partial class MIXIN_A is
prompt_user is ... end;

end;

partial class MIXIN_B is
prompt_user is ... end;

end;

partial class COMPUTE is
main is ...prompt_user; ... end;
stub prompt_user;

end;

class COMPUTE_A is
include COMPUTE;
include MIXIN_A;

end;

class COMPUTE_B is
include COMPUTE;
include MIXIN_B;

end;

⇒

⇒

36 Basic Statements

2.5.1 Declaration statements

Syntax:

declaration_statement identifier_list : type_specifier

Declaration statements are used to declare the type of one or more local variables. Local vari-
ables may also be declared in assignment statements (page 36). The scope of a local variable
declaration begins at the declaration and continues to the end of the statement list in which
the declaration occurs. The scope of method arguments is the entire body of the method.
Local variables shadow routines in the class which have the same name and no arguments.
Within the scope of a local variable it is illegal to declare another local variable with the
same name. Local variables are initialized to void (page 46) when the containing method is
called; they are not re-initialized when the declaration is encountered in the flow of control.

2.5.2 Assignment statements

Syntax:

assign_statement (expression | identifier : [type_specifier]) := expression

Assignment statements are used to assign objects to locations and can also declare new local
variables. The expression on the right hand side must have a return type which is a subtype
of the declared type of the destination specified by the left hand side. When a reference ob-
ject is assigned to a location, only a reference to the object is assigned. This means that later
changes to the state of the object will be observable from the assigned location. Since im-
mutable and closure objects cannot be modified once constructed, this issue is not relevant
to them. We consider each of the allowed forms for the lefthand side of an assignment in
turn:

1. ‘identifier ’

If the left hand side is a local variable or an argument of a method, then the assignment is
directly performed (e.g. ‘a:=5’). Otherwise the statement is syntactic sugar for a call of the
routine namedidentifier with the right hand side of the assignment as the only argument
(e.g. ‘a(5)’).

Example: i,j,k:INT

Examples: a:=5
b(7).c:=5
A::d:=5
[3]:=5
e[7,8]:=5
g:INT:=5
h::=5

⇒

⇒

Basic Statements 37

2. ‘(expression . | type_specifier ::) identifier ’

These forms are syntactic sugar for calls of a routine namedidentifier with the right hand
side as an argument: (expression . | type_specifier ::) identifier (rhs). For example,
‘b(7).c:=5’ is sugar for ‘b(7).c(5)’ and ‘A::d:=5’ is sugar for ‘A::d(5)’.

3. ‘[expression] [expression_list] ’

This form is syntactic sugar for a call of a routine named ‘aset’ with the array index ex-
pressions and the right hand side of the assignment as arguments:[expression . |
type_specifier ::] aset(expression_list , rhs). For example, ‘[3]:=5’ is sugar for
‘aset(3,5)’ and ‘e[7,8]:=5’ is sugar for ‘e.aset(7,8,5)’.

4. ‘identifier : [type_specifier] ’

This form both declares a new local variable and assigns to it (e.g. ‘g:INT:=5’). If a type
specifier is not provided, then the declared type of the variable is the return type of the ex-
pression on the righthand side (e.g. ‘h::=5’). The scoping rules given on page 36 apply here
as well. If a type is explicitly specified, the construct is syntactic sugar for a declaration
statement followed by an assignment statement.

2.5.3 if statements

Syntax:

if_statement if expression then statement_list
 { elsif expression then statement_list }
 [else statement_list] end

if statements are used to conditionally execute statement lists according to the value of a
boolean expression. Each expression in the form must return a boolean value. The first ex-
pression is evaluated and if it is true, the following statement list is executed. If it is false,
then the expressions of successive elsif clauses are evaluated in order. The statement list
following the first of these to return true is executed. If none of the expressions return true
and there is an else clause, then its statement list is executed.

Example: if a>5 then foo
elsif a>2 then bar
else error
end

⇒

38 Basic Statements

2.5.4 return statements

Syntax:

return_statement return [expression]

return statements are used to return from routine calls. No other statements may follow a
return statement in a statement list because they could never be executed. If a routine
doesn’t have a return value then it may return either by executing a return statement with-
out an expression portion or by executing the last statement in the routine body.

If a routine has a return value, then its return statements must specify expressions whose
types are subtypes of the routine’s declared return type. Execution of the return statement
causes the expression to be evaluated and its value to be returned. It is a fatal error if the
final statement executed in such a routine is not a return or raise (page 58) statement.

2.5.5 case statements

Syntax:

case_statement case expression
when expression { , expression } then statement_list
{ when expression { , expression } then statement_list }
[else statement_list] end

Multi-way branches are implemented by case statements. There may be an arbitrary number
of when clauses and an optional else clause. The initial expression construct is evaluated first
and may have a return value of any type. This type must define one or more routines
named ‘is_eq’ with a single argument and a boolean return value. The case statement is se-
mantically syntactic sugar for (equivalent to) an if statement, each of whose branches tests
a call of is_eq. The arguments to these calls are the expressions of successive when lists. The
first one of these calls to returns true causes the corresponding statement list to be executed
and control passed to the statement following the case statement. If none of the when ex-
pressions matches and an else clause is present, then the statement list following it is exe-
cuted. It is a fatal error if no branch matches in the absence of an else clause.

Examples: return
return x

Example: case i
when 5, 6 then ...
when j then ...
else ...
end

⇒

⇒

Basic Statements 39

2.5.6 typecase statements

Syntax:

typecase_statement typecase identifier
when type_specifier then statement_list
{ when type_specifier then statement_list }
[else statement_list] end

An operation that depends on the runtime type of an object held by a variable of abstract
type may be performed inside a typecase statement. The identifier must name a local variable
or an argument of a method. If the typecase appears in an iterator, then the mode of the
argument must be once; otherwise, the type of object that such an argument holds could
change.

On execution, each successive type_specifier is tested for being a supertype of the type of the
object held by the variable. The statement list following the first matching type specifier is
executed and control passes to the statement following the typecase. Within each state-
ment list, the type of the typecase variable is taken to be the type specified by the matching
type specifier unless the variable’s declared type is a subtype of it, in which case it retains
its declared type. It is not legal to assign to the typecase variable within the statement lists.
If the object’s type is not a subtype of any of the type specifiers and an else clause is present,
then the statement list following it is executed. It is a fatal error for no branch to match in
the absence of an else clause. The declared type of the variable is not changed within the
else statement list. If the value of the variable is void when the typecase is executed, then
its type is taken to be the declared type of the variable.

2.5.7 Expression statements

Syntax:

expression_statement expression

A statement may consist of an expression that does not return a value and is executed sole-
ly for its side-effects.

Example: typecase a
when INT then ...
when FLT then ...
when $A then ...
else ...
end

Examples: foo(1, x);
bar

⇒

⇒

40 Literal Expressions

2.6 LITERAL EXPRESSIONS

Syntax:

 expression bool_literal_expression | char_literal_expression | str_literal_expression
 | int_literal_expression | flt_literal_expression

There are special lexical forms for literal expressions which define boolean, character,
string, integer, and floating point values. These literal forms all have a concrete type de-
rived from the syntax; typing of literals is not dependent on context. Sather does not do
implicit type coercions (such as promoting an integer to floating point when used in a float-
ing point context.) Types must instead be promoted explicitly by the programmer. This
avoids a number of portability and precision issues (for example, when an integer can’t be
represented by the floating point representation.)

2.6.1 Boolean literal expressions

Syntax:

bool_literal_expression true | false

BOOL objects represent boolean values (page 61). The two possible values are represented
by the boolean literal expressions: ‘true’ and ‘false’.

2.6.2 Character literal expressions

Syntax:

char_literal_expression ’ (ISO_character | \ escape_seq) ’

escape_seq a | b | f | n | r | t | v | \ | ’ | " | octal_digit {octal_digit}

These two expressions are equivalent. In
the first, the ‘d’ is a literal suffix denoting
the type. In the second, ‘3.14’ is the literal
and ‘.fltd’ is an explicit conversion.

3.14d -- A double precision literal
3.14.fltd -- Single, but converted

Examples: true
false

Examples: ’a’
’\n’
’\016’

⇒

⇒

⇒

⇒

Literal Expressions 41

CHAR objects represent characters (page 61). Character literal expressions begin and end
with single quote marks. These may enclose either any single ISO-Latin-1 printing charac-
ter except single quote or backslash or an escape code starting with a backslash.

The escape codes are interpreted as follows: ’\a’ is an alert such as a bell, ’\b’ is the backspace
character, ’\f’ is the form feed character, ’\n’ is the newline character, ’\r’ is the carriage return
character, ’\t’ is the horizontal tab character, ’\v’ is the vertical tab character, ’\\’ is the backslash
character, ’\’’ is the single quote character, and ’\"’ is the double quote character. A backslash
followed by one or more octal digits represents the character whose octal representation is
given. A backslash followed by any other character is that character. The mapping of es-
cape codes to other characters is defined by the Sather implementation.

2.6.3 String literal expressions

Syntax:

str_literal_expression "{ISO_character}" {"{ISO_character}"}

STR objects represent strings (page 61). String literal expressions begin and end with double
quote marks. The characters making up the string are specified in this construct from left
to right. A backslash starts an escape sequence as with character literals. All successive oc-
tal digits following a backslash are taken to define a single character. Individual double-
quote-bounded segments of string literals may not extend beyond a single line in the
source text. However, successive quote bounded segments are concatenated together to
form a single string and can be used to allow string literals to span more than one line of
source code. They may also be used to force the end of an octal encoded character. For ex-
ample: "\0367" is a one character string, while "\03""67" is a three character string. Such seg-
ments may be separated by comments and whitespace.

Examples: "a string literal"
"concat" "enation"

⇒

42 Literal Expressions

2.6.4 Integer literal expressions

Syntax:

 int_literal_expression [-] (binary_int | octal_int | decimal_int | hex_int) [i]

 binary_int 0b {binary_digit | _}

 binary_digit 0 | 1

 octal_int 0o {octal_digit | _}

 octal_digit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

 decimal_int decimal_digit {decimal_digit | _}

 hex_int 0x {hex_digit | _}

 hex_digit decimal_digit | a | b | c | d | e | f

INT objects represent machine integers and INTI objects represent infinite precision inte-
gers (page 61). The literal form for INTI objects ends with a trailing ‘i’. A leading ‘-’ sign is
used to denote a negative integer. Integer literals can be represented in four bases: binary
is base 2, octal is base 8, decimal is base 10 and hexadecimal is base 16. These are indicated
by the prefixes: ‘0b’, ‘0o’, nothing, and ‘0x’ respectively. Underscores may be used within
integer literals to improve readability and are ignored. INT literals are only legal if they are
in the representable range of the Sather implementation, which is at least 32 bits (page 61).

2.6.5 Floating point literal expressions

Syntax:

flt_literal_expression [-] decimal_int . decimal_int [e [-] decimal_int] [d]

FLT and FLTD objects represent floating point numbers according to the single and double
representations defined by the IEEE-754-1985 standard (see also page 61). A floating point
literal is of type FLT unless suffixed by ‘d’ designating a FLTD literal. The optional ‘e’ por-

Examples: 14
14i
-4532
39_832_983_298
0b101011
-0b_10111010_00101100_01010101
0o372363i
0x_e98a_7c4d_65d7_6aa6_932d

Examples: 12.34
3.498_239e-8d

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

⇒

Basic Expressions 43

tion is used to specify a power of 10 by which to multiply the decimal value. Underscores
may be used within floating point literals to improve readability and are ignored. Literal
values are only legal if they are within the range specified by the IEEE standard.

2.7 BASIC EXPRESSIONS

Syntax:

 expression self_expression | local_expression | call_expression | void_expression
| void_test_expression | new_expression | create_expression | array_expression
| and_expression | or_expression | sugar_expression
| while!_expression | until!_expression | break!_expression
| except_expression | initial_expression | result_expression
| closure_create_expression

Sather expressions are used to compute values or to cause side-effects. If they return a value,
then they have a return type that is either explicitly declared or inferred from context.

2.7.1 self expressions

Syntax:

self_expression self

self expressions may appear in the bodies and in the pre and post clauses of routines and
iters. They return the object on which the method was called. The return type is the type in
which the method appears.

2.7.2 Local variable access expressions

Syntax:

local_expression identifier

The name of an argument or local variable in a method is an expression which returns the
value of that variable. The return type of such an expression is the declared type of the vari-

Example: self

Example: a

⇒

⇒

⇒

44 Basic Expressions

able. Local variables may be accessed only within the body of a method. Arguments may
additionally be accessed in method pre and post clauses.

All other expressions consisting of a single identifier are method calls on self as described
in the next section.

2.7.3 Method call expressions

Syntax:

call_expression [expression . | type_specifier ::]
(identifier | iter_name) [(modal_list)]

modal_list routine_mode expression { , routine_mode expression }

The most common expressions in Sather programs are method calls. The identifier names the
method being called. The object to which the method is applied is determined by what pre-
cedes the identifier. If nothing precedes it, then the form is syntactic sugar for a call on self
(e.g. ‘a(5,7)’ is short for ‘self.a(5,7)’). If the identifier is preceded by an expression and a dot
‘.’, then the method is called on the object returned by the expression. If identifier is preced-
ed by a type specifier and a double colon ‘::’, then the method is taken from the interface of
the specified type with self initialized to void as described on page 46.

When a method call occurs, the following takes place in strict order:

1. If it is an iterator call, and this call has not yet been evaluated since entering the en-
closing loop, any ‘once’ arguments are evaluated, left to right.

2. ‘in’ and ‘inout’ arguments are evaluated, left to right. The object to which the meth-
od is applied is considered an ‘in’ argument.

3. The method call occurs. ‘out’ arguments are unassigned in the called method. It is a
fatal error to use the value of an ‘out’ argument in the called method before it has
been assigned. If the method terminates due to an uncaught exception, the following
steps do not take place.

4. An assignment to each ‘out’ and ‘inout’ argument occurs in the caller, left to right.
‘out’ and ‘inout’ arguments behave according to the syntactic sugar rules that also ap-
ply to the left side of ‘:=’ assignments.

5. The return value, if any, becomes available to the surrounding context.

If the method defines a return value, it must be used (i.e. the call may not be an
expression_statement). Only non-private routines and iters may be called from outside a
class, but all routines and iters may be called from inside a class.

Examples: a(5,7)
b.a(5,7)
A::a(5,7)

⇒

⇒

Basic Expressions 45

Direct calls of a type’s routines or iters may be made using the double colon ‘::’ syntax. The
type_specifier must specify a reference, immutable, or external class. In such calls self has
the void default value described on page 46.

2.7.3a Modes

Method arguments each have a mode. Modes are specified by a keywor d preceding ar-
gument names; if no keyword is given, the argument mode defaults to ‘in’.

2.7.3b Mode examples

2.7.3c Overloading and dispatch

Sather supports routine and iterator overloading. In addition to the name, the number,
types, and modes of arguments in a call and whether a return value is used all contribute
to the selection of the method. The modal_list portion of a call must supply an expression

Mode Description

in All arguments are ‘in’ by default; there is no ‘in’ keyword. ‘In’ arguments pass a copy of the
argument from the caller to the called method. With reference types, this is a copy of the refer-
ence to an object; the called method sees the same object as the caller.

out An ‘out’ argument is passed from the called method to the caller when the called method
returns. It is a fatal error for the called method to examine the value of the ‘out’ argument before
assigning to it. The value of an ‘out’ argument may only be used after it has appeared on the left
side of an assignment.

inout An ‘ inout’ argument is passed to the called method and then back to the caller when the method
returns. It is not passed by reference; modifications by the called method are not observed until
the method returns (value-result).

once Only iterators may have ‘once’ arguments. Such arguments are evaluated exactly once, the first
time the iterator is encountered in the containing loop. ‘once’ arguments otherwise behave as
‘in’ arguments.

This routine swaps the values of its argu-
ments. If the arguments were not designat-
ed ‘inout’, calling the routine would have
no effect.

swap(inout x, inout y:T) is
temp::=x;
x:=y;
y:=temp

end

This iterator returns (head, tail) edges of a
graph. ‘out’ arguments are convenient
when one wants to return multiple values.

edges!(out head, out tail:V) is ... end

46 Basic Expressions

corresponding to each declared argument of the method. There must exist a method with
the specified name such that:

1. for each ‘in’ and ‘once’ argument, the type of each expression is a subtype of the de-
clared type of the corresponding argument, and

2. for each ‘out’ argument, the type of each expression is a supertype of the correspond-
ing argument, and

3. for each ‘inout’ argument, the type of each expression is the exact type of the corre-
sponding argument.

If there is more than one such method, there must be a unique one which is most specific,
conforming to all others. When argument expressions have the type of a class parameter,
the type constraint of that parameter is used to select the most specific method, rather than
the realized type of the parameter. Overloading may not occur solely by the type of out
arguments or return type; there must be at least one non-out argument of differing type be-
tween the most specific method and any others.

Sather also supports dynamic dispatch on the type ofself when the expression on which the
call is made has an abstract declared type. The method matching the call from the runtime
type is actually executed. Because of the fundamental subtyping rule (page 20), if the ab-
stract type specifies a conforming method, so will the type of the returned object.

2.7.4 void expressions

Syntax:

void_expression void

A void expression returns a value whose type is determined from context. void is the value
that a variable of the type receives when it is declared but not explicitly initialized. The val-
ue of void for abstract, reference, and bound variables is a special value that represents the
absence of a reference to an object. The value of void for boolean variables is false (page 40)
and for other immutable types it is determined by recursively setting each attribute and ar-
ray element to void. The built-in immutable types are defined in terms of arrays of BOOL
and so have all their bits set to false by this rule. For numerical types, this results in the
appropriate version of ‘zero’ (see page 61).

void expressions may appear as the initializer for a constant or shared attribute, as the right
hand side of an assignment statement, as the return value in a return or yield statement, as
the value of one of the expressions in a case statement, as the exception object in a raise
statement, or as an argument value in a method call or in a creation expression (page 47).
In this last case, the argument is ignored in resolving overloading.

Example: void

⇒

Basic Expressions 47

It is a fatal error to access object attributes of a void variable of reference type or to make
any calls on a void variable of abstract type. An explicit ‘void’ expression may not appear
as the left argument of the dot ‘.’ operator (page 44).

2.7.5 void test expressions

Syntax:

void_test_expression void (expression)

Void test expressions evaluate their argument and return a boolean value which is true if the
value is void (page 46).

2.7.6 new expressions

Syntax:

new_expression new [(expression)]

new expressions are used to allocate space for reference objects and may only appear in ref-
erence classes. They return reference objects of type SAME. All non-shared attributes and
array elements are initialized to void (page 46). If there is an include path from the type in
which the new appears to AREF (page 61), then new must be provided with a non-negative
INT argument which specifies the number of array elements in the returned object.

2.7.7 Creation expressions

Syntax:

create_expression # [type_specifier] [(modal_list)]

Example: void(x)

Examples: new
new(17)

Examples: #FOO(1,2,3)
#(1,2,3)
#FOO
#

⇒

⇒

⇒

48 Basic Expressions

Immutable and reference object creation expressions are a convenient shorthand used for
creating new objects and initializing their attributes. A creation expression is a special syn-
tactic sugar for a call on a routine named ‘create’ with the specified arguments. ‘self’ is giv-
en the default void value described on page 46 in this call. The type defining the ‘create’
routine may be explicitly specified as a reference or immutable type. If the type is not ex-
plicitly specified, then it is taken to be the declared type of the context in which the call ap-
pears (and it must be an immutable or reference type). A type must be specified when it
cannot be inferred from context: if the expression appears as the right hand side of a ‘::=’
assignment (page 36), as a method argument in which overloading resolution would oth-
erwise be ambiguous, or as the left argument of the dot ‘.’ operator (page 44).

2.7.8 Array creation expressions

Syntax:

array_expression | expression_list |

expression_list expression { , expression }

Array creation expressions are used to create and directly specify the elements of an array
object. The type is taken to be the declared type of the context in which it appears and it
must be ARRAY{T} for some type T. An array creation expression may not appear as the
right hand side of a ‘::=’ assignment (page 36), as a method argument in which the over-
loading resolution is ambiguous, or as the left argument of the dot ‘.’ operator (page 44).
The types of each expression in the expression_list must be subtypes of T. The size of the cre-
ated array is equal to the number of specified expressions. The expressions are evaluated
left to right and the results are assigned to successive array elements.

2.7.9 and expressions

Syntax:

and_expression expression and expression

and expressions compute the conjunction of two boolean expressions and return boolean
values. The first expression is evaluated and if false, false is immediately returned as the
result. Otherwise, the second expression is evaluated and its value returned.

Examples: |2,4,6,8|
|"apple", "orange", "cherry", "kiwi"|

Example: 0<=x and x<10

⇒

⇒

⇒

Basic Expressions 49

2.7.10 or expressions

Syntax:

or_expression expression or expression

or expressions compute the disjunction of two boolean expressions and return boolean val-
ues. The first expression is evaluated and if true, true is immediately returned as the result.
Otherwise, the second expression is evaluated and its value returned.

2.7.11 Syntactic sugar expressions

Syntax:

sugar_expression expression binary_op expression
| - expression
| [expression] [expression_list]
| (expression)

 binary_op + | - | * | / | ^ | % | ~ | < | <= | = | /= | > | >=

As shown in the following table, several Sather constructs are simply syntactic sugar for cor-
responding routine calls. Each of these transformations is applied after the component ex-
pressions have themselves been transformed. ‘out’ and ‘inout’ modes may not be used with
the syntactic sugar expressions. Note that ‘and’ and ‘or’ are not listed as syntactic sugar for
operations in ‘BOOL’; this allows short-circuiting the evaluation of subexpressions. The
‘<=’ and ‘>’ expressions do not reverse the original left to right order of argument evalua-
tion. Ambiguity between unary minus and negative literals must be resolved with explicit
parenthesis.

Example: x=2 or x=3

Examples: a+b
x<7

⇒

⇒

⇒

50 Basic Expressions

The precedence ordering shown below determines the grouping of the syntactic sugar
forms. Symbols of the same precedence associate left to right and parentheses may be used
for explicit grouping. Evaluation order obeys explicit parenthesis in all cases.

2.7.11a Syntactic sugar example

Sugar form Translation Sugar form Translation

expr1 + expr2 expr1.plus(expr2) expr1 /= expr2 expr1.is_eq(expr2).not

expr1 - expr2 expr1.minus(expr2) expr1 > expr2 expr2.is_lt(expr1)

expr1 * expr2 expr1.times(expr2) expr1 >= expr2 expr1.is_lt(expr2).not

expr1 / expr2 expr1.div(expr2) - expr expr.negate

expr1 ^ expr2 expr1.pow(expr2) ~ expr expr.not

expr1 % expr2 expr1.mod(expr2) [expr_list] aget(expression_list)

expr1 < expr2 expr1.is_lt(expr2) expr1[expression_list] expr1.aget(expression_list)

expr1 <= expr2 expr2.is_lt(expr1).not (expression) expression

expr1 = expr2 expr1.is_eq(expr2)

Strongest . :: [] ()

^

~ Unary -

* / %

+ Binary -

< <= = /= >= >

Weakest and or

Here’s a formula written with syntactic sug-
ar and the calls it is textually equivalent to.
It doesn’t matter what the types of the vari-
ables are; the sugar ignores types.

-- Written using syntactic sugar
r := (x^2 + y^2).sqrt;

-- Written without sugar
r := (x.pow(2).plus(y.pow(2))).sqrt

Loops and Iterators 51

2.8 LOOPS AND ITERATORS

Iterator definitions wer e described on page 32. Iterators are used extensively in Sather to
control loops. This section elaborates their semantics and describes the built-in iterators
that correspond to statements such as ‘while’ and ‘do’ found in other languages.

2.8.1 loop statements

Syntax:

loop_statement loop statement_list end

Iteration is done with loop statements, used in conjunction with iterator calls. An execution
state is maintained for each textual iterator call. When a loop is entered, the execution state
of all enclosed iterator calls is initialized. When an iterator is first called in a loop, the ex-
pressions for self and for each once argument are evaluated left to right. Then the expres-
sions for arguments which are not once (in or inout before the call, out or inout after the call;
see page 44) are evaluated left to right. On subsequent calls, only the expressions for argu-
ments which are not once are re-evaluated. self and any once arguments retain their ear-
lier values. The expressions for self and for once arguments may not themselves contain
iterator calls (such iters would only execute their first iteration.) Method call semantics are
detailed on page 44.

When an iterator is called, it executes the statements in its body in order. If it executes a
yield statement, control is returned to the caller. Subsequent calls on the iterator resume ex-
ecution with the statement following the yield statement. If an iterator executes quit or
reaches the end of its body, control passes immediately to the end of the innermost enclos-
ing loop statement in the caller and no value is returned.

2.8.2 yield statements

Syntax:

yield_statement yield [expression]

yield statements are used to return control to a loop and may appear only in iterator defini-
tions. The expression clause must be present if the iterator has a return value and must be

Example: loop ... end

Examples: yield
yield x

⇒

⇒

52 Loops and Iterators

absent if it does not. If expression is present, then its type must be a subtype of the return
type of the iterator. Execution of a yield statement causes the expression to be evaluated
and its value to be returned to the caller of the iterator in which it appears. Yield is not per-
mitted within a protect statement (see page 57). Yield causes assignment to out and inout
arguments in the caller (page 44).

2.8.3 quit statements

Syntax:

quit_statement quit

quit statements are used to terminate loops and may only appear in iterator definitions. No
value is returned from an iterator when it quits, and no assignment takes place to out or
inout arguments in the caller (page 44). No statements may follow a quit statement in a
statement list.

2.8.4 while! expressions

Syntax:

while!_expression while!(expression)

while! expressions are iterator calls which take a single boolean argument that is re-evaluat-
ed on each iteration. They yield when the argument is true and quit when it is false.

2.8.5 until! expressions

Syntax:

until!_expression until!(expression)

until! expressions are iterator calls which take a single boolean argument that is re-evaluated
on each iteration. They yield when the argument is false and quit when it is true.

Example: quit

Example: while!(a<10)

Example: until!(a>10)

⇒

⇒

⇒

Loops and Iterators 53

2.8.6 break! expressions

Syntax:

break!_expression break!

break! expressions are iterator calls which immediately quit when they are called.

2.8.6a Iterator Examples

Example: break!

Because they are so useful, the ‘while!’, ‘un-
til!’ and ‘break!’ iterators are built into the
language. Here’s how ‘while!’ could be
written if it were not a primitive.

while!(pred:BOOL) is
-- Yields as long as ‘pred’ is true
loop

if pred then yield
else quit
end

end
end

The built-in class ‘INT’ defines some useful
iterators. Here’s the definition of ‘upto!’.
Unlike the argument ‘pred’ used above, ‘i’
here is declared to be ‘once’; when ‘upto!’ is
called, the argument is only evaluated once,
the first time the iterator is called in the
loop.

upto!(once i:SAME):SAME is
-- Yield successive integers from
-- self to `i' inclusive.
r::=self;
loop

until!(r>i);
yield r;
r:=r+1

end
end;

To add up the integers 1 through 10, one
might say:

x::=0;
loop

x:=x+1.upto!(10)
end

Or, using the library iterator ‘sum!’ like this.
‘x’ needs to be declared (but not initialized)
outside the loop.

loop
x:=INT::sum!(1.upto!(10))

end

⇒

54 Closures

2.9 CLOSURES

Routine and iter closures are similar to the ‘function pointer’ and ‘closure’ constructs of oth-
er languages. They bind a reference to a method together with zero or more argument val-
ues (possibly including ‘self’).

2.9.1 Closure creation expressions

Syntax:

method_closure_create_expression routine_closure_create_expression |
iter_closure_create_expression

routine_closure_create_expression bind
([type_specifier :: | routine_closure_argument .] identifier

 [(routine_closure_argument { , routine_closure_argument })])

routine_closure_argument routine_mode (expression | _)

iter_closure_create_expression bind
([type_specifier :: | iter_closure_argument .] iter_name

 [(iter_closure_argument { , iter_closure_argument })])

iter_closure_argument iter_mode (expression | _)

Some of the most useful ways to use iters is
with container objects. Arrays, lists, sets,
trees, strings, and vectors can all be given it-
erators to yield all their elements. Here we
print all the elements of some container ‘c’.

loop
#OUT + c.elt!.str + ’\n’

end

This doubles the elements of array ‘a’. loop a.set!(a.elt! * 2) end

This computes the dot product of two vec-
tors ‘a’ and ‘b’. There is also a built-in meth-
od ‘dot’ to do this. ‘x’ needs to be declared
(but not initialized) before the loop.

loop
x:=sum!(a.elt! * b.elt!)

end

Examples: bind(2.plus(_))
bind(filter!(bind(is_eq(a))))

⇒

⇒

⇒

⇒

⇒

Closures 55

The outer part of the expression is ‘bind(...)’. This surrounds a routine or iterator call in
which any of the arguments or self may have been replaced by the underscore character
‘_’. Such unspecified arguments are unbound. Unbound arguments are specified when the
closure is eventually called. ‘out’ and ‘inout’ arguments must be left unbound. In case of
ambiguity, the signature of the method specified in the ’bind(...)’ expression is inferred
from context. The same overloading resolution rules as for the method call expressions
(page 45) apply to the closure creation expressions.

The expressions in this construct are evaluated from left to right and the resulting values
are stored as part of the closure. Closure creation expressions return closure types. As pre-
viously described on page 21, the type specifiers for these types have the form:

method_closure_type_specifier routine_closure_type_specifier |
iter_closure_type_specifier

routine_closure_type_specifier ROUT
[{ routine_mode type_specifier { , routine_mode type_specifier } }]
[: type_specifier]

iter_closure_type_specifier ITER
[{ iter_mode type_specifier { , iter_mode type_specifier } }]
[: type_specifier]

These specifiers begin with the keywords ‘ROUT’ or ’ITER’ and are followed by the modes
and types of the underscore arguments, if any, enclosed in braces (e.g. ‘ROUT{A, out B, in-
out C}’, ’ITER{once A, out B, C}’). These are followed by a colon and the return type, if there
is one (e.g. ‘ROUT{INT}:INT’, ’ITER{once INT}:FLT’).

2.9.2 Closure calls

Each routine closure defines a routine named ‘call’ and each iterator closure defines an it-
erator named ’call!’. These have argument and return types that correspond to the closure
type specifiers. Invocations of these features behave like a call on the original routine or it-
erator with the arguments specified by a combination of the bound values and those pro-
vided to ‘call’ or ’call!’. The arguments to ’call’ and ’call!’ match the underscores
positionally from left to right (e.g. ‘i::=bind(2.plus(_)).call(3)’ is equivalent to ‘i::=2.plus(3)’).

Closure types implicitly introduce edges into the type graph. There is an edge from each
closure type g to all closure types f that satisfy the contravariant requirement that

1. f and g have the same name and number of arguments,
2. f and g either both return a value or neither does,
3. the mode of each argument is the same (in, out, inout, or once),

⇒

⇒

⇒

56 Closures

4. contravariant conformance:
for any in or once arguments, the type in g is a subtype of the type in f;
for any inout arguments, the type in f is the same type as in g;
for any out arguments, the type in f is a subtype of the type in g; and
if it has one, the return type of f is a subtype of the return type of g.

For example, ‘ROUT{$OB}:INT’ is a subtype of ‘ROUT{INT}:$OB’ and ’ITER{once $OB}’ is
a subtype of ’ITER{once INT}’.

2.9.2a Closure Examples

Here we double every element of an array
by applying a routine closure ‘r’ to each ele-
ment of an array ‘a’.

r :ROUT{INT}:INT := bind(2.0.times(_));
loop

a.set!(r.call(a.elt!))
end

This illustrates how ‘self’ may be left un-
bound. The type of self must be inferred-
from the type context (ROUT{INT}).

r :ROUT{INT} := bind(_.plus(3));
#OUT + r.call(5); -- prints ‘8’

This creates an iterator closure that returns
successive odd integers, and then prints the
first ten.

odd_ints : ITER{INT}:INT;
odd_ints := bind(1.step!(_,2));
loop

#OUT + odd_ints.call!(10);
end

An iterator closure is created that may be
used to extract elements of a map that satis-
fy the selection criteria defined by ‘select’.

select:ROUT{T}:BOOL;
select_elt:ITER{FMAP{K,T}}:T;
...
select_elt := bind(_.filter!(select));

By the conformance rule above,
‘ROUT{$OB}:INT’ is a subtype of
‘ROUT{INT}:$OB’. The ICSI compiler does
not yet allow such contravariant closure assign-
ments.

a:ROUT{$OB}:INT;
b:ROUT{INT}:$OB;
b := a; -- This is a legal assignment
a := b; -- This is not.

Exceptions 57

2.10 EXCEPTIONS

Exceptions are used to escape from method calls under unusual circumstances. For ex-
ample, a robust numerical application may wish to provide an alternate means of solv-
ing a problem under unusual circumstances such as ill conditioning. Exceptions bypass
the ordinary way of returning from methods and may be used to skip over multiple call-
ers until a suitable handler is found.

Exceptions may be thought of as implicit alternate return values for all methods. Excep-
tions can be significantly slower than ordinary routine calls, so they should be avoided ex-
cept for truly exceptional (unexpected) cases.

2.10.1 protect statements

Syntax:

protect_statement protect statement_list
{ when type_specifier then statement_list }
[else statement_list] end

Sather uses exceptions to signal and recover from exceptional situations. Exceptions may be
explicitly raised by a program (page 58) or generated by the system. Each exception is rep-
resented by an exception object whose type is used to select a handler from a protect state-
ment. Execution of a protect statement begins with the statement list following the ‘protect’
keyword. These statements are executed to completion unless an exception is raised which
is not caught by some nested protect.

When there is an uncaught exception in a protect statement, the system finds the first type
specifier listed in the ‘when’ lists which is a supertype of the exception object type. The
statement list following this specifier is executed and then control passes to the statement
following the protect statement. An exception expression (page 59) may be used to access
the exception object in these handler statements. If none of the specified types are super-
types, then the statements in an ‘else’ clause are executed if it is present. If it is not present,
the same exception object is raised to the next most recently entered protect statement
which is still in progress. It is a fatal error to raise an exception which is not handled by
some protect statement. protect statements may only contain iterator calls if they also con-
tain the surrounding loop statement. protect statements without an else clause must have
at least one when.

Example: protect ...
when E then ...
when $F then ...
else ...
end

⇒

58 Safety Features

2.10.2 raise statements

Syntax:

raise_statement raise expression

Exceptions are explicitly raised by raise statements. The expression is evaluated to obtain the
exception object. No statements may follow a raise statement in a statement list because
they can never be executed.

2.10.3 exception expressions

Syntax:

except_expression exception

exception expressions may only appear within the statements of the then and else clauses in
protect statements. They return the exception object that caused the when branch to be tak-
en in the most tightly enclosing protect statement. The return type is the type specified in
the corresponding when clause (page 57). In an else clause the return type is ‘$OB’.

2.11 SAFETY FEATURES

Methods definitions may include optional pre- and post-conditions (page 32). Together
with ‘assert’ and ‘invariant’ (page 60), these features allow the earnest programmer to an-
notate the intention of code. Implementations of Sather must provide facilities for turning
on and off the runtime checking that these features require. The behavior of code that fails
to meet the stated safety assertions is undefined. This allows an optimizing compiler to ex-
ploit the stated assertions even if they are not checked.

2.11.1 Pre- and post-conditions

The optional ‘pre’ construct of method definitions contains a boolean expression which
must evaluate to true whenever the method is called; it is a fatal error if it evaluates to false.

Example: raise x

Example: exception

⇒

⇒

Safety Features 59

The expression may refer to self and to the routine’s arguments. For iterators, pre and post
conditions are checked before and after every invocation, not just once per loop.

The optional ‘post’ construct of method definitions contains a boolean expression which
must evaluate to true whenever the method returns; it is a fatal error if it evaluates to false.
The expression may refer to self and to the routine’s arguments. It may use ‘result’ expres-
sions (page 60) to refer to the value returned by the routine and ‘initial’ expressions (page
59) to refer to values which are computed before the routine executes.

Classes may also define ‘invariant’, which is a post condition that applies to all public meth-
ods (page 60).

2.11.2 assert statements

Syntax:

assert_statement assert expression

assert statements specify a boolean expression that must evaluate to true; otherwise it is a
fatal error.

2.11.3 initial expressions

Syntax:

initial_expression initial (expression)

initial expressions may only appear in the post expressions of methods. The expression must
have a return value and must not itself contain initial expressions. When a routine is called
or an iterator resumes, it evaluates the expression of each initial expression from left to right.
When the postcondition is checked at the end, each initial expression returns its pre-com-
puted value.

Example: assert x>5

Example: add(a: INT):INT
post initial(a) > result is ...

⇒

⇒

60 Special feature names

2.11.4 result expressions

Syntax:

result_expression result

result expressions may only appear within the postconditions of methods that have return
values and may not appear within initial expressions. They return the value returned by the
routine or yielded by the iterator. Their type is the return type of the method in which they
appear.

2.12 SPECIAL FEATURE NAMES

This section describes features of classes that have special properties.

2.12.1 invariant

If a routine with the signature ‘invariant:BOOL’, appears in a class, it defines a class in-
variant. It is a fatal error for it to evaluate to false after any public method of the class re-
turns, yields, or quits.

2.12.2 main

A distinguished non-parameterized immutable or reference class is specified when a
Sather program is compiled, usually ‘MAIN’. This class must define a r outine named
‘main’. When the program executes, an object of the specified type is cr eated and ‘main’
is called on it. If main is declared to have an argument of type ARRAY{STR}, it will be
passed an array of any command line arguments provided by the environment when the
program is called. If it is declared to have a return value of type INT, this will specify the
exit code of the program when it finishes execution.

Example: sum: INT
post result > 5 is ...

⇒

Built-in classes 61

2.13 BUILT-IN CLASSES

This section provides a short description of classes that are a part of every Sather imple-
mentation and which may not be modified. The detailed semantics and pr ecise interface
are specified in the class library documentation.

� ‘$OB’ is automatically a supertype of every type. Variables declared by this type may
hold any object. It has no features.

� ‘AREF{T}’ is a reference array class. Any reference class which includes it obtains an
array of elements of type T in addition to any attributes it has defined. In such classes,
new has a single integer argument that specifies the size of the array portion. It de-
fines r outines and iters named: ‘asize’, ‘aget’, ‘aset’, ‘aclear’, ‘acopy’, ‘aelt!’, ‘aset!’,
and ‘aind!’. Array indices start at zero. ‘AVAL{T}’ is the immutable class analog of
‘AREF’. Classes which include ‘AVAL’ must define asize as an integer constant which
determines the size of the array portion. ‘ARRAY{T}’ includes from ‘AREF’ and de-
fines general purpose array objects. They may be dir ectly constructed by array cre-
ation expressions (page 48).

� ‘TUP’ names a set of parameterized immutable types called tuples, one for each num-
ber of parameters. Each has as many attributes as parameters and they are named ‘t1’,
‘t2’, etc. Each is declared by the type of the corresponding parameter (e.g.
‘TUP{INT,FLT}’ has attributes ‘t1:INT’ and ‘t2:FLT’). It defines ‘ create’ with an argu-
ment corresponding to each attribute.

� The literal form for a number of primitive types were introduced on page 40:

Type Initial value Description

BOOL false Immutable objects which represent boolean values.

CHAR ’\0’ Immutable objects which represent characters. The number of bits in a
‘CHAR’ object is less than or equal to the number in an ‘INT’ object.

STR "" (void) Reference objects which represent strings for characters. ‘void’ is a repre-
sentation for the null string.

INT 0 Immutable objects which represent efficient integers. The size is defined by
the Sather implementation but must be at least 32 bits. The two’s comple-
ment representation is used to represent negative values. Bit operations are
supported in addition to numerical operations.

INTI 0i Reference objects which represent infinite precision integers.

FLT 0.0 Immutable objects which represent single precision floating point values as
defined by the IEEE-754-1985 standard.

FLTD 0.0d Immutable objects which represent double precision floating point values.

FLTI 0.0i Reference objects which represent arbitrary precision floating point objects.

62 Conventions

� SYS defines a number of r outines for accessing system information:

� $FINALIZE defines the single r outine finalize. Any class whose objects need to per-
form special operations before they are garbage collected should subtype from $FI-
NALIZE. The finalize routine will be called once on such objects before the program
terminates. This may happen at any time, even concurrently with other code, and no
guarantee is made about the order of finalization of objects which r efer to each other.
Finalization will only occur once, even if new references are created to the object dur-
ing finalization. Because few guarantees can be made about the envir onment in
which finalization occurs, finalization is consider ed dangerous and should only be
used in the rare cases that conventional coding will not suffice.

2.14 CONVENTIONS

This section presents conventions used throughout the standard Sather libraries. Some
conventions regard naming, while others dictate subtyping from certain abstract classes in
the base library. Adhering to these conventions allows code from independent developers
to be used together and makes code easier to understand.

Routine Description

is_eq(ob1, ob2:$OB):BOOL Tests two objects for equality. If the arguments are of different type,
it returns ‘false’. If both objects are immutable, this is a recursive
test on the arguments’ attributes. If they are reference types, it re-
turns ‘true’ if the arguments are the same object. It is a fatal error to
call with external, closure, or void reference arguments.

is_lt(ob1, ob2:$OB):BOOL Defines an arbitrary total order on objects. This never returns true
if ‘is_eq’ would return true with the same arguments. It is a fatal er-
ror to call with external, closure, or void reference arguments.

hash(ob:$OB):INT Defines an arbitrary hash function. For reference arguments, this is
a hash of the pointer; for immutable types, a recursive hash of all at-
tributes. Hash values for two objects are guaranteed to be identical
when ‘is_eq’ would return true, but the converse is not true.

type(ob:$OB):INT Returns the concrete type of an object encoded as an ‘INT’.

str_for_type(i:INT):STR Returns a string representation associated with the integer. Useful
for debugging in combination with ‘type’ above.

destroy(ob:$OB) Explicitly deallocates an object. Sather is garbage collected and casu-
al use of ‘destroy’ is discouraged. Sather implementations must pro-
vide a way of detecting accesses to destroyed objects (a fatal error).

Conventions 63

2.14.1 Object Creation

Sather provides a special syntactic sugar (page 49) for calls to the routine ‘create’, which
nearly all classes define. It is often convenient to overload ‘create’ routines to do conver-
sion between types as well.

All three create routines shown could be invoked with the ‘#’ sugar (page 47).

2.14.2 Naming

In addition to ‘create’, there are a number of other naming conventions:
� Classes which are related should reflect this in their names. For example, there are

many examples in the library of an abstraction, classes implementing the abstraction,
and code testing implementations of the abstraction. For example, in the standard li-
brary the set abstraction is named $SET, H_SET is a hash table implementation, and
the test code is TEST_SET.

� Some classes implement an immutable, ‘mathematical’ abstraction (eg. integers), and
others implement mutable abstractions that can be modified in place (eg. arrays).
Sometimes is is possible to have both immutable and mutable abstractions for the
same concept. The former are usually easier to reason about and safer to program
with, while the later can be more efficient. It is very important not to confuse the two:
objects that at any time represent a set are not sets themselves. They have entirely dif-
ferent properties, such as observable aliasing and having an equality relation that
changes over time.

This is the canonical ‘create’ routine, which
simply returns an uninitialized (page 47)
object.

create:SAME is
return new

end

This is a ‘create’ routine for an object with
an array portion. Such objects require an in-
teger argument to ‘new’. This example cre-
ates a new object with 10 array elements
indexed zero through nine.

create:SAME is
return new(10)

end

This ‘create’ routine converts a string to an
object. This could be used in combination
with still other create routines to convert
from different types.

create(arg:STR):SAME is
...

end

64 Conventions

Classes with immutable semantics are given their ‘mathematical’ names: STR, VEC,
$SET. Mutable classes that represent a value that may change over time have the pre-
fix ‘ OB’: OBSTR, OBVEC, $OBSET. When both versions exist, the method ‘value’ is
used to take a ‘snapshot’ of the object’s state, converting from the mutable to the im-
mutable form.

� Conversions from a type FOO to a type BAR occur in two ways: by defining an appr o-
priate ‘create’ routine in BAR as seen above, or be defining a r outine ‘bar:BAR’ in
FOO. For example, in the standard library conversion of a FLT to a FLTD is done by
calling the routine ‘fltd:FLTD’ defined in FLT.

� Methods which return a BOOL (predicates) should have the prefix ‘ is_’. For example,
‘is_prime’ tests integers for primality.

� Abstract classes that require a single method should be named after that method. For
example, subtypes of $HASH define the method ‘ hash’.

� If there is a single iterator in a container class which returns all of the items, it should
be named ‘elt!’. If there is a single iterator which sets the items, it should be named
‘set!’. In general, iterators should have singular (‘elt!’) rather than plural (‘elts!’)
names if the choice is arbitrary.

2.14.3 Object Identity

Many languages provide built-in pointer and structural equality and comparison. To pre-
serve encapsulation, in Sather these operations must go through the class interface like ev-
ery method. The ‘=’ symbol is syntactic sugar for a call to ‘is_eq’ (page 49). ‘is_eq:BOOL’
must be explicitly defined by the type of the left side for this syntax to be useful.

The SYS class (page 62) can be used to obtain equality based on pointer or structural no-
tions of identity. This class also provides built-in mechanisms for comparison and hash-
ing.

Classes which define their own notion of
equality should subtype from $IS_EQ. This
class is a common parameter bound in con-
tainer classes.

-- In standard library
type $IS_EQ is

is_eq(e:$OB): BOOL;
end

Many classes define a notion of equality
which is different than pointer equality. For
example, two STR strings may be equal al-
though they are not unique.

class STR < $IS_EQ is
...
is_eq(arg:$OB):BOOL is ... end;
...

end

Conventions 65

2.14.4 Nil and void

Reference class variables can be declared without being allocated. Unassigned reference
or abstract type variables have the void value, indicating the non-existence of an object
(page 46). However, for immutable types this unassigned value is not distinguished from
other legitimate values; for example, the void of type INT is the zero.

It is often algorithmically convenient to have a sentinel value which has a special interpre-
tation. For example, hash tables often distinguish empty table entries without a separate
bit indicating that an entry is empty. Because void is a legitimate value for immutable
types, void can’t be used as this sentinel value. For this reason, classes may define a ‘nil’
value to be used to represent the non-existence of an immutable object. Such classes sub-
type from $NIL and define the routines ‘nil:SAME’ and ‘is_nil: BOOL’.

2.14.5 IEEE Floating-Point

Sather attempts to conform to the IEEE 754-1985 specification for its floating point types.
Unfortunately, many platforms make it difficult to do so. For example, underflow is often
improperly implemented to flush to zero rather than use IEEE’s gradual underflow. This
happens because gradual underflow is a special case and can be quite slow if implemented

Many container classes need to be able to
compute hash values of their items. Just as
with ‘is_eq’, classes may subtype from
$HASH to indicate that they know how to
compute their own hash value. ID also pro-
vides this built-in hash function.

-- In standard library
type $HASH is

hash:INT;
end

To preserve class encapsulation, Sather
does not provide a built-in way to copy ob-
jects. By convention, objects are copied by a
class-defined routine ‘copy’, and classes
which provide this should subtype from
$COPY.

-- In standard library
type $COPY is

copy:SAME;
end

The ‘nil’ value is generally a rarely used or
illegal value. For INT, it is the most negative
representable integer. For floating point
types, it is NaN. ‘is_nil’ is necessary because
NaN is defined by IEEE to not be equal to it-
self.

type $NIL is -- In standard library
nil: SAME;
is_nil: BOOL;

end

66 Conventions

using traps. When benchmarks include simulations which cause many underflows, mar-
keting pressures make flush-to-zero the default.

There are many other problems. Microsoft’s C and C++ compilers defeat the purpose of the
invalid flag by using it exclusively to detect floating-point stack overflows, so program-
mers cannot use it. There is no portable C interface to IEEE exception flags and their be-
havior with respect to ‘setjmp’ is suspect. Threads packages often fail to address proper
handling of IEEE exceptions and rounding modes.

Correct IEEE support from various platforms was the single worst porting headache of the
Sather 1.0 compiler. In 1.1, we give up and make full IEEE compliance optional. Sather
implementations are expected to conform to the spirit, if not the letter, of IEEE 754, al-
though proper exceptions, extended types, underflow handling, and correct handling of
positive and negative zero are specifically not required.

The Sather treatment of NaNs is particularly tricky; IEEE wants NaN to be neither equal nor
unequal to anything else, including other NaNs. Because Sather defines ‘x /= y’ as
‘x.is_eq(y).not’ (page 49), to get the IEEE notion of unequal is necessary to write ‘x=x and
y=y and x/=y’. Other comparison operators present similar difficulties.

Language Interface Extensions 67

Sather 1.1 Extensions

All Sather 1.1 implementations must support the language kernel defined in the last chap-
ter. This chapter defines language extensions which may not be meaningful on every plat-
form or which can be very difficult to implement. For example, platforms without a
Fortran compiler need not implement the Fortran language interface.

Although these extensions are optional, they should be considered part of the Sather spec-
ification. For example, Sather 1.1 implementations which interface to Fortran must provide
the language extension described here. The ICSI compiler supports all extensions de-
scribed in this chapter on one or more platforms.

The threaded and synchronization extensions enable parallel processing. The synchroni-
zation and distributed extensions are only of use with the threaded extension. Collective-
ly, these three extensions are known as pSather, and the language without these
extensions is serial Sather.

3.1 LANGUAGE INTERFACE EXTENSIONS

External classes are used to interface with code from other languages. Each external class
is typically associated with an object file compiled from a language like C or Fortran. Each
language identifier is associated with a Sather language extension. The extensions defined
here are:

� FORTRAN: interface to a superset of ANSI Fortran 77, X3.9-1978
� C: interface to ANSI C, X3.159-1989

Interfaces to other languages, or alternate interfaces to C and Fortran, may be designated
in the future using other identifiers.

Each external language extension may have its own restrictions on what may legally ap-
pear in an external class of that language and what the semantic interpretation of the exter-
nal class contents is. The legality and semantics of subtyping and code inclusion are
defined by the language extension. For the C and Fortran extensions, routines that have

68 Language Interface Extensions

no body (abstract signatures) specify the interface for Sather code to call external code.
Calls to such routines are compiled using the external language’s name binding and pa-
rameter passing conventions. Routines with a body in an external class specify the inter-
face for external code to call Sather code; such routines also use the external language’s
name binding and parameter passing conventions. No routines and signatures in external
classes may conflict (page 22) , and the corresponding external object file must provide a
function that conforms according to the rules of the language interface. There may be plat-
form specific transformations of external routine names (e.g. prepended underscore or
truncation); it is an error if the external language namespace implementation does not per-
mit the resulting name. The implementations or environments of other languages may im-
pose other unavoidable constraints.

3.1.1 Interfacing with Fortran

An external class which interfaces to Fortran is designated with the language identifier
‘FORTRAN’. The following Fortran types are built into the extended library:

These external types also define appropriate creation routines which may be used for con-
venient casting between Sather and Fortran types. Only the types listed above may be used
in the abstract signatures defined in a Fortran external class. Methods defined in external
Fortran classes that have bodies (are not abstract signatures) may have other types in their
signature, but if they do, these routines are not visible to Fortran code. Fortran external

Sather type Fortran type < $F_SCALAR?

F_REAL real Yes

F_DOUBLE double precision Yes

F_INTEGER integer Yes

F_COMPLEX complex Yes

F_DOUBLE_COMPLEX double precision complex Yes

F_LOGICAL logical Yes

F_CHARACTER character, character*1 Yes

F_STRING character*n No

F_ARRAY{T}
F_ARRAYn{T}

array types: T < $F_SCALAR
 n=2, 3...

No

F_ROUT{...} subroutine type No

F_HANDLER exception handler type No

Language Interface Extensions 69

classes may not contain abstract iterator signatures and may not be parameterized. Rou-
tines without bodies in Fortran external classes may not be overloaded.

Fortran implementations pass arguments by reference. The scalar types have conventional
immutable semantics (i.e. there is no aliasing visible within Sather) and are subtypes of
$F_SCALAR. The other types maintain reference semantics. The F_ROUT{...} types be-
have like Sather routine closures and are created with a similar syntax (page 54), but all ar-
gument types must be Fortran types and at creation all arguments must be left unbound.
Fortran exception handlers may be passed by passing an F_HANDLER object, which is con-
structed from a Sather routine closure.

The Sather implementation must assure that changes to ‘out’ and ‘inout’ arguments passed
to a Fortran routine are not observed until the Fortran routine returns. It is a fatal error for
a Fortran routine to modify arguments with ‘in’ mode.

3.1.2 Interfacing with ANSI C

An external class which interfaces to ANSI C is designated with the language identifier ‘C’.
Unlike external Fortran classes, external C classes may be instantiated (may point to runt-
ime objects). External C classes may not be parameterized. Types defined by external C
classes are called external C types.

In external C classes, signatures without bodies must only use external C types. Routines
with bodies (are not abstract signatures) defined in external C classes may use other types,
but if they do, these routines are not visible to C code. Routines that could be called from
C may not be overloaded. ‘out’ and ‘inout’ arguments are passed by a pointer to a local,
which may be legally modified by the routine. The Sather implementation must guarantee
that such modifications cannot be observed until the routine returns.

Attributes may be placed in external C classes; they are interpreted as fields of a C struct.
Such attributes may only have external C types. Similarly, shareds are interpreted as C glo-
bal variables. Constants of external C types are interpreted as C constants or macros.

For example, this C code: typedef struct { int a,b; } *FOO;
FOO xxyyz;

can be accessed by users of this Sather class: external C class FOO is
const C_name:STR:="FOO";
attr a, b:C_INT;
shared xxyyz:FOO;

end;

70 Language Interface Extensions

There are two features of external C classes that have a special semantics. The STR con-
stant ‘C_name’ may be used to force a particular C declaration to be used for an external C
type. Similarly the STR constant ‘C_header’ may specify a space separated list of C header
files that must be emitted at the beginning of any file in which the C declaration appears.
‘C_name’ and ‘C_header’ which must be constant STR when present.

���������
	������
	���	������ ����������	�������������� �!	��"��#$���
%����
	����&��%'����()�
��*+�'#$�',-�!��#$���
	��
./*0	��
�����1./%����
%���*2#

routine will be implemented in the C code with a macro. This presents a portability prob-
lem, because the writer of the external class can’t know ahead of time whether the routine
will be obtained by linking or by a header file. Such petulant cases can be dealt with by the
call ‘SYS::inlined_C’. The argument must be a string literal, and is placed directly into the
generated code, except that identifiers following ‘#’ that correspond to locals and argu-
ments are translated into the appropriate C name. An alternate form accepts two argu-
ments, making it possible to specify an include file or macro required by the inlined code,
which will be placed at the top of the generated file.

For example, this creates a Sather type
‘X_WIDGET’ which may be used to declare
variables, parameterize classes, and so
forth. Furthermore, the C declaration used
for variables of type ‘X_WIDGET’ will be
‘struct XSomeWidget *’. Any generated C
file containing any variable of this type will
also include ‘<widgets.h>’.

external C class X_WIDGET is
const C_name:STR:=

"struct XSomeWidget *";
const C_header:STR:=

"<widgets.h>";
end;

Here’s an example from the UNIX headers: SYS::inlined_C("#res = EPERM",
"#include <errno.h>\n");

Threaded Extension 71

The following C types are built into the extended library; these external types also define
appropriate creation routines which may be used for convenient casting between Sather
and C types.

In addition, ‘AREF{T}’ defines a routine ‘array_ptr:C_PTR’ which may be used to obtain a
pointer to the first item in the array portion of Sather objects. The external routine may
modify the contents of this array portion, but must not store the pointer; there is no guar-
antee that the pointer will remain valid after the external routine returns. This restriction
ensures that the Sather type system and garbage collector will not be corrupted by external
code, while not sacrificing efficiency for the most important cases.

3.2 THREADED EXTENSION

In serial Sather there is only one thread of execution; in pSather there may be many. Mul-
tiple threads are similar to multiple serial Sather programs executing concurrently, but
threads share variables of a single namespace. A new thread is created by executing a fork,
which may be a par or fork statement (page 72), parloop statement (page 73), or an attach
(page 77). The new thread is a child of the forking thread, which is the child’sparent. pSather

Sather type ANSI C type Sather type ANSI C type

C_CHAR char C_UNSIGNED_CHAR_PTR unsigned char *

C_UNSIGNED_CHAR unsigned char C_SIGNED_CHAR_PTR signed char *

C_SIGNED_CHAR signed char C_SHORT_PTR short *

C_SHORT short C_INT_PTR int *

C_INT int C_LONG_PTR long *

C_LONG long C_UNSIGNED_SHORT_PTR unsigned short *

C_UNSIGNED_SHORT unsigned short C_UNSIGNED_INT_PTR unsigned int *

C_UNSIGNED_INT unsigned int C_UNSIGNED_LONG_PTR unsigned long *

C_UNSIGNED_LONG signed long C_FLOAT_PTR float *

C_FLOAT float C_DOUBLE_PTR double *

C_DOUBLE double C_LONG_DOUBLE_PTR long double *

C_LONG_DOUBLE long double C_SIZE_T size_t

C_PTR void * C_PTRDIFF_T ptrdiff_t

C_CHAR_PTR char *

72 Threaded Extension

provides operations that can block a thread, making it unable to execute statements until
some condition occurs. pSather threads that are not blocked will eventually run, but there
is no other constraint on the order of execution of statements between threads that are not
blocked. Threads no longer exist once they terminate. When a pSather program begins ex-
ecution it has a single thread corresponding to the main routine (page 60).

Serial Sather defines a total order of execution of the program’s statements; in contrast,
pSather defines only a partial order. This partial order is defined by the union of the con-
straints implied by the consecutive execution order of statements within single threads and
pSather synchronization operations between statements in different threads. As long as
this partial order appears to be observed it is possible for a pSather implementation to over-
lap multiple operations in time, so a child thread may run concurrently with its parent and
with other children. Using threads may render programs nondeterministic. Preconditions,
postconditions, and class invariants (page 58) may not work as intended when originally
serial code is used with multiple threads.

The threaded extension may be implemented without the synchronization extension. This
is only useful with data parallel code, in which it is not possible for threads to affect each
other through side effects. Platforms may interpret such data parallelism in different ways,
such as an opportunity for vectorization, or by executing only one ‘thread’ at a time.

3.2.1 par and fork statements

Syntax:

fork_statement fork statement_list end

par_statement par statement_list end

Threads may be created with the fork statement, which must be syntactically enclosed in a
par statement, which also implicitly creates a thread. When a fork statement is executed, it
forks a body thread to execute the statements in its body. Local variables that are declared
outside the body of the innermost enclosing par statement are shared among all threads in
the par body. All threads created by a fork must complete before execution continues past
the par. The rules for memory consistency apply to body threads, so they may not see a con-
sistent picture of the shared variables unless they employ explicit synchronization (page
81).

Each body thread receives a unique copy of every local declared in the innermost enclosing
par body. When body threads begin, these copies have the value that the locals did at the
time the fork statement was executed. Changes to a thread’s copy of these variables are nev-

Example: par
fork ... end

end

⇒

⇒

Threaded Extension 73

er observed by other threads. Iterators may not occur in a fork or par statement unless they
are within an enclosed loop. ‘quit’, ‘yield’, and ‘return’ are not permitted in a par or fork
body.

As a generalization of serial Sather, it is a fatal error if an exception occurs in a thread which
is not handled within that thread by some protect statement. Because par and fork bodies
are executed as separate threads, an unhandled exception in their bodies is a fatal error.

3.2.1a Par and Fork Examples

3.2.2 parloop statement

Syntax:

parloop_statement parloop statement_list do statement_list end

The parloop statement is syntactic sugar to make convenient a common parallel program-
ming idiom.

parloop S1 do S2 end

is syntactic sugar for:

par loop S1 fork S2 end end end

In this code A and B can execute concurrent-
ly. After both A and B complete, C and D
can execute concurrently. E must wait for A,
B, C, and D to terminate before executing.

par
par

fork A end;
B

end;
fork C end;
D

end;
E

In this code, ‘outer’ is declared outside the
par, so this variable is shared by the forked
thread. However, because ‘inner’ is inside
the par, the fork body receives its own local
copy at the time of the fork.

outer:INT;
par

inner:INT;
fork

-- fork body
end

end

Example: parloop c::=clusters! do ... end

⇒

74 Synchronization Extension

3.2.2a Parloop example

3.3 SYNCHRONIZATION EXTENSION

The synchronization extension allows threads to block; this requires threading facilities
not available on every platform. Programmers should not assume that synchronization
is less expensive than thread creation; creating threads as required may be more efficient
than attempting to manage a pool of threads that wait for things to do. Generally, mini-
mizing synchronization provides the greatest throughput.

3.3.1 lock statement

Syntax:

lock_statement
lock expression { , expression } then statement_list [else statement_list] end
lock lock_when { lock_when } [else statement_list] end

lock_when
[guard expression] when expression { , expression } then statement_list

Locks are special built-in synchronization objects that control the blocking and unblocking
of threads. A thread acquires a lock, thenholds the lock until itreleases it. A single thread may

This code applies ‘frobnify’ using a separate
thread for each element of an array.

par
loop e::= a.elt!;

fork e.frobnify end
end

end

Using the parloop shorthand, the same code
could also be written:

parloop e: := a.elt! do
e.frobnify

end

Examples: lock
when m then ...
else ...

end;
lock

guard d.size > 0 when m then ...
when rw.writer then ...

end

⇒

⇒

Synchronization Extension 75

acquire a lock multiple times recursively; it will be held until a corresponding number of
releases occur. Exclusive locks, such as ‘MUTEX’, may only be held by one thread at a time.
In addition to these simple exclusive locks, it is possible to lock on other more complex syn-
chronization types (on page 76).

Locks may be safely acquired with the lock statement. Expressions following a ‘ when’ or
‘lock’ are called locking conditions, and must be subtypes of $LOCK (page 76). The state-
ment list following the ‘then’ is called the lock branch. A lock statement guarantees that all
listed locks are atomically acquired before a lock branch executes. Expressions following a
‘guard’ are called guarding conditions. The statements following the ‘else’ are called theelse
branch. The ‘when’ is dropped in the first form, convenient when there is only a single lock-
ing condition and no guard.

When a lock statement is entered the following occur in strict order:

1. Any guarding conditions are evaluated in textual order. If any evaluate to ‘false’, the
corresponding when clause will not be considered further. when clauses without a
guarding condition or for which the condition evaluates to ‘true’ are accepted.

2. If no when clauses are accepted, the else branch executes; it is a fatal error if there is
no else clause in such a case.

3. For all accepted clauses, all locking conditions are evaluated, in textual order, left to
right.

4. If the locking conditions of some when clause can be immediately satisfied, those
locks are obtained, the corresponding lock branch executes, and execution concludes
without considering other accepted when clauses.

5. If there is an ‘else’ clause and no when clauses have lock conditions that can immedi-
ately be satisfied, then the else branch executes. If there is no ‘else’ clause, the execut-
ing thread blocks until the locking conditions of some when clause can be satisfied.
After the locking conditions are locked atomically, the corresponding lock branch exe-
cutes.

Because all listed locks are acquired atomically, deadlock can never occur due to concur-
rent execution of two or more lock statements with multiple locks, although it is possible
for deadlock to occur by dynamic nesting of lock statements or through other synchroniza-
tion.

The implementation of lock statements also ensures that threads that can run will eventu-
ally do so; no thread will face starvation because of the operation of the locking and sched-
uling implementation. Similarly, no when clause will be repeatedly chosen over another
such that a clause starves. However, it is frequently good practice to have threads whose
programmer supplied enabling conditions are never met in a given run (exceptional cases)
or are not met after some time (alternative methods). One thread in an infinite loop can pre-
vent other threads from executing for an arbitrary time, unless it calls SYS::defer (page 82).

All locks acquired by the lock statement are released when the lock or else branch stops
executing; this may occur due to finishing the branch, termination of a loop by an iterator,

76 Synchronization Extension

a return, a quit, or an exception. yield may occur in a lock statement, but locks are not re-
leased until the iterator quits. Exceptions in a lock body will not be raised outside the body
until all associated locks have been released.

3.3.2 unlock statement

Syntax:

unlock_statement unlock expression

Locks may also be unlocked before exiting the lock branch by an unlock statement. An un-
lock statement must be syntactically within a lock branch; in a par or fork statement an un-
lock must be inside an enclosed lock branch. It is a fatal error if the expression does not
evaluate to a $LOCK object which is locked by the enclosing lock statement.

3.3.3 $LOCK classes

All synchronization objects subtype from $LOCK. In addition to primitive $LOCK class-
es, some synchronization classes return $LOCK objects to allow different kinds of lock-
ing. The concrete type of the returned object is dependent on the pSather
implementation.

� MUTEX is a simple mutual exclusion lock. Two threads may not simultaneously lock
a MUTEX.

� RW_LOCK is used to manage reader-writer synchronization, and defines two meth-
ods ‘reader’ and ‘writer’. These return $LOCK objects. If ‘rw’ is an object of type
RW_LOCK, then a lock on ‘rw.reader’ or ‘rw.writer’ blocks until no thread is locking
on ‘rw.writer’, although multiple threads can simultaneously hold ‘rw.reader’. Read-
ers are granted priority over writers. Attempting to obtain a writer lock while holding
the corresponding reader lock causes deadlock.

� WR_LOCK and FRW_LOCK also manage reader-writer synchronization. WR_LOCK
gives writes priority over reads, while FRW_LOCK grants readers and writers equal
priority.

� Classes under $ATTACH and $ATTACH{T} (page 78) also subtype from $LOCK.

Example: unlock g

⇒

Synchronization Extension 77

3.3.3a Locking example

3.3.4 Attach statement

Syntax:

attach expression :- expression

Threads can be created by executing an attach. The left side must be of type ‘$ATTACH’ or
‘$ATTACH{T}’. If the left side is of type ‘$ATTACH{T}’, the return type of the right side
must be a subtype of ‘T’. If the left side is of type ‘$ATTACH’, the right side must not return
a value. There must be no iterators on the right side.

When an attach is executed, the following takes place in strict order:

1. The left side is evaluated.
2. $ATTACH and $ATTACH{T} both subtype from $LOCK. If the synchronization object

of the left side is locked by another thread, the executing thread is suspended until it
becomes unlocked.

3. Any local variables on the right side are evaluated.
4. A new thread is created to execute the right side. This new thread is attached to the

synchronization object of the left side. The new thread receives a unique copy of ev-
ery local variable; changes to these locals by the originating thread are not observed
by the new thread. Similarly, if ‘out’ and ‘inout’ arguments occur on the right side,
changes to local variables are not be observed by the originating thread. The rules for
memory consistency (page 81) apply for other variables such as object attributes.

5. When execution of the right side completes, the new thread terminates, detaches itself,
and enqueues the return value or increments the counter, if appropriate.

This code implements five dining
philosophers. The philosophers
are seated at a round table and
forced to share a single chopstick
with each neighbor. They alter-
nate between eating and think-
ing, but eating requires both
chopsticks.

chopsticks ::= #ARRAY{MUTEX}(5);
loop chopsticks.set!(#MUTEX) end;
parloop

i::= 0.upto!(4);
do

loop
think;
lock
when chopsticks[i], chopsticks[(i+1).mod(5)]
then eat
end

end
end

Example: g :- forked_computation

⇒

78 Synchronization Extension

Attached threads may be thought of as producers that enqueue their return value (or in-
crement a counter) when they terminate.

Every pSather thread is attached to exactly one $ATTACH object; even the main routine is
attached to an unnamed object. The thread executing a par statement implicitly creates an
$ATTACH object and forks a thread to execute the body. The newly created thread, as well
as all threads created by fork statements syntactically in the par body, are attached to this
same unnamed object. The thread executing a par statement blocks until there are no
threads attached to the object. This ensures that all threads created by a fork have complet-
ed before execution continues past the par.

3.3.5 $ATTACH classes

There are four built-in $ATTACH classes; all subtype from $LOCK. These classes all have
an implicit locked status (unlocked, or locked by a particular thread) and a set of attached
threads.

� FUTURE{T} provides a handle to the result of a computation. It is an error to attach
more than one thread to a future at a time.

� ATTACH allows multiple threads to be attached, but does not allow return values.
� Gates are powerful synchronization primitives which generalize fork/join, mailboxes,

semaphores, and barrier synchronization. There is a typed GATE{T} that has a queue
of values which must conform to ‘T’, and an unparameterized class GATE with only
an integer counter.

In addition to thread attachment, these classes support the operations listed in the follow-
ing tables 1, 2, 3, and 4. Some operations are exclusive: these lock the gate before proceeding
and unlock it when the operation is complete. The exclusive operations also perform im-
ports and exports significant to memory consistency (page 81).

Signature Description Exclusive?

create:SAME Make a new unlocked synchronization object with an empty queue
or zero counter and no attached threads.

N/A

has_thread:BOOL Returns true if there is an attached thread. No

threads:$LOCK Returns a lock which blocks until lockable and there is some thread
attached; then it is locked. Holding this lock does not prevent the
completion of attached threads.

No

no_threads:$LOCK Returns a lock which blocks until lockable and there are no threads
attached; then it is locked. Holding this lock does not prevent the
attachment of threads by the holder.

No

Table 1: Operations supported by ATTACH, FUTURE{T}, GATE, and GATE{T}

Synchronization Extension 79

Signature Description Exclusive?

get:T Return head of queue without removing. Blocks until queue is not
empty.

Yes

empty:$LOCK Returns a lock which blocks until lockable and the queue is empty;
then it is locked. Holding this lock does not prevent the holder from
making the queue become not empty.

No

not_empty:$LOCK Returns a lock which blocks until the gate is lockable and the gate’s
queue is not empty; then the gate is locked. Holding this lock does
not prevent the holder from making the queue become empty.

No

Table 2: Operations supported byFUTURE{T} andGATE{T}

Signature Description Exclusive?

size:INT Returns number of elements in queue. No

set(T) Replace head of queue with argument, or insert into queue if empty.Yes

enqueue(T) Insert argument at tail of queue. Yes

dequeue:T Block until queue is not empty, then remove and return head of
queue.

Yes

Table 3: Operations supported only byGATE{T}

Signature Description Exclusive?

size:INT Returns counter. No

get Blocks until counter is nonzero. Yes

set If counter is zero, set to one. Yes

enqueue Increment counter. Yes

dequeue Block until counter nonzero, then decrement. Yes

empty:$LOCK Returns a lock which blocks until lockable and the counter is zero;
then it is locked. Holding this lock does not prevent the holder from
making the counter become nonzero.

No

not_empty:$LOCK Returns a lock which blocks until the gate is lockable and the gate’s
counter is nonzero; then the gate is locked. Holding this lock does
not prevent the holder from making the counter become zero.

No

Table 4: Operations supported only byGATE

80 Synchronization Extension

3.3.5a Attach examples

3.3.6 sync statement

Syntax:

sync_statement sync

The sync statement allows barrier synchronization between threads attached to the same
synchronization object. A thread executing a sync blocks until all threads attached to the
same object are also blocking on sync (or have terminated).

3.3.6a Sync example

Using a future. The statement ‘f :- compute’
creates a new thread to do some computa-
tion; the current thread continues to exe-
cute. It blocks at ‘f.get’ if the result is not yet
available.

-- Create a future of FLT
f: := #FUTURE{FLT};
f :- compute;
...
result := f.get;

Obtaining the first result from several com-
peting searches. Unlike a future, a gate may
enqueue multiple values. When one of the
threads succeeds, its result is enqueued in
‘g’. If the results of the other two threads
are not needed, additional code would be
needed to prematurely halt the other
threads.

g :- search(strategy1);
g :- search(strategy2);
g :- search(strategy3);
...
result := g.dequeue;

Example: sync

This code applies ‘phase1’ and ‘phase2’ to
each element of an array, waiting for all
‘phase1’ before beginning ‘phase2’:

parloop e::= a.elt! do e.phase1 end;
parloop e::= a.elt! do e.phase2 end

⇒

Synchronization Extension 81

Because local variables declared in the parloop become unique to each thread, the explicit
sync can be useful to allow convenient passing of state from one phase to another through
the thread’s local variables, instead of using an intermediate array with one element for
each thread.

3.3.7 Memory consistency

Threads may communicate by writing and then reading variables or attributes of objects.
All assignments are atomic (the result of a read is guaranteed to be the value of some pre-
vious write); assignments to variables of immutable type atomically modify all at-
tributes. Writes are always observed by the thread itself. Writes are not guaranteed to be
observed by other threads until an export is executed by the writer and a subsequent im-
port is executed by the reader, even if the writes were previously observed by the reading
thread. Exports and imports may be written explicitly (page 82) and are also implicitly
associated with certain operations:

This model has the property that it guarantees sequential consistency to programs without
data races.

This code does the same thing without iter-
ating over the elements for each phase. A
single thread is forked for each element.
Each thread executes ‘phase1’, the sync,
and ‘phase2’. The thread executing the par
waits for all threads to terminate before pro-
ceeding.

parloop e::= a.elt! do
e.phase1;
sync;
e.phase2

end

An import occurs: An export occurs:

In a newly created thread In parent thread when a child thread is forked

On exiting a par statement (children have terminated) By a thread on termination

On entering one of the branches of a lock statement On entering an unlock, or exiting a lock

On exiting exclusive operations (page 78) On entering exclusive operations

On completion of a sync statement On initiation of a sync statement

82 Synchronization Extension

3.3.7a Memory consistency examples

3.3.8 SYS class

pSather extends the SYS class (page 62) with the following routines:

This incorrect code may loop forever wait-
ing for flag, print ‘i is 1’, or print ‘i is 0’.
The code fails because it is trying to use
flag to signal completion of ‘i:=1’, but there
is no appropriate synchronization occur-
ring between the forked thread and the
thread executing the par body. Even
though the forked thread terminates, the
modification of ‘ flag’ may not be observed
because there is no import in the body
thread. Even if the modification to flag is
observed, there is no guarantee that a mod-
ification to ‘ i’ will be observed before this,
if at all.

-- These variables are shared
i:INT;
flag:BOOL;
par

fork
i := 1;
flag := true;

end;
-- Attempt to loop until change
-- in ‘flag’ is observed
loop until!(flag) end
#OUT + ‘i is’ + i + ’\n’

end

This code will always print ‘i is 1’ because
there is no race condition (unlike the previ-
ous example). An export occurs when the
forked thread terminates, and an import oc-
curs when par completes. Therefore the
change to ‘i’ must be observed.

i:INT; -- This is a shared variable
par

fork i:=1 end;
end
#OUT + ‘i is’ + i + ’\n’

Routine Description

defer Inform scheduler that this is a good time to preempt this thread.

import Execute an import operation (page 81).

export Execute an export operation (page 81).

Distributed Extension 83

3.4 DISTRIBUTED EXTENSION

This section introduces distributed constructs that allow the programmer to extend
pSather code with explicit placement information for efficiency on distributed pSather
implementations. Explicitly placing objects and threads does not affect the semantics of
the original code, but it is also possible to deliberately change the original flow of control
(ie. using with-near on page 84).

The memory performance model of pSather has two levels. The basic unit of location in
pSather is the cluster. The programmer may assume that reading or writing memory on
the same cluster is significantly faster than on a remote cluster. A cluster corresponds to
an efficient group in the memory hierarchy, and may have more than one processor. For
example, on a network of workstations a cluster would correspond to one workstation, al-
though that workstation may have multiple processors sharing a common bus. This model
is appropriate for any machine for which local cached access is significantly faster than
general access.

At any time a thread has an associated cluster id (an INT), its locus of control. Until modified
explicitly, the locus of thread remains the same throughout the thread’s execution. When
execution begins, the main routine (page 60) is at cluster zero. The locus of control of a child
thread is the same as the locus of its parent at the time of the fork.

3.4.1 The ‘@’ operator

Syntax:

expression expression @ expression

fork_statement fork @ expression ; statement_list end

parloop_statement parloop statement_list do @ expression ; statement_list end

The locus of a thread may be explicitly moved for the duration of the evaluation of a meth-
od call. An expression following the ‘@’ must evaluate to an INT, which specifies the clus-
ter id of the locus of control the thread will be at while it evaluates the preceding method.
Subexpressions of the left side are evaluated at the current locus of execution and are not
relocated. It is a fatal error for a cluster id to be less than zero or greater than or equal to
clusters (see page 84). The ‘@’ operator has lower precedence than any other operator (see
page 50). When iterator calls are on the left side, each iterator evaluation may be placed
differently on successive iterations.

Example: start_work @ least_loaded;

⇒

⇒

⇒

84 Distributed Extension

The ‘@’ notation may also be used to explicitly place forked body threads of fork and par-
loop statements. Although for these constructs the location expression may appear to be
within the body, the location expression is executed before threads are forked and is not
part of the body.

3.4.2 Location expressions

All reference objects have a unique associated cluster id, the object’s location. When a refer-
ence object is created by a thread, its location will be the same as the locus of control when
the new expression was executed. A reference object is near to a thread if its current location
is the same as the thread’s locus of control, otherwise it is far.

There are several built-in expressions for location:

3.4.3 with-near statement

Syntax:

with_near_statement
with ident_or_self_list near statement_list [else statement_list] end

ident_or_self_list identifier | self { , identifier | self }

The with-near statement asserts that particular reference objects must remain near at run-
time. The ident_or_self_list may contain local variables, arguments, and self; these are

Expression Type Description

here INT The cluster id of the locus of control of the thread.

where(expression) INT The location of the argument. If the argument isvoid or an immutable
type, it returns ‘here’.

near(expression) BOOL true if the argument is on the same cluster as the executing thread. If
the argument isvoid or an immutable type, it returnsfalse.

far(expression) BOOL true if the argument is not on the same cluster as the executing thread.
If the argument isvoid or an immutable type, it returnsfalse.

clusters INT Number of clusters. Although a constant, may not be available at com-
pile time.

clusters! INT Iterator which returns all cluster ids in order,0 throughclusters-1.

Example: with able, baker near ... end

⇒

⇒

Distributed Extension 85

called near variables. When the with statement begins execution, the identifiers are checked
to ensure that all of them hold either objects that are near or void. If this is true then the
statements following near are executed, and it is a fatal error if the identifiers stop holding
either near objects or void at any time. It is a fatal error if some identifiers hold neither near
objects nor void and there is no else. Otherwise, the statements following the else are exe-
cuted.

3.4.3a Locality examples

This code creates a object and then inserts
it into a table, taking care that the insertion
code runs at the same cluster as the table.

table.insert(#FOO)
@where(table);

To make sure the object is at the same clus-
ter as the table, one could write

loc: := where(table);
table.insert(#FOO @ loc) @ loc;

or, equivalently: fork @ where(table);
table.insert(#FOO)

end

This code recursively copies only that por-
tion of a binary tree which is near. Notice
that ‘near’ returns false if its argument is
void.

near_copy:NODE is
if near(self) then return

#NODE(lchild.near_copy,
 rchild.near_copy)

else return self
end

end

86 Distributed Extension

Index
-- (comment definition) 19
- (sugar for minus) 50
- (sugar for negate) 50
! in iters 19
47, 63
#ROUT See bound routines 55
$ in abstract class names 19, 24
$ATTACH 77–78
$COPY 65
$HASH 64–65
$IS_EQ 64
$LOCK classes

See locking and lock 76
$NIL 65
$OB 61
% (sugar for mod) 50
* (sugar for times) 50
+

See plus 50
/ (sugar for divide) 50
/= (sugar for is_neq) 50
:- See attach 77
:: See double colon calls 44
::=

and array literals 47
as declarative asignment 36

< (sugar for is_lt) 50
<= (sugar for is_leq) 50
= (sugar for is_eq) 64
= sugar for is_eq 50
-> (feature renaming) 33
> (sugar for is_gt) 50
>= (sugar for is_geq) 50
@ See ‘at operator’ 83
^ (sugar for pow) 50
~ (sugar for not) 50
‘e’ (floating point exponent) 42
‘is_’ routines 64
‘while’ in other languages 51
0b integer binary prefix 42
0o integer literal prefix 42
0x integer literal prefix 42

A
abstract classes 18, 20

example 24
lexical structure of name 19
separate subtyping 11
syntax and definition 24
See also subtyping, conformance 24

abstract methods 11
conformance of signatures 25
example 24
signatures 22

abstract signatures
See abstract methods 22

abstract types 18
naming 19
See also conformance 18

accepting of guards 75
accessing beyond array bounds 10
aclear 61
acquiring a lock 74
actors 13
aelt! 61
aget 11, 50, 61

renaming example 34
sugar definition 50

aind! 61
alert character 41
aliased objects 13, 26
and 29

syntax and example 48
ANSI C 67
applicative programming

using bound routines 56
AREF 61

access from C 71
example inclusion in ARRAY 34
include path for array portion 33
specifying array portion 30, 47

argc, Sather equivalent 60
argument evaluation

bound routines 55
in iterator calls 51
of array literal 48
order of method arguments 44

argv, Sather equivalent 60
arithmetic operators 49
ARRAY

class excerpt 28
creation from literal 48
example definition 34
inclusion from AREF 61
use for command line args 60

array 63
aelts!,aset!,ainds! 61
asize,aget,aset,aclear,acopy 61
creation example 48
data parallel example 74
definitions of AREF and AVAL 61
element assignment 37
in value class 30
including AREF 47
memory allocation 47
objects with array portion 30
out of bounds errors 10
sugar for higher dimensions 37
use in constants 29
use of iterators 54
See also aset, aget 61

array_ptr 71
ASCII 19
aset 11, 37, 61

renaming example 34
aset! 61
asize 61

in array example 34
assert statements 59
assertions 59
assignment

array elements 37
examples 36
illegal in typecase 39
syntactic sugar 36
syntax and description 36

at operator
syntax, description, example 83

atomic
acquisition of locks 75
execution of locking condition 75

ATTACH 78
attach

evaluation order 77
example of ’future’ 80
local variable copying 77
simple example 77

statement definition 77
testing ‘no_threads’ 78
testing ‘threads’ 78

attribute initialization 47
attributes 18

cycles of value types 30
declaration syntax 30

AVAL 30, 33
See also array 30

B
backslash 41

use in string literal escape 41
backslash literal 41
backspace literal 41
barrier synchronization See sync 80
bases for integer literals 42
Berkeley, University of California at 9
binary literals 42
binary tree

parallel copying example 85
blocking

of gate at dequeue 79
of gate for get 79
of par on cohort 78
using locks 74
See also threads 72

body thread 72
BOOL 25, 61

literals 40
boolean literals 40
booleans

void value 46
See ’and’ and ’or’ 48

bound routines 12
call 55
conformance example 56
contravariant conformance 56
creation 55
example of apply 56
inout arguments 55
leaving self unbound 56
supplying unbound arguments 55
syntax and description 54
type of unbound arguments 55
unbound arguments 55
use in call-backs 12

bound types 20
break! expressions 53
bugs

accessing beyond array bounds 10
crashing 10
dangling references 10
deadlock 14
fencepost errors 11
heisenbugs 14
incorrect synchronization 14
race conditions 14

C
C 9, 13–14, 16–17

accessing Sather arrays 71
and garbage collection 71
constants in Sather 69
interface to headers 70
interface to structs 70
interfacing to possible macros 70

Index
C types

Sather equivalents 71
C++ 9–12, 16
C_header 70
C_name 70
call See bound routines 55
call by value See in mode 45
call-backs using bound routines 12
carriage return literal 41
case 19

example 38
statement syntax 38
when clauses 38

case(lexical)
uppercase class names 26

Cecil 16
CHAR 61
char

Sather equivalent of C type 71
character literals 40

specifying special characters 41
child thread 71

location, status 83
See also threads and fork 72

Class calls See double colon calls 44
 class constants

See constants 29
class elements 28
class invariants See invariant 58–59
class names

length restrictions 19
lexical restrictions 26

class variables See shareds 30
classes 20

syntax, examples 26
See abstract, reference, value, par-

tial 18
CLOS 16
closure 54
closures

relation to bound routines 12
See also bound routines 12

CLU 9, 16
cluster id 83

location expression 84
cluster model

cluster id 83
clusters

location expression 84
clusters!

location expression 84
Code inclusion 34
code inclusion

examples 34
separation from subtyping 11
See also include clauses 34

cohort
blocking of par termination 78

co-location
example 85
with-near assertion 84

co-location See near 84
comments 19
Common Lisp 9, 16
compiler

early versions 15
obtaining 15
pSather 15

complex

Sather equivalent for Fortran 68
complex numbers 13
complex, value class example 27
concrete signatures 22
concrete types 18
concurrent execution

See threads, par and fork 73
signatures

See also conformance 22
conformance

bound routine example 56
contravariance 23
of bound routines 56
rules 23

conjunction. See and 48
constants 18

arrays 29
examples 29
relationship to C constants 69
syntax and description 29

constructors. See also create 10
containers 54

use of iters 12
contains 28

in array example 34
contravariance 23

See also conformance 23
conventions, creation 63
conventions, naming 62–63
conventions, subtyping 62
conversion, with create 63
conversions 64
$COPY 65
copy 65
copying

of binary tree in parallel 85
of local variables at attach 77
of local variables in threads 72

CPX 25, 27
why a value type 13
See also complex numbers 25

crashing 10
create

sugar 47
in abstract signature 25
of a gate 78
specifying location 84
use with C structs 70

creation expressions 47
creation, object 63
creation, overloading 63
creation, sugar for 63
cursor objects 11
cycle

among constant initializers 29
in parametrization 21
of abstract types 24
of value type attributes 30

D
‘d’ suffix. See floating point 42
dangling references 10
data parallel

multi-phase operation 81
parloop example 74

deadlock 14
prevention in locks 75
with RW_LOCK 76

declared type 18
defer 75

in pSather SYS class 82
dequeue

of gate queue 79
destructors. See also allocation 10
detach

See also attach 77
dining philosophers

example of locking 77
disabling checking 19
disjunction. See or 49
disjunctive lock

example 75
disjunctive locking. See locking 74
div 50
do 51
dollar sign ‘$’ 24
dot product 54
double C type, Sather equivalent 71
double colon

calls 44
syntax and description 44
use in constants 29

double precision
Sather equivalent for Fortran 68
See also floating point 42

double quote literal 41
Dylan 16
dynamic dispatch 24, 46

E
efficiency of value class 13
Eiffel 9–10
elements 28
else 37

in case statements 38
in exceptions 57
in lock statements 75
in with-near statements 85

elsif 37
elt! 64
empty (gate method) 79
encapsulation 65
enqueue into gate 79
enumeration types 29
errors

See fatal errors 60
evaluation order

of attach statement 77
of location expression 84
of lock statement 75
See also argument evaluation 55

examples 30
exception object 57
exceptional cases and locking 75
exceptions

choice of handler 57
exception object 57–58
performance 57
protect statements 57
raised in lock body 76
raising an exception 58
syntax, description, examples 57

exclusive operations 78
execution order

of pSather program 72
See also evaluation order 72

Index
explicit placement 9, 14

See cluster model 83
exponent. See also floating point 42
export

by exclusive gate operations 78
explicit SYS call 82
table of occurences 81

expressions 19, 39
and 48
creation 47
exception 57
initial 59
literals 40
new 47
or 49
self 43
syntactic sugar 49
syntax 43
void tests 47
while! 52

external C types 69
C_name, C_header 70

external classes 20
in include clause 33
interfacing to other languages 67
syntax 26

external types 20

F
fairness

and lock statement 75
false 40
far 84

location expression table 84
fatal errors 19

assertion returns false 59
avoiding void accesses 47
bad unlock 76
disabling checking 19
failed invariant 60
in with-near statements 85
missing else in lock 75
missing else in typecase 38
out of range cluster id 83
typecase with no else 39
uncaught exception in thread 73
uncaught exceptions 57

features 18
fencepost errors 11
finalization 10
finalize 62
float C type, Sather equivalent 71
floating point

‘d’ suffix and example 42
‘e’ exponent 42
FLT, FLTD, FLTI 42
literal syntax and description 42
literals example 42
void value 46

FLT, FLTD, FLTI 25, 61
conversion to INT 40
See also floating point 42

fork
and iterators 73
and unlock 76
child thread location,status 83
exceptions in body 73
extended example 73

guarantee of completion in par 72,
78

implicit in parloop 73
local variables 72
location examples 85
quit,yield or return 73
specifying location 83
syntax,description,example 72
See also par and threads 71

forking
See threads, par and fork 72

form feed character literal 41
Fortran 9

Fortran 90 67
Fortran types 68

frobnify 74
FRW_LOC 76
function pointer

Sather equivalent 54
See also bound routine 12

fundamental typing rule 20
FUTURE 78
future example (See also gates) 80

G
garbage collection 10

and C routines 71
See also allocation 10

gates
dequeue 79
empty 79
enqueue 79
example of future 80
get 79
locking 79
not_empty 79
set 79
table of operations 78–79
testing of no_threads 78
testing of threads 78
thread detachment 77

gcc 13
get

of gate queue 79
global variables 30

See also double colon calls 30
grammar rules 18
graph

edges! iterator 45
graph classes 12
guard

accepting 75
example 74
syntax, use in lock 74

H
has_thread 78
$HASH 64–65
hash 62, 65
hash tables 65
hashing 64
heisenbugs 14
here

location expression table 84
hexadecimal literals 42
higher-order function 9
holding a lock 74

hot arguments 32

I
ICSI (International Computer Science

Institute) 9, 13
ID 64
identifiers

length restrictions 19
lexical structure 19

IEEE 754-1985 65
exception flags 66
Sather conformance 42

if statement 37
immutable

value object 26
implementation inheritance. See in-

clude clauses 33
implicit calls 10

reader for shareds 30
reader routine 29–30, 34
reader routine example 31
writer routine 30, 34
writer routine example 31

implicit reader. See implicit calls 34
implicit routines. See implicit calls 30
implicit type coercion 10
implicit type declaration 37
import

by exclusive gate operations 78
explicit SYS call 82
table of conditions 81

in 22, 32
argument evaluation 44
in iterator calls 51

include clauses
example 33
external classes 33
include path 33
multiple includes 33
separation from subtyping 11
syntax and description 33
syntax,example,definition 33

include files. See C header 70
include path 33
infinite loop and consistency 82
infinite precision integers See INTI 13
infix operators 11

See also operators 11
inheritance

separate subtyping and inclusion 11
See subtyping, include clauses 11

initial expressions 59
initialization

defaults for constants 29
dependancies among constants 29
errors in loops 11

inlined_C
dealing with possible macros 70

inout 32, 52
argument evaluation 44
assignment after quit 52
assignment after yield 52
conformance in signatures 22
in bound routines 55
in C interface 69
in iterator calls 51
specification in bound type 55
use in swap routine 45

Index
insert

into gate queue 79
INT 25, 29, 61

example iterators 53
iterators 53
literal instantiation 42

integer
different bases 42
infinite precision literals 42
literals 42
range 42
Sather equivalent for Fortran 68
void value 46
See also INT and INTI 42

interface 11, 19, 23, 28, 32
International Computer Science Insti-

tute 9
International Computer Science Insti-

tute, See ICSI 13
INTI 13, 61

literal instantiation 42
intialization

enumeration types 29
invariant 58–59

definition 60
$IS_EQ 64
is_eq 27, 50, 62, 64

use by case statement 38
is_geq 50
is_gt 50
is_leq 50
is_lt 50, 62
is_neq 27, 50, 64
is_nil 65
is_prime 64
ISO-Latin-1 41
iteration. See iterators 11
iterators 11–12, 19, 22, 64

and location expressions 84
built-in break! 53
built-in until! 52
built-in while! 52
calls 44
defining 32
example definition 53
example of use 53
in typecases 39
lexical structure of name 19
loop statement 51
once argument evaluation 44
quit definition 52
rationale and history 11
rules of usage 51
teriminating lock 75
termination by quit 52
upto! 53
use in fork or par 73
use with containers 54
yield statements 51
yield within protect 52

iterators, naming 64

K
Karla 16
Karlsruhe 16
keywords, list of 20

L
length, restrictions on identifiers 19
lingua-franca, iterators as 12
Lisp 9–10, 16
lists, use of iterators 54
literal expressions 19
literals 40

arbitrary character 41
array 48
boolean 40
character 40
declared type 40
floating point 42
integers 42

binary 42
hex 42
octal 42

strings 41
octal characters 41

local variables
accessing 43
and sync 81
declaration 36
declaration and assignment 36
evaluation in attach 77
initialization 36
inter-thread sharing error 82
passing to C macro 70
scope 36
shadowing 36
sharing by threads 72
sharing by threads example 73

locality
examples 85

location
of created object 84
of object 84

$LOCK classes
See locking and lock 76

lock
and guard 74
and yield statement 76
aquisition 74
atomic aquisition 75
exceptions 76
execution order 75
holding by thread 74
multiple lock acquisition 75
nesting and deadlock 75
release by thread 74
releasing of locks 75
role in thread blocking 74
syntax,description,example 74
terminating actions 75

lock branch. See also locking 75
locking

and fairness 75
and starvation 75
concept 14
deadlock prevention 75
defer 75
extended examples 77
MUTEX 75
of gate during attach 77
RW_LOCK 76

locking conditions 75
locus of control 83
logical

Sather equivalent for Fortran 68
long C types, Sather equivalent 71
loop 33

pSather parloop 73
quit statement 52
statement description 51
termination 11
termination by quit 52
See also iterators 51

looping 11
loops in other languages 51

M
macros

in C 69
mailing list 15
MAIN 23
main 23

fixed status 83
manual deallocation (See also alloca-

tion) 10
matrices 12, 14
Memory 81
 memory allocation

See object allocation 47
memory consistency

definition,examples 81
during attach 77
gate imports/exports 78
threads and shared variables 72

memory model
See cluster model 83

method calls
evaluation order 44

method calls. See also routines 44
methods

See also routines, iterators 18
signatures 22

minus 50
mixins 34

See also partial classes and stubs 34
ML 16
mod 50
mode

conformance in bound routines
55–56

conformance rule 22
in routine and iter definitions 32
table of modes 45

Modula-3 16
multiple acquisition of lock 75
multiple classes

per source file 23
 multiple inheritance

See include clauses, subtyping 33
multiple return values

and out arguments 45
See TUP 61

MUTEX
philosophers example 77

MUTEX. See locks 75

N
NaN 65
near

between object and thread 84
examples 85

Index
location expression table 84
See also with-near statement 84

negate 50
nesting of lock statements 75
new

location of object 84
syntax, description, example 47

newline character literal 41
newsgroup 15
$NIL 65
nil 65
no_threads, in gate protocol 78
not 50
Not a Number 65
not_empty gate method 79
numbers, void (unassigned) value 46

O
$OB 61
Oberon 16
object allocation

manual deallocation 10
new 47

object creation 63
Objective C 16
objects 18, 20

aliased 13
cluster location 84
location examples 85
location when created 84
reference 13
value. See also value class 13

octal digits
in character literals 41

octal integer literals 42
once 22, 51

example usage in upto! 53
syntax, definition and example 32

operator definitions 49
operator precedence 50
optimizations 12
or 29

syntax definition 49
order of evaluation

See argument evaluation 44
order of execution

of pSather 72
out 22, 32, 52, 55

and multiple return values 45
argument assignment 44
arguments in bound routines 55
assignment after quit 52
assignment after yield 52
edges! iterator of graph 45
in C interface 69
in iterator calls 51

overloading 10, 22, 27
disambiguation in bound routines

55
example of conflict 25
of class names 26
rules 45

P
par

and iterators 73
and unlock 76

exceptions in body 73
exports and imports 81
extended example 73
quit,yield or return 73
syntax, description, example 72
termination 78

parallel Sather 13
parallel search 80
parameters 27

as structured macro 27
parametrization

class name overloading 26
compile time resolution 28
cycles of parameters 21
efficiency 28
of abstract classes 27
See also type constraint clause 27

parloop
as syntactic sugar 73
example with locking 77
extended example 74
specifying location 83
syntax,definition,example 73

partial classes 20, 26
example of mixin 34
stub example 34
stubs 34

partial order, of pSather execution 72
Pascal 16
placement 14
plus 11, 50
post. See postconditions 32
postconditions

as safety feature 59
example 32
explanation of post 58
in iterators 58
initial 58
result 58
syntax and definition 32–33
See also preconditions 33

pow 11, 50
pre. See preconditions 32
precedence of operators 50
preconditions 33

checking in iterators 59
example 32
explanation of pre 58
syntax and definition 32

predicates 64
preemption, of thread by defer 82
priority 76
private 19, 30, 33

and readonly 30
attributes 30
changing on include 34
effect on interface 44
example of include 34
in include syntax 33
in iter syntax 32
routines 29
use with shareds 30

process
See threads 72

processor 83
processor number. See cluster id 83
protect 73

yield statements 52
protect statements 57

pSather 9, 13, 67
ptrdiff_t C type, Sather equivalent 71
public. See also private 19

Q
quit 33, 51, 60

example usage 53
in par or fork 73
syntax definition 52

quote marks in character literals 41

R
race conditions 14

example 82
raise 35

syntax definition 58
reader method, of RW_LOCK 76
reader routine. See implicit calls 30
reader-writer locks 76
reader-writer. See RW_LOCK 74
readonly 19, 31, 33

use with shareds 30
real

Sather equivalent for Fortan 68
recursion

and lock acquisition 75
reference classes 20, 26
reference objects 13
reference types 20, 26

variable of 31
releasing a lock 74
renaming

example 33–34
See also include clauses 33

reserved names
AREF 61
MAIN 60
main 60
TUP 61

result
example in routine 32
example of use 32
syntax, description, example 60
use in post 59

return 33, 35
in par or fork 73
statement definition 38
syntax and description 38
type of 38
value returned 32
See also result and initial 59

return value
and GATE 77
type restrictions 52

ROUT 21
routine calls 44
routines 19, 22

bound 12
syntax,description,example 32

runaway thread, disjunctive locks and
75

runtime system 10
RW_LOCK 76

deadlock 76
example 74
reader, writer methods 76

Index
S
safety features 58
SAIL 16
SAME 21, 24, 26–27, 32

in include clause 33
Sather tower 9
Sather-K 16
scheduling

and fairness 75
thread preemption 82

Scheme 9
School 16
scope

class names and parameters 27
feature names 28
local variables 36
method arguments 36

search
parallel example 80

self 43, 48
calls on 44
in class calls 44
use as a bound argument 55

Self (language) 16
semicolons, optional when trailing 18
serial Sather 67
$SET 63
set! 64
set, gate method 79
setjmp 66
sets 63
shadowing See scope 27
shared 18

reader, writer routines 30
shared attribute definition 30
shared memory 9, 14

and cluster model 83
sharing of variables between threads

71
short C type, Sather equivalent 71
 short-circuit evaluation

See ‘and’ ,‘or’ 48
signatures 22

abstract 22
concrete 22
conflict 22, 25, 34
See also conformance 23

signed C types
Sather equivalents 71

single precision. See floating point 42
single quote literal 41
size, gate method 79
size_t, Sather equivalent 71
Smalltalk 9–10, 16
sort 34
source files 23
special characters, listing 20
speculative execution

example using gates 80
stack allocation 13
starvation and locking 75
statements 19

assert 59
else 37
elsif 37
fork 72
general syntax 35
if 37

lock 14
loops 51
par 72
protect 57
quit 52
raise 58
return 38
syntax 35
yield 51

static type safety 20
STR 13, 61

literal instantiation 41
$STR 25, 27
str method 25
strings 13

literals 41
mutli-line 41
See also $STR, STR and str 13

C structs, interface from Sather 70
stub 34

See also partial classes 34
syntax and example 34

subtype 11, 20
See also conformance 20

subtyping
adding type-graph edges 24
and type graph edges 26
conflict example 25
definition 11
example 25
example subtype of $STR 25
syntax and example 24
See also abstract classes 11

sum! 53
summation

using an iterator 53
supertype 11, 20
supertyping clause 24
swap routine example 45
sync

exports and imports 81
syntax, description, example 80

synchronization
barrier 80
effect on order of execution 72
for inter-thread consistency 72
locks 74

syntactic sugar 11
aget 11
aset 11
definition and description 49
parloop 73
plus 11
pow 11

syntax
conventions for specifying 18
of basic statements 35

SYS 62
inlined_C 70
table of pSather routines 82

T
t1, t2 (TUP attributes) 61
tab character literal 41
templates, Sather equivalent 27
termination

of threads 72
test code 63

testing for void 47
textual order 75

of guard evaluation 75
then

lock branch 75
threads 13

acquiring a lock 74
and IEEE exceptions 66
attachment to cohort 78
barrier synchronization 80
blocking 72
body thread 72
child 71
child status,location 83
creation by fork 72
creation with fork 72
defer 75
description 71
external termination example 80
fixing examples 85
function in GATE 78
local variable sharing 72
lock holding 74
lock release 74
par and fork example 73
preemption by ’defer’ 82
scheduling fairness 75
sharing variables 71
termination 72
testing absence 78
testing on gates 78
uncaught exceptions 73
unfixed main 83
with-near objects 84

times 50
tree classes 12
true 40
TUP 61
type 20

implicit coercion 40
of literals 40
of void 46

type bounds. See type constraint clause
27

type casting 39
type constraint clause

concept 27
example of VIEWER 26
syntax 26

type graph 24, 26
bound routine edges 55
definition 20
subtype clause edges 26

type inference 37
in array creation 48
in create expressions 47

type parameters 27
type promotion 40
type specifier 21

bound routines 55
syntax and examples 21

typecase
example 39
statement definition 39
with void object 39

U
unary negation 50

Index
unassigned variables 65
unbound arguments 55
underflow 65
underscores

in bound routines 55
in floating point literals 43
in integer literals 42

University of California at Berkeley 9
University of Karlsruhe 16
UNIX 14
unlock

and fork,par 76
exports and imports 81
syntax,description,example 76
unlocked gate creation 78

unsigned C types, Sather equivalent of
71

until! expressions 52
until...loop...end 11
upto! 53
user-interfaces and call-backs 12

V
value 45
value class 20

advantages 13
and array portion 30
attribute cycles 30
efficiency 13
nil 65
properties 26
simple example 27
stack allocation 26
syntax definition 26
unassigned object 65

value objects. See also value class 13
value types 20, 31
value, call by. See in mode 45
variables

type of 18
type within a typecase 39

vertical tab literal 41
void 65

and nil 65
calls on, See double colon 44
in constant initialization 29
testing for 47
type of 46
used in typecase 39

void C type, Sather equivalent 71
void test expressions 47

W
when

in case statements 38
in exceptions 57

where
example 85
location expression table 84

while!
definition 52
example of use 52
possible implementation 53

whitespace 19
between strings 41

with-near 84
workstations, cluster model and 83

world-wide web 10–12, 15
WR_LOCK 76
writer method, of RW_LOCK 76

X
X_WIDGET example C interface 70

Y
yield 60

example use in upto! 53
example use in while! 53
execution description 52
in par or fork 73
not within lock 76
syntax,example,description 51
within protect 52
See also iterators 33

yielding a value 51

Z
zero 65
zero, use in constants 29

