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Abstract

In this paper, the problem of chaos synchronization of Bloch equations is considered. A novel nonlinear controller is

designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled cha-

otic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illumi-

nate the design procedure and advantage of the result derived.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos is very interesting nonlinear phenomenon and has been intensively studied in the last three decades [1–11]. It

is found to be useful or has great potential in many disciplines [1]. Especially, the subject of chaotic synchronization has

received considerable attentions since 1990. In the literature, various synchronization schemes, such as variable struc-

ture control, OGY method, parameters adaptive control, observer-based control, active control, time-delay feedback

approach, backstepping design technique, and so on, have been successfully applied to the chaos synchronization.

Using these methods, numerous works for the synchronization problem of well-known chaotic systems such as Lorenz,

Chen, Lü, and Rossler systems have been done by many scientist.

On the other hand, the dynamics of an ensemble of spins which do not exhibit mutual coupling, except for some

interactions leading to relaxation, is well described by the simple Bloch equations. Recently, Abergel [12] examined

the linear set of equations originally proposed by Bloch to describe the dynamics of an ensemble of spins with minimal

coupling, and incorporated certain nonlinear effects that were caused by a radiation damping based feedback field. Ucar

et al. [13] extend the calculation of Abergel [12] and demonstrate that is is possible to synchronize two of these nonlinear

Bloch equations. However, these works are based on the exactly knowing of the system parameters. But in real situa-

tion, some or all of the parameters are unknown.

In this paper, the chaotic synchronization of nonlinear Bloch equations with uncertain parameters is investigated. A

class of novel nonlinear control scheme for the synchronization is proposed, and the synchronization is achieved by the

Lyapunov stability theory.
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The organization of this paper is as follows. In Section 2, the problem statement and master–slave synchronization

scheme are presented for the chaotic system. In Section 3, we provide an numerical example to demonstrate the effec-

tiveness of the proposed method. Finally concluding remark is given.
2. Chaos synchronization

In dimensionless units, the dynamic model of nonlinear modified Bloch equations with feedback field [12] is given

by
_x ¼ dy þ kzðx sin w� y coswÞ � x
s2
;

_y ¼ �dx� zþ kzðx coswþ y sin wÞ � y
s2
;

_z ¼ y � k sin wðx2 þ y2Þ � z�1
s1
;

8>>><
>>>:

ð1Þ
where d, k and w are the system parameters and s1 and s2 are the longitudinal time and transverse relaxation times,

respectively. In the work of Abergel [12], the dynamic behavior of the system has been extensively investigated for a

fixed subset of the system parameters (d,k,s1,s2) and for a space area range of the radiation damping feedback w. Espe-
cially, the regions of the parameter w that would admit chaotic behavior were derived. For instance, when the param-

eters are d = �0.4p, k = 30,w = 0.173, s1 = 5, s2 = 2.5, the system is actually chaotic [13]. For details of other dynamic

properties of the system, see the paper [12,13].

In order to observe the synchronization behavior in Bloch equations, when some parameters of the drive system are

fully unknown and different with those of the response system, we assume that we have two Bloch equations where the

master system with the subscript m drives the slave system having identical equations denoted by the subscript s. For the

systems (1), the master (or drive) and slave (or response) systems are defined below, respectively,
_xm ¼ dym þ kzmðxm sin w� ym coswÞ � xm
s2
;

_ym ¼ �dxm � zm þ kzmðxm coswþ ym sin wÞ � ym
s2
;

_zm ¼ ym � k sin wðx2m þ y2mÞ � zm�1
s1

;

8>>><
>>>:

ð2Þ
and
_xs ¼ d1ys þ k1zsðxs sin w� ys coswÞ � xs
s2
þ u1;

_ys ¼ �d1xs � zs þ k1zsðxs coswþ ys sin wÞ � ys
s2
þ u2;

_zs ¼ ys � k1 sin wðx2s þ y2s Þ � zs�1
s1

þ u3;

8>>><
>>>:

ð3Þ
where d1 and k1 are parameters of the slave system which needs to be estimated, and u1, u2 and u3 are the nonlinear

controller such that two chaotic systems can be synchronized.

Define the error signal as
e1ðtÞ ¼ xsðtÞ � xmðtÞ;

e2ðtÞ ¼ ysðtÞ � ymðtÞ;

e3ðtÞ ¼ zsðtÞ � zmðtÞ.

8>><
>>:

ð4Þ
By differentiating Eq. (4), we have the following error dynamics:
_e1ðtÞ ¼ d1ys � dym þ k1zsðxs sin w� ys coswÞ � kzmðxm sin w� ym coswÞ �
1

s2
e1 þ u1;

_e2ðtÞ ¼ �d1xs þ dxm � e3 þ k1zsðxs coswþ ys sin wÞ � kzmðxm coswþ ym sin wÞ � 1

s2
e2 þ u2;

_e3ðtÞ ¼ e2 � k1 sin wðx2s þ y2s Þ þ k sin wðx2m þ y2mÞ �
1

s1
e3 þ u3.

ð5Þ
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Here, our goal is to make synchronization between two Bloch equations by using adaptive control scheme ui,

i = 1,2,3 when some parameters of the drive system are unknown and different with those of the response system, i.e.,
lim
t!1

keðtÞk ¼ 0;
where e = [e1 e2 e3]
T.

For two identical chaotic systems without control (ui = 0), if the initial condition (xm(0),ym(0),zm(0)) 5

(xs(0),ys(0),zs(0)), the trajectories of the two identical systems will quickly separate each other and become irrelevant.

However, for the two controlled chaotic systems, the two systems will approach synchronization for any initial condi-

tion by appropriate controller scheme. For this end, we propose the following control law for the system (3):
u1 ¼ �k1e1 � k1 sin wðzsxs � zmxmÞ þ k1 coswðzsys � zmymÞ

u2 ¼ �k2e2 � k1 coswðzsxs � zmxmÞ � k1 sin wðzsys � zmymÞ;

u3 ¼ �k3e3 þ k1 sin w½e1ðxm þ xsÞ þ e2ðym þ ysÞ�;

ð6Þ
and the update rule for two unknown parameters d and k
_d1 ¼ �yme1 þ xme2;

_k1 ¼ �zmðxm sin w� ym coswÞe1 � zmðxm coswþ ym sin wÞe2 þ sin wðx2m þ y2mÞe3;
ð7Þ
where k1, k2 and k3 are positive scalars.

Then, we have the following theorem.

Theorem 1. The two Bloch systems (2), (3) are synchronized for any initial conditions (xm(0),ym(0), zm(0)) and

(xs(0),ys(0), zs(0)) by the control law (6) and update law (7).

Proof. Choose the following Lyapunov candidate:
V ¼ 1

2
ðe21 þ e22 þ e23 þ e2a þ e2bÞ ð8Þ
where ea = d1�d and eb = k1�k.
The differential of the Lyapunov function along the trajectory of error system (5) is
dV
dt

¼ _e1e1 þ _e2e2 þ _e3e3 þ _eaea þ _ebeb

¼ e1 d1ys � dym þ k1zsðxs sinw� ys coswÞ � kzmðxm sin w� ym coswÞ �
1

s2
e1 þ u1

� �

þ e2 �d1xs þ dxm � e3 þ k1zsðxs coswþ ys sin wÞ � kzmðxm coswþ ym sin wÞ � 1

s2
e2 þ u2

� �

þ e3 e2 � k1 sin wðx2s þ y2s Þ þ k sin wðx2m þ y2mÞ �
1

s1
e3 þ u3

� �
þ _d1ðd1 � dÞ þ _k1ðk1 � kÞ. ð9Þ
Substituting Eq. (7) into Eq. (9) gives that
dV
dt

¼ ½k1 sin wðzsxs � zmxmÞ � k1 coswðzsys � zmymÞ�e1 �
1

s2
e21

þ e1u1 þ ½k1 coswðzsxs � zmxmÞ þ k1 sin wðzsys � zmymÞ�e2 �
1

s2
e22 þ e2u2

� k1 sin w½e1e3ðxm þ xsÞ þ e2e3ðym þ ysÞ� �
1

s1
e23 þ e3u3. ð10Þ
Again, substituting Eq. (6) into Eq. (10) gives that
dV
dt

¼ �ðk1 þ 1=s2Þe21 � ðk2 þ 1=s2Þe22 � ðk3 þ 1=s1Þe23 ¼ �eTPe ð11Þ
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where
P ¼
k1 þ ð1=s2Þ 0 0

0 k2 þ ð1=s2Þ 0

0 0 k3 þ ð1=s1Þ

2
64

3
75.
Since _V is negative semidefinite, we cannot immediately obtain that the origin of error system (5) is asymptotically

stable. In fact, as _V 6 0, then e1; e2; e3; ea; eb 2 L1. From the error system (5), we have _e1; _e2; _e3 2 L1. Since
_V ¼ �eTPe and P is a positive-definite matrix, then we have
Z t

0

kminðP Þkek2dt 6
Z t

0

eTPe dt 6
Z t

0

� _V dt ¼ V ð0Þ � V ðtÞ 6 V ð0Þ;
where kmin(P) is the minimum eigenvalue of positive-definite matrix P. Thus e1; e2; e3 2 L2. According to the Barbalat�s
lemma, we have e1(t), e2(t), e3(t)! 0 as t ! 1. Therefore, the response system (3) synchronize the drive system (2) by

the controller (6). This completes the proof. h

Remark 1. The rate of convergence of error signals can be controlled by the adjusting the values of the parameters k1,

k2, and k3.
3. Numerical example

In this section, to verify and demonstrate the effectiveness of the proposed method, we discuss the simulation result

for Bloch equations. In the numerical simulations, the fourth-order Runge–Kutta method is used to solve the systems

with time step size 0.001.

For this numerical simulation, we assume that the initial condition, (xm(0),ym(0),zm(0)) = (0.5,�0.5,0), and

(xs(0),ys(0),zs(0)) = (�0.5,0.5,0.3) is employed. Hence the error system has the initial values e1(0) = �1, e2(0) = 1

and e3(0) = 0.3. In simulation, the radiation damping feedback w, s1, and s2 are fixed as 0.173, 5 and 2.5, respectively,

and the two unknown parameters are chosen as d = �0.4p and k = 35 so that the Bloch equations exhibits a chaotic

behavior. Synchronization of the systems (2) and (3) via adaptive control law (6) with ki = 5, i = 1, 2, 3 and (7) with

the initial estimated parameters d1(0) = 0 and k1(0) = 25 are shown in Fig. 1. The figure display the state responses

of systems (2), (3).
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Fig. 1. Responses of two Bloch systems.
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4. Concluding remark

In this paper, we investigate the synchronization of controlled nonlinear Bloch equations. We have proposed a novel

nonlinear control scheme for asymptotic chaos synchronization using the Lyapunov method. Finally, a numerical sim-

ulation is provided to show the effectiveness of our method.
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