Pitfalls of Agent-Orientedevelopment

Michael Wooldridge andNicholas R. Jennings

Departmendf ElectronicEngineering
QueenMary & WestfieldCollege
Universityof London,LondonE1 4NS
UnitedKingdom

{M J. Wol dridge, N. R Jennings}@mw.ac.uk

Abstract

While thetheoreticabndexperimentafoundationsof agent-based
systemarebecomingncreasinglywell understoodcomparatiely
little effort hasbeendevoted to understandinghe pragmaticsof
(multi-)agentsystemsdevelopment— the everydayreality of car
rying out an agent-basedevelopmentproject. As a result,agent
systendevelopersareneedlesslyepeatinghe samemistales,with
the resultthat, at best,resourcesre wasted— at worst, projects
fail. This paperidentifiesthe mainpitfalls thatawait theagentsys-
tem developer andwherepossible makestentatve recommenda-
tionsfor how thesepitfalls canbe avoidedor rectified.

1 Introduction

It is now morethantwo decadesinceFrederickBrookswrote The
Mythical Man-Month— arguablythe best-knavn and mostinflu-
entialwork on softwareengineeringandsoftware projectmanage-
mentyet published.In a seriesof memorableessaysBrookshigh-
lighted someof the mostcommonmistales madein the software
developmentprocess. Despitethe immenseamountof effort de-
votedto understandingndimproving it, the softwaredevelopment
processtodayis no easierin essencahanit wasin 1975, when
TheMythical Man-Monthwasfirst published.The mostsignificant
improvementsin software engineeringhave come aboutthrough
the introductionof powerful abstractionswith which to manage
the inherentcompleity of software — object-orientedorogram-
ming is the most olvious example. Elsevhere,we, (along with
mary others),have amguedthat the notion of an agent as a self-
containedproblemsolving systemcapableof autonomousreac-
tive, pro-actve, social behaiour is suchan abstractiontool [23,
24], andthat agent—basedomputingis a promisingapproachto
developingarangeof comple, typically distributed,computesys-
tems.

Agent-basedolutionshave alreadybeendevelopedfor mary
differentapplicationdomains,and field-testedagentsystemsare
steadilyincreasingin number In addition,a rangeof theoretical
and experimentalresultsattestto the fact that the scientificfoun-
dationsof agent-basegystemsarebecomingncreasinglywell un-
derstood.But despitethesesignificantadwancesin the scienceof
agentsystemscomparatiely little effort hasbeendevotedto un-

derstandindiow to engineethem.In short,ouraimin thispaperis

to begin torectify thisomission. Weidentify whatwe perceve to be

the main pitfalls that await the agentsystemdevelopmentproject.
If agenttechnologyis to achieve its potential thenthesepragmatic
aspectof agentsystemdevelopmentmustbe studiedand under

stood— just asthey have beenfor object-orientegorogramming.
Thereis averyrealdangethatif noattemptis madeto dothis,then
agenttechnologywill fail to live up to the claimscurrentlybeing
madeof it. Theresultwill beabacklastsimilarto thatexperienced
againstexpertsystemslogic programmingandall the othergood

ideasthat, it waspromisedwould fundamentallychangecomput-
ing. Our goalis notto suggesthatagenttechnologyis in ary way

abadthing, or thatit is moreproneto problemghanothersoftware
technologiesbhut ratherto recognisehatagentsystemshave their

own specificproblemsand pitfalls. By recognisingthesepitfalls,

we cannotguarantesuccesshut we canat leastavoid someof the

mostobvious sourcesf failure.

Notethatthis is not a scientificpapey in the sensethatit does
not presentary theoremsor easilyfalsifiableexperimentakesults.
However, the paperdoesmale claims— specifically claimsabout
badpracticein agentsystemdevelopment.While the justification
for theseclaims seemsanecdotaljt is basedon a decadeof ex-
periencein developing multi-agentsystemsrangingfrom indus-
trial control systemg[14] to Internet-basednformation retrieval
andmanagemergystemg8].

Thestructureof the paperis looselybasedn [22]. Weidentify
seven catgoriesof problemareasypolitical, managementoncep-
tual,analysisanddesignmicro (agent)evel, macro(society)level,
andimplementationssues For eachof thesecateyories,welist the
key pitfalls thatmaybefound. For eachpitfall, we discusghe na-
tureof thepitfall, how it maybeavoided,and,wherepossiblewhat
stepsmay be takento recover from it. We stresgthatwe have fo-
cussedn pitfallswhich seemspecific(or atleastvery common)to
agent-basedevelopmentprojects;we ignoreissueshatarecom-
monto softwaredevelopmentn general22].

Before proceedingit is worth commentingon what sorts of
agentsystemwe are discussingn this paper Our interest(and
experience)is primarily in the areaof multi-agent systemsi.e.,
in systemscomposedf multiple interactingagents,whereeach
agentis a coarse-grainedomputationakystemin its own right.
We usethe more neutralterm agent-basedsystemto referto one
in which the key abstractiorused,eitherin conceptualisatiorge-
sign, or implementationjs that of an agent. A paradigmexam-
ple of the type of projectfor which this paperseemsappropriate
is ARCHON, a multi-agentsystemin the field of industrial power
systemamanagemenil4]. Otherpertinentexamplesincludethe
agent-basedevelopmentprojectsundertakn at the AustralianAl
Institute (AAI1) [12], and the University of Michigan Digital Li-
brary(umbL) [6].

2 Political Pitfalls

2.1 You oversell agents

Therearea numberof goodreasongor supposinghatagenttech-
nology will enhancehe ability of softwareengineergo construct
comple, distributedapplicationsotherconsiderationaside agents
area powerful andnaturalmetaphofor conceptualisingdesigning
and implementingmary systems. But agentsare not a magical
problemsolving paradigm:tasksthat arebeyond the scopeof au-
tomationusingnon-agentechniquesill not necessarilypoe made
tractablesimply by adoptingan agent-baseapproach.Problems
thathave troubledsoftwareengineersor decadesrestill difficult
with agentsystems.Indeed,thereis no evidencethatary system
developedusing agenttechnologycould not have beenbuilt just
aseasily using non-agentechniques.In short,agentsmay make
it easierto solve certainclasseof problems,(andtherearegood
amgumentdor supposinghatthisis thecase)but they do notmake
theimpossiblepossible Thereasorfor thisis thattheatomicprob-
lem solving componentsvithin agent-basedystemsstill have to
be able to performthe necessarylomaintasks,and their imple-
mentationcanonly usethe (limited) techniqueghatare currently
available. Naturally extra leveragecanbe obtainedby applying
multiple problemsolving methodsand by carefully managingthe
interactiondetweerthecomponentshut ultimately, thesecompo-
nentsstill needto bewritten.

The otheraspecbf oversellingis to equateagentswith intelli-
gentproblemsolving. Thoseunfamiliarwith theachiezementgand
failures)of Artificial Intelligence(Al) oftenbelieve thatagentsare
capableof human-lile reasoningandacting. Obviously, thisis not
thecase:sucha level of competencés well beyondthe stateof the
artin Al. Thusagentamay sometimesxhibit smartproblemsolv-
ing behaiour, but it is still very muchlimited by the currentstate
of theartin machineintelligence.

Thereare a numberof very goodreasondor not overselling
agentg17], nottheleastof which s thatartificial intelligenceasa
field hasarguablysuffereda greatdealfrom over optimistic(some
would say absurd)claims aboutits potential. Most recently per
haps the expertsystemsexperiencevividly illustratesthe perils of
oversellinga promisingtechnology

See also: pitfall 4.1

2.2 Getting religious or dogmatic about agents

Althoughagent$ave beenusedn awiderangeof applicationg15],
they are not a universal solution. There are mary applications
for which conventionalsoftware developmentparadigmgsuchas
object-orientedorogramming)are far more appropriate. Indeed,
given the relatve immaturity of agenttechnologyand the small
numberof deplg/ed agentapplications thereshouldbe clearad-
vantageso anagentbasedsolutionbeforesuchanapproachis even
contemplatedGivenaproblemfor whichanagentandanon-agent
approachappeatikely to produceequalquality solutions thenon-
agentapproactshouldgenerallybepreferredsinceit will bebetter
understoodby the softwareengineersnvolvedin the systendevel-
opmentandasaconsequencis likely to bemoremanageabland
predictable.Unfortunately this pointis missedby mary agentre-
searchand developmentgroups,who have a somavhat blinkered
attitudeto otherdevelopmentparadigms.Suchgroupsexhibit the
singletechniquesyndrome— if theonly tool you possess aham-
mer, theneverythinglooks like a nail. To summarisethereis a
dangernf believing thatagentsaretheright solutionto everyprob-
lem. As a consequenceggentsolutionsare often developedfor
quiteinappropriatgroblems.

Theotherform of dogmaassociateavith agentselatesto their
definition. Most agentdevelopershave their own opinion on ex-
actly whatconstitutesanagent— andno two developersappearto
shareexactly the sameopinion (see[10] for a collectionof agent
definitions). Thus having madea valid casefor an agent-based
approachpeopletendto shoe-horrtheir solutionto fit with their
definition,evenwhensomefacetsof the definitionareclearlygra-
tuitousin the particularcontext. For example,thosewho feel that
mobility is anessentiatharacteristiof agenthoodnvariably pro-
posemobile agentsolutionseven when static agentsrepresent
moreobviousandnaturalapproach.

See also: pitfall 4.2

3 Management Pitfalls

3.1 You don’t know why you want agents

This is a commonproblemfor ary new technologythathasbeen
hypedasmuchasagents Managerseadforecastsuchas“agents
will generateJS$2.6billion in revenueby the year 2000” [17],
and, not surprisingly they wantto jump on the bandwagon. This
phenomends exacerbatedor agentsdbecausehey aresuchanin-
tuitively simpleconcept.It is easythink of awhole armyof useful
agents— if only | hadanagentto bookmy flights, readmy email
andautomaticallygenerateesponsesandsoon. However in mary
casesmanagershatproposeanagentprojectdo not actuallyhave
a clearideaaboutwhat “having agents"will buy them. Thatis,
they have no clearvision of how agentscan be usedto enhance
their existing products,or how they canenablethemto generate
new productlines. As aconsequencagentprojectsareofteniniti-
atedwith nocleargoalsin mind (otherthatto “have” agents) With
no goals,therearealsono criteriafor assessinthe succes®r oth-
erwiseof theinitiative, andno way of telling whetherthe project
is going well or badly The netresultis that catastrophigroject
failurescanoccurseeminglyout of the blue. Thelessoris simply
to really understangour reasongor attemptingan agentdevelop-
mentproject,andwhatyou expectto gainfrom it.

See also: pitfall 3.2

3.2 You don’t know what your agents are good for

This is relatedto pitfall 3.1, andconcernsa generalack of clarity

of purposefor the useof agenttechnologyand a lack of under

standingaboutits degreeof applicability Having oncedeveloped
someagenttechnologyor somespecificagentsthereis atendeng

to searchfor anapplicationin which they canbe used. Invariably,

theprocesof seekingo find anapplicationfor atechnologyeads
to mismatchesnddissatishction,eitherbecausehe full potential
of whatan agentcould addto the applicationis not achieved (be-
causeéheagentshave thewrongfunctionalityor emphasis)or else
becausenly a subsetof the agents capabilitiesget exploited as
thatis all the applicationrequires. The lessonis simple: be sure
you understandhow andwhereyour new technologymay be most
usefullyapplied. Do not attemptto applyit to arbitraryproblems,
and resistthe temptationto apply it to every problemyou come
across.

See also: pitfalls3.1and3.3

3.3 You want to build generic solutions to one-off prob-
lems

This is a pitfall to which mary software projectsfall victim, but
it seemdo be especiallyprevalentin the agentcommunity Typi-

cally it manifestdtself in the devising of anarchitectureor testbed
that supposedlyenablesa whole rangeof potentialtypesof agent
to be built, whenwhatis really requiredis a bespok designto
tackle a single application. In suchsituations,a custombuilt so-
lution will be easierto develop andfar morelikely to satisfythe
requirementf the application. As arybody with experienceof
object-orientedlevelopmentnows, re-uses difficult to attainun-
lessdevelopmentis undertakn for a closeknit rangeof problems
with similar characteristic§22]. Moreover, generalsolutionsare
moredifficult andmorecostlyto develop andoftenneedextensve
tailoring to work in differentapplications. Yet agentdevelopers
continuallyspeakaboutgenericarchitectureshatcanbe usedand
re-usedor a seeminglyinfinite rangeof applications.Suchclaims
are often unsubstantiatednd basedon flimsy evidence;they are
reminiscentof the early daysof Al when,researcherslaimedto
have developedgeneraburposeproblemsolvers.

See also: pitfall 7.4

3.4 You confuse prototypes with systems

Having found an applicationfor which an agentsolutionappears
to bewell suited,andhaving plannedhesolutionatanappropriate
level of generality it is comparatiely easyto develop a prototype
systemconsistingof a few interactingagentsdoing somesemi-
usefultask. However, this is a world away from having a solution
thatis sufficiently robustandreliableto be usedin practice.While
suchclaimscanbelevelledatary problemsolvingparadigmwhich
lendsitselfto rapidprototyping thegapis especialljjargefor agent
basedsystembecausef thegeneratharacteristicef thesoftware
beingdeveloped. Agent systemshy their very nature,tendto in-
volve: (i) concurrenanddistributedproblemsolving; (i) flexible
andsophisticatednterfacesbetweenthe problemsolving compo-
nents;and(iii) complex individualcomponentsvhosebehaiour is
contet dependentEachof thesecharacteristicin isolationmakes
it moredifficult to bridgethe gap betweena prototypeanda full
strengthsoftware solution, but whenthey are all presentthe gap
canbecomeachasm.

See also: pitfall 7.6

4 Conceptual Pitfalls

4.1 You believe that agents are a silver bullet

The holy grail of softwareengineerings a “silver bullet”: atech-
niquethatwill provide anorderof magnitudemprovementn soft-
waredevelopment5]. Mary technologiehase beenpromotedas
the silver bullet: automaticprogramming expert systemsgraphi-
cal programmingandformal methodsare someexamples.Agent
technologyis anenly emeged,andasyetessentialljuntestedoft-
wareparadigm:it is only a matterof time beforesomeoneclaims
agentsarea silver bullet. This would be a dangerougallagy. As
we pointedout abore, thereare good agumentsin favour of the
view that agenttechnologywill leadto improvementsin the de-
velopmentof comple distributedsoftwaresystemg23, 15]. But,
asyet, theseargumentsare largely untestedn practice. Thereis
certainlyno scientificevidenceto supportthe claim thatagentsof-
fer ary adwancein software development— the evidenceto date
is purely anecdotal Evenif agentsdo leadto a realimprovement
in softwaredevelopmentpractice jt would benaive to supposéhat
theadwancewould represenainorderof magnitudémprovement.
We amguethatthe mostimportantdevelopmentsn softwareen-
gineeringhave presentedhe developerwith yetmorepowerful ab-
stractionswith which to understanc&indmanagecompleity. Pro-
ceduralabstraction structuredprogramming abstractdatatypes,

and objectsare all examplesof the progressiely more powerful
programmingabstractionslevelopedover the pastthreedecades,
which have enableddevelopersto attacksuccessiely more com-
plex programmingasks. For us, agentsarejust suchan abstrac-
tion. They appearto provide a powerful way of conceptualising,
designing,andimplementinga particularlycomplex classof soft-
waresystemsWe expectthat, with time, agenttechnologywill be
provento have benefitsfor the softwaredeveloper But atthetime
of writing, it is naive andmisleadingo imply thatsuchbenefitsare
amatterof fact.

See also: pitfall 2.1

4.2 You confuse buzzwords with concepts

Oneof the reasonswvhy agenttechnologyis currently so popular
is thatthe ideaof an agentis extremelyintuitive. This is on the
one handa good thing — the fact that the conceptof an agent
cutsacrossso mary differentdisciplinesis testamento its wide
applicability But unfortunatelyit alsoencourageslevelopersto

believe thatthey understanaonceptsavhenin factthey donot. A

goodexampleof this is the belief-desire-intentioigDI) modelof

ageng, asembodiedn thework of Geogef andcolleagueg11].

The BDI modelis interestingto the agentdeveloperbecauset is

underpinnedy a respectableheoryof (human)ageng, (primar

ily developedby Michael Bratman[4]), it hasan elegantlogical
semanticg§20], and perhapsmostimportantly it hasbeenproved
in extremely demandingapplications— such as real-time fault-
diagnosion the spaceshuttle[12]. Unfortunatelythelabel“sD1”

hasnow beenappliedto somary differenttypesof agent(mary of

which aresimply not BDI systems)thatthe phrasehaslost much
of its meaning.Oneoftenfindsphrasedike BDI repeatedsif they

weremantras:‘our systemis a BDI system” theimplicationbeing
thatbeingaBDI systemis like beinga computemwith 64MB mem-
ory: a quantifiableproperty with measurabl@ssociatedenefits.
Thisis clearlymisleading.

See also: pitfall 2.2

4.3 You forget you are developing softwae

At the time of writing, the developmentof ary agentsystem—

howevertrivial — is essentiallya proces®f experimentationThere
are no tried and trustedtechniquesavailable to assistthe devel-

oper Unfortunately becausehe processis experimental,it en-
courageghe developerto forgetthatthey areactually developing
softwae. Projectplanstendto be pre-occupiedvith investigating
agentarchitecturesjevelopingcooperatiorprotocolsandimprov-

ing coordinationand coherencef multi-agentactivity. Mundane
software engineeringprocesses— requirementanalysis,specifi-
cation,design,verification,andtesting— becomeforgotten. The
resultof thisneglectis aforegoneconclusiontheprojectflounders,
notbecausef agent-specifiproblemsput becausdasicsoftware
engineeringgood practicewasignored. The abandonmenof the
software processs often justified with referenceto the fact that
software engineeringor agentsystemss, asyet, aresearctarea.
While it is true thatdevelopmentechniquedor agentsystemsare
in their infang, it is neverthelessalso true that almostany prin-

cipled software developmenttechniqueis betterthannone. Thus
in the absencef agent-orientedlevelopmenttechniquespbject-
orientedtechniquesnay be usedto greateffect. They maynot be
ideal,but they arecertainlybetterthennothing.

See also: pitfall 4.1

4.4 You forget you are developing distributed software

Distributedsystemsave long beenrecognisedsone of the most
comple classeof computersystemto designandimplement. A

greatdealof researcleffort hasbeendevotedto understandinghis

compleity, andto developingformalismsandtools that enablea
developerto managet [2]. Despitethis researcleffort, the prob-
lemsinherentin developingdistributed systemscanin no way be
regardedassolved. Multi-agentsystemgend,by theirvery nature,
to bedistributed— the ideaof a centralisednulti-agentsystemis

anoxymoron.So,in building amulti-agentsystemit is vital notto

ignorethelessondearnedrom the distributedsystemsommunity
— the problemsof distribution do notgo away, justbecause sys-
temis agent-basedA multi-agentsystemwill if anything bemore

comple thanatypical distributedsystem.The multi-agentsystem
developermustthereforerecognizeandplan for problemssuchas
synchronizationmutualexclusionfor sharedresourcesgeadlock,
andlivelock.

See also: pitfall 7.2

5 Analysis and Design Pitfalls

5.1 You don’t exploit related technology

Whendevelopingary agentsystem,the percentag®f the design
that is agent-specifide.g., doing cooperationor negotiation, or
learninga users profile) is comparatiely small. This conforms
to theraisin breadview of systemdevelopmentattributedto Win-
ston[7], in which the partsof the systemwhich can be consid-
eredagent-basedonformto the small percentagef raisinsand
the more standardechnologyneededo build the majority of the
systenconformsto the significantlylargeramountof bread.Given
theserelative percentagest is importantthat conventionaltech-
nologiesandtechniquesreexploitedwhere/er possible.Suchex-
ploitation speedsup the developmentprocessavoids re-inventing
the wheel,and enablessufiicient time to be devotedto the value-
addedagentcomponent.This point may seemohvious, but mary
agentprojectsfail to take it on boardand,asaresult,suffer in their
development.While theexactsetanddegreeof thosetechnologies
which arerelatedvariesbetweerapplicationsmary agentprojects
couldbenefitfrom exploiting availabletechnologyfrom thefollow-
ingfields: distributedcomputingplatforms(suchascorBaA [19]) to
handlelow-level inter-operationof heterogeneoudistributedcom-
ponents;databaseystemdo handlelarge informationprocessing
requirementsandexpertsystemdo handlereasoningandproblem
solvingtasks.

See also: pitfall 7.4

5.2 Your design doesn’t exploit concurrency

Thereare,in generalmary differentwaysof cuttingup ary partic-
ular problem.Decompositiortanbemadealongfunctional,organ-
isational physical,or resourcaelatedines. In termsof developing
agent-basedystemsno singleapproachis universallybest. How-
ever, notall decompositiongield equallygoodsolutions. System
designis thusacrucialdeterminanof the projectsuccess— a poor
designleadsto poor exploitation of the agentmetaphomwhich, in
turn,leadsto anunsuccessfyproject.

One of the most obvious featuresof a poor multi-agentde-
signis thatthe amountof concurrentproblemsolvingis compar
atively small or evenin extremecaseson-«istent. Typically in
poorly designedsystems,one agentdoessomeprocessingpro-
ducessomeresults,andthenentersinto anidle state. Theresults

arepasseantoanother(previously inactive) agentwhich thenpro-
cesseshem, producesmoreresults,andreturnsto inactiity, and
soon. Thisis anunsatisfctorydesignbecauséhereis only ever
a single threadof control: concurreng, one of the mostimpor
tantpotentialadvantage®f multi-agentsolutions,is not exploited.
Concurreng allows the systemto simultaneoushhandlemultiple
objectives and perspecties, to respondand reactto the erviron-
mentat mary differentlevels, andto allow multiple complemen-
tary problemsolving methodsto cooperatiely interwork. Given
this, one of the aims of the analysisand designphasess to pro-
ducea systemwhich ensures reasonabl@ndappropriateamount
of concurrenproblemsolvingactuity.

See also: pitfalls7.2and7.6

6 Micro (Agent) Level Pitfalls

6.1 You decide you want your own agent architecture

Agentarchitectureareessentiallydesigndor building agentg24].
Many agentarchitectureshave beenproposedover the years,to
dealwith mary differenttypesof problemdomain;a goodexam-
ple of suchan architectureis the ProceduralReasoningSystem
(PRS) [11]. Thereis a greattemptationwhenfirst attemptingan
agentproject,to imaginethatno existing agentarchitecturaneets
the specificrequirement®f your problem,andthatit is necessary
to designonefrom first principles. Contrituting to this temptation
areseveral factors. The “not designechere” mindset,which only
trusts productsdevelopedin-house,is onefactor The desireto
generateéntellectualproperty— eitherfor profit or academiaglory
— is another But designingan agentarchitecturerom scratchin
thisway is usuallya mistale, for severalreasonsFirst, in orderto
developanew architecturahatis bothreliableandthatoffers suf-
ficient power to beusabletakesyearsof effort — notpersoryears,
but yeass. This is time thatcould otherwisehave beendevotedto
gaining experiencewith, and, ultimately proving the technology
Secondunlessthe designprocesss carriedout in tandemwith a
majorresearcteffort, it is unlikely thatthearchitectureyou endup
with will besuficiently novel to generateitherinterestor revenue.
Ourrecommendatiors thereforeto studythevariousarchitectures
describedn the literature[24], and eitherlicenseoneor elseim-
plementan“off theshelf’ design.Thisapproactwill notbringyou
architecture-relatethtellectualpropertyor revenue but it will get
you developing applicationsquickly. (It is alsoworth observing
thatfor mary applicationsa formal agentarchitectures notactu-
ally required:it is quite suficient to implementindividual agents
in thelanguagéestsuitedto the application.)

See also: pitfall 7.4

6.2 You think your architecture is generic

If youdo developyourown architecturethenresistthetemptation
to believe thatit is generic. Mary agent-basedrchitecturehave
beendeveloped,that dealwith both the micro (agent)and maco
(society)levels of agentsystemsTypically, thesearchitecturesire
developedby building a solutionfor a particularproblem,andthen
generalisingThereis atemptation having developeda successful
agentsolution,to imaginethatthe architectureandtechniquesle-
velopedfor oneproblemdomaincanbedirectly appliedto another
But thisis afallagy: it inevitably leadsoneto attemptingto apply
anarchitectureo aproblemfor whichit is patentlyunsuited If you
have developedan architectureghat hassuccessfullypeenapplied
to someparticularproblem,try to understandvhy that particular
architecturesucceededvith that particularproblem. Only attempt
to applythearchitectureo problemswith similar characteristics.

See also: pitfall 3.3

6.3 Your agents use too much Al

Whenonebuilds an agentapplication,thereis an understandable
temptationto focusexclusiely onthe agentspecificaspectof the
application. After all, theseare seenas the justificationfor the
projectin thefirst place. If onesdoesthis, thenthe resultis of-
tenanagentiramevork thatis too overturdenedvith experimental
Al techniquedfirst principlesplannerstheoremprovers, reason
maintenancesystems, ..) to be usable. This problemis fuelled
by a kind of “feature ervy”, where one readsaboutagentsthat
have the ability to learn(or plan, or communicaten naturallan-
guage,...), andimaginesthat suchfeaturesare essentiain ones
own agentsystem.In generalamoresuccessfustratey is to build
agentswith a minimum of Al techniquesassuccesss obtained
with suchsystemsthey canbe progressiely evolved into richer
systemsThisis whatEtzioni callsthe“usefulfirst” strategy [7].

See also: pitfall 5.1

6.4 Your agents have no intelligence

While atoneextreme wefind developersobsessedith developing
agentsystemshatemplg only themostsophisticate@andcomple
Al techniqueswvailable(andasaconsequenchail to provide asuf-
ficiently robustbasisfor the system)atthe other we find so-called
agentgthatdo nothingto justify the useof the term. For example,
it is becomingincreasinglycommonto find straightforvard dis-
tributedsystemgeferredto as multi-agentsystems.Anothervery
different, but equally commonexample,is the practiceof refer
ring to WWW pageghathave ary behindthe scenegprocessings
“agents”. Suchpracticesareunhelpful,for the following reasons.
First, they will leadto theterm“agent”losingary meaningt has.
Second,they raise expectationsof software recipients,who will
only be disappointedvhenthey ultimately receve a very corven-
tional pieceof software. Finally, they leadto cynicismon the part
of softwaredevelopers(who cometo believe thattheterm“agent”
is simply anothemeaninglessnanagemerttuzzword).

See also: pitfalls2.1,4.1,4.2,7.4

7 Macro (Society) Level Pitfalls

7.1 You see agents everywhere

Whenonelearnsaboutmulti-agentsystemdor thefirst time, there
is atendeny to view everythingasanagent.Thisis percevedto be
in someway conceptuallyclean— afterall, anobject-orientedian-
guageis consideredpure” if everythingin the languagéds anob-
ject— isn't the situationthe samefor multi-agentsystems?f one
adoptsthis viewpoint, thenoneendsup with agentgor everything
— includingagentdor additionandsubtractionln theenormously
influential AcTOR paradigmof concurrentomputatio1], thisis
prettymuchwhathappensln orderto dosomecomputationactors
(which arevery similar to agentsmustbe spavnedto do the var
ious component®f the computation. Theseactorsin turn spavn
more actorsto do successiely smallerpartsof the computation,
andsoon. Eventually the computationsequiredaresosmallthat
they arecarriedout by “built in” actors(cf. natve methods).But
by thetime a computatiorof evenmoderatesizehasbottomedout
in thisway, a greatmary actorswill have beencreatedandagreat
dealof communicatioroverheadwill have beenincurred. For ex-
ample,in theclassic'f actorial’example,computingn! requireghe
generatiorof n actors.lt is notdifficult to seethatnaively viewing
everythingasanagentin thisway will beextremelyinefficient: the

overhead®f managingagentsandinteragentcommunicatiorwill
rapidly outweighthe benefitsof anagent-basedolution.

In generalagentshouldbecoarsegrained in thateachshould
embodysignificant,coherentomputationafunctionality While it
is sometimesausefulto view agentsas beingcomposedf further
agentspneshouldbe very carefulhov oneappliesthis idea,asit
canleadto enormous— andpointless— computationabverheads.

See also: pitfall 7.2

7.2 You have too many agents

It is well-knowvn that a numberof systemsinteractingwith one-
anotherusingsimplerulescangeneratédoehaiour thatappearso
be considerablymore complex than the sum of the components
would indicate[21]. Thereinlies one of the greatstrengths—
and weaknesses— of multi-agentsystems. The strengthis that
thisemegentfunctionalitycanbeexploitedby themulti-agentsys-
tem builder, to provide simple,robust cooperatre behaiour. The
weaknesss that emegentfunctionality is akin to chaos[16]. In
short, the dynamicsof multi-agentsystemsare comple, andcan
bechaotic.lt is oftendifficult to predictandexplain the behaiour
of evena small numberof agentswith larger numbersof agents,
attemptingto predictandexplain the behaiour of a systemis fu-
tile. Often, the only way to find out what s likely to happenis
to runthe system— repeatedlyIf a systemcontainsmary agents
(mary is ofteninterpretedas greaterthan 10), thenthe dynamics
canbecomeoo comple to manageeffectively.
Thereareseveraltechniqueghatonecanuseto try to manage
a systemin which thereare mary agents. First, one canplaceit
undercentralcontrol, perhapdy having a coordinatoragent.Un-
fortunately this is oftenimpossible andusually undesirable An-
otherway of keepingcontrolis to severelyrestrictthewayin which
agentscaninteractwith one-anotherThis canbe donein several
ways. First, one canensurethat thereare few channelsof com-
municationbetweenagents.The theoreticalmaximumnumberof
communicatiorchannelsn asystemcontainingn agentss w
in which caseevery agentcantalk to every otheragent. The min-
imum numberof communicatiorchannelds n— 1, in which case
every agentcantalk to just oneother (Theideaof minimising
thenumberof communicatiodinks betweermodulesn asoftware
systemis, of course,not nev — but thereis often an assumption
that,becauseagentsarea new typeof software,theold rulesdo not
apply) Anotherwayin whichadesignercantry to keepahandleon
multi-agentdynamicsis by restrictingthe wayin which agentsn-
teract. Thusvery simplecooperatiorprotocolsarepreferableover
richerones,with “one-shot”protocols(suchasrequestingandre-
plying) beingbothadequat@nddesirabl€for mary applications.

See also: pitfall 7.1

7.3 You have too few agents

While somedesignersmaginea separat@agentfor every possible
task,othersappeamot to recognisethe value of a multi-agentap-

proachatall. They createamulti-agentsystenthatcompletelyfails

to exploit the power offeredby the agentparadigmanddevelopa

solutionwith a very small numberof agentsdoing all the work.

Suchsolutionstendto fail the standardsoftware engineeringest
of coheence which requiresthat a software moduleshouldhave

a single, coherenfunction. The resultis ratherasif onewereto

write an object-oriente¢programby bundling all the functionality
into a singleclass.It canbedone,but it is not pretty In addition,
suchsolutionstendnotto exploit concurreng.

See also: pitfall 5.2

7.4 You spend all your time implementing infrastructure

Oneof the greatesbbstaclesn the way of the wider useof agent
technologyis thatthereareno widely-usedsoftware platformsfor

developingmulti-agentsystems Suchplatformswould provide all

thebasicinfrastructurgfor messagéandling tracingandmonitor

ing, run-time managementnd so on) requiredto createa multi-

agentsystem.As aresult,almostevery multi-agentsystemproject
thatwe have comeacrosshashadasignificantportionof its budget
devotedto implementingthis infrastructurefrom scratch. During

thisimplementatiorstage valuabletime (andhencemong) is of-

tenspentmplementindibrariesandsoftwaretoolsthat,in theend,
do little morethanexchangek QML-like messagef{18]) acrossa
network. By the time theselibraries and tools hase beenimple-

mentedthereis frequentlylittle time, enegy, or enthusiasnteft to

work eitheron the agentshemselesor on the cooperatie/social
aspect®of thesystem.

A relatedissueis that infrastructureis often implementedby
developerswith a backgroundn artificial intelligence ratherthan
networks or distributed systems.As a result, the infrastructureis
often naive with respecto communicationsandis too unreliable
or badlydesignedo be of ary realvalue. The systemoneendsup
with is thensimply a poorly designedistributedsystem.

See also: pitfall 5.1

7.5 Your system is anarchic

A commonmmisconceptioris thatagentasedsystemsanbedevel-
opedsimply by throwing togethera numberof agentsn a melting
pot; thatthe systemrequiresno real structuringandall the agents
are peers. While this may be true in certaincasesjt shouldnot
be viewed as the only way of developing agentsocieties. Mary
agentsystemgequireconsiderablymoresystem-lgel engineering
thanthis. For large scalesystemspr for systemsn which the so-
cietyis supposedo actwith somecommonalityof purposethisis
particularlytrue. In suchcasesa meansof structuringthe society
is neededo reducethe systems compleity, to increasethe sys-
tem’s efficiengy, andto moreaccuratelynodelthe problembeing
tackled. The precisenatureof this structuringis clearly dependent
on the problemat hand, but commonoptionsinclude [3]: close-
knit teamsof agentsworking togetherto achieve a commongoal,
abstractiorhierarchiesmodellingthe problemfrom differentper
spectves;andintermediariesctingasa singlepoint of contactfor
anumberof agents.

See also: pitfall 4.4

7.6 You confuse simulated with real parallelism

Almost every multi-agentsystemstartslife asa prototype,with
all agentsunningon a singlecomputer The agentsareoftenim-
plementedasuNiIXx processedightweightprocessef C, or JAVA
threads.But crucially, the systemstartslife with simulateddistri-
bution: the agentsarenot really distributedacrossa network. The
adwantage®f startinga multi-agentprojectby simulatingdistribu-
tion areobvious— apartfrom ary otherconsiderationspot mary
institutionscan provide a dedicatechetwork of expensve seners
for ademonstratoproject. However, thereis atendenyg to assume
thatresultsobtainedwith simulateddistribution will immediately
scaleup to real distribution. Thisis avery dangerougallagy: dis-
tributedsystemsareanorder of magnitudemoredifficult to design,
implement test,detug, andmanage Thereareinnumerableprac-
tical problemsin building distributed systemsfrom the mundane

(how doesone startup a numberof agentsrunning on different
machines perhapsn mary different physicallocations?) to the
researcHevel (how canone coordinatethe actionsof the agents,
ensuringhatdeadlockandlivelockdo notoccur?)

Anothermanifestatiorof this probleminvolvesassuminghata
developmenmethodologwhichworkedfor simulateddistribution
will alsowork for atruly distributedsystem Again,the problemof
developinga truly distributedsystemis an an orderof magnitude
more thanthat of developinga centralisecone: the development
methodologycannotbe assumedo scaleup.

Perhapghe heartof the problemis thatwith simulateddistri-
bution, thereis the possibility of centraliseccontrol— a factthat
is exploited in mary experimentaltestbedsby providing a single
tracefacility and“control panel”. In truly distributedsystemssuch
centraliseccontrolis not possibleunlessone foregoesthe adwan-
tageshatdistribution brings.

See also: pitfall 4.4

8 Implementation Pitfalls

8.1 The tahularasa

Whenbuilding systemsusingan emeging new technology there
is often an assumptiorthat it is necessaryo startfrom a “blank

slate”: every componenbdf the systemmustbe designedandbuilt

from scratch.Often, however, the mostimportantcomponentsf a
softwaresystemwill belegacy functionally essentialput techno-
logically obsoletesoftware componentsyhich cannotreadily be
retuilt. Suchsystemsareoftenmissioncritical. Whenproposingga
new softwaresolution, it is essentialo work with suchcomponents
sincethey canin generaheitherbeignorednorreplaced Suchsys-
temscanbe incorporatednto an agentsystemby wrappingthem
with anagentlayer[13]. Thebasicideais to enabldegag/ compo-
nentsto communicatendcooperatavith agentshy proving them
with a software layer that realisesan agent-lgel applicationpro-

graminterface(APi). In this way, the functionality of the legag

software canbe extendedby enablingit to work with othernewly

developedsoftwarecomponentgagents).

See also: pitfall 5.1

8.2 You ignore defacto standards

In afield asnew asagentsystemstherearefew establishedtan-
dardsthat a developercanmale useof whenbuilding the agent-
specificcomponent®f anapplication. This is particularlytrue of
the communicatiorand cooperatiorcomponents Although there
are initiativesundervay to establistsuchstandard$9], atthetime
of writing theseefforts arestill ata preliminarystage.As aconse-
quencedevelopersoftenbelieve they have no choicebut to design
andbuild all agent-specificomponent$rom scratchwith there-
sult thatagentsdevelopedby differentorganisationsre unableto
inter-operaten ary way. However, despitethe lack of internation-
ally acceptesstandardshereare anumberof defactostandardin
theareawhichmayusefullybeemplg/edin mary casesThemost
olviousexampleis kQML [18], anagentcommunicatiodanguage
(acL) thathasbeenemplgedin mary agentdevelopmeniprojects.

See also: pitfalls5.1,7.4,8.1

9 Conclusions

Therearegoodargumentsn supportof the claim thatagenttech-
nology will prove to be a valuabletool for building comple dis-

l

tributed systems.But asyet, theseargumentsare unsupportedy

muchsubstantiabvidence:agenttechnologyis essentiallyimma-
tureanduntestedWith nobodyof experienceo guidethem,agent
systemdeveloperstendto find themseles falling into the same
traps. In this paper we have describedvhatwe perceve to bethe
mostcommonandmostseriousof thesepitfalls. We therebyhope
to have initiated a debateon the pragmatic engineeringaspectof

agent-basedystemsln future,we intendto consolidatehis work

by investigatingdevelopmentmethodologiedor agent-basedys-
tems. Suchmethodologieswill provide a systematicframevork

thatcanbe usedto addresghe pragmaticconcernf softwareen-
gineerschagedwith thedevelopmentof agent-basedystems.

Acknowledgement

The authorswould like to thank Simon Lewis, for pointing them
at[22], andhenceproviding amodelwithin whichthis papercould
beframed.

References

[1] G.Agha. ACTORS:A Model of Concurent Computationn
DistributedSystemsTheMIT Press:CambridgeMA, 1986.

[2] M. Ben-Ari. Principlesof Concurentand Distributed Pro-
gramming PrenticeHall, 1990.

[3] A. H. BondandL. Gassereditors. Readingsn Distributed
Artificial Intelligence Morgan KaufmannPublishers: San
Mateo,CA, 1988.

[4] M. E.Bratman.IntentionsPlans,andPracticalReasonHar-
vard University PressCambridgeMA, 1987.

[5] F. P.Brooks.Nosilverbullet. In H.-J.Kugler, editor, Proceed-
ings of the IFIP Tenth World ComputerConfeence pages
1069-1076 Elsevier SciencePublishersB.V.: Amsterdam,
TheNetherlands1986.

[6] E.H. Durfee,D. L. Kiskis,andW. P. Birmingham.Theagent
architectureof the university of michigandigital library. IEE
Transaction®n Softwae Engineering 144(1):61-71Febru-
ary1997.

[7] O.Etzioni.Moving uptheinformationfoodchain: Deploying
softbotson the world-wideweh In Proceeding®f the Thir-
teenthNational Confeenceon Atrtificial Intelligence(AAAI-
96), Portland,OR, 1996.

[8] I. FegusonandM. Wooldridge. Payingtheir way: Commer
cial digital librariesfor the twenty-firstcentury dLib Maga-
zine: TheJournal of Digital Library Reseath, Junel997.

[9] The Foundation for Intelligent Physical Agents. See
http://drogo.cselt.stet.it/fipal.

[10] S. Franklinand A. Graesser Is it an agent,or just a pro-
gram? In J. P. Miller, M. Wooldridge,andN. R. Jennings,
editors,IntelligentAgentslil (LNAI Volume1193) page?1-
36. SpringefVerlag: Berlin, Germary, 1997.

[11] M. P. Geogef andA. L. Lansky. Reactve reasoningand
planning. In Proceedingf the Sixth National Confeence
on Artificial Intelligence(AAAI-87) pagess77-682 Seattle,
WA, 1987.

[12] M. P. Geogef andA. S.Rao. A profile of the AustralianAl
Institute. IEEE Expert 11(6):89-92Decembe996.

[13] N. R. Jennings,J. Corera, |. Laresgoiti, E. H. Mamdani,
F. Perriolat,P. Skarek,andL. Z. Varga. Using ARCHON
to develop real-world DAI applicationsfor electricity trans-
portationmanagemenrdandparticleacceleratocontrol. IEEE
Expert dec1996.

[14] N. R. Jennings,J. M. Corera,andl. Laresgoiti. Developing
industrialmulti-agentsystemsin Proceeding®f theFirstin-
ternationalConfeenceon Multi-Agent System$gl CMAS-95)
pagesA23—-430SanFranciscoCA, Junel995.

[15] N. R. Jenningsand M. Wooldridge. Applying agenttech-
nology In N. R. Jenningsand M. Wooldridge, editors,
Agent-based¢omputing:MarketsandApplications Springer
Verlag:Berlin, Germary, 1998.

[16] J. O. Kephart, T. Hogg, and B. A. Huberman. Dynam-
ics of computationakcosystemsimplicationsfor DAI. In
L. GasseandM. Huhns,editors,DistributedAtrtificial Intel-
ligenceVolumell, pages79-96.PitmanPublishing:London
andMorganKaufmann:SanMateo,CA, 1989.

[17] Ovum Ltd. Intelligentagents: The next revolution in soft-
ware,1994.

[18] J. Mayfield, Y. Labrou,andT. Finin. EvaluatingKQML as
an agentcommunicatiorlanguage. In M. Wooldridge,J. P.
Miiller, and M. Tambe,editors, Intelligent AgentsIl (LNAI
Volumel1037) pages347-360.SpringefVerlag: Berlin, Ger
mary, 1996.

[19] The Object Management
http://ww. ong. org/.

Group (OMG).

[20] A. S. RaoandM. P. Geogeff. Asymmetrythesisandside-
effect problemsin linear time and branchingtime intention
logics. In Proceeding®f the TwelfthInternationalJoint Con-
ferenceon Artificial Intelligence(IJCAI-91) pagesA98-504,
Sydng, Australia,1991.

[21] L. Steels. Cooperationbetweendistributed agentsthrough
self organization. In Y. Demazeauand J.-R Mlller, edi-
tors, Decentalized Al — Proceeding®f the First European
Workshopon ModellingAutonomoug\gentsin a Multi-Agent
World (MAAMAN-89), pagesl 75-196 Elsevier SciencePub-
lishersB.V.: Amsterdam;The Netherlands1990.

[22] B. F. Webster Pitfalls of Object-OrientedDevelopment
M&T Books(New York), 1995.

[23] M. Wooldridge. Agent-basedsoftware engineering. |IEE
Transaction®n Softwae Engineering 144(1):26-37Febru-
ary1997.

[24] M. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice. The Knowled@ EngineeringReview,
10(2):115-1521995.

