
Pitfalls of Agent-OrientedDevelopment

Michael Wooldridge andNicholas R. Jennings

Departmentof ElectronicEngineering
QueenMary & WestfieldCollege

Universityof London,LondonE14NS
UnitedKingdom

�
M.J.Wooldridge, N.R.Jennings � @qmw.ac.uk

�������
	���
��

While thetheoreticalandexperimentalfoundationsof agent-based
systemsarebecomingincreasinglywell understood,comparatively
little effort hasbeendevoted to understandingthe pragmaticsof
(multi-)agentsystemsdevelopment— theeverydayreality of car-
rying out an agent-baseddevelopmentproject. As a result,agent
systemdevelopersareneedlesslyrepeatingthesamemistakes,with
the result that, at best,resourcesarewasted— at worst, projects
fail. Thispaperidentifiesthemainpitfalls thatawait theagentsys-
temdeveloper, andwherepossible,makestentative recommenda-
tionsfor how thesepitfallscanbeavoidedor rectified.

����� �
	�������
���� � �

It is now morethantwo decadessinceFrederickBrookswroteThe
Mythical Man-Month— arguablythebest-known andmostinflu-
entialwork on softwareengineeringandsoftwareprojectmanage-
mentyetpublished.In aseriesof memorableessays,Brookshigh-
lighted someof the mostcommonmistakesmadein the software
developmentprocess.Despitethe immenseamountof effort de-
votedto understandingandimproving it, thesoftwaredevelopment
processtoday is no easierin essencethan it was in 1975, when
TheMythicalMan-Monthwasfirst published.Themostsignificant
improvementsin software engineeringhave comeaboutthrough
the introductionof powerful abstractionswith which to manage
the inherentcomplexity of software — object-orientedprogram-
ming is the most obvious example. Elsewhere,we, (along with
many others),have arguedthat the notion of an agent as a self-
containedproblemsolving systemcapableof autonomous,reac-
tive, pro-active, social behaviour is suchan abstractiontool [23,
24], and that agent–basedcomputingis a promisingapproachto
developingarangeof complex, typically distributed,computersys-
tems.

Agent-basedsolutionshave alreadybeendevelopedfor many
different applicationdomains,and field-testedagentsystemsare
steadilyincreasingin number. In addition,a rangeof theoretical
andexperimentalresultsattestto the fact that the scientificfoun-
dationsof agent-basedsystemsarebecomingincreasinglywell un-
derstood.But despitethesesignificantadvancesin the scienceof
agentsystems,comparatively little effort hasbeendevotedto un-

derstandinghow to engineerthem.In short,ouraimin thispaperis
tobegin to rectify thisomission.Weidentifywhatweperceivetobe
themainpitfalls thatawait theagentsystemdevelopmentproject.
If agenttechnologyis to achieve its potential,thenthesepragmatic
aspectsof agentsystemdevelopmentmustbe studiedandunder-
stood— just asthey have beenfor object-orientedprogramming.
Thereis averyrealdangerthatif noattemptis madeto dothis,then
agenttechnologywill fail to live up to the claimscurrentlybeing
madeof it. Theresultwill beabacklashsimilarto thatexperienced
againstexpertsystems,logic programming,andall theothergood
ideasthat, it waspromised,would fundamentallychangecomput-
ing. Our goalis not to suggestthatagenttechnologyis in any way
abadthing,or thatit is moreproneto problemsthanothersoftware
technologies,but ratherto recognisethatagentsystemshave their
own specificproblemsandpitfalls. By recognisingthesepitfalls,
wecannotguaranteesuccess,but wecanat leastavoid someof the
mostobvioussourcesof failure.

Notethat this is not a scientificpaper, in thesensethat it does
not presentany theoremsor easilyfalsifiableexperimentalresults.
However, thepaperdoesmake claims— specifically, claimsabout
badpracticein agentsystemdevelopment.While the justification
for theseclaims seemsanecdotal,it is basedon a decadeof ex-
periencein developingmulti-agentsystems,rangingfrom indus-
trial control systems[14] to Internet-basedinformation retrieval
andmanagementsystems[8].

Thestructureof thepaperis looselybasedon [22]. Weidentify
sevencategoriesof problemareas:political, management,concep-
tual,analysisanddesign,micro(agent)level,macro(society)level,
andimplementationissues.For eachof thesecategories,welist the
key pitfalls thatmaybefound. For eachpitfall, we discussthena-
tureof thepitfall, how it maybeavoided,and,wherepossible,what
stepsmaybe taken to recover from it. We stressthatwe have fo-
cussedonpitfallswhichseemspecific(or at leastverycommon)to
agent-baseddevelopmentprojects;we ignoreissuesthatarecom-
monto softwaredevelopmentin general[22].

Before proceeding,it is worth commentingon what sorts of
agentsystemwe are discussingin this paper. Our interest(and
experience)is primarily in the areaof multi-agent systems, i.e.,
in systemscomposedof multiple interactingagents,whereeach
agentis a coarse-grainedcomputationalsystemin its own right.
We usethe moreneutralterm agent-basedsystemto refer to one
in which thekey abstractionused,eitherin conceptualisation,de-
sign, or implementation,is that of an agent. A paradigmexam-
ple of the type of project for which this paperseemsappropriate
is ARCHON, a multi-agentsystemin the field of industrialpower
systemsmanagement[14]. Otherpertinentexamplesincludethe
agent-baseddevelopmentprojectsundertakenat theAustralianAI
Institute (AAI I) [12], and the University of Michigan Digital Li-
brary(UMDL) [6].

� � ��� � ���
 ��� � � �"!��#� � �
��$%�'& ���(�#) *�	���*�� �+�-,#* � ���
Therearea numberof goodreasonsfor supposingthatagenttech-
nologywill enhancetheability of softwareengineersto construct
complex, distributedapplications:otherconsiderationsaside,agents
areapowerful andnaturalmetaphorfor conceptualising,designing
and implementingmany systems. But agentsare not a magical
problemsolvingparadigm:tasksthatarebeyond thescopeof au-
tomationusingnon-agenttechniqueswill not necessarilybemade
tractablesimply by adoptingan agent-basedapproach.Problems
thathave troubledsoftwareengineersfor decadesarestill difficult
with agentsystems.Indeed,thereis no evidencethat any system
developedusingagenttechnologycould not have beenbuilt just
aseasilyusingnon-agenttechniques.In short,agentsmaymake
it easierto solve certainclassesof problems,(andtherearegood
argumentsfor supposingthatthis is thecase),but they donotmake
theimpossiblepossible.Thereasonfor this is thattheatomicprob-
lem solving componentswithin agent-basedsystemsstill have to
be able to perform the necessarydomaintasks,and their imple-
mentationcanonly usethe (limited) techniquesthatarecurrently
available. Naturally, extra leveragecanbe obtainedby applying
multiple problemsolving methodsandby carefullymanagingthe
interactionsbetweenthecomponents;but ultimately, thesecompo-
nentsstill needto bewritten.

Theotheraspectof oversellingis to equateagentswith intelli-
gentproblemsolving.Thoseunfamiliarwith theachievements(and
failures)of Artificial Intelligence(AI) oftenbelieve thatagentsare
capableof human-like reasoningandacting.Obviously, this is not
thecase:sucha level of competenceis well beyondthestateof the
art in AI. Thusagentsmaysometimesexhibit smartproblemsolv-
ing behaviour, but it is still very muchlimited by thecurrentstate
of theart in machineintelligence.

Thereare a numberof very good reasonsfor not overselling
agents[17], not theleastof which is thatartificial intelligenceasa
field hasarguablysufferedagreatdealfrom over optimistic(some
would sayabsurd)claimsaboutits potential. Most recently, per-
haps,theexpertsystemsexperiencevividly illustratestheperilsof
oversellingapromisingtechnology.

. */*0�#� ���21
pitfall 4.1

��$ �43 */�"��� � ,5	�*�� � ,�� �6���7�#	8�#�#,69:�/���
:�#�����-�;�-,#* � ���
Althoughagentshavebeenusedin awiderangeof applications[15],
they are not a universal solution. There are many applications
for which conventionalsoftwaredevelopmentparadigms(suchas
object-orientedprogramming)are far more appropriate. Indeed,
given the relative immaturity of agenttechnologyand the small
numberof deployed agentapplications,thereshouldbe clearad-
vantagesto anagentbasedsolutionbeforesuchanapproachis even
contemplated.Givenaproblemfor whichanagentandanon-agent
approachappearlikely to produceequalqualitysolutions,thenon-
agentapproachshouldgenerallybepreferred,sinceit will bebetter
understoodby thesoftwareengineersinvolvedin thesystemdevel-
opment,andasaconsequenceis likely to bemoremanageableand
predictable.Unfortunately, this point is missedby many agentre-
searchanddevelopmentgroups,who have a somewhat blinkered
attitudeto otherdevelopmentparadigms.Suchgroupsexhibit the
singletechniquesyndrome— if theonly tool youpossessis aham-
mer, theneverything looks like a nail. To summarise,thereis a
dangerof believing thatagentsaretheright solutionto everyprob-
lem. As a consequence,agentsolutionsare often developedfor
quiteinappropriateproblems.

Theotherform of dogmaassociatedwith agentsrelatesto their
definition. Most agentdevelopershave their own opinion on ex-
actlywhatconstitutesanagent— andno two developersappearto
shareexactly the sameopinion (see[10] for a collectionof agent
definitions). Thus having madea valid casefor an agent-based
approach,peopletendto shoe-horntheir solutionto fit with their
definition,evenwhensomefacetsof thedefinitionareclearlygra-
tuitousin theparticularcontext. For example,thosewho feel that
mobility is anessentialcharacteristicof agenthoodinvariablypro-
posemobile agentsolutionseven when static agentsrepresenta
moreobviousandnaturalapproach.

. *<*0��� �
�21
pitfall 4.2

= > � � �-,#*�9:* � � � � �"!��#� � �
=�$?�@& ���A��� ��B �7C � �<DEDGF�H0H��6�ID8� � �J�-,#* � ���
This is a commonproblemfor any new technologythat hasbeen
hypedasmuchasagents.Managersreadforecastssuchas“agents
will generateUS$2.6billion in revenueby the year 2000” [17],
and,not surprisingly, they want to jump on the bandwagon. This
phenomenais exacerbatedfor agentsbecausethey aresuchan in-
tuitively simpleconcept.It is easythink of a wholearmyof useful
agents— if only I hadanagentto bookmy flights, readmy email
andautomaticallygenerateresponses,andsoon. However in many
cases,managersthatproposeanagentprojectdo not actuallyhave
a clear ideaaboutwhat “having agents”will buy them. That is,
they have no clear vision of how agentscanbe usedto enhance
their existing products,or how they canenablethemto generate
new productlines.As aconsequence,agentprojectsareofteniniti-
atedwith nocleargoalsin mind(otherthatto “have” agents).With
no goals,therearealsono criteriafor assessingthesuccessor oth-
erwiseof the initiative, andno way of telling whetherthe project
is going well or badly. The net result is that catastrophicproject
failurescanoccurseeminglyout of theblue. The lessonis simply
to really understandyour reasonsfor attemptinganagentdevelop-
mentproject,andwhatyouexpectto gainfrom it.

. *<*0��� �
�21
pitfall 3.2

=�$K�L& ���A��� ��B �7C � �<DEDGF��<�;H�����	M�-,#* � ���7�-	�*0,������N!��#	
This is relatedto pitfall 3.1,andconcernsa generallack of clarity
of purposefor the useof agenttechnologyand a lack of under-
standingaboutits degreeof applicability. Having oncedeveloped
someagenttechnologyor somespecificagents,thereis a tendency
to searchfor anapplicationin which they canbeused.Invariably,
theprocessof seekingto find anapplicationfor a technologyleads
to mismatchesanddissatisfaction,eitherbecausethefull potential
of whatanagentcouldaddto theapplicationis not achieved (be-
causetheagentshave thewrongfunctionalityor emphasis),or else
becauseonly a subsetof the agent’s capabilitiesget exploited as
that is all the applicationrequires.The lessonis simple: be sure
you understandhow andwhereyour new technologymaybemost
usefullyapplied.Do not attemptto apply it to arbitraryproblems,
and resistthe temptationto apply it to every problemyou come
across.

. *<*0��� �
�21
pitfalls3.1and3.3

=�$K=L& ���OD8� � �P���Q���#�K� �O,�* � *-	R�
I�
��� �-��� � � �S���O� � * TU��VEW�	����-T
� *�9:�

This is a pitfall to which many software projectsfall victim, but
it seemsto beespeciallyprevalentin theagentcommunity. Typi-

cally it manifestsitself in thedevisingof anarchitectureor testbed
that supposedlyX enablesa whole rangeof potentialtypesof agent
to be built, when what is really requiredis a bespoke designto
tacklea singleapplication. In suchsituations,a custombuilt so-
lution will be easierto develop andfar morelikely to satisfy the
requirementsof the application. As anybody with experienceof
object-orienteddevelopmentknows, re-useis difficult to attainun-
lessdevelopmentis undertaken for a closeknit rangeof problems
with similar characteristics[22]. Moreover, generalsolutionsare
moredifficult andmorecostlyto developandoftenneedextensive
tailoring to work in differentapplications. Yet agentdevelopers
continuallyspeakaboutgenericarchitecturesthatcanbeusedand
re-usedfor a seeminglyinfinite rangeof applications.Suchclaims
areoften unsubstantiatedandbasedon flimsy evidence;they are
reminiscentof the early daysof AI when,researchersclaimedto
havedevelopedgeneralpurposeproblemsolvers.

. */*0�#� ���21
pitfall 7.4

=�$ Y�& ���N
Z� � !R���
IW�	������#�UH-W�<�;D[� �
F(��H ����*-9:�
Having found an applicationfor which an agentsolutionappears
to bewell suited,andhaving plannedthesolutionatanappropriate
level of generality, it is comparatively easyto developa prototype
systemconsistingof a few interactingagentsdoing somesemi-
usefultask. However, this is a world away from having a solution
thatis sufficiently robustandreliableto beusedin practice.While
suchclaimscanbelevelledatany problemsolvingparadigmwhich
lendsitself to rapidprototyping,thegapisespeciallylargefor agent
basedsystemsbecauseof thegeneralcharacteristicsof thesoftware
beingdeveloped.Agentsystems,by their very nature,tendto in-
volve: (i) concurrentanddistributedproblemsolving; (ii) flexible
andsophisticatedinterfacesbetweenthe problemsolving compo-
nents;and(iii) complex individualcomponentswhosebehaviour is
context dependent.Eachof thesecharacteristicsin isolationmakes
it moredifficult to bridgethe gapbetweena prototypeanda full
strengthsoftware solution,but when they are all presentthe gap
canbecomeachasm.

. */*0�#� ���21
pitfall 7.6

Y \ � �
Z*�W-�
���#� � � �"!��#� � �
Y2$%�'& ���A��*-� � */)/*]�
F#�/�;�-,#* � ���;�<	�*0�I�^� �)/*-	������ � * �
Theholy grail of softwareengineeringis a “silver bullet”: a tech-
niquethatwill provideanorderof magnitudeimprovementin soft-
waredevelopment[5]. Many technologieshave beenpromotedas
thesilver bullet: automaticprogramming,expertsystems,graphi-
cal programming,andformal methodsaresomeexamples.Agent
technologyis anewly emerged,andasyetessentiallyuntestedsoft-
wareparadigm:it is only a matterof time beforesomeoneclaims
agentsarea silver bullet. This would be a dangerousfallacy. As
we pointedout above, therearegoodargumentsin favour of the
view that agenttechnologywill lead to improvementsin the de-
velopmentof complex distributedsoftwaresystems[23, 15]. But,
asyet, theseargumentsare largely untestedin practice. Thereis
certainlyno scientificevidenceto supporttheclaim thatagentsof-
fer any advancein softwaredevelopment— the evidenceto date
is purelyanecdotal.Even if agentsdo leadto a real improvement
in softwaredevelopmentpractice,it wouldbenaive to supposethat
theadvancewould representanorderof magnitudeimprovement.

Wearguethatthemostimportantdevelopmentsin softwareen-
gineeringhavepresentedthedeveloperwith yetmorepowerful ab-
stractionswith which to understandandmanagecomplexity. Pro-
ceduralabstraction,structuredprogramming,abstractdatatypes,

and objectsare all examplesof the progressively more powerful
programmingabstractionsdevelopedover the pastthreedecades,
which have enableddevelopersto attacksuccessively morecom-
plex programmingtasks. For us, agentsarejust suchan abstrac-
tion. They appearto provide a powerful way of conceptualising,
designing,andimplementinga particularlycomplex classof soft-
waresystems.We expectthat,with time,agenttechnologywill be
provento have benefitsfor thesoftwaredeveloper. But at thetime
of writing, it is naiveandmisleadingto imply thatsuchbenefitsare
amatterof fact.

. *<*0��� �
�21
pitfall 2.1

Y2$K�L& ���A
 � � !R�#��*]���#_Z_ZD8�#	����[D[� �
FN
Z� �
Z*�W-���
Oneof the reasonswhy agenttechnologyis currentlyso popular
is that the ideaof an agentis extremely intuitive. This is on the
one handa good thing — the fact that the conceptof an agent
cutsacrossso many differentdisciplinesis testamentto its wide
applicability. But unfortunately, it alsoencouragesdevelopersto
believe that they understandconceptswhenin fact they do not. A
goodexampleof this is thebelief-desire-intention(BDI) modelof
agency, asembodiedin thework of Georgeff andcolleagues[11].
The BDI model is interestingto the agentdeveloperbecauseit is
underpinnedby a respectabletheoryof (human)agency, (primar-
ily developedby Michael Bratman[4]), it hasan elegant logical
semantics[20], andperhapsmostimportantly, it hasbeenproved
in extremely demandingapplications— suchas real-timefault-
diagnosison thespaceshuttle[12]. Unfortunately, thelabel“ BDI”
hasnow beenappliedto somany differenttypesof agent(many of
which aresimply not BDI systems),that the phrasehaslost much
of its meaning.Oneoftenfindsphraseslike BDI repeatedasif they
weremantras:“our systemis a BDI system”,theimplicationbeing
thatbeinga BDI systemis likebeingacomputerwith 64MB mem-
ory: a quantifiableproperty, with measurableassociatedbenefits.
This is clearlymisleading.

. *<*0��� �
�21
pitfall 2.2

Y2$K=L& ���(!��#	�,#* �JH����N�<	�*]�#*<) *�� ��W#� � ,
software

At the time of writing, the developmentof any agentsystem—
howevertrivial — isessentiallyaprocessof experimentation.There
are no tried and trustedtechniquesavailable to assistthe devel-
oper. Unfortunately, becausethe processis experimental,it en-
couragesthe developerto forget that they areactuallydeveloping
software. Projectplanstendto bepre-occupiedwith investigating
agentarchitectures,developingcooperationprotocols,andimprov-
ing coordinationandcoherenceof multi-agentactivity. Mundane
softwareengineeringprocesses— requirementsanalysis,specifi-
cation,design,verification,andtesting— becomeforgotten. The
resultof thisneglectis aforegoneconclusion:theprojectflounders,
notbecauseof agent-specificproblems,but becausebasicsoftware
engineeringgoodpracticewas ignored. The abandonmentof the
software processis often justified with referenceto the fact that
softwareengineeringfor agentsystemsis, asyet, a researcharea.
While it is true thatdevelopmenttechniquesfor agentsystemsare
in their infancy, it is neverthelessalso true that almostany prin-
cipled softwaredevelopmenttechniqueis betterthannone. Thus
in the absenceof agent-orienteddevelopmenttechniques,object-
orientedtechniquesmaybeusedto greateffect. They maynot be
ideal,but they arecertainlybetterthennothing.

. *<*0��� �
�21
pitfall 4.1

Y2$ Y�& ���I!��#	�,#*/�;H����(�<	�*]�#*<) *�� �6W#� � ,
distributed

�
��!`�aDM�-	�*
Distributedsystemshave long beenrecognisedasoneof themost
complex classesof computersystemto designandimplement.A
greatdealof researcheffort hasbeendevotedto understandingthis
complexity, andto developingformalismsandtools that enablea
developerto manageit [2]. Despitethis researcheffort, theprob-
lemsinherentin developingdistributedsystemscanin no way be
regardedassolved.Multi-agentsystemstend,by theirverynature,
to bedistributed— the ideaof a centralisedmulti-agentsystemis
anoxymoron.So,in building amulti-agentsystem,it is vital not to
ignorethelessonslearnedfrom thedistributedsystemscommunity
— theproblemsof distributiondo notgo away, justbecauseasys-
temis agent-based.A multi-agentsystemwill if anything bemore
complex thana typicaldistributedsystem.Themulti-agentsystem
developermustthereforerecognizeandplan for problemssuchas
synchronization,mutualexclusionfor sharedresources,deadlock,
andlivelock.

. */*0�#� ���21
pitfall 7.2

bc� � �#� H/�
� �;� � �Qd8*/�^� , �Q� � �"!��#� � �
b $%�'& ���N�#� �2B �J*/e-W�� ��� �S	�*�� �<��*<�N��*-
/F � ��� �#,#H
Whendevelopingany agentsystem,the percentageof the design
that is agent-specific(e.g., doing cooperationor negotiation, or
learninga user’s profile) is comparatively small. This conforms
to theraisinbreadview of systemdevelopment,attributedto Win-
ston [7], in which the partsof the systemwhich can be consid-
eredagent-basedconformto the small percentageof raisinsand
the morestandardtechnologyneededto build the majority of the
systemconformsto thesignificantlylargeramountof bread.Given
theserelative percentages,it is importantthat conventionaltech-
nologiesandtechniquesareexploitedwherever possible.Suchex-
ploitationspeedsup thedevelopmentprocess,avoids re-inventing
the wheel,andenablessufficient time to be devotedto the value-
addedagentcomponent.This point mayseemobvious,but many
agentprojectsfail to take it onboardand,asaresult,suffer in their
development.While theexactsetanddegreeof thosetechnologies
whicharerelatedvariesbetweenapplications,many agentprojects
couldbenefitfrom exploitingavailabletechnologyfrom thefollow-
ingfields:distributedcomputingplatforms(suchasCORBA [19]) to
handlelow-level inter-operationof heterogeneousdistributedcom-
ponents;databasesystemsto handlelarge informationprocessing
requirements;andexpertsystemsto handlereasoningandproblem
solvingtasks.

. */*0�#� ���21
pitfall 7.4

b $ �c& ����	8��*/�^� , � �#�6*/� ��B �G*<e<W�� ��� �P
Z� �
/��	R	�* �
ZH
Thereare,in general,many differentwaysof cuttingupany partic-
ularproblem.Decompositioncanbemadealongfunctional,organ-
isational,physical,or resourcerelatedlines.In termsof developing
agent-basedsystems,no singleapproachis universallybest.How-
ever, not all decompositionsyield equallygoodsolutions.System
designis thusacrucialdeterminantof theprojectsuccess— apoor
designleadsto poor exploitationof the agentmetaphorwhich, in
turn, leadsto anunsuccessfulproject.

One of the most obvious featuresof a poor multi-agentde-
sign is that the amountof concurrentproblemsolving is compar-
atively small or even in extremecasesnon-existent. Typically in
poorly designedsystems,one agentdoessomeprocessing,pro-
ducessomeresults,andthenentersinto an idle state.The results

arepassedontoanother(previously inactive)agentwhichthenpro-
cessesthem,producesmoreresults,andreturnsto inactivity, and
so on. This is an unsatisfactorydesignbecausethereis only ever
a single threadof control: concurrency, one of the most impor-
tantpotentialadvantagesof multi-agentsolutions,is not exploited.
Concurrency allows thesystemto simultaneouslyhandlemultiple
objectives and perspectives, to respondand reactto the environ-
mentat many different levels, andto allow multiple complemen-
tary problemsolving methodsto cooperatively inter-work. Given
this, oneof the aimsof the analysisanddesignphasesis to pro-
ducea systemwhichensuresa reasonableandappropriateamount
of concurrentproblemsolvingactivity.

. *<*0��� �
�21
pitfalls7.2and7.6

f > �
/	��hgU�8,#* � �
i:j<*/)/*-� � � �"!��#� � �
f�$?�@& ���A��*<
/� ��*0H����(D8� � �JH��6��	M�-D � �-,#* � �J�-	�
<F#� ��*-
��
��	�*
Agentarchitecturesareessentiallydesignsfor buildingagents[24].
Many agentarchitectureshave beenproposedover the years,to
dealwith many differenttypesof problemdomain;a goodexam-
ple of suchan architectureis the ProceduralReasoningSystem
(PRS) [11]. Thereis a greattemptation,whenfirst attemptingan
agentproject,to imaginethatno existing agentarchitecturemeets
thespecificrequirementsof your problem,andthat it is necessary
to designonefrom first principles.Contributing to this temptation
areseveral factors. The“not designedhere”mindset,which only
trustsproductsdevelopedin-house,is one factor. The desireto
generateintellectualproperty— eitherfor profit or academicglory
— is another. But designinganagentarchitecturefrom scratchin
this way is usuallya mistake, for several reasons.First, in orderto
developa new architecturethat is bothreliableandthatofferssuf-
ficientpower to beusabletakesyearsof effort — notpersonyears,
but years. This is time thatcouldotherwisehave beendevotedto
gainingexperiencewith, and,ultimately, proving the technology.
Second,unlessthe designprocessis carriedout in tandemwith a
majorresearcheffort, it is unlikely thatthearchitectureyouendup
with will besufficiently novel to generateeitherinterestor revenue.
Our recommendationis thereforeto studythevariousarchitectures
describedin the literature[24], andeitherlicenseoneor elseim-
plementan“off theshelf” design.Thisapproachwill notbringyou
architecture-relatedintellectualpropertyor revenue,but it will get
you developingapplicationsquickly. (It is alsoworth observing
that for many applications,a formal agentarchitectureis not actu-
ally required: it is quitesufficient to implementindividual agents
in thelanguagebestsuitedto theapplication.)

. *<*0��� �
�21
pitfall 7.4

f�$K�L& ���(�
F�� � CkH�����	M�<	R
/F�� ��*-
��
��	�*]� �;,#* � *�	��

If youdo developyourown architecture,thenresistthetemptation
to believe that it is generic.Many agent-basedarchitectureshave
beendeveloped,that dealwith both the micro (agent)andmacro
(society)levelsof agentsystems.Typically, thesearchitecturesare
developedby building asolutionfor aparticularproblem,andthen
generalising.Thereis a temptation,having developeda successful
agentsolution,to imaginethat thearchitectureandtechniquesde-
velopedfor oneproblemdomaincanbedirectlyappliedto another.
But this is a fallacy: it inevitably leadsoneto attemptingto apply
anarchitectureto aproblemfor whichit is patentlyunsuited.If you
have developedan architecturethat hassuccessfullybeenapplied
to someparticularproblem,try to understandwhy that particular
architecturesucceededwith thatparticularproblem.Only attempt
to applythearchitectureto problemswith similarcharacteristics.

. */*0�#� ���21
pitfall 3.3

f�$ =c& ����	M�-,#* � ���P�#��*k���6�590��
/FN� �
Whenonebuilds an agentapplication,thereis an understandable
temptationto focusexclusively on theagentspecificaspectsof the
application. After all, theseare seenas the justification for the
project in the first place. If onesdoesthis, thenthe result is of-
tenanagentframework thatis toooverburdenedwith experimental
AI techniques(first principlesplanners,theoremprovers, reason
maintenancesystems,. . .) to be usable. This problemis fuelled
by a kind of “feature envy”, whereone readsaboutagentsthat
have the ability to learn(or plan, or communicatein naturallan-
guage,. . .), andimaginesthatsuchfeaturesareessentialin one’s
own agentsystem.In general,amoresuccessfulstrategy is to build
agentswith a minimum of AI techniques;assuccessis obtained
with suchsystems,they canbe progressively evolved into richer
systems.This is whatEtzionicallsthe“usefulfirst” strategy [7].

. */*0�#� ���21
pitfall 5.1

f�$ Y�& ����	M�-,#* � ���PF#�<)/* � �5� � ��*�� � � ,�* �
Z*
While atoneextreme,wefind developersobsessedwith developing
agentsystemsthatemploy only themostsophisticatedandcomplex
AI techniquesavailable(andasaconsequencefail to provideasuf-
ficiently robustbasisfor thesystem),at theother, wefind so-called
agentsthatdo nothingto justify theuseof theterm. For example,
it is becomingincreasinglycommonto find straightforward dis-
tributedsystemsreferredto asmulti-agentsystems.Anothervery
different, but equally commonexample, is the practiceof refer-
ring to WWW pagesthathaveany behindthescenesprocessingas
“agents”. Suchpracticesareunhelpful,for the following reasons.
First, they will leadto theterm“agent” losingany meaningit has.
Second,they raiseexpectationsof software recipients,who will
only bedisappointedwhenthey ultimately receive a very conven-
tional pieceof software. Finally, they leadto cynicismon thepart
of softwaredevelopers(who cometo believe thattheterm“agent”
is simplyanothermeaninglessmanagementbuzzword).

. */*0�#� ���21
pitfalls2.1,4.1,4.2,7.4

l > ��
/	��Og . ��
 � * �aH<imj<*/)/*-� � � �"!��#� � �
l $%�'& ���(��*<*0�-,#* � ���7*/)/*-	�H DJF�*�	�*
Whenonelearnsaboutmulti-agentsystemsfor thefirst time,there
is atendency to view everythingasanagent.Thisis perceivedto be
in somewayconceptuallyclean— afterall, anobject-orientedlan-
guageis considered“pure” if everythingin the languageis anob-
ject — isn’t thesituationthesamefor multi-agentsystems?If one
adoptsthis viewpoint, thenoneendsup with agentsfor everything
— includingagentsfor additionandsubtraction.In theenormously
influential ACTOR paradigmof concurrentcomputation[1], this is
prettymuchwhathappens.In orderto dosomecomputation,actors
(which arevery similar to agents)mustbespawnedto do thevar-
ious componentsof the computation.Theseactorsin turn spawn
moreactorsto do successively smallerpartsof the computation,
andsoon. Eventually, thecomputationsrequiredaresosmall that
they arecarriedout by “built in” actors(cf. native methods).But
by thetime a computationof evenmoderatesizehasbottomedout
in thisway, agreatmany actorswill havebeencreated,andagreat
dealof communicationoverheadwill have beenincurred.For ex-
ample,in theclassic“f actorial”example,computingn! requiresthe
generationof n actors.It is not difficult to seethatnaively viewing
everythingasanagentin thiswaywill beextremelyinefficient: the

overheadsof managingagentsandinter-agentcommunicationwill
rapidlyoutweighthebenefitsof anagent-basedsolution.

In general,agentsshouldbecoarsegrained, in thateachshould
embodysignificant,coherentcomputationalfunctionality. While it
is sometimesuseful to view agentsasbeingcomposedof further
agents,oneshouldbevery carefulhow oneappliesthis idea,asit
canleadto enormous— andpointless— computationaloverheads.

. *<*0��� �
�21
pitfall 7.2

l $K�L& ���5F#�<)/*0���6�59:� � H0�<,�* � ���
It is well-known that a numberof systemsinteractingwith one-
anotherusingsimplerulescangeneratebehaviour thatappearsto
be considerablymore complex than the sum of the components
would indicate [21]. Therein lies one of the greatstrengths—
and weaknesses— of multi-agentsystems. The strengthis that
thisemergentfunctionalitycanbeexploitedby themulti-agentsys-
tembuilder, to provide simple,robustcooperative behaviour. The
weaknessis that emergent functionality is akin to chaos[16]. In
short,the dynamicsof multi-agentsystemsarecomplex, andcan
bechaotic.It is oftendifficult to predictandexplain thebehaviour
of even a small numberof agents;with larger numbersof agents,
attemptingto predictandexplain thebehaviour of a systemis fu-
tile. Often, the only way to find out what is likely to happenis
to run thesystem— repeatedly. If a systemcontainsmany agents
(many is often interpretedasgreaterthan10), thenthe dynamics
canbecometoocomplex to manageeffectively.

Thereareseveral techniquesthatonecanuseto try to manage
a systemin which therearemany agents.First, onecanplaceit
undercentralcontrol,perhapsby having a coordinatoragent.Un-
fortunately, this is often impossible,andusuallyundesirable.An-
otherwayof keepingcontrolis to severelyrestrictthewayin which
agentscaninteractwith one-another. This canbe donein several
ways. First, onecanensurethat thereare few channelsof com-
municationbetweenagents.The theoreticalmaximumnumberof

communicationchannelsin asystemcontainingn agentsis n n n o 1p
2 ,

in which caseevery agentcantalk to every otheragent.Themin-
imum numberof communicationchannelsis n q 1, in which case
every agentcan talk to just one other. (The idea of minimising
thenumberof communicationlinks betweenmodulesin asoftware
systemis, of course,not new — but thereis often an assumption
that,becauseagentsareanew typeof software,theold rulesdonot
apply.) Anotherwayin whichadesignercantry to keepahandleon
multi-agentdynamicsis by restrictingtheway in which agentsin-
teract.Thusverysimplecooperationprotocolsarepreferableover
richerones,with “one-shot”protocols(suchasrequestingandre-
plying) beingbothadequateanddesirablefor many applications.

. *<*0��� �
�21
pitfall 7.1

l $K=L& ���5F#�<)/*0���6�(!�*<Dr�<,�* � ���
While somedesignersimaginea separateagentfor every possible
task,othersappearnot to recognisethevalueof a multi-agentap-
proachatall. They createamulti-agentsystemthatcompletelyfails
to exploit thepower offeredby theagentparadigm,anddevelopa
solutionwith a very small numberof agentsdoing all the work.
Suchsolutionstendto fail the standardsoftwareengineeringtest
of coherence, which requiresthat a softwaremoduleshouldhave
a single,coherentfunction. The result is ratherasif onewereto
write anobject-orientedprogramby bundlingall the functionality
into a singleclass.It canbedone,but it is not pretty. In addition,
suchsolutionstendnot to exploit concurrency.

. */*0�#� ���21
pitfall 5.2

l $ Y�& ���(�^W�* � �N�#� �+H�����	s���K9:*I�K90W�� *�9:* � ��� � ,A� � !R	��<���
	R��
��
��	�*
Oneof thegreatestobstaclesin theway of thewider useof agent
technologyis that thereareno widely-usedsoftwareplatformsfor
developingmulti-agentsystems.Suchplatformswouldprovideall
thebasicinfrastructure(for messagehandling,tracingandmonitor-
ing, run-timemanagement,andso on) requiredto createa multi-
agentsystem.As a result,almostevery multi-agentsystemproject
thatwehavecomeacrosshashadasignificantportionof its budget
devotedto implementingthis infrastructurefrom scratch.During
this implementationstage,valuabletime (andhencemoney) is of-
tenspentimplementinglibrariesandsoftwaretoolsthat,in theend,
do little morethanexchangeKQML-like messages([18]) acrossa
network. By the time theselibrariesand tools have beenimple-
mented,thereis frequentlylittle time,energy, or enthusiasmleft to
work eitheron the agentsthemselvesor on the cooperative/social
aspectsof thesystem.

A relatedissueis that infrastructureis often implementedby
developerswith a backgroundin artificial intelligence,ratherthan
networks or distributedsystems.As a result, the infrastructureis
oftennaive with respectto communications,andis too unreliable
or badlydesignedto beof any realvalue.Thesystemoneendsup
with is thensimplyapoorlydesigneddistributedsystem.

. */*0�#� ���21
pitfall 5.1

l $ b & ����	M�
H ����*-9t� �;� � �-	�
<F#�

A commonmisconceptionis thatagentbasedsystemscanbedevel-
opedsimply by throwing togethera numberof agentsin a melting
pot; that thesystemrequiresno realstructuringandall theagents
arepeers. While this may be true in certaincases,it shouldnot
be viewed as the only way of developing agentsocieties. Many
agentsystemsrequireconsiderablymoresystem-level engineering
thanthis. For largescalesystems,or for systemsin which theso-
ciety is supposedto actwith somecommonalityof purpose,this is
particularlytrue. In suchcases,a meansof structuringthesociety
is neededto reducethe system’s complexity, to increasethe sys-
tem’s efficiency, andto moreaccuratelymodeltheproblembeing
tackled.Theprecisenatureof this structuringis clearlydependent
on the problemat hand,but commonoptionsinclude[3]: close-
knit teamsof agentsworking togetherto achieve a commongoal;
abstractionhierarchiesmodellingthe problemfrom differentper-
spectives;andintermediariesactingasa singlepointof contactfor
anumberof agents.

. */*0�#� ���21
pitfall 4.4

l $ fc& ���N
Z� � !R���
*0�
�K90��� �<��*<�ND[� �
FA	�*/�#�uW#�<	��#� � *�� � �v9
Almost every multi-agentsystemstartslife as a prototype,with
all agentsrunningon a singlecomputer. Theagentsareoften im-
plementedasUNIX processes,lightweightprocessesin C, or JAVA
threads.But crucially, thesystemstartslife with simulateddistri-
bution: theagentsarenot really distributedacrossa network. The
advantagesof startingamulti-agentprojectby simulatingdistribu-
tion areobvious— apartfrom any otherconsiderations,not many
institutionscanprovide a dedicatednetwork of expensive servers
for ademonstratorproject.However, thereis a tendency to assume
that resultsobtainedwith simulateddistribution will immediately
scaleup to real distribution. This is a very dangerousfallacy: dis-
tributedsystemsareanorderof magnitudemoredifficult to design,
implement,test,debug, andmanage.Thereareinnumerableprac-
tical problemsin building distributedsystems,from the mundane

(how doesone start up a numberof agentsrunning on different
machines,perhapsin many different physicallocations?) to the
researchlevel (how canonecoordinatethe actionsof the agents,
ensuringthatdeadlockandlivelockdo notoccur?)

Anothermanifestationof thisprobleminvolvesassumingthata
developmentmethodologywhichworkedfor simulateddistribution
will alsowork for atruly distributedsystem.Again,theproblemof
developinga truly distributedsystemis an an orderof magnitude
more thanthat of developinga centralisedone: the development
methodologycannotbeassumedto scaleup.

Perhapsthe heartof the problemis thatwith simulateddistri-
bution, thereis the possibilityof centralisedcontrol— a fact that
is exploited in many experimentaltestbeds,by providing a single
tracefacility and“control panel”.In truly distributedsystems,such
centralisedcontrol is not possibleunlessoneforegoesthe advan-
tagesthatdistributionbrings.

. *<*0��� �
�21
pitfall 4.4

w � 90W�� *-9:* � ���<��� � �Q� � �"!���� � �
w�$?�yx F#*

tabula rasa

Whenbuilding systemsusingan emerging new technology, there
is often an assumptionthat it is necessaryto start from a “blank
slate”: every componentof thesystemmustbedesignedandbuilt
from scratch.Often,however, themostimportantcomponentsof a
softwaresystemwill be legacy: functionallyessential,but techno-
logically obsoletesoftwarecomponents,which cannotreadily be
rebuilt. Suchsystemsareoftenmissioncritical. Whenproposinga
new softwaresolution,it is essentialto work withsuchcomponents,
sincethey canin generalneitherbeignorednorreplaced.Suchsys-
temscanbe incorporatedinto an agentsystemby wrappingthem
with anagentlayer [13]. Thebasicideais to enablelegacy compo-
nentsto communicateandcooperatewith agentsby proving them
with a software layer that realisesan agent-level applicationpro-
graminterface(API). In this way, the functionality of the legacy
softwarecanbeextendedby enablingit to work with othernewly
developedsoftwarecomponents(agents).

. *<*0��� �
�21
pitfall 5.1

w�$K�L& ���A� , � ��	�*
defacto

����� � �#�-	����
In a field asnew asagentsystems,therearefew establishedstan-
dardsthat a developercanmake useof whenbuilding the agent-
specificcomponentsof anapplication.This is particularlytrueof
the communicationandcooperationcomponents.Although there
are initiativesunderway to establishsuchstandards[9], at thetime
of writing theseefforts arestill at a preliminarystage.As a conse-
quence,developersoftenbelieve they have no choicebut to design
andbuild all agent-specificcomponentsfrom scratch,with the re-
sult thatagentsdevelopedby differentorganisationsareunableto
inter-operatein any way. However, despitethelack of internation-
ally acceptedstandards,thereareanumberof defactostandardsin
thearea,whichmayusefullybeemployedin many cases.Themost
obviousexampleis KQML [18], anagentcommunicationlanguage
(ACL) thathasbeenemployedin many agentdevelopmentprojects.

. *<*0��� �
�21
pitfalls5.1,7.4,8.1

z4\ � �
/� ���^� � � �

Therearegoodargumentsin supportof theclaim thatagenttech-
nology will prove to be a valuabletool for building complex dis-

tributedsystems.But asyet, theseargumentsareunsupportedby
much{ substantialevidence:agenttechnologyis essentiallyimma-
tureanduntested.With nobodyof experienceto guidethem,agent
systemdeveloperstend to find themselves falling into the same
traps.In this paper, we have describedwhatwe perceive to bethe
mostcommonandmostseriousof thesepitfalls. We therebyhope
to have initiateda debateon thepragmatic,engineeringaspectsof
agent-basedsystems.In future,we intendto consolidatethis work
by investigatingdevelopmentmethodologiesfor agent-basedsys-
tems. Suchmethodologieswill provide a systematicframework
thatcanbeusedto addressthepragmaticconcernsof softwareen-
gineerschargedwith thedevelopmentof agent-basedsystems.

�|
<C � �-DG� *-�#,#*�9:* � �
The authorswould like to thankSimonLewis, for pointing them
at [22], andhenceproviding amodelwithin whichthispapercould
beframed.

}~*/!�*-	�* �
Z*<�

[1] G. Agha. ACTORS:A Modelof Concurrent Computationin
DistributedSystems. TheMIT Press:Cambridge,MA, 1986.

[2] M. Ben-Ari. Principlesof Concurrent and DistributedPro-
gramming. PrenticeHall, 1990.

[3] A. H. Bond andL. Gasser, editors. Readingsin Distributed
Artificial Intelligence. Morgan KaufmannPublishers:San
Mateo,CA, 1988.

[4] M. E.Bratman.Intentions,Plans,andPracticalReason. Har-
vardUniversityPress:Cambridge,MA, 1987.

[5] F. P. Brooks.Nosilverbullet. In H.-J.Kugler, editor, Proceed-
ings of the IFIP Tenth World ComputerConference, pages
1069–1076.Elsevier SciencePublishersB.V.: Amsterdam,
TheNetherlands,1986.

[6] E. H. Durfee,D. L. Kiskis, andW. P. Birmingham.Theagent
architectureof theuniversityof michigandigital library. IEE
Transactionson Software Engineering, 144(1):61–71,Febru-
ary1997.

[7] O.Etzioni.Moving uptheinformationfoodchain:Deploying
softbotson theworld-wideweb. In Proceedingsof theThir-
teenthNationalConferenceon Artificial Intelligence(AAAI-
96), Portland,OR,1996.

[8] I. FergusonandM. Wooldridge.Payingtheir way: Commer-
cial digital librariesfor thetwenty-firstcentury. dLib Maga-
zine: TheJournal of Digital Library Research, June1997.

[9] The Foundation for Intelligent Physical Agents. See
http://drogo.cselt.stet.it/fipa/.

[10] S. Franklin and A. Graesser. Is it an agent,or just a pro-
gram? In J. P. Müller, M. Wooldridge,andN. R. Jennings,
editors,IntelligentAgentsIII (LNAI Volume1193), pages21–
36.Springer-Verlag:Berlin, Germany, 1997.

[11] M. P. Georgeff and A. L. Lansky. Reactive reasoningand
planning. In Proceedingsof the SixthNational Conference
on Artificial Intelligence(AAAI-87), pages677–682,Seattle,
WA, 1987.

[12] M. P. Georgeff andA. S.Rao. A profile of theAustralianAI
Institute. IEEEExpert, 11(6):89–92,December1996.

[13] N. R. Jennings,J. Corera, I. Laresgoiti, E. H. Mamdani,
F. Perriolat,P. Skarek,and L. Z. Varga. Using ARCHON
to develop real-world DAI applicationsfor electricity trans-
portationmanagementandparticleacceleratorcontrol. IEEE
Expert, dec1996.

[14] N. R. Jennings,J. M. Corera,andI. Laresgoiti. Developing
industrialmulti-agentsystems.In Proceedingsof theFirst In-
ternationalConferenceon Multi-AgentSystems(ICMAS-95),
pages423–430,SanFrancisco,CA, June1995.

[15] N. R. Jenningsand M. Wooldridge. Applying agenttech-
nology. In N. R. Jenningsand M. Wooldridge, editors,
Agent-basedcomputing:MarketsandApplications. Springer-
Verlag:Berlin, Germany, 1998.

[16] J. O. Kephart, T. Hogg, and B. A. Huberman. Dynam-
ics of computationalecosystems:Implicationsfor DAI. In
L. GasserandM. Huhns,editors,DistributedArtificial Intel-
ligenceVolumeII , pages79–96.PitmanPublishing:London
andMorganKaufmann:SanMateo,CA, 1989.

[17] Ovum Ltd. Intelligent agents:The next revolution in soft-
ware,1994.

[18] J. Mayfield, Y. Labrou,andT. Finin. EvaluatingKQML as
an agentcommunicationlanguage.In M. Wooldridge,J. P.
Müller, and M. Tambe,editors,Intelligent AgentsII (LNAI
Volume1037), pages347–360.Springer-Verlag:Berlin, Ger-
many, 1996.

[19] The Object Management Group (OMG).
http://www.omg.org/.

[20] A. S. RaoandM. P. Georgeff. Asymmetrythesisandside-
effect problemsin linear time andbranchingtime intention
logics. In Proceedingsof theTwelfthInternationalJoint Con-
ferenceon Artificial Intelligence(IJCAI-91), pages498–504,
Sydney, Australia,1991.

[21] L. Steels. Cooperationbetweendistributed agentsthrough
self organization. In Y. Demazeauand J.-P. Müller, edi-
tors,DecentralizedAI — Proceedingsof the First European
WorkshoponModellingAutonomousAgentsin a Multi-Agent
World (MAAMAW-89), pages175–196.Elsevier SciencePub-
lishersB.V.: Amsterdam,TheNetherlands,1990.

[22] B. F. Webster. Pitfalls of Object-OrientedDevelopment.
M&T Books(New York), 1995.

[23] M. Wooldridge. Agent-basedsoftware engineering. IEE
Transactionson Software Engineering, 144(1):26–37,Febru-
ary1997.

[24] M. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice. The Knowledge EngineeringReview,
10(2):115–152,1995.

