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It is our thesis that scalable synchronization can be achieved with only mini-

mal hardware support, speci�cally read/write atomicity. This is contrary to the

conventional viewpoint that stronger hardware support is required for scalable

synchronization; such support not only requires additional cost, but also leads

to portability problems.

As evidence in support of our thesis, we present a new scalable mutual ex-

clusion algorithm based on read and write instructions. The performance of this

algorithm is better than prior mutual exclusion algorithms based on read/write

atomicity, and even rivals that of the fastest mutual exclusion algorithms that

require stronger primitives. Our algorithm is based on the technique of local

spinning, i.e., busy-waiting on variables that are locally-accessible to the wait-

ing process. Local-spinning minimizes remote accesses of shared memory, which

tend to dominate performance under heavy contention.



An obvious question left open by the algorithm described above is whether

it is possible to synchronize even more e�ciently using only reads and writes.

We partially address this question by investigating time bounds for the mutual

exclusion problem. These time bounds are based on a time complexity measure

that counts only remote accesses of shared variables; local accesses are ignored.

Our time bounds establish trade-o�s between time complexity and \write-"

and \access-contention". The write- (access-contention) of a concurrent program

is the number of processes that may be simultaneously enabled to write (access)

the same shared variable. We show that, for any N -process mutual exclusion

algorithm, if write-contention is w, and if at most v remote variables can be

accessed atomically, then there exists an execution involving only one process

in which that process executes 
(log
vw
N) remote operations for entry into its

critical section. We further show that, among these operations, 
(
q
log

vw
N)

distinct remote variables are accessed. For algorithms with access-contention c,

we show that the latter bound can be improved to 
(log
vc
N). These results

imply that our mutual exclusion algorithm is optimal if write-contention is lim-

ited to a constant; it remains an open problem whether better time complexity

can be achieved with higher write-contention in algorithms based on read/write

atomicity. It is worth noting that the time bounds that we establish apply to a

wide class of synchronization primitives, not just reads and writes.

Since most scalable synchronization algorithms that have been proposed are

based on local-spin techniques, it is natural to seek to determine the neces-

sary level hardware support for the use of such techniques. We show that on

distributed shared memory machines, only weak hardware support is required,

namely atomic read and write instructions. In particular, we show that any



shared object can be implemented on such machines from single-reader, single-

writer boolean variables using local-spin techniques. These results provide fur-

ther evidence in support of our thesis that only minimal hardware support is

required for scalable synchronization.
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Chapter 1

Introduction

Advances in hardware technology have made processors faster and more a�ord-

able than ever. Although the current crop of processors are much faster than

older ones, a single processor cannot always meet the ever-increasing demand

for more processing power. For this reason, considerable research e�ort has been

concentrated on the utilization of multiple processors. As a result of such e�orts,

a variety of multiprocessing systems are commercially available today.

If a multiprocessing system supports a single address space by hardware,

then it is called a shared-memory multiprocessor. Otherwise, i.e., if a multipro-

cessing system has multiple address spaces, then it is called a message-passing

multiprocessor, or simply a multicomputer. In this dissertation, we focus on

shared-memory multiprocessors.

In a shared memory concurrent program, a collection of sequential programs

called processes cooperate with each other by sharing variables in a commonly-

accessible memory. The execution of such a program may be considered as an

interleaving of the executions of its component processes. When processes inter-

act, not all possible interleavings are desirable. In such instances, processes must
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be synchronized to prevent unacceptable interleavings [10]. Synchronization is

not without its cost; it almost always decreases the level of concurrency, and

hence degrades performance. A synchronization algorithm is said to be scalable

if increasing the number of processes to be synchronized does not degrade perfor-

mance dramatically. Scalable synchronization methods are of great importance

in concurrent programming. In many applications, ine�cient synchronization

may defeat the purpose of employing multiple processors, namely executing a

program faster. In this thesis, we develop synchronization methods that can

be e�ciently used even when a large number of processes need to be synchro-

nized, and investigate fundamental costs of synchronization in shared-memory

multiprocessing systems.

The rest of the chapter is organized as follows. In Section 1.1 a simple de-

scription of shared-memory multiprocessors is given. Past research on synchro-

nization is surveyed in Section 1.2. Finally, Section 1.3 summarizes the results

of the thesis.

1.1 Shared-Memory Multiprocessors

A shared-memory multiprocessing system consists of a set of processors, a set of

memory modules, and an interconnection network. In shared-memory multipro-

cessing systems, all memorymodules form a single address space. In other words,

all processors may access every location in every memory module. The single

address space relieves programmers from problems of data partitioning, which

are known to be some of the most di�cult problems in programming parallel ma-

chines. The shared address space also provides better support for parallelizing
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compilers, multiprogramming, and standard operating systems. These features

make a shared-memorymultiprocessor easier to program than a message-passing

machine [41].

In the rest of this section, we brie
y discuss two architectural paradigms for

shared-memory multiprocessors, namely distributed shared memory and cache-

coherent memory, and examine some multiprocessors that adopt such paradigms.

Distributed Shared Memory Machines

3



A distributed shared-memory multiprocessor is depicted in Figure 1.1. Each

processor has its own memory module, which is connected by a private data

path. Other processors may access the memory module only by traversing the

global interconnection network. Distributing memory with the processors is

desirable because it enables programs to exploit locality. Some references to

shared variables and all references to private variables and codes can be made

local to each processor. These references are served without the longer latency

of remote references, resulting in reduced bandwidth demands on the global

interconnect [41].

The BBN TC2000 is an example of a distributed shared-memory multipro-

cessor [13]. The TC2000 consists of a number of nodes, each of which contains

a processor and a memory unit. The nodes are connected via a multi-stage

interconnection network, known as the Butter
y switch. Each access to a re-

mote memory location (i.e., one that requires a traversal of the interconnec-

tion network) takes about 2 microseconds, whereas each local reference takes

about 0.6 microseconds. Each node's processor, a Motorola 88100, provides an

atomic fetch-and-store instruction called xmem as a synchronization primitive.

The TC2000 has cache memory for private data, but does not provide a cache

coherence mechanism for shared data.

Coherent-Cache Machines

In Figure 1.2, a cache-coherent multiprocessor is depicted. Each processor is

equipped with its own cache. If a variable in some memory module is accessed

by a processor for the �rst time, it is copied into the accessing processor's cache.

Further accesses to the variable by the same processor may be served by the lo-
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cal cache. Caching techniques enable shared-memory multiprocessors to achieve

better performance by reducing memory latency. However, caching shared vari-

ables may introduce inconsistent copies of a shared variable. In order to maintain

consistency among multiple copies of a variable (in a memory module and possi-

bly multiple caches), a cache-coherence protocol must be provided by hardware,

or by software, or by a combination of both [11, 15, 19]. When a new value is

written to a cached variable, a cache-coherence protocol either invalidates other

copies of the variable, or updates those copies to the new value.

The Sequent Symmetry is an example of a cache-coherent shared-memory

multiprocessor [55]. On the Symmetry, the processors and memory nodes are

interconnected via a shared bus. In other words, all processors, memorymodules,

and I/O controllers plug into a single bus. A processor node consists of an Intel
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80386 or Intel 80486 and a 64 Kbyte, two-way set-associative cache. Cache

coherence is maintained by a snoopy protocol. Snoopy protocols are almost

always adopted in shared bus machines. Under this protocol, every cache snoops

the tra�c on the shared bus. If a variable is written, every processor that has a

copy of that variable in its local cache either invalidates or updates its copy.

The Kendall Square Research KSR1 multiprocessor is another example of a

cache-coherent shared-memorymultiprocessor [35]. The interconnection network

of the KSR1 is formed of hierarchical rings. Scalability is achieved by connecting

32 processors to a ring that operates at one GB/sec. Interconnection bandwidth

within a ring scales linearly, because every ring slot may contain a transaction

[14]. The current KSR1 machine uses a two level hierarchy to interconnect 34

rings, and scales up to 1088 processors. As the hierarchical ring may have an

arbitrary number of levels, more processors could be added.

A unique feature of the KSR1 multiprocessor is its ALLCACHE1 mechanism.

The operation of the ALLCACHE mechanism is similar to that of other coherent

caches: data is transferred to a processor's local cache when accessed by that

processor. The di�erence is that the memory of all the processors is part of a

40-bit virtual address space managed as a cache. In other words, there is no

typical main memory other than caches. This is sometimes called a cache only

memory architecture (COMA). The ring is used to convey cache lines to service

cache misses.

1ALLCACHE is a registered trademark of Kendall Square Research
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Other Shared-Memory Multiprocessors

Observe that, in both architectural paradigms described above, some memory

location may be closer to a processor than other memory locations. More pre-

cisely, the time to access memory is not uniform. A remote memory access

requires a traversal of the global interconnect between processors and shared

memory, while a local or cache access does not. So, local memory accesses or

cache accesses are much faster than remote memory accesses.

In fact, the above two paradigms { distributed shared memory and cache-

coherent memory { provide a means to exploit locality in programs, and both

may be adopted in the same system. The DASH multiprocessor is an example of

such a system [41]. The DASH machine is a shared-memory multiprocessor that

provides a single address space with a distributed memory and coherent caches.

Most commercialmultiprocessors with coherent caches, including the Sequent

Symmetry, rely on snooping to maintain coherence. However, straightforward

snooping schemes require that all caches observe every memory request from

every processor. This results in limited scalability because the common bus and

the individual processor caches easily saturate.

A directory-based cache coherence scheme is adopted in DASH to avoid the

scalability problem of snoopy schemes. This scheme eliminates the need to broad-

cast every memory request to all processor caches [40]. The directory keeps a

record of the processor caches that hold a copy of each memory block. Because

only the caches with copies may be a�ected by accesses to the memory block, only

those caches need be noti�ed of such accesses. Thus, such noti�cations can be

handled by point-to-point messages, instead of broadcasts. Unlike most snoopy

schemes that depend on shared buses, the directory-based coherence mechanism
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is not dependent on any speci�c interconnection network, and hence may employ

scalable, low-latency networks such as Omega networks or k-ary n-cubes used

by non-cache-coherent and message-passing machines.

1.2 A History of Synchronization

In the design of any shared-memory multiprocessing system, provisions must be

made for the implementation of atomic operations. An operation is atomic if its

execution is semantically indivisible, i.e., if it \appears" to take e�ect instanta-

neously. A related notion is the concept of \granularity": an operation is said

to be �ne-grained if it can be easily implemented in terms of low-level machine

instructions, and is said to be coarse-grained otherwise. The notion of granu-

larity is inherently architecture-dependent. For example, on a shared-memory

multiprocessor that provides only atomic reads and writes as synchronization

primitives, read and write operations that access a single memory location are

usually taken to be �ne-grained, whereas operations that access multiple mem-

ory locations or that perform multiple reads or writes to a given location are

considered coarse-grained.

When implementing coarse-grained atomic operations from �ne-grained ones,

it is necessary to ensure that coarse-grained operations of di�erent processes do

not adversely interfere with one another. Typically, such interference is pre-

vented by implementing coarse-grained operations as \critical sections". Such an

implementation requires the existence of a synchronization protocol for ensuring

that critical sections are executed fairly and in a mutually exclusivemanner. The

problem of designing such a protocol has come to be regarded as one of the most
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fundamental problems in concurrent programming, i.e., the well-known mutual

exclusion problem. Algorithms that provide mutual exclusion by busy-waiting

are commonly called spin locks.

The mutual exclusion problem was �rst formally stated and solved in a semi-

nal paper by Dijkstra [21]. In this problem, each of a set of processes repeatedly

executes a program fragment known as its critical section. Before executing its

critical section, a process must �rst execute another program fragment, its \entry

section", and upon termination of its critical section, a third program fragment,

its \exit section". The entry and exit sections must be designed so that (i) at

most one process executes its critical section at any time, and (ii) each process in

its entry section eventually executes its critical section. The former is known as

the mutual exclusion property, and the latter is known as the starvation-freedom

property. In some variants of the problem, starvation-freedom is replaced by the

weaker requirement of livelock-freedom: if some process is in its entry section,

then some process eventually executes its critical section.

Dijkstra's original solution is depicted in Figure 1.3. His algorithm satis�ed

the livelock-freedomproperty, but not the starvation-freedom property. The �rst

starvation-free solution was presented by Knuth in [34]. Of the many early solu-

tions to the mutual exclusion problem, most are quite complicated and di�cult to

understand. A notable exception is an especially simple solution �rst presented

by Peterson in [50] and later re�ned by Kessels in [32]. The approach taken by

Kessels was to �rst solve the mutual exclusion problem for two processes, and

to then use the two-process solution in a binary arbitration tree to solve the N -

process case. Kessels' algorithm was the �rst solution that required fewer than

O(N) operations per critical section execution in the absence of contention.
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shared var B; C : array[0::N � 1] of boolean;

K : 0::N � 1;

initially (8i :: B[i] = true ^ C[i] = true)

process i

private var j : 0::N ;

while true do

Noncritical Section;

B[i] := false ;

LOOP: if K 6= i then

C[i] := true;

if B[K] then K := i �;

goto LOOP

else

C[i] := false ;

j := 0;

while (j < N) do

if j 6= i ^ :C[j] then goto LOOP �;

j := j + 1

od

�;

Critical Section;

C[i] := true;

B[i] := true

od

Figure 1.3: Dijkstra's mutual exclusion algorithm.

10



Early solutions to the mutual exclusion problem, including all of the algo-

rithms mentioned so far, required only minimal hardware support, speci�cally

atomic read and write instructions. Unfortunately, such early solutions su�ered

from two serious shortcomings: �rst, nearly all were rather daunting from a

conceptual standpoint; second, most require the execution of many instructions,

even when there is no contention at all between processes. The need for sim-

pler and faster solutions to the mutual exclusion problem ultimately resulted in

the design of multiprocessing systems with synchronization mechanisms that are

more sophisticated than simple reads and writes, and correspondingly, solutions

to the mutual exclusion problem based on these new mechanisms. Examples of

such mechanisms | hereafter called strong primitives | include the fetch-and-

store, compare-and-swap, and fetch-and-add instructions.

Early solutions based on strong primitives, such as the familiar test-and-

set lock, were conceptually simple, but resulted in somewhat poor performance.

More recently, queue-based spin locks have been proposed by Anderson [9], by

Graunke and Thakkar [26], and by Mellor-Crummey and Scott [45] that exhibit

better performance; these locks are implemented using fetch-and-add, fetch-and-

store, or compare-and-swap instructions, respectively. These algorithms exhibit

good scalability when used on multiprocessors that permit shared variables to be

locally accessible, as is the case if coherent caching schemes are employed, or if

shared variables can be allocated in a local portion of distributed shared memory.

The key to their performance is the idea of local spinning, i.e., busy-waiting on

variables that are locally-accessible to the waiting process. By relying on local

spinning as the sole mechanism by which processes wait, these algorithms induce

minimal memory and interconnect contention. This stands in sharp contrast to
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the case of earlier locking algorithms, such as Dijkstra's in Figure 1.3, in which

processes busy-wait on nonlocal memory locations.

In addition to the software-based solutions to the mutual exclusion problem

described above, a number of hardware-based implementations have been pro-

posed. Of particular interest are the solutions given by Goodman, Vernon, and

Woest in [25], and by Lee and Ramachandran in [39], which exploit underlying

cache coherence mechanisms. These implementations involve the construction of

a distributed queue in hardware. The basic idea is to form a queue of processes

contending for the lock by having each processor spin on its own cache line; this

technique avoids the generation of unnecessary interconnect tra�c.

1.3 Summary of Results

The goal of this dissertation is to determine the hardware support required for

scalable synchronization in shared-memory multiprocessors. It is our thesis that

scalable synchronization can be achieved with only minimal hardware support,

speci�cally read/write atomicity. This is contrary to the conventional viewpoint

that stronger hardware support, which resulted in additional cost and portability

problems, is necessary for scalable synchronization.

In this dissertation, the time complexity of a concurrent program is measured

by counting only remote accesses of shared variables; local accesses are ignored.

This complexity measure is proposed as a new metric of scalability. As evidence

in support of our thesis, we present a new scalable mutual exclusion algorithm

based on read and write instructions whose time complexity is better than that

of any other mutual exclusion algorithms based on read/write atomicity. The

12



performance of this algorithm rivals that of the fastest mutual exclusion algo-

rithms that require stronger primitives. Our algorithm is based on the technique

of local spinning, i.e., busy-waiting on variables that are locally-accessible to the

waiting process.

An obvious question left open by the algorithm described above is whether it

is possible to synchronize even more e�ciently using only reads and writes. We

partially address this question by investigating time bounds for mutual exclu-

sion problem. Our time bounds establish trade-o�s between time complexity and

\write-" and \access-contention". The write- (access-contention) of a concurrent

program is the number of processes that may be simultaneously enabled to write

(access) the same shared variable. We show that, for any N -process mutual ex-

clusion algorithm, if write-contention is w, and if at most v remote variables can

be accessed atomically, then there exists an execution involving only one process

in which that process executes 
(log
vw
N) remote operations for entry into its

critical section. We further show that, among these operations, 
(
q
log

vw
N)

distinct remote variables are accessed. For algorithms with access-contention c,

we show that the latter bound can be improved to 
(log
vc
N). These results

imply that our mutual exclusion algorithm is optimal if write-contention is lim-

ited to a constant; it remains an open problem whether better time complexity

can be achieved with higher write-contention in algorithms based on read/write

atomicity. Our results apply to wide classes of synchronization primitives, not

just reads and writes.

Since most scalable synchronization algorithms that have been proposed are

based on local-spin techniques, it is natural to seek to determine the \right" level

hardware support for the use of such techniques. We show that from a compu-

13



tational standpoint, only weak hardware support is required, namely atomic

read and write instructions. In particular, we show that any atomic operation

can be implemented using only read and write instructions and local spinning.

These results provide further evidence in support of our thesis that only minimal

hardware support is required for scalable synchronization.

We now consider the main contributions of this dissertation in more details.

Scalable Mutual Exclusion Algorithms. In Chapter 2, we present a new

scalable mutual exclusion algorithm based on read and write instructions. We

also present an interesting extension of this algorithm. In this extension, only a

constant number of memory references are required for acquiring a lock in the ab-

sence of contention. Our algorithms are based on the local-spin synchronization

techniques.

In order to formally study the scalability of concurrent programs, we propose

a time complexity measure for concurrent programs that captures the commu-

nication overhead in synchronization algorithms. Under our proposed measure,

the complexity of a concurrent program is measured by counting only remote

accesses of shared variables; local accesses are ignored. This measure satis�es

two criteria that must be met by any reasonable complexity measure. First,

it is conceptually simple. In fact, this measure is a natural descendent of the

standard time complexity measure used in sequential programming. Second, as

demonstrated by a number of published performance studies, this measure has a

tangible connection with real performance. All other proposed time complexity

measures for concurrent programs that we know of fail to satisfy at least one of

these criteria.

Our mutual exclusion algorithm has O(logN) time complexity using the pro-
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posed measure. The time complexity of this algorithm is better than that of all

prior solutions to the mutual exclusion problem that are based upon atomic read

and write instructions. Performance studies conducted on the BBN TC2000 and

Sequent Symmetry multiprocessors indicate that our algorithms exhibit scal-

able performance under heavy contention. In fact, our spin lock algorithm out-

performs all prior algorithms based on read/write atomicity, and its performance

under heavy contention rivals that of the fastest queue-based locks that employ

strong primitives such as compare-and-swap or fetch-and-add.

Time/Contention Trade-O�s for Multiprocessor Synchronization. In

Chapter 3, we investigate the costs inherent to synchronization in shared-memory

multiprocessing systems. In particular, we show that there are trade-o�s be-

tween contention and communication, which fundamentally limit the scalability

of synchronization algorithms.

The amount of communication in a concurrent program is captured by using

the complexity measure proposed in Chapter 2, i.e., by counting remote memory

references.

On many large scale shared-memory multiprocessors, multistage intercon-

nection networks are employed to get a high bandwidth connection between

processors and memory modules. P�ster and Norton [53] have shown that when

many processors request access to the same memory location, making it a highly

contended variable called hot spot, a tree-shaped saturation builds up in the in-

terconnection network, resulting in performance degradation not only for those

processors accessing the hot spot, but other processors as well.

To formally model contention for shared memory locations, we de�ne the

write- (access-contention) of a concurrent program as the number of processes
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that may be simultaneously enabled to write (access) the same shared variable.

Programs with high write- or access-contention are susceptible to hot spot con-

tention.

In Chapter 3, we show that, for any N -process mutual exclusion algorithm,

if write-contention is w, and if at most v remote variables can be accessed atom-

ically, then there exists an execution involving only one process in which that

process executes 
(log
vw
N) remote operations for entry into its critical section.

We further show that, among these operations, 
(
q
log

vw
N) distinct remote

variables are accessed. For algorithms with access-contention c, we show that

the latter bound can be improved to 
(log
vc
N).

These results have a number of important implications. For example, the

latter two bounds imply that a communication/contention trade-o� exists even

if coherent caching techniques are employed. Also, because the execution that

establishes these bounds involves only one process, it follows that so-called fast

mutual exclusion algorithms | i.e., algorithms that require a process to execute

only a constant number of memory references in the absence of competition |

require arbitrarily high write-contention in the worst case. Because the com-

petition for critical section is likely to be low in many well-designed systems,

achieving fast mutual exclusion in the absence of competition is of great practi-

cal interest [37].

In most shared-memorymultiprocessors, an atomic operation may access only

a constant number of remote variables. In fact, most commonly-available syn-

chronization primitives (e.g., read, write, test-and-set, fetch-and-store, compare-

and-swap, and fetch-and-add) access only one remote variable. In this case, the

�rst and the last of our bounds are asymptotically tight. These results also show
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that our N -process �(log2N) mutual exclusion algorithm based on read/write

atomicity is optimal. This algorithm has access-contention (and hence write-

contention) two.

Hardware Support for Scalable Synchronization. In Chapter 4, we turn

our attention to implementations of shared objects based on critical sections. In

particular, we investigate the applicability of local-spin techniques within such

implementations.

The conventional viewpoint is that powerful hardware-based mechanisms are

required for scalable implementations of atomic operations. This conventional

viewpoint has led to the design of multiprocessing systems with synchronization

mechanisms that are stronger than atomic reads and writes, and has resulted

in implementation techniques based on these mechanisms. Such mechanisms,

however, require additional hardware support. For example, Silicon Graphics'

PowerSeries machines are built using a multiple number of R2000/R3000 micro-

processors, which do not have any strong primitives. In order to implement test-

and-set, a synchronization memory with a special interconnect was inevitably

developed [24]. In addition, algorithms based on strong primitives may be inef-

�cient on machines that do not support such primitives in hardware. Because

di�erent architectures are likely to provide di�erent sets of strong primitives,

algorithms based on such primitives are often of limited portability.

In Chapter 4, we call into question the assumption that such costs are in-

evitable. Speci�cally, we show that very weak hardware support is su�cient for

local-spin synchronization. In this chapter, we prove that any shared objects,

no matter how complicated, can be implemented without global busy-waiting

from single-reader, single-writer, boolean variables, in distributed shared mem-
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ory multiprocessors.

In Chapter 5, we summarize the results obtained in this dissertation and

suggest directions for future research.
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Chapter 2

Scalable Mutual Exclusion Algorithms

2.1 Introduction

Most early solutions to the mutual exclusion problem required only minimal

hardware support, speci�cally atomic read and write instructions. Although

of theoretical importance, most such algorithms were judged to be impractical

from a performance standpoint, leading to the development of solutions requir-

ing stronger hardware support such as read-modify-write operations. The poor

performance of early read/write algorithms stems partially from two factors.

First, such algorithms are not scalable, i.e., performance degrades dramatically

as the number of contending processes increases. Second, even in the absence of

contention, such algorithms require a process contending for its critical section

to execute many operations.

The second of these two problems has subsequently been addressed, specif-

ically by Lamport in [37], where a read/write algorithm is given that requires

only a constant number of operations per critical section acquisition in the ab-

sence of contention. Following the title of Lamport's paper, such algorithms
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have come to be known simply as \fast mutual exclusion algorithms". This des-

ignation is somewhat of a misnomer, as such algorithms are not necessarily fast

in the presence of contention. In fact, the problem of designing a scalable algo-

rithm requiring only read/write atomicity has remained open. In this chapter,

we present such an algorithm.

In a recent paper [6], Anderson presented a mutual exclusion algorithm that

uses only local spins and that requires only atomic read and write operations. In

his algorithm, each of N processes executes O(N) remote operations to enter its

critical section whether there is contention or not. All other previously published

mutual exclusion algorithms that are based on atomic reads and writes employ

global busy-waiting and hence induce an unbounded number of remote opera-

tions under heavy contention. Most such algorithms also require O(N) remote

operations in the absence of contention. Some exceptions to the latter include

the algorithm given by Kessels in [32] and the previously mentioned one given by

Lamport in [37]. Kessels' algorithm generates O(logN) remote operations in the

absence of contention, while Lamport's generates O(1). A variant of Lamport's

algorithm has recently been presented by Styer in [56]. Although Styer claims

that his algorithm is more scalable than Lamport's, in terms of time complexity,

they are actually very similar: both generate unbounded remote operations un-

der heavy contention and O(1) operations in the absence of contention. Styer's

claims of scalability are predicated upon complexity calculations that ignore op-

erations performed within busy-waiting constructs. Because the processes in his

algorithm busy-wait on remote variables, such complexity calculations do not

give a true indication of scalability. Another recent algorithm of interest is one

given by Michael and Scott in [47]. Although this algorithm generates O(N)
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remote memory references in the presence of contention and O(1) in the absence

of contention, it requires both full- and half-word reads and writes to memory,

which is a level of hardware support more powerful than ordinary read/write

atomicity.

In this chapter, we present a new mutual exclusion algorithm that requires

only atomic reads and writes and in which all spins are local. Our algorithm

induces O(logN) remote operations under any amount of contention, and thus

is an improvement over the algorithm given by Anderson in [6]. We also present

a modi�ed version of this algorithm that requires only O(1) remote operations

in the absence of contention. Unfortunately, in this modi�ed algorithm, worst-

case complexity rises to O(N). However, we argue that this O(N) behavior

is rare, occurring only when transiting from a period of high contention to a

period of low contention. Under high contention, this modi�ed algorithm induces

only O(logN) remote operations. It is worth noting that our algorithm and its

variation are starvation-free, whereas some of the aforementioned algorithms are

not.

The rest of the chapter is organized as follows. In Section 2.2, we present

our model of concurrent programs. The above-mentioned mutual exclusion al-

gorithm is then presented in Section 2.3, and its correctness proof is given in

Section 2.4. In Section 2.5, we consider the modi�ed version of the algorithm

discussed above. In Section 2.6, we present results from performance studies

conducted on the BBN TC2000 and Sequent Symmetry multiprocessors. These

studies indicate that our mutual exclusion algorithm exhibits scalable perfor-

mance under heavy contention. We end the chapter with a short discussion in

Section 2.7.
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2.2 De�nitions

In this section, we present our model of concurrent programs and de�ne the

relations used in reasoning about such programs. A concurrent program consists

of a set of processes and a set of variables. A process is a sequential program

consisting of labeled statements. Each variable of a concurrent program is either

private or shared. A private variable is de�ned only within the scope of a single

process, whereas a shared variable is de�ned globally and may be accessed by

more than one process. Each process of a concurrent program has a special

private variable called its program counter : the statement with label k in process

p may be executed only when the value of the program counter of p equals k.

For an example of the syntax we employ for programs, see Figure 2.1.

A program's semantics is de�ned by its set of \fair histories". The de�nition

of a fair history, which is given below, formalizes the requirement that each

statement of a program is subject to weak fairness. Before giving the de�nition

of a fair history, we introduce a number of other concepts; all of these de�nitions

apply to a given concurrent program.

A state is an assignment of values to the variables of the program. One or

more states are designated as initial states. If state u can be reached from state

t via the execution of statement s, then we say that s is enabled at state t and

we write t
s

!u. If statement s is not enabled at state t, then we say that s is

disabled at t. A history is a sequence t0
s0
!t1

s1
!� � �, where t0 is an initial state.

A history may be either �nite or in�nite; in the former case, it is required that

no statement be enabled at the last state of the history. A history is fair if

it is �nite or if it is in�nite and each statement is either disabled at in�nitely

many states of the history or is in�nitely often executed in the history. Note
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that this fairness requirement implies that each continuously enabled statement

is eventually executed. Unless otherwise noted, we henceforth assume that all

histories are fair.

With regard to complexity, we assume that each shared variable is local to

at most one process and is remote to all other processes. This assumption

is re
ective of a distributed shared memory model. We refer to a statement

execution as an operation. An operation is remote if it accesses remote variables,

and is local otherwise.

Following [20], we de�ne safety properties using unless assertions and progress

properties using leads-to assertions. Consider two predicates P and Q over the

variables of a program. The assertion P unless Q holds i� for any pair of

consecutive states in any history of the program, if P ^ :Q holds in the �rst

state, then P _ Q holds in the second. If predicate P is initially true and if

P unless false holds, then predicate P is said to be an invariant . We say that

predicate P leads-to predicateQ, denoted P 7! Q, i� for each history t0
s0
!t1

s1
!� � �

of the program, if P is true at some state ti, then Q is true at some state tj where

j � i.

2.3 Mutual Exclusion Algorithm

In this section, we present our mutual exclusion algorithm. First, we state more

precisely the conditions that must be satis�ed by such an algorithm. In the

mutual exclusion problem, there are N processes, each of which has the following

structure.
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while true do

Noncritical Section;

Entry Section;

Critical Section;

Exit Section

od

It is assumed that each process begins execution in its noncritical section. It

is further assumed that each critical section execution terminates. By contrast,

a process is allowed to halt in its noncritical section. No variable appearing in

any entry or exit section may be referred to in any noncritical or critical section

(except, of course, program counters). A program that solves this problem is

required to satisfy the mutual exclusion and starvation-freedom properties, given

earlier in Section 1.2. As shown in Section 2.4, mutual exclusion can be stated

formally as an invariant, and starvation-freedom as a leads-to property. We

also require that each process in its exit section eventually enters its noncritical

section; this requirement is trivially satis�ed by our solution (and most others),

so we will not consider it further.

As in [32], we �rst solve the mutual exclusion problem for two processes,

and then apply our two-process solution in a binary arbitration tree to get an

N -process solution. The two-process algorithm is depicted in Figure 2.1. The

two processes are denoted u and v, which are assumed to be distinct, positive

integer values.

The algorithm employs �ve shared variables, C[u], C[v], T , P [u], and P [v].

Variable C[u] ranges over f0; u; vg and is used by process u to inform process v

of its intent to enter its critical section. Observe that C[u] = u 6= 0 holds while
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shared var C : array[u; v] of f0; u; vg;

P : array[u; v] of 0::2;

T : fu; vg

initially C[u] = 0 ^ C[v] = 0 ^ P [u] = 0 ^ P [v] = 0

process u process v

while true do =� symmetric to process id �=

0: Noncritical Section;

1: C[u] := u;

2: T := u;

3: P [u] := 0;

4: if C[v] 6= 0 then

5: if T = u then

6: if P [v] = 0 then

7: P [v] := 1 �;

8: while P [u] = 0 do =� null �= od;

9: if T = u then

10: while P [u] � 1 do =� null �= od �

�

�;

11: Critical Section;

12: C[u] := 0;

13: if T 6= u then

14: P [v] := 2 �

od

Figure 2.1: Two-process mutual exclusion algorithm.

process u executes its statements 2 through 12, and C[u] = 0 holds otherwise.

Variable C[v] is used similarly. Variable T ranges over fu; vg and is used as

a tie-breaker in the event that both processes attempt to enter their critical

sections at the same time. The algorithm ensures that the two processes enter

their critical sections according to the order in which they update T . Variable

P [u] ranges over f0; 1; 2g and is used by process u whenever it needs to busy-

wait. Note that P [u] is waited on only by process u, and thus can be stored in

a memory location that is locally accessible to process u (in which case all spins
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are local). Variable P [v] is used similarly by process v.

Loosely speaking, the algorithm works as follows. When process u wants

to enter its critical section, it informs process v of its intention by establishing

C[u] = u. Then, process u assigns its identi�er u to the tie-breaker variable T ,

and initializes its spinning location P [u]. If process v has not shown interest in

entering its critical section, in other words, if C[v] = 0 holds when u executes

statement 4, then process u proceeds directly to its critical section. Otherwise, u

reads the tie-breaker variable T . If T 6= u, which implies that T = v, then u can

enter its critical section, as the algorithm prohibits v from entering its critical

section when C[u] = u ^ T = v holds (recall that ties are broken in favor of

the �rst process to update T ). If T = u holds, then either process v executed

statement 2 before process u, or process v has executed statement 1 but not

statement 2. In the �rst case, u should wait until v exits its critical section,

whereas, in the second case, u should be able to proceed to its critical section.

This ambiguity is resolved by having process u execute statements 6 through 10.

Statements 6 and 7 are executed by process u to release process v in the event

that it is waiting for u to update the tie-breaker variable (i.e., v is busy-waiting

at statement 8). Statements 8 through 10 are executed by u to determine which

process updated the tie-breaker variable �rst. Note that P [u] � 1 implies that v

has already updated the tie-breaker, and P [u] = 2 implies that v has �nished its

critical section. To handle these two cases, process u �rst waits until P [u] � 1

(i.e., until v has updated the tie-breaker), re-examines T to see which process

updated T last, and �nally, if necessary, waits until P [u] = 2 (i.e., until process

v �nishes its critical section).

26



shared var C : array[0:: log2N � 1; 0::N � 1] of � 1::N � 1;

P : array[1:: log2N � 1; 0::N � 1] of 0::2;

T : array[0:: log2N � 1; 0::N � 1] of 0::N � 1

initially (8j; i : 0 � j < log2N :: C[j; i] = �1 ^ P [j; i] = 0)

de�ne (8l : 0 � l < N :: comp(l) � if even(l) then l + 1 else l� 1 �)

process i

private var rival : �1::N � 1;

j : 0:: log2N ;

k : 0::(N � 1)=2;

l : 0::N � 1

initially j = 0 ^ k = i=2 ^ l = i

Figure 2.2: Variable declarations for N -process mutual exclusion algorithm.

After executing its critical section, process u informs process v that it is

�nished by establishing C[u] = 0. If T = v, in which case process v is waiting to

enter its critical section, then process u updates P [v] in order to terminate v's

busy-waiting loop.

As discussed above, the N -process case is solved by applying the above two-

process algorithm in a binary arbitration tree. The resulting algorithm is shown

in Figures 2.2 and 2.3. In this �gures, process identi�ers range over f0::N � 1g,

and for notational convenience, N is assumed to be a power of 2. Associated

with each link in the tree is an entry section and an exit section. The entry and

exit sections associated with the two links connecting a given node to its sons

constitute a two-process mutual exclusion algorithm. Initially, all processes start

at the leaves of the tree. To enter its critical section, a process is required to

traverse a path from its leaf up to the root, executing the entry section of each

27



process i

while true do

0: Noncritical Section;

1: while j < log2N do

2: C[j; l] := i;

3: T [j; k] := i;

4: P [j; i] := 0;

5: rival := C[j; comp(l)];

6: if rival 6= �1 then

7: if T [j; k] = i then

8: if P [j; rival] = 0 then

9: P [j; rival] := 1 �;

10: while P [j; i] = 0 do =� null �= od;

11: if T [j; k] = i then

12: while P [j; i] � 1 do =� null �= od �

�

�;

13: j; k; l := j + 1; i=2j+2; i=2j+1

od;

14: Critical Section;

15: while j > 0 do

16: j; k; l := j � 1; i=2j; i=2j�1

17: C[j; l] := �1;

18: rival := T [j; k];

19: if rival 6= i then

20: P [j; rival] := 2 �

od

od

Figure 2.3: N -process mutual exclusion algorithm.
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link on this path. Upon exiting its critical section, a process traverses this path

in reverse, this time executing the exit section of each link.

As seen in Figures 2.2 and 2.3, each variable of the two-process algorithm

now has an additional subscript giving the appropriate level in the arbitration

tree. As de�ned in Section 2.4, we use x=y to denote truncated integer division,

i.e., bx�yc. The expression comp(l) is used to identify the C-variable of process

i's two-process competitor at each level of the arbitration tree.

Although the concept of a binary arbitration tree is quite simple, one subtle

problem does arise in the implementation. In particular, because each process

waits on a local spin location at each level of the arbitration tree, it is important

that each process knows the precise identity of any competitor within instances

of the two process algorithm. For example, consider an algorithm with four

processes, denoted 0 through 3. In the arbitration tree, process 0 �rst competes

with process 1 at level 0, and then with one of processes 2 and 3 at level 1. At

level 1 in the tree, both processes 2 and 3 access C[1; 1] and T [1; 0]. However,

at this level, each still has a unique spin location, namely P [1; 2] and P [1; 3],

respectively. If process 0 encounters contention when competing at level 1, then

it is important that process 0 knows precisely which of 2 or 3 it is competing

against. Otherwise, for example, process 0 might update the spin location for

process 2, P [1; 2], when in fact it is competing against process 3. This could

result in a violation of either mutual exclusion or starvation-freedom. As seen

in Figures 2.2 and 2.3, this \identity problem" is handled by means of the rival

variable. Because of this problem, the two-process local-spin algorithm given by

Anderson in [6] cannot be readily applied within an arbitration tree to get an

N -process local-spin algorithm.
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With regard to complexity, note that if variable P [i] is local to process i in

the two process algorithm, then process i executes a constant number of remote

operations in its two-process entry and exit sections. It follows that, in the

N -process algorithm, each process executes O(logN) remote operations in its

(N -process) entry and exit sections.

2.4 Correctness Proof

In this section, we prove that the mutual exclusion and starvation-freedom prop-

erties hold for N -process mutual exclusion algorithm of Figures 2.2 and 2.3. A

correctness proof for the simpler two-process algorithm is presented in [60]. We

begin by presenting de�nitions and notational conventions that will be used in

the remainder of the chapter. As in Section 2.3, we assume that the number of

processes N is a power of 2.

Notational Conventions: Unless speci�ed otherwise, we assume that i; p, and

q range over f0::N �1g and that 0 � level < log2N holds. We denote statement

number k of process i as k:i. We use x=y to denote truncated integer division,

i.e., bx�yc. Let S be a subset of the statement labels in process i. Then, i@fSg

holds i� the program counter for process i equals some value in S. The following

is a list of symbols we will use ordered by increasing binding power: �, 7!,), _,

^, (=; 6=; >;<;�;�), +, (�; =), :, (:;@) . The symbols enclosed in parentheses

have the same priority. We sometimes use parentheses to override this binding

rule. 2
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The function comp de�ned in Figure 2.2 has the following properties.

comp(comp(x)) = x (C0)

(C0) directly follows from the de�nition of comp. 2

p=2j = comp(q=2j) ) comp(p=2j ) = q=2j (C1)

The antecedent implies that comp(p=2j ) = comp(comp(q=2j)) holds. By (C0),

the consequent follows. 2

p=2j+1 = q=2j+1 ) p=2j = q=2j _ p=2j = comp(q=2j) (C2)

Let x denotes the value of p=2j+1. By the de�nition of p=2j+1, x � 2j+1 � p <

x � 2j+1 + 2j+1. (Recall that `/' denotes truncated integer division.) The an-

tecedent implies that x �2j+1 � p < x �2j+1+2j+1 ^ x �2j+1 � q < x �2j+1+2j+1.

Dividing by 2j yields 2x � p=2j < 2x + 2 ^ 2x � q=2j < 2x+ 2. This implies

that (p=2j = 2x _ p=2j = 2x+ 1) ^ (q=2j = 2x _ q=2j = 2x+ 1) holds. The

consequent follows from the de�nition of comp(q=2j). 2

p=2j = q=2j _ p=2j = comp(q=2j) ) p=2j+1 = q=2j+1 (C3)

(C3) directly follows from the de�nition of comp. 2

To facilitate the presentation, we de�ne the following predicate.
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ME (level) � (8i :: (Np : p=2level = i=2level :: p:j � level) � 1)

The following invariants, which are stated without proof, follow directly from

the program text.

invariant i@f0g ) (i:j = 0) (I0)

invariant i@f2::13; 17::20g ) (0 � i:j < log2N) (I1)

invariant i@f14g ) (i:j = log2N) (I2)

invariant i:k = i=2i:j+1 ^ i:l = i=2i:j (I3)

We next prove several invariants on the relation between the program variables

and comp.

invariant C[level; i=2level] = p ^ p 6= �1 ) p=2level = i=2level (I7)

Initially (8j; i :: C[j; i] = �1) holds, and hence (I7) is true. To prove that (I7) is

not falsi�ed, it su�ces to consider only those statements that may establish the

antecedent. The antecedent may be established only by statement 2:p. State-

ment 2:p establishes the antecedent only if p:j = level ^ p:l = i=2level holds. By

(I3), this implies that p:j = level ^ p=2level = i=2level holds. Thus, statement

2:p preserves (I7). 2
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invariant C[level; comp(i=2level)] = p ^ p 6= �1 )

p=2level = comp(i=2level) (I8)

The proof is similar to that given for (I7). 2

invariant i:j = level ^ i@f6::9g ) i:rival = �1 _

i:rival=2level = comp(i=2level) (I9)

Initially (8i :: i@f0g) holds, and hence (I9) is true. To prove that (I9) is not

falsi�ed, it su�ces to consider only those statements that may establish the an-

tecedent or falsify the consequent. The antecedent may be established only by

statements 5:i, 13:i, and 16:i. Statement 5:i establishes the antecedent when

i:j = level holds. By (I3), i:j = level ^ i:l = comp(i=2level) holds. (I8) implies

that statement 5:i also establishes the consequent in that case. By the same rea-

son, 5:i does not falsify the consequent when the antecedent holds. :i@f6::9g

holds after the execution of statements 13:i and 16:i. Although statement 18:i

may falsify the consequent, it establishes i@f19g. 2

invariant (i:j > level _ i:j = level ^ i@f4::20g) ^ T [level; i=2level+1] = p )

p=2level+1 = i=2level+1 (I10)

Initially (8i :: i:j = 0 ^ i@f0g) holds, and hence (I10) is true. The an-

tecedent may be established only by statements 1:i, 3:i, 13:i, 16:i, and 3:p.

Statement 1:i establishes i@f14g only if i:j = log2N holds, which implies that

i:j > level. Statement 3:i establishes the antecedent only if i:j = level holds.
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(I3) implies that statement 3:i establishes T [level; i=2level+1] = i in that case.

Because i=2level+1 = i=2level+1 holds, this implies that statement 3:i preserves

(I10). Statement 13:i establishes i:j > level only when i:j = level ^ i@f13g

holds. Statement 16:i establishes i:j = level only when i:j > level holds. It

follows that, although statements 1:i, 3:i, and 16:i may preserve the antecedent,

they does not establish it.

Statement 3:p may establish the antecedent only if p:j = level ^ p:k =

i=2level+1 holds. By (I3), this implies that p=2level+1 = i=2level+1 holds. Thus,

statement 3:p preserves (I10). 2

invariant i:j = level ^ i@f19; 20g ) i:rival=2level+1 = i=2level+1 (I11)

Initially (8i :: i@f0g) holds, and hence (I11) is true. The antecedent may be

established only by statement 18:i. Statement 18:i establishes the antecedent

only if i:j = level ^ i@f18g holds. (I3) and (I10) imply that statement 18:i

establishes the consequent in that case. 2

Mutual Exclusion

We next prove that the following assertion is an invariant, which implies, by (I2),

that the mutual exclusion property holds.

(8 n : 0 � n � log2N ::ME (n)) (G0)

We use an induction on n in our proof. The induction baseME(0) is an invariant

by the de�nition of ME . Thus, it su�ces to prove that the following assertion
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holds.

(8 level : 0 � level < log2N ::ME (level) ) ME (level+ 1)) (G1)

Next, we prove several assertions that are needed to establish ME(level+1). In

these proofs, we assume that ME (level) is an invariant.

invariant C[level; p=2level] = p ) p:j > level _

p:j = level ^ p@f3::14; 17g (I12)

Initially (8 level; i :: C[level; i] = �1) holds, and hence, because p ranges over

f0::N � 1g, (I12) is true. The antecedent is established only by statement 2:p

when p:j = level holds. Statement 2:p establishes p:j = level ^ p@f3g. Only

statements 13:p, 14:p, 16:p, and 17:pmay falsify the consequent. When statement

13:p falsi�es p:j = level ^ p@f3::14; 17g, it establishes p:j > level. Statement

14:p does not falsify the consequent, because, by (I2), p@f14g ) p:j > level

holds (recall that level < log2N). When statement 16:p falsi�es p:j > level, it

establishes p:j = level ^ p@f17g. Statement 17:p may falsify the consequent

only if p:j = level holds. In this case, by (I3), statement 17:p also falsi�es the

antecedent. 2

invariant p:j > level _ p:j = level ^ p@f3::14; 17g )

C[level; p=2level] = p (I13)

Initially (8i :: i:j = 0 ^ i@f0g) holds, and hence (I13) is true. Only statements
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1:p, 2:p, 13:p, and 16:p may establish the antecedent. The consequent may be

falsi�ed by statements 2:i or 17:i. Statement 1:p establishes p@f14g only if

p:j = log2N holds. This implies p:j > level. Thus, although statement 1:p may

preserve the antecedent, it does not establish it. Statement 2:p may establish the

antecedent only when p:j = level holds. In this case, by (I3), it also establishes

the consequent. Statement 13:p establishes p:j > level only if p:j = level ^

p@f13g holds. Thus, although statement 13:p may preserve the antecedent, it

does not establish it. Statement 16:p establishes p:j = level ^ p@f17g only if

p:j > level holds. Thus, it does not establish the antecedent. The consequent

may be falsi�ed by statements 2:i or 17:i only if i:l = p=2level ^ i:j = level holds.

This implies, by (I3), that p=2level = i=2level ^ i:j = level holds. If i 6= p holds,

then, by ME(level), p:j < level, which implies that the antecedent of (I13) does

not hold. If i = p, then statement 2:i does not falsify the consequent, and when

statement 17:i falsi�es the consequent, it also falsi�es the antecedent. 2

invariant C[level; p=2level] = �1 ) (8i : i=2level = p=2level :: i:j < level _

i:j = level ^ i@f0; 1; 2; 15; 16; 18; 19; 20g) (I14)

Assume, for the sake of contradiction, that (C[level; p=2level] = �1) ^ i=2level =

p=2level ^ (i:j > level _ i:j = level ^ i@f3::14; 17g) holds. Then, by (I13),

that (C[level; p=2level] = �1) ^ (C[level; i=2level] = i) ^ i=2level = p=2level holds.

This is a contradiction. Thus, (I14) is an invariant. 2

invariant (8i : i=2level = p=2level :: i:j < level _ i:j = level ^

i@f0; 1; 2; 15; 16; 18; 19; 20g) ) C[level; p=2level] = �1 (I15)
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Assume, for the sake of contradiction, that (8i : i=2level = p=2level :: i:j < level _

i:j = level ^ i@f0; 1; 2; 15; 16; 18; 19; 20g) ^ C[level; p=2level] = r ^ r 6= �1

holds. Then, by (I7), r=2level = p=2level holds, and r:j > level _ (r:j =

level ^ r@f3::14; 17g) holds by (I12). This is a contradiction. Thus, (I15)

is an invariant. 2

invariant (p:j > level _ p:j = level ^ p@f4::20g) ^

q=2level = comp(p=2level) ^ q:j > level _ q:j = level ^ q@f4::20g) )

T [level; p=2level+1] = p _ T [level; p=2level+1] = q (I16)

Initially (8i :: i:j = 0 ^ i@f0g) holds, and hence (I16) is true. The antecedent is

established only by statements 1:p, 1:q, 3:p, 3:q, 13:p, 13:q, 16:p, and 16:q. As in

the proof on (I13), although statement 1:p may preserve the antecedent, it does

not establish it. Similar reasoning applies to 1:q. Statement 3:p establishes the

antecedent only when p:j = level holds. By (I3), this implies that the consequent

is established. Statement 3:q establishes the antecedent only when q:j = level

holds. (I3), (C3), and q=2level = comp(p=2level) implies q:k = p=2level+1 . In this

case, statement 3:q establishes the consequent. As in the proof of (I13), although

statements 13:p and 16:p may preserve the antecedent, they do not establish it.

Similar reasoning applies to 13:q and 16:q. (I3) implies that the consequent

may be falsi�ed only by statement 3:i, where i=2level+1 = p=2level+1 ^ i:j =

level ^ i 6= p ^ i 6= q holds. Then, i=2level = p=2level _ i=2level = comp(p=2level)

holds by (C2). When q=2level = comp(p=2level) holds, i:j = level ^ i 6= p ^ i 6=

q ^ (i=2level = p=2level _ i=2level = q=2level) holds. This implies, by ME (level),

that p:j < level _ q:j < level holds, and hence, the antecedent does not hold.
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2

invariant p:j = level ^ p@f6::9g ^ C[level; comp(p=2level)] = q ^ q 6= �1)

(p:rival = q ^ q 6= �1) _ T [level; p=2level+1] = q _

(q:j = level ^ q@f3g) (I17)

Initially (8i :: i@f0g) holds, and hence (I17) is true. Only statements 5:p, 13:p,

16:p, and 2:q may establish the antecedent. The consequent may be falsi�ed

only by statements 5:p, 18:p, 3:q, and 3:i, where i 6= q. Statement 5:p establishes

the antecedent only if p:j = level ^ C[level; comp(p=2level)] = q ^ q 6= �1

holds. By (I3), this implies that statement 5:p also establishes p:rival = q ^

q 6= �1. Statements 13:p and 16:p establish :p@f6::9g. Thus, they do not

establish the antecedent. Statement 2:q may establish the antecedent only when

q:j = level holds. In this case, it also establishes q:j = level ^ q@f3g. By

(I3), statement 5:p may falsify the consequent only if C[level; comp(p=2level)] 6=

q holds. Statement 18:p establishes p@f19g. Thus, statements 5:p and 18:p

preserve (I17). Statement 3:q may falsify (I17) only if C[level; comp(p=2level)] =

q ^ q 6= �1 ^ q:j = level ^ q@f3g holds. By (I8), this implies that

q=2level = comp(p=2level) ^ q:j = level ^ q@f3g holds. By (C3), this implies that

q=2level+1 = p=2level+1 ^ q:j = level ^ q@f3g holds. In this case, (I3) implies that

statement 3:q establishes T [level; p=2level+1] = q. (I3) implies that statement 3:i

may falsify T [level; p=2level+1] = q only if i=2level+1 = p=2level+1 ^ i:j = level ^

i@f3g ^ i 6= q holds. By (C2), this implies that (i=2level = p=2level _ i=2level =

comp(p=2level)) ^ i:j = level ^ i@f3g ^ i 6= q holds. Note further that

statement 3:i may falsify (I17) only if C[level; comp(p=2level)] = q ^ q 6= �1
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holds. By (I8), this implies that q=2level = comp(p=2level) holds. Thus, statement

3:i may falsify (I17) only if (i=2level = p=2level _ i=2level = q=2level) ^ i:j =

level ^ i@f3g ^ i 6= q holds. If i=2level = p=2level ^ i:j = level ^ i@f3g holds,

then, by ME(level), this implies that p:j = level does not hold. Otherwise,

i=2level = q=2level ^ i:j = level ^ i 6= q holds. By ME(level), this implies that

q:j < level holds. In that case, (I12) implies that C[level; comp(p=2level)] = q

does not hold. 2

invariant p:j = level ^ (p@f6g ^ p:rival 6= �1 _ p@f7::12g) ^

q=2level = comp(p=2level) ^ q:j = level ^ q@f19; 20g )

q:rival = p _ q:rival = q (I18)

Initially (8i :: i@f0g) holds, and hence (I18) is true. The antecedent may be

established only by statements 5:p, 6:p, 13:p, 16:p, 18:p, 13:q, 16:q, and 18:q.

Only statements 5:q and 18:q may falsify the consequent. By (I3), statement 5:p

may establish the antecedent only if p:j = level ^ C[level; comp(p=2level)] =

i ^ i 6= �1 ^ q=2level = comp(p=2level) holds for some i. By (I8), this implies

that C[level; comp(p=2level)] = i ^ i=2level = comp(p=2level) ^ i=2level = q=2level

holds. By (I12), this implies that (i:j > level _ i:j = level ^ i@f3::14; 17g) ^

i=2level = q=2level holds. By ME(level), this implies that q:j = level does not

hold. Statement 6:p may establish p:j = level ^ p@f7::12g only if p:j =

level ^ p@f6g ^ p:rival 6= �1 holds. Thus, although statement 6:p may

preserve, it does not establish the antecedent. Statements 13:p, 16:p, and 18:p

establish :p@f6::12g, and hence, do not establish the antecedent. Statements

13:q and 16:q establish :q@f19; 20g, and hence, do not establish the antecedent.
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Statement 18:q establishes the antecedent only if p:j = level ^ (p@f6g ^

p:rival 6= �1 _ p@f7::12g) ^ q:j = level ^ q@f18g holds. By (I16), this

implies that T [level; p=2level+1] = p _ T [level; p=2level+1] = q holds. In that

case, by (I3), statement 18:q establishes the consequent. By the same reason,

statement 18:q may falsify the consequent only if the antecedent does not hold.

Finally, statement 5:q establishes q@f6g. 2

invariant p:j = level ^ (p@f6g ^ p:rival 6= �1 _ p@f7::12g) ^

q=2level = comp(p=2level) ^ q:j = level ^ q@f20g ) q:rival = p (I19)

Initially (8i :: i@f0g) holds, and hence (I19) is true. The antecedent may be

established only by statements 5:p, 6:p, 13:p, 16:p, 18:p, 13:q, 16:q, and 19:q.

Only statements 5:q and 18:q may falsify the consequent. The reasoning for

statements 5:p, 6:p, 13:p, 16:p, 18:p, 13:q, and 16:q is the same as that given

in the proof of (I18). Statement 19:q establishes the antecedent only if p:j =

level ^ (p@f6g ^ p:rival 6= �1_ p@f7::12g) ^ q=2level = comp(p=2level) ^ q:j =

level ^ q@f19g ^ q:rival 6= q holds. This implies, by (I18), that q:rival = p

holds. Finally, statements 5:q and 18:q establish :q@f20g. 2

invariant p:j = level ^ (p@f6g ^ p:rival 6= �1 _ p@f7::12g) ^

q=2level = comp(p=2level) ^ q:j = level ^ q@f19g ^ q:rival = q )

T [level; p=2level+1] = q (I20)

Initially (8i :: i@f0g) holds, and hence (I20) is true. The antecedent may be

established only by statements 5:p, 6:p, 13:p, 16:p, 18:p, 5:q, 13:q, 16:q, and 18:q.
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Only statement 3:imay falsify the consequent. The reasoning for statements 5:p,

6:p, 13:p, 16:p, and 18:p is the same as that given in the proof of (I18). Statements

5:q, 13:q, and 16:q establish :q@f19g, and hence, do not establish the antecedent.

If q=2level = comp(p=2level) holds, then, by (C3), q=2level+1 = p=2level+1 also holds.

Thus, (I3) implies that statement 18:q establishes the antecedent only if the

consequent holds.

(I3) implies that statement 3:i may falsify T [level; p=2level+1] = q only if

i:j = level ^ i=2level+1 = p=2level+1 ^ i@f3g ^ i 6= q holds. By (C2),

i:j = level ^ (i=2level = p=2level _ i=2level = comp(p=2level)) ^ i@f3g ^ i 6= q

holds. Note further that statement 3:i may falsify (I20) only if q=2level =

comp(p=2level) holds. Thus, statement 3:i may falsify (I20) only if (i=2level =

p=2level _ i=2level = q=2level) ^ i:j = level ^ i@f3g ^ i 6= q holds. If

i=2level = p=2level ^ i:j = level ^ i@f3g holds, then, by ME(level), this implies

that p:j = level ^ p@f6::12g does not hold. Otherwise, i=2level = q=2level ^ i:j =

level ^ i 6= q holds, which by ME(level), implies that q:j = level does not hold.

2

invariant (p:j > level _ p:j = level ^ p@f5::14g) ^

P [level; p] = 2 ^ C[level; comp(p=2level)] = q ^ q 6= �1 )

T [level; p=2level+1] = q _ q:j = level ^ q@f3g (I21)

Initially (8i :: i:j = 0 ^ i@f0g) holds, and hence (I21) is true. The an-

tecedent is established only by statements 1:p, 4:p, 13:p, 16:p, 20:i, and 2:q. The

consequent may be falsi�ed only by statements 3:q, 13:q, 16:q, and 3:i, where

i 6= q. Statement 1:p establishes p@f14g only if p:j = log2N holds. This implies
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p:j > level. Thus, although statement 1:p may preserve the antecedent, it does

not establish it. Statement 4:p may establish the antecedent only if p:j = level

holds. In this case, it also establishes P [level; p] = 0. Statement 13:p establishes

p:j > level only when p:j = level ^ p@f13g holds, and statement 16:p estab-

lishes p:j = level only when p:j > level holds. Thus, although statements 13:p

and 16:p may preserve the antecedent, they do not establish it.

(I11) implies that statement 20:i may establish P [level; p] = 2 only if i:j =

level ^ i@f20g ^ i=2level+1 = p=2level+1 holds. By (C2), this implies that

i:j = level ^ i@f20g ^ (i=2level = p=2level _ i=2level = comp(p=2level) holds. Note

further that statement 20:i may falsify (I21) only if C[level; comp(p=2level)] =

q ^ q 6= �1 holds. By (I8), this implies that q=2level = comp(p=2level) holds.

Thus, statement 20:i may falsify (I21) only if (i=2level = p=2level _ i=2level =

q=2level) ^ i:j = level ^ i@f20g holds. If i=2level = p=2level ^ i:j = level ^ i@f20g

holds, then, byME(level), this implies that p:j < level _ p:j = level ^ p@f20g

holds. Otherwise, i=2level = q=2level ^ i:j = level ^ i@f20g holds, which, by

ME(level) and (I12), implies that C[level; q=2level] = q does not hold. Because

q=2level = comp(p=2level), this implies that C[level; comp(p=2level)] = q does not

hold. Statement 2:q may establish the antecedent only if q:j = level holds. In

this case, it also establishes q:j = level ^ q@f3g.

Statement 3:q may falsify (I21) only if C[level; comp(p=2level)] = q ^ q 6=

�1 ^ q:j = level ^ q@f3g holds. By (I8), this implies that q=2level =

comp(p=2level) ^ q:j = level ^ q@f3g holds. By (C3), this implies that

q=2level+1 = p=2level+1 ^ q:j = level ^ q@f3g holds. In that case, (I3) implies

that statement 3:q establishes T [level; p=2level+1] = q. Statements 13:q and 16:q

do not falsify q:j = level ^ q@f3g. Finally, (I3) implies that statement 3:i
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may falsify T [level; p=2level+1] = q only if i=2level+1 = p=2level+1 ^ i:j = level ^

i@f3g ^ i 6= q holds. By (C2), this implies that (i=2level = p=2level _ i=2level =

comp(p=2level)) ^ i:j = level ^ i@f3g ^ i 6= q holds. Note further that statement

3:i may falsify (I21) only if C[level; comp(p=2level)] = q ^ q 6= �1 holds. By (I8),

this implies that q=2level = comp(p=2level) holds. Thus, statement 3:i may falsify

(I21) only if (i=2level = p=2level _ i=2level = q=2level) ^ i:j = level ^ i@f3g ^ i 6= q

holds. If i=2level = p=2level ^ i:j = level ^ i@f3g holds, then this implies,

by ME(level), that p:j < level _ p:j = level ^ p@f3g holds. Otherwise,

i=2level = q=2level ^ i:j = level ^ i 6= q holds, which, byME(level) and (I12), im-

plies that C[level; q=2level] = q does not hold. Because q=2level = comp(p=2level),

this implies that C[level; comp(p=2level)] = q does not hold. Thus, statement 3:i

preserves (I21). 2

invariant (p:j > level _ p:j = level ^ p@f13::20g) ^

C[level; comp(p=2level)] = q ^ q 6= �1)

T [level; p=2level+1] = q _ q:j = level ^ q@f3g (I22)

Initially (8i :: i:j = 0 ^ i@f0g) holds, and hence (I22) is true. The antecedent

may be established only by statements 1:p, 6:p, 7:p, 11:p, 12:p, 13:p, 16:p, and

2:q. Only statements 3:q, 13:q, 16:q, and 3:i, where i 6= q, may falsify the con-

sequent. The reasoning for statements 1:p, 13:p, 16:p, 3:q, 13:q, and 16:q is the

same as that given in the proof of (I21).

Statement 6:p may establish the antecedent only if p:j = level ^ p@f6g ^

p:rival = �1 holds. By (I17), this implies that :(C[level; comp(p=2level)] =

q ^ q 6= �1) _ T [level; p=2level+1] = q _ (q:j = level ^ q@f3g) holds. This
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implies that either the antecedent does not hold or the consequent holds after

the execution of statement 6:p.

(I3) implies that statements 7:p and 11:p establish the antecedent only if

p:j = level ^ T [level; p=2level+1] 6= p ^ p@f7; 11g ^ C[level; comp(p=2level)] =

q ^ q 6= �1 holds. By (I8), this implies that p:j = level ^ T [level; p=2level+1] 6=

p ^ p@f7; 11g ^ q=2level = comp(p=2level) ^ C[level; q=2level] = q holds. In that

case, (I12) implies that p:j = level ^ T [level; p=2level+1] 6= p ^ p@f7; 11g ^

q=2level = comp(p=2level) ^ (q:j > level _ q:j = level ^ q@f3::14; 17g)

holds. By predicate calculus, this implies that T [level; p=2level+1] 6= p ^ p:j =

level ^ p@f7; 11g ^ q=2level = comp(p=2level) ^ ((q:j > level _ q:j =

level ^ q@f4::17g) _ (q:j = level ^ q@f3g)) holds. This implies, by (I16),

that the consequent holds.

Statement 12:p establishes the antecedent only if C[level; comp(p=2level)] =

q ^ q 6= �1 ^ p:j = level ^ p@f12g ^ P [level; p] = 2 holds. By (I21), this

implies that the consequent holds. Statement 2:q may establish the antecedent

only if q:j = level holds. In this case, it also establishes q:j = level ^ q@f3g.

(I3) implies that statement 3:i may falsify T [level; p=2level+1] = q only if

i=2level+1 = p=2level+1 ^ i:j = level ^ i@f3g ^ i 6= q holds. By (C2),

this implies that (i=2level = p=2level _ i=2level = comp(p=2level)) ^ i:j =

level ^ i@f3g ^ i 6= q holds. Note further that statement 3:i may falsify

(I22) only if C[level; comp(p=2level)] = q ^ q 6= �1 holds. By (I8), this implies

that q=2level = comp(p=2level) holds. Thus, statement 3:i may falsify (I22) only

if (i=2level = p=2level _ i=2level = q=2level) ^ i:j = level ^ i@f3g ^ i 6= q

holds. If i=2level = p=2level ^ i:j = level ^ i@f3g holds, then, this implies,

by ME(level), that p:j < level _ p:j = level ^ p@f3g holds. Otherwise,
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i=2level = q=2level ^ i:j = level ^ i 6= q holds, which, byME(level) and (I12), im-

plies that C[level; q=2level] = q does not hold. Because q=2level = comp(p=2level),

this implies that C[level; comp(p=2level)] = q does not hold. Thus, statement 3:i

preserves (I22). 2

invariant (8i :: (Np : p=2level+1 = i=2level+1 :: p:j � level+ 1) � 1) (I23)

Assume, for the sake of contradiction, that p:j > level ^ q:j > level ^

p=2level+1 = i=2level+1 ^ q=2level+1 = i=2level+1 ^ p 6= �1 ^ q 6= �1 holds

for some i. By ME(level) and (C2), we can assume, that p:j > level ^ q:j >

level ^ p=2level = i=2level ^ q=2level = comp(i=2level) ^ p 6= �1 ^ q 6= �1 holds.

This implies, by (I13), that p:j > level ^ q:j > level ^ C[level; p=2level] =

p ^ C[level; q=2level] = q ^ p=2level = i=2level ^ q=2level = comp(i=2level) ^

p 6= �1 ^ q 6= �1 holds. Then, by (C1), p:j > level ^ q:j > level ^

C[level; comp(p=2level)] = q ^ C[level; comp(q=2level)] = p ^ p 6= �1 ^ q 6= �1

holds. By (I22), this implies that T [level; p=2level+1] = q ^ T [level; q=2level+1] = p

holds, which is a contradiction. Thus, (I23) is an invariant. 2

Observe that we have completed the proof of (G1), and thus proved that (G0)

holds. Because ME (level) has been proved to hold for any level, the invariants

from (I12) to (I23) hold for any level.

Progress

We next prove a number of invariants that are needed to establish starvation-

freedom.
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invariant p:j = level ^ (p@f6g ^ p:rival 6= �1 _ p@f7::12g) ^

(8i : i=2level = comp(p=2level) :: i:j < level _ i:j = level ^ i@f0; 1; 2; 15; 16g)

) P [level; p] = 2 (I24)

Initially (8i :: i@f0g) holds, and hence (I24) is true. The antecedent may be

established only by statements 5:p, 6:p, 13:p, 16:p, 18:p, 13:i, 14:i, 15:i, 16:i, 19:i,

and 20:i. Only statements 4:p and 9:i may falsify the consequent.

As in the proof of (I18), statement 5:p may establish the antecedent only if

i=2level = comp(p=2level) ^ (i:j > level _ i:j = level ^ i@f3::14; 17g) holds,

which implies that the antecedent of (I24) does not hold. The reasoning for

statements 6:p, 13:p, 16:p, and 18:p is the same as that given in the proof of

(I18).

(I2) implies that when statement 14:i establishes i@f15g, i:j > level holds.

Thus, statement 14:i does not establish the antecedent.

Statement 13:i establishes i:j = level ^ i@f1g only if i:j < level holds.

Statement 15:i may establish i:j = level ^ i@f0g only if i:j = level ^ i@f15g

holds. Statement 16:i establishes i:j < level only if i:j = level ^ i@f16g holds.

Thus, although statements 13:i, 15:i, and 16:i may preserve the antecedent, they

do not establish it.

Statement 19:i may establish the antecedent only if p:j = level ^ (p@f6g ^

p:rival 6= �1 _ p@f7::12g) ^ i=2level = comp(p=2level) ^ i:j = level ^ i@f19g ^

i:rival = i holds. This implies, by (I20), that p:j = level ^ (p@f6g ^ p:rival 6=

�1 _ p@f7::12g) ^ i=2level = comp(p=2level) ^ i:j = level ^ i@f19g ^

T [level; p=2level+1] = i holds. By (I13), this implies that C[level; p=2level] =

p ^ T [level; p=2level+1] 6= p ^ i=2level = comp(p=2level) ^ i:j = level ^ i@f19g
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holds. This implies, by (C1) and (C3), that C[level; comp(i=2level)] = p ^

T [level; i=2level+1] 6= p ^ i:j = level ^ i@f19g holds. By (I22), this implies that

p:j = level ^ p@f3g holds, which implies that the antecedent does not hold.

Thus, statement 19:i does not establish the antecedent.

Statement 20:i establishes the antecedent only if p:j = level ^ (p@f6g ^

p:rival 6= �1 _ p@f7::12g) ^ i=2level = comp(p=2level) ^ i:j = level ^ i@f20g

holds. By (I19), this implies that i:j = level ^ i@f20g ^ i:rival = p holds. In

this case, statement 20:i establishes the consequent.

Statement 4:p establishes p@f5g. (I9) implies that statement 9:i may falsify

the consequent only if i:j = level ^ i@f9g ^ p=2level = comp(i=2level) holds. By

(C1), this implies that i:j = level ^ i@f9g ^ i=2level = comp(p=2level) holds,

which implies that the antecedent does not hold. 2

invariant p:j = level ^ p@f8::10g ^ q=2level = comp(p=2level) ^

q:j = level ^ q@f6::10g ^ T [level; q=2level+1] = q ) q:rival = p (I25)

Initially (8i :: i@f0g) holds, and hence (I25) is true. The antecedent may be

established only by statements 7:p, 13:p, 16:p, 3:q, 5:q, 13:q, and 16:q. Only

statements 5:q and 18:q may falsify the consequent. (I3) implies that statement

7:p may establish the antecedent only if q=2level = comp(p=2level) ^

T [level; p=2level+1] = p holds. By (C3), this implies that T [level; q=2level+1] = p

holds, which implies that the antecedent does not hold. :p@f8::10g holds after

the execution of statements 13:p and 16:p. :q@f6::10g holds after the execu-

tion of statements 3:q, 13:q, and 16:q. Statement 5:q may falsify (I25) only if

p:j = level ^ p@f8::10g ^ q=2level = comp(p=2level) ^ q:j = level ^ q@f5g holds.
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By (I13), this implies that C[level; p=2level] = p ^ q=2level = comp(p=2level) ^

q:j = level ^ q@f5g holds. This implies, by (C1), that C[level; comp(q=2level)] =

p ^ q:j = level ^ q@f5g holds. In this case, (I3) implies that statement 5:q

establishes the consequent. Finally, statement 18:q establishes q@f19g. 2

invariant p:j = level ^ p@f8::10g ^ q=2level = comp(p=2level) ^

q:j = level ^ q@f10::12g ^ T [level; q=2level+1] = q ) P [level; p] � 1 (I26)

Initially (8i :: i@f0g) holds, and hence (I26) is true. The antecedent may be

established only by statements 7:p, 13:p, 16:p, 3:q, 8:q, 9:q, 13:q, and 16:q. Only

statement 4:p may falsify the consequent. The reasoning for statements 7:p,

13:p, 16:p, 3:q, 13:q, and 16:q is similar to that given in the proof of (I25) State-

ment 8:q may establish the antecedent only if p:j = level ^ p@f8::10g ^

q=2level = comp(p=2level) ^ q:j = level ^ q@f8g ^ T [level; q=2level+1] =

q ^ P [level; q:rival]� 1 holds. By (I25), this implies that the consequent holds.

Statement 9:q may establish the antecedent only if p:j = level ^ p@f8::10g ^

q=2level = comp(p=2level) ^ q:j = level ^ q@f9g ^ T [level; q=2level+1] = q holds.

By (I25), this implies that statement 9:q establishes the consequent. Finally,

statement 4:p establishes p@f5g. 2

invariant p:j = level ^ p@f10g ^ q=2level = comp(p=2level) ^

q:j = level ^ q@f10g ) P [level; p] � 1 _ P [level; q]� 1 (I27)

The antecedent implies, by (I16), that p:j = level ^ p@f10g ^ q=2level =

comp(p=2level) ^ q:j = level ^ q@f10g ^ (T [level; p=2level+1] = p _
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T [level; p=2level+1] = q) holds. By (C1) and (C3), this implies that p:j =

level ^ p@f10g ^ q=2level = comp(p=2level) ^ p=2level = comp(q=2level) ^ q:j =

level ^ q@f10g ^ (T [level; p=2level+1] = p _ T [level; q=2level+1] = q) holds. By

(I26), this implies that the consequent holds. 2

invariant i:j = level ^ i@f11; 12g ) P [level; i]� 1 (I28)

Initially (8i :: i@f0g) holds, and hence (I28) is true. The antecedent may be es-

tablished only by statements 10:i, 13:i, and 16:i. Only statement 4:i may falsify

the consequent. Statement 10:i establishes the antecedent only if the consequent

holds. :i@f11; 12g holds after the execution of statements 4:i, 13:i, and 16:i. 2

invariant p:j = level ^ p@f12g ^ q=2level = comp(p=2level) ^

q:j = level ^ q@f5::12g ^ T [level; q=2level+1] = q ) P [level; q] = 0 (I29)

Initially (8i :: i@f0g) holds, and hence (I29) is true. The antecedent may be

established only by statements 11:p, 13:p, 16:p, 3:q, 4:q, 13:q, and 16:q. Only

statements 9:i and 20:i may falsify the consequent. (I3) implies that statement

11:p may establish the antecedent only if p:j = level ^ p@f11g ^ q=2level =

comp(p=2level) ^ T [level; p=2level+1] = p holds. By (C3), this implies that

T [level; q=2level+1] = p holds, which implies that the antecedent does not hold.

:p@f12g holds after the execution of statements 13:p and 16:p. :q@f5::12g

holds after the execution of statements 3:q, 13:q, and 16:q. When statement 4:q

establishes q:j = level ^ q@f5g, it also establishes the consequent.

(I9) implies that statement 9:i may falsify (I29) only if q=2level =
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comp(p=2level) ^ q=2level = comp(i=2level) ^ i:j = level ^ i@f9g holds. By

(C1), this implies that p=2level = i=2level ^ i:j = level ^ i@f9g holds. In that

case, ME(level) implies that p:j = level ^ p@f12g does not hold. (I11) implies

that statement 20:i may falsify the consequent only if q=2level = comp(p=2level) ^

q=2level+1 = i=2level+1 ^ i:j = level ^ i@f20g holds. By (C1), this implies that

comp(q=2level) = p=2level ^ q=2level+1 = i=2level+1 ^ i:j = level ^ i@f20g holds.

By (C2), this implies that (i=2level = p=2level _ i=2level = q=2level) ^ i:j =

level ^ i@f20g holds. If i = p, then statement 20:i establishes :p@f12g. If

i=2level = p=2level ^ i 6= p ^ i:j = level ^ i@f20g holds, then ME(level)

implies that p:j = level does not hold. If i = q, then statement 20:i establishes

:q@f5::12g. If i=2level = q=2level ^ i 6= q ^ i:j = level ^ i@f20g holds, then

ME(level) implies that q:j = level does not hold. 2

invariant :(p:j = level ^ p@f12g ^ q=2level = comp(p=2level) ^

q:j = level ^ q@f12g) (I30)

Assume, for the sake of contradiction, that p:j = level ^ p@f12g ^ q=2level =

comp(p=2level) ^ q:j = level ^ q@f12g holds. By (I28), this implies that

p:j = level ^ p@f12g ^ q=2level = comp(p=2level) ^ q:j = level ^ q@f12g ^

P [level; p]� 1 ^ P [level; q]� 1 holds. By (I16), this implies that p:j = level ^

p@f12g ^ q=2level = comp(p=2level) ^ q:j = level ^ q@f12g ^ P [level; p] �

1 ^ P [level; q]� 1 ^ (T [level; p=2level+1] = p _ T [level; p=2level+1] = q) holds.

In that case, (C1) and (C3) imply that P [level; p]� 1 ^ P [level; q]� 1 ^ p:j =

level ^ p@f12g ^ q:j = level ^ q@f12g ^ q=2level = comp(p=2level) ^ p=2level =

comp(q=2level) ^ (T [level; q=2level+1] = q _ T [level; p=2level+1] = p) holds. By
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(I29), this implies that P [level; p] � 1 ^ P [level; q] � 1 ^ (P [level; p] =

0 _ P [level; q] = 0) holds, which is a contradiction. Thus (I30) is an invariant.

2

invariant p:j = level ^ p@f4::12g ^ q=2level = comp(p=2level) ^

(q:j > level _ q:j = level ^ q@f13::20g) ) T [level; q=2level+1] = p (I31)

Initially (8i :: i@f0g) holds, and hence (I31) is true. The antecedent may be

established only by statements 3:p, 13:p, 16:p, 1:q, 6:q, 7:q, 11:q, 12; q, 13:q,

and 16:q. Only statement 3:i may falsify the consequent. Statement 3:p may

establish the antecedent only if p:j = level ^ p@f3g ^ q=2level = comp(p=2level)

holds. By (C3), this implies that p:j = level ^ p@f3g ^ p=2level+1 = q=2level+1

holds. In this case, by (I3), statement 3:p establishes the consequent. Statements

13:p and 16:p preserve :p@f4::12g, and hence do not establish the antecedent.

When statement 1:q establishes q@f14g, q:j � log2N holds, which implies that

q:j > level holds. Thus, although statement 1:q may preserve the antecedent, it

does not establish it.

Statement 6:q may establish the antecedent only if p:j = level ^ p@f4::12g ^

q=2level = comp(p=2level) ^ q:j = level ^ q@f6g ^ q:rival = �1 holds. By (I13),

this implies that p:j = level ^ p@f4::12g ^ C[level; p=2level] = p ^ q=2level =

comp(p=2level) ^ q:j = level ^ q@f6g ^ q:rival = �1 holds. By (C1), this

implies that p:j = level ^ p@f4::12g ^ C[level; comp(q=2level)] = p ^ p 6=

�1 ^ q=2level = comp(p=2level) ^ q:j = level ^ q@f6g ^ q:rival = �1 holds.

In that case, (I17) implies that the consequent holds.

By (I3), statements 7:q and 11:q may establish the antecedent only if p:j =
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level ^ p@f4::12g ^ q=2level = comp(p=2level) ^ q:j = level ^ q@f7; 11g ^

T [level; q=2level+1] 6= q holds. By (C3), this implies that p:j = level ^ p@f4::12g ^

q=2level = comp(p=2level) ^ q:j = level ^ q@f7; 11g ^ T [level; q=2level+1] 6= q ^

p=2level+1 = q=2level+1 holds. By (I16), this implies that T [level; q=2level+1] = p

holds.

Statement 12:q may establish the antecedent only if p:j = level ^ p@f4::12g ^

q=2level = comp(p=2level) ^ q:j = level ^ q@f12g ^ P [level; q] = 2 holds. By

(I13), this implies that p:j = level ^ p@f4::12g ^ C[level; p=2level] = p ^ p 6=

�1 ^ q=2level = comp(p=2level) ^ q:j = level ^ q@f12g ^ P [level; q] = 2 holds.

By (C1), this implies that p:j = level ^ p@f4::12g ^ C[level; comp(q=2level)] =

p ^ p 6= �1 ^ q=2level = comp(p=2level) ^ q:j = level ^ q@f12g ^ P [level; q] = 2

holds. In that case, by (I21), T [level; q=2level+1] = p holds. This implies that

the consequent of (I31) holds. Statement 13:q establishes q:j > level only when

q:j = level ^ q@f13g holds, and statement 16:q establishes q:j = level only

when q:j > level holds. Thus, although statements 13:q and 16:q may preserve

the antecedent, they do not establish it.

(I3) implies that statement 3:i may falsify T [level; q=2level+1] = p only if

i=2level+1 = p=2level+1 ^ i:j = level ^ i@f3g ^ i 6= p holds. By (C2),

this implies that (i=2level = p=2level _ i=2level = comp(p=2level)) ^ i:j =

level ^ i@f3g ^ i 6= p holds. Note further that statement 3:i may falsify (I31)

only if q=2level = comp(p=2level) holds. Thus, statement 3:i may falsify (I31) only

if (i=2level = p=2level _ i=2level = q=2level) ^ i:j = level ^ i@f3g ^ i 6= p holds.

If i=2level = p=2level ^ i:j = level ^ i 6= p holds, then ME(level) implies that

p:j = level does not hold. If i=2level = q=2level ^ i:j = level ^ i@f3g holds,

then, by ME(level), this implies that (q:j > level _ q:j = level ^ q@f13::20g)
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does not hold. 2

invariant p:j = level ^ p@f5::12g ^ q=2level = comp(p=2level) ^

q:j = level ^ q@f19; 20g )

q:rival = p _ P [level; p] = 0 _ P [level; p] = 2 (I32)

Initially (8i :: i@f0g) holds, and hence (I32) is true. The antecedent is es-

tablished only by statements 4:p, 13:p, 16:p, 13:q, 16:q, and 18:q. Only state-

ments 5:q, 18:q, and 9:i may falsify the consequent. Statement 4:p may es-

tablish the antecedent only if p:j = level holds. In this case, it also establishes

P [level; p] = 0. Statements 13:p and 16:p preserve :p@f5::12g, and hence do not

establish the antecedent. Statements 13:q and 16:q preserve :q@f19; 20g, and

hence do not establish the antecedent. Statement 18:q may falsify (I32) only if

p:j = level^ p@f5::12g ^ q=2level = comp(p=2level) ^ q:j = level ^ q@f18g holds.

By (I31), this implies that q:j = level ^ q@f18g ^ T [level; q=2level+1] = p holds.

In this case, (I3) implies that statement 18:q establishes q:rival = p. Thus, state-

ment 18:q preserves (I32). Although statement 5:q may falsify the consequent,

it establishes q@f6g. (I9) implies that statement 9:i may falsify the consequent

only if q=2level = comp(p=2level) ^ p=2level = comp(i=2level) ^ i:j = level ^ i@f9g

holds. By (C1), this implies that q=2level = i=2level ^ i:j = level ^ i@f9g holds.

In that case, ME (level) implies that q:j = level ^ q@f19; 20g does not hold.

2

invariant p:j = level ^ p@f5::12g ^ (8i : i=2level = comp(p=2level) ::

i:j < level _ i:j = level ^ i@f0::3; 15; 16g) )
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P [level; p] = 0 _ P [level; p] = 2 (I33)

Initially (8i :: i@f0g) holds, and hence (I33) is true. The antecedent may be es-

tablished only by statements 4:p, 13:p, 16:p, 13:i, 14:i, 15:i, 16:i, 19:i, and 20:i.

Only statement 9:i may falsify the consequent. The reasoning for statements

4:p, 13:p, and 16:p is the same as in the proof of (I32). (I2) implies that when

statement 14:i establishes i@f15g, i:j > level holds. Thus, statement 14:i does

not establish the antecedent.

Statement 13:i establishes i:j = level ^ i@f1g only if i:j < level holds.

Statement 15:i may establish i:j = level ^ i@f0g only if i:j = level ^ i@f15g

holds. Statement 16:i establishes i:j < level only if i:j = level ^ i@f16g holds.

Thus, although statements 13:i, 15:i, and 16:i may preserve the antecedent, but

they do not establish it.

Statements 19:i and 20:i establish the antecedent only if p:j = level ^

p@f5::12g ^ i=2level = comp(p=2level) ^ i:j = level ^ i@f19; 20g holds. By

(I32), this implies that i:j = level ^ i@f19; 20g ^ (i:rival = p _ P [level; p] =

0 _ P [level; p] = 2) holds. If i:rival 6= p, then the consequent of (I33) holds,

and is not falsi�ed by statements 19:i and 20:i. If i:rival = p, then statement

19:i establishes i@f20g, and statement 20:i establishes P [level; p] = 2.

(I9) implies that statement 9:i may falsify the consequent only if p=2level =

comp(i=2level) ^ i:j = level ^ i@f9g holds. This implies, by (C1), that

i=2level = comp(p=2level) ^ i:j = level ^ i@f9g holds. In that case, the

antecedent does not hold. 2

invariant p:j = level ^ (p@f6g ^ p:rival 6= �1 _ p@f7::12g) ^
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q=2level = comp(p=2level) ^ q:j = level ^ q@f19; 20g ) q:rival = p (I34)

Initially (8i :: i@f0g) holds, and hence (I34) is true. The antecedent may be

established only by statements 5:p, 6:p, 13:p, 16:p, 18:p, 13:q, 16:q, and 18:q.

Only statements 5:q and 18:q may falsify the consequent. As in the proof of (I18),

statement 5:p may establish the antecedent only if i=2level = q=2level ^ (i:j >

level _ i:j = level ^ i@f3::14; 17g) holds. By ME(level), this implies that the

antecedent does not hold. The reasoning for statements 6:p, 13:p, 16:p, 18:p, 13:q,

and 16:q is the same as in the proof of (I18). Statement 18:q may falsify (I34)

only when p:j = level ^ (p@f6g ^ p:rival 6= �1 _ p@f7::12g) ^ q=2level =

comp(p=2level) ^ q:j = level ^ q@f18g holds. By (I31), this implies that

q:j = level ^ T [level; q=2level+1] = p holds. By (I3), this implies that statement

18:q establishes the consequent, and hence preserves (I34). Finally, although

statement 5:q may falsify the consequent, it establishes q@f6g. 2

invariant p:j = level ^ p@f11; 12g ^ (8i : i=2level = comp(p=2level) ::

i:j < level _ i:j = level ^ i@f0::3; 15; 16g) ) P [level; p] = 2 (I35)

Initially (8i :: i@f0g) holds, and hence (I35) is true. The antecedent may be

established only by statements 10:p, 13:p, 16:p, 13:i, 14:i, 15:i, 16:i, 19:i, and

20:i. Only statements 4:p and 9:i may falsify the consequent. Statement 10:p

may establish the antecedent only if p:j = level ^ p@f10g ^ (8i : i=2level =

comp(p=2level) :: i:j < level _ i:j = level ^ i@f0::3; 15; 16g) ^ P [level; p] �

1 holds. By (I33), this implies that (P [level; p] = 0 _ P [level; p] = 2) ^

P [level; p] � 1 holds. This implies that whenever statement 10:p establishes
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the antecedent, P [level; p] = 2 holds. :p@f11; 12g holds after the execution of

statements 13:p and 16:p.

The reasoning for statements 13:i, 14:i, 15:i, and 16:i is the same as given

in the proof of (I33). Statements 19:i and 20:i establish the antecedent only if

p:j = level ^ p@f11; 12g ^ i=2level = comp(p=2level) ^ i:j = level ^ i@f19; 20g

holds. By (I34), this implies that i:j = level ^ i@f19; 20g ^ i:rival = p holds.

In that case, statement 19:i establishes i@f20g, and statement 20:i establishes

P [level; p] = 2.

Although statement 4:p may falsify the consequent, it establishes p@f5g.

(I9) implies that statement 9:i may falsify the consequent only if p=2level =

comp(i=2level) ^ i:j = level ^ i@f9g holds. By (C1), this implies that i=2level =

comp(p=2level) ^ i:j = level ^ i@f9g holds, which implies that the antecedent

does not hold. 2

invariant p:j = level ^ p@f5::12g ^ q=2level = comp(p=2level) ^

q:j = level ^ q@f9g ^ q:rival = p ) P [level; p] = 0 (I36)

Initially (8i :: i@f0g) holds, and hence (I36) is true. The antecedent may be

established only by statements 4:p, 13:p, 16:p, 5:q, 8:q, 13:q, 16:q, and 18:q.

Only statements 9:i and 20:i may falsify the consequent. Statement 4:p may

establish the antecedent only if p:j = level holds. In this case, it also establishes

P [level; p] = 0. :p@f5::12g holds after the execution of statements 13:p and

16:p. :q@f9g holds after the execution of statements 5:q, 13:q, 16:q, and 18:q.

Statement 8:q establishes the antecedent only when q:j = level ^ q@f8g ^

q:rival = p ^ P [level; q:rival] = 0 holds. This implies that the consequent
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holds.

(I9) implies that statement 9:i may falsify (I36) only if i:j = level ^ i@f9g ^

q=2level = comp(p=2level) ^ p=2level = comp(i=2level) holds. By (C1), this implies

that i:j = level ^ i@f9g ^ q=2level = i=2level holds. If i = q, then statement 9:i

establishes q@f10g. If i 6= q, then ME (level) implies that q:j = level does not

hold. Thus, statement 9:i preserves (I36). (I11) implies that statement 20:i may

falsify (I36) only if q=2level = comp(p=2level) ^ p=2level+1 = i=2level+1 ^ i:j =

level ^ i@f20g holds. By (C1), this implies that comp(q=2level) = p=2level ^

q=2level = comp(p=2level) ^ p=2level+1 = i=2level+1 ^ i:j = level ^ i@f20g holds.

By (C2), this implies that (i=2level = p=2level _ i=2level = q=2level) ^ i:j =

level ^ i@f20g holds. If i = p, then statement 20:i establishes p@f15g. If

i=2level = p=2level ^ i 6= p ^ i:j = level ^ i@f20g holds, thenME(level) implies

that p:j = level does not hold. If i = q, then statement 20:i establishes q@f15g.

If i=2level = q=2level ^ i 6= q ^ i:j = level ^ i@f20g holds, then ME(level)

implies that q:j = level does not hold. 2

invariant p:j = level ^ p@f12g ^ q=2level = comp(p=2level) ^

q:j = level ^ q@f4::10g ^ T [level; p=2level+1] = q ) P [level; p] = 2 (I37)

Initially (8i :: i@f0g) holds, and hence (I37) is true. The antecedent may be

established only by statements 11:p, 13:p, 16:p, 3:q, 13:q, and 16:q. Only state-

ments 4:p and 9:i may falsify the consequent. (I3) implies that statement 11:p

may establish the antecedent only if p:j = level ^ p@f11g ^ T [level; p=2level+1] =

p holds. Thus, statement 11:p does not establish the antecedent. :p@f12g holds

after the execution of statements 13:p and 16:p.
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Statement 3:q establishes the antecedent only if p:j = level ^ p@f12g ^

q=2level = comp(p=2level) ^ q:j = level ^ q@f3g holds. By ME (level), this

implies that p:j = level ^ p@f12g ^ q=2level = comp(p=2level) ^ q:j =

level ^ q@f3g ^ (8i : i=2level = comp(p=2level) ^ i 6= q :: i:j < level) holds.

In that case, (I35) implies that P [level; p] = 2 holds. :q@f4::10g holds after the

execution of statements 13:q and 16:q.

Although statement 4:p may falsify the consequent, it establishes p@f5g. As

in the proof of (I36), statement 9:i may falsify (I37) only if i=2level = q=2level ^

i:j = level ^ i@f9g holds. If i = q, then (I36) implies that statement 9:i does

not falsify the consequent when the antecedent holds. If i 6= q, then ME(level)

implies that q:j = level does not hold. 2

Now, we prove that the algorithm is free from starvation. To facilitate the pre-

sentation, we de�ne the following predicate.

SF (level) � (8i :: i:j = level ^ i@f1::13g 7! i@f14g)

We next prove that the following assertion holds, which implies that the starvation-

freedom property holds.

(8n : 0 � n � log2N :: SF (n)) (G2)

We use an induction on n in the proof. Observe that SF (log2N) � (8i :: i:j =

log2N ^ i@f1::13g 7! i@f14g). By the contrapositive of (I1), (8i :: i:j =

log2N ) :i@f2::13g) holds. By the de�nition of a fair history and the pro-
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gram text, (8i :: i:j = log2N ^ i@f1g 7! i@f14g) holds. These two assertions

imply that the induction base SF (log2N) holds. Thus, it su�ces to prove that

the following assertion holds.

(8level : 0 � level < log2N :: (8j : j > level :: SF (j)) ) SF (level)) (G3)

Next, we prove several assertions that are needed to establish SF (level). In these

proofs, we assume that (8j : j > level :: SF (j)) holds.

i:j > level 7! i:j = level ^ i@f19g (L1)

By (I0), i:j > level ) i@f1::20g. By our assumption that (8j : j > level ::

SF (j)) holds, by (I1), i:j > level ^ i@f1::13g 7! i:j > level ^ i@f14g. By the

de�nition of a fair history and the program text, i:j > level ^ i@f14::20g 7!

i:j = level ^ i@f19g. 2

Now, we prove two unless assertions.

i:j = level ^ i@f10g ^ P [level; i]� 1 unless i:j = level ^ i@f11g (U0)

To prove that (U0) holds, it su�ces to consider only those statements that may

falsify i:j = level ^ i@f10g ^ P [level; i] � 1. The statements to consider

are 4:i, 10:i, 13:i, and 16:i. When statements 4:i, 13:i, or 16:i are enabled for

execution, :i@f10g holds, which implies that these statements preserve (U0).

Statement 10:i establishes i:j = level ^ i@f11g, if executed when i:j = level
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holds, and hence preserves (U0).

i:j = level ^ i@f12g ^ P [level; i] = 2 unless i:j = level ^ i@f13g (U1)

To prove that (U1) holds, it su�ces to consider only those statements that may

falsify i:j = level ^ i@f12g ^ P [level; i] = 2. The statements to consider are

4:i, 12:i, 13:i, 16:i, and 9:q. When statements 4:i, 13:i, or 16:i are enabled for

execution, :i@f12g holds, which implies that these statements preserve (U1).

Statement 12:i establishes i:j = level ^ i@f13g, if executed when i:j = level

holds, and hence preserves (U1). (I9) implies that statement 9:q may falsify

(U1) only when i:j = level ^ i@f12g ^ q:j = level ^ q@f9g ^ i=2level =

comp(q=2level) holds. By (C1), this implies that i:j = level ^ i@f12g ^ q:j =

level ^ q@f9g ^ q=2level = comp(i=2level) holds. In this case, (I36) implies that

q:rival 6= i _ P [level; i] = 0 holds, which implies that statement 9:q does not

falsify (U1).

The next two assertions follow from these unless assertions, the de�nition of a

fair history, and the program text; (U0) is used to prove (L2) and (U1) is used

to prove (L3).

i:j = level ^ i@f10g ^ P [level; i]� 1 7! i:j = level ^ i@f11g (L2)

i:j = level ^ i@f12g ^ P [level; i] = 2 7! i:j = level ^ i@f13g (L3)

The following assertions, which are stated without proof, follow directly from
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the de�nition of a fair history and the program text.

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f3::9g 7!

(i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^

q@f10; 13g) _ (i:j = level ^ i@f11g) (L4)

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f11g 7!

(i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^

q@f12; 13g) _ (i:j = level ^ i@f11g) (L5)

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f13g 7!

(i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j > level) _

(i:j = level ^ i@f11g) (L6)

Assertions (L7) through (L13), given next, easily follow from the preceding as-

sertions. In particular, (L1) implies that (L7) holds; (I34) and (L7) imply that

(L8) holds; (I34) and (L8) imply that (L9) holds; (L9) implies that (L10) holds;

(L2) and (L10) imply that (L11) holds; (I27) implies that (L12) holds; and (L2)

implies that (L13) holds.

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^

(q:j > level _ q:j = level ^ q@f17::19g) 7!

(i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f19g) _

(i:j = level ^ i@f11g) (L7)
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i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^

(q:j > level _ q:j = level ^ q@f17::19g) 7!

(i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f19g

^ q:rival = i) _ (i:j = level ^ i@f11g) (L8)

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^

(q:j > level _ q:j = level ^ q@f17::20g) 7!

(i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f20g ^

q:rival = i) _ (i:j = level ^ i@f11g) (L9)

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^

(q:j > level _ q:j = level ^ q@f17::20g) 7!

(i:j = level ^ i@f10g ^ P [level; i] = 2) _

(i:j = level ^ i@f11g) (L10)

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^

(q:j > level _ q:j = level ^ q@f17::20g) 7!

i:j = level ^ i@f11g (L11)

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f10g 7!

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f10g ^

(P [level; i]� 1 _ P [level; q]� 1) (L12)

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f10g ^

(P [level; i]� 1 _ P [level; q]� 1) 7!
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(i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f11g) _

(i:j = level ^ i@f11g) (L13)

invariant i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^

q:j = level ^ q@f12g )

(i:j = level ^ i@f10g ^ P [level; i]� 1) _

(i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^

q:j = level ^ q@f12g ^ P [level; q] = 2) (I38)

By (I16), the antecedent implies that i:j = level ^ i@f10g ^ q=2level =

comp(i=2level) ^ q:j = level ^ q@f12g ^ (T [level; i=2level+1] = q _

T [level; i=2level+1] = i) holds. By (C1) and (C3), this implies that (i:j = level ^

i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f12g ^ T [level; q=2level+1] =

q) _ (i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ i=2level =

comp(q=2level) ^ q:j = level ^ q@f12g ^ T [level; q=2level+1] = i) holds.

By (I26) and (I37), this implies that the consequent of (I38) holds. 2

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f12g 7!

(i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f13g) _

(i:j = level ^ i@f11g) (L14)

By (L2) and (L3), (I38) implies that (L14) holds. 2

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f3::14g 7!

(i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j > level) _
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(i:j = level ^ i@f11g) (L15)

(I2) implies that :(q:j = level ^ q@f14g) holds. (Recall that level < log2N .)

Hence, (L4), (L5), (L6), (L12), (L13), (L14), and :(q:j = level ^ q@f14g)

imply that (L15) holds. 2

i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ q:j = level ^ q@f3::14g 7!

(i:j = level ^ i@f11g) (L16)

(L11) and (L15) imply that (L16) holds. 2

i:j = level ^ i@f10g 7! i:j = level ^ i@f11g (L17)

(I24) implies that i:j = level ^ i@f10g ) (i:j = level ^ i@f10g ^ P [level; i] =

2) _ (9q :: i:j = level ^ i@f10g ^ q=2level = comp(i=2level) ^ (q:j >

level _ q:j = level ^ q@f17::20g)) _ (9q :: i:j = level ^ i@f10g ^ q=2level =

comp(i=2level) ^ q:j = level ^ q@f3::14g). By (L2), (L11), and (L16), this

implies that (L17) holds. 2

By proving assertions similar to (I38) and (L4) through (L16), it is possible to

establish (L18), given next, which is similar to (L17). For brevity, we omit the

proof of (L18).

i:j = level ^ i@f12g 7! i:j = level ^ i@f13g (L18)
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Note that (L17) implies that the �rst busy-waiting loop of process i terminates,

while (L18) implies that the second busy-waiting loop of i terminates.

i:j = level ^ i@f1::13g 7! i:j = level+ 1 ^ i@f1g (L19)

By the program text and the de�nition of a fair history, (L17) and (L18) im-

ply that (L19) holds. (Recall, by assumption, that level < log2N . Thus,

i:j = level ^ i@f1g 7! i:j = level ^ i@f2g.) 2

Observe that if (8j : j > level :: SF (j)) holds, then, by (L19), that SF (level)

holds. This concludes the proof of (G3). Thus, we conclude that the program

in Figures 2.2 and 2.3 is free from starvation.

2.5 Fast Mutual Exclusion in the Absence of

Contention

As discussed in Section 2.1, most early mutual exclusion algorithms based on

read/write atomicity are neither fast in the absence of contention, nor able to

cope with high contention. Because Lamport's fast mutual exclusion algorithm

induces O(1) remote operations in the absence of contention, and our mutual

exclusion algorithm requires O(logN) remote operations given any level of con-

tention, it seems reasonable to expect a solution to exist that induces O(1)

remote operations when contention is absent, and O(logN) remote operations

when contention is high.

The algorithm given in Figures 2.4 and 2.5 almost achieves that goal. The
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shared var B : array[0::N � 1] of boolean;

X;Y : �1::N � 1;

Z : boolean

initially Y = �1 ^ Z = false ^ (8i :: B[i] = false)

process i

private var flag : boolean;

n : 1::N

Figure 2.4: Variable declarations for fast, scalable mutual exclusion algorithm.

basic idea of this modi�cation is to combine Lamport's fast mutual exclusion

algorithm and our algorithm, speci�cally by placing an extra two-process version

of our algorithm \on top" of the arbitration tree. The \left" entry section of this

extra two-process program (i.e., process u's code in Figure 2.1) is executed by a

process if that process detects no contention. The \right" entry section of this

extra program (i.e., process v's code in Figure 2.1) is executed by the winning

process from the arbitration tree. A process will compete within the arbitration

tree (as before) if it detects any contention. As seen in Figure 2.5, the scheme

used to detect contention is similar to that used in Lamport's algorithm. In this

�gure, we use ENTRY k and EXIT k to denote the entry and exit sections of the

k-process version of our algorithm.

It should be clear that, in the absence of contention, a process enters its

critical section after executing O(1) remote operations. Also, in the presence of

contention, a process enters its critical section after executing O(logN) remote

operations. However, when a period of contention ends, N remote operations

might be required in order to re-open the fast entry section | see the while

loop at line 22 in Figure 2.5. Nonetheless, performance studies show that, under
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process i

while true do

0: Noncritical Section;

1: X := i;

2: if Y 6= �1 then goto 14 �;

3: Y := i;

4: if X 6= i then goto 14 �;

5: B[i] := true;

6: if Z then goto 14 �;

7: if Y 6= i then goto 14 �;

8: ENTRY2; =� Two-Process Entry Section �=

9: Critical Section;

10: EXIT2; =� Two-Process Exit Section �=

11: Y := �1;

12: B[i] := false;

13: goto 0;

14: ENTRYN ; =� Arbitration Tree �=

15: ENTRY2; =� Two-Process Entry Section �=

16: Critical Section;

17: B[i] := false;

18: if X = i then

19: Z := true;

20: flag := true;

21: n := 0;

22: while (n < N ) do

23: if B[n] then flag := false �;

24: n := n+ 1

od;

25: if flag then Y := �1 �;

26: Z := false

�;

27: EXIT2; =� Two-Process Exit Section �=

28: EXITN =� Arbitration Tree �=

od

Figure 2.5: Fast, scalable mutual exclusion algorithm.
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high contention, these statements are rarely executed. (Under low contention,

they are obviously never executed.) For example, out of the 100,000 critical

section executions in one experiment, these N statements were performed after

only 55 critical section executions in the four-process case, and after only one in

the eight- and sixteen-process cases.

In the absence of contention, our algorithm generates about twice as many

remote memory operations as Lamport's. However, under high contention, our

algorithm is clearly superior, as Lamport's induces an unbounded number of

remote operations. Also, our modi�ed algorithm ensures starvation-freedom,

whereas Lamport's algorithm does not.

In the rest of this section, we prove that the mutual exclusion and starvation-

freedom properties hold for mutual exclusion of Figures 2.4 and 2.5. We �rst

prove �ve invariants that are needed to prove that mutual exclusion holds. The

�rst three are quite simple: (I39) follows from (G0), (I40) follows directly from

the program text, and (I41) follows from (I39).

invariant (Ni :: i@f15::27g) � 1 (I39)

invariant i@f6::12g ) B[i] (I40)

invariant i@f20::26g ) Z (I41)

invariant i:flag ^ ((i@f22; 23g ^ i:n > p) _ (i@f24g ^ i:n � p)) )

:p@f7::12g (I42)
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Initially (8i :: i@f0g) holds, and hence (I42) is true. The antecedent may be

established only by statements 20:i, 21:i, 23:i, and 24:i. Only statement 6:p may

falsify the consequent. :i@f22::24g holds after the execution of statement 20:i.

Although statement 21:i establishes i@f22g, it also establishes i:n = 0, which

implies that the antecedent does not hold. Statement 23:i may falsify (I42) only

if i:flag ^ i@f23g ^ i:n = p ^ :B[i:n] ^ p@f7::12g holds. By (I40), this

is a contradiction. Thus, statement 23:i preserves (I42). Statement 24:i may

establish i@f22g ^ i:n > p only if i@f24g ^ i:n � p holds. Thus, although

statement 24:i may preserve the antecedent, it does not establish it. Statement

6:p may falsify the consequent only when Z holds. By (I41), this implies that

the antecedent does not hold. 2

invariant i@f25g ^ i:flag ) (8p :: :p@f7::12g) (I43)

Initially (8i :: i@f0g) holds, and hence (I43) is true. The antecedent may be

established only by statements 20:i and 22:i. Only statement 6:q may falsify the

consequent. :i@f25g holds after the execution of statement 20:i. Statement

22:i may establish i@f25g ^ i:flag only if i@f22g ^ i:flag ^ i:n � N holds.

By (I42), this implies that the consequent holds. Statement 6:q may falsify the

consequent only when Z holds. By (I41), this implies that the antecedent does

not hold. 2

The following assertion implies that the mutual exclusion property holds for the

fast entry section.
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invariant ((Ni :: i@f2g ^ X = i ^ Y = �1) + (Ni :: i@f3g ^ X = i)+

(Ni :: i@f4g ^ X = i ^ Y = i) + (Ni :: i@f5::7g ^ Y = i)+

(Ni :: i@f8::11g)) � 1 ^ ((9p :: p@f8::11g) ) Y 6= �1) (I44)

Initially (8i :: i@f0g) holds, and hence (I44) is true. (I44) may be falsi�ed only

by statements 1:q, 2:q, 3:q, 4:q, 7:q, 11:q, and 25:q.

Statement 2:q may increment (Ni :: i@f3g ^ X = i) only if q@f2g ^ X =

q ^ Y = �1 holds. Statement 3:q may increment (Ni :: i@f4g ^ X =

i ^ Y = i) only if q@f3g ^ X = q holds. Statement 4:q may increment

(Ni :: i@f5::7g ^ Y = i) only if q@f4g ^ X = q ^ Y = q holds. Statement 7:q

may increment (Ni :: i@f8::11g) only if q@f7g ^ Y = q holds. Thus, statements

2:q, 3:q, 4:q, and 7:q preserve (I44).

Statement 1:q may falsify (I44) only if q@f1g ^ Y = �1 ^ ((9p ::

p@f8::11g) ) Y 6= �1) holds. This implies that (Ni :: i@f4g ^ X =

i ^ Y = i) = 0 ^ (Ni :: i@f5::7g ^ Y = i) = 0 ^ (Ni :: i@f8::11g) = 0 holds.

Because (Ni :: X = i) � 1 holds, (Ni :: i@f2g ^ X = i ^ Y = �1) + (Ni ::

i@f3g ^ X = i) � 1 also holds, which implies that statement 1:q preserves

(I44).

Statement 7:q establishes q@f8g only if Y = q holds, and hence preserves

(I44). Statement 11:q could potentially falsify (I44) by establishing Y = �1.

However, statement 11:q decrements (Ni :: i@f8::11g) by 1, and hence estab-

lishes (Ni :: i@f4g ^ X = i ^ Y = i) = 0 ^ (Ni :: i@f5::7g ^ Y = i) = 0 ^

(Ni :: i@f8::11g) = 0. Because (Ni :: X = i) � 1 holds, (Ni :: i@f2g ^ X =

i ^ Y = �1)+ (Ni :: i@f3g ^ X = i) � 1 also holds, which implies that

statement 11:q preserves (I44).
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Statement 25:q could potentially falsify (I44) by establishing Y = �1. How-

ever, statement 25:q may establish Y = �1 only if q@f25g ^ q:flag holds. By

(I43), this implies that Y = �1 ^ (8i :: :i@f7::12g) holds, which implies that

statement 25:q establishes (Ni :: i@f4g ^ X = i ^ Y = i) = 0 ^ (Ni ::

i@f5::7g ^ Y = i) = 0 ^ (Ni :: i@f8::11g) = 0. Because (Ni :: X = i) � 1

holds, (Ni :: i@f2g ^ X = i ^ Y = �1)+ (Ni :: i@f3g ^ X = i) � 1 also

holds, which implies that statement 25:q preserves (I44). 2

ENTRY2 and EXIT2 satisfy the following properties.

invariant ((Ni :: i@f8::10g) � 1 ^ (Ni :: i@f15::27g) � 1) )

(Ni :: i@f9; 16::26g) � 1 (I45)

i@f8g 7! i@f9g (L20)

i@f15g 7! i@f16g (L21)

The proof of (I45) is similar to that of (G1), and is omitted for brevity. The

proof of (L20) and (L21) are similar to that of (G3), and are omitted for brevity.

(Note that process identi�ers and function comp are used for convenience in the

proof of (G1) and (G3).)

The following two assertions imply that the mutual exclusion and starvation-

freedom properties hold for the algorithm of Figures 2.4 and 2.5.

invariant (Ni :: i@f9; 16g) � 1 (I46)
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(I39), (I44), and (I45) imply that (I46) holds. 2

invariant i@f1::8; 14; 15g 7! i@f9; 16g (L22)

By the program text, i@f1::7g 7! i@f8; 14g. (G2) implies that i@f14g 7!

i@f15g. Hence, (L22) follows from (L20) and (L21). 2

2.6 Performance Results

To compare the scalability of our mutual exclusion algorithm with that of other

algorithms, we conducted a number of experiments on the BBN TC2000 and

Sequent Symmetry multiprocessors. Results from some of these experiments are

presented in this section.

BBN TC2000

The BBN TC2000 is a distributed shared memory multiprocessor, each node of

which contains a processor and a memory unit. Each node's processor, a Mo-

torola 88100, provides an atomic fetch-and-store instruction called xmem. Other

strong primitives such as compare-and-swap and fetch-and-add are provided us-

ing the TC2000 hardware locking protocol [13].

We tested seven mutual exclusion algorithms on the TC2000: a simple test-

and-set algorithm; the queue-based algorithm using compare-and-swap given by

Mellor-Crummey and Scott in [45]; the queue-based algorithm using fetch-and-

add given by T. Anderson in [9]; the fast mutual exclusion algorithm given by

Lamport in [37]; the tree-based algorithm given by Styer in [56]; the tree-based
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Figure 2.6: Performance results on the TC2000.
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algorithm given by Peterson and Fischer in [52]; and the mutual exclusion algo-

rithm described in Section 2.3. Performance results obtained by running these

seven algorithms on the TC2000 are summarized in Figure 2.6. Each point (x; y)

in each graph represents the average time y for one critical section execution with

x competing processors. The timing results summarized in the graph were ob-

tained by averaging over 105 critical section executions. The critical section

consists of a read and an increment of shared counter. Results obtained using

larger critical sections show similar performance to that depicted in Figure 2.6.

The timing results presented include the execution time of critical sections.

The performance of the test-and-set algorithm is given by the graph labeled

T&S, Mellor-Crummey and Scott's algorithm by the graph labeled MCS, T.

Anderson's algorithm by the graph labeled AND, Lamport's algorithm by the

graph labeled LAMP, Styer's algorithm by the graph labeled STYER, Peterson

and Fischer's algorithm by the graph labeled PF, and our algorithm by the graph

labeled YA. On the TC2000, the MCS algorithm was the best overall performer

of the alternatives considered here. The graph depicted for the MCS algorithm

is mostly 
at, except at the point for two processors. This anomaly at two pro-

cessors coincides with results reported by Mellor-Crummey and Scott on the Se-

quent Symmetry, and was attributed by them to the lack of a compare-and-swap

instruction on the Symmetry [45]. As our implementation of their algorithm did

employ compare-and-swap, we have not found a satisfying explanation for this

behavior on the TC2000.

T. Anderson's algorithm requires only local spinning when implemented on a

machine with coherent caches. On the Symmetry, where each process can spin on

its own coherent cache, Anderson's algorithm outperforms the MCS algorithm.
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However, on the TC2000, which does not support coherent caching, Anderson's

algorithm requires remote spinning, slowing its performance.

The simple T&S algorithm exhibited poor scalability. The average execution

time for the 64 processor case, which is not depicted in Figure 2.6, is about 330

microseconds. Where there is a possibility of contention among a large number

of processors, it should be avoided, or used with good backo� scheme [2].

Three algorithms based on atomic reads and writes | Lamport's, Peterson

and Fischer's, and Styer's | also showed poor scalability. In particular, the

performance of Lamport's algorithm degrades dramatically as the number of

contenders increases. The average execution time for the 64 processor case, which

is not depicted in Figure 2.6, is about 4000 microseconds. The performance of

Styer's algorithm, which is better than that of Lamport's, is due to the tree

structure employed. Styer's algorithm generates O(logN) remote operations

outside of busy-waiting loops. Even though Peterson and Fischer's algorithm

is also tree-based, it induces O(N) remote operations outside of busy-waiting

loops, which results in poorer scalability.

Our mutual exclusion algorithm shows performance that is comparable to

that of T. Anderson's and Mellor-Crummey and Scott's algorithms. Its good

scalability emphasizes the importance of local spinning. The di�erence seen

between our mutual exclusion algorithm and the MCS algorithm is explained by

the amount of global tra�c generated by each algorithm. The MCS algorithm

generates O(1) remote operations per critical section execution, whereas ours

generates O(logN). The global tra�c of the other �ve algorithms is unbounded,

as each employs global spinning. The performance of T. Anderson's algorithm is

far better than that of the simple test-and-set algorithm. Because the processes
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in Anderson's algorithm spin globally on the TC2000, this might be interpreted

as a counterexample to our belief that minimizing remote operations is important

for good scalability. However, Mellor-Crummey and Scott reported in [45] that

Anderson's algorithm produced far fewer remote operations than the test-and-set

algorithm.

Sequent Symmetry

Performance results of experiments on the Sequent Symmetry are summarized in

Figure 2.6. Cache coherence is maintained by a snoopy protocol. The Symmetry

provides an atomic fetch-and-store instruction. Because other strong primitives

are not provided, we used a version of Mellor-Crummey and Scott's algorithm

that is implemented with fetch-and-store and that does not ensure starvation-

freedom [45]. Fetch-and-add, which is used in T. Anderson's algorithm, was

simulated by a test-and-set algorithm with randomized backo�, as Anderson did

in [9].

The experiments on the Symmetry show similar results to that for the TC2000.

However, on the Symmetry, T. Anderson's algorithm has the best overall perfor-

mance, mainly because the availability of coherent caches makes all spins in his

algorithm local. The performance of Lamport's algorithm on the Symmetry is

far better than that on the TC2000. This seems partly due to the fact that his

algorithm is not starvation-free. Speci�cally, when a process enters its critical

section, it can keep all needed variables in its own cache and repeatedly enter

its critical section, without yielding to the other processes. In one of our tests

for the two-process case, one process executed 50,000 critical sections during a

period of time in which the other process executed only 120 critical sections.
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Figure 2.7: Performance results on the Symmetry.
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Dependence on coherent caching for e�cient synchronization [9, 26] is ques-

tionable, as many caching schemes do not cache shared writable data. Our solu-

tion neither requires a coherent cache for e�cient implementation nor any strong

primitives. An e�cient implementation of our algorithm requires only that each

processor has some part of shared memory that is locally accessible, and that

read and write operations are atomic. We consider these to be minimal hard-

ware requirements for e�cient synchronization. It is worth noting that, without

fetch-and-add and compare-and-swap primitives, T. Anderson's algorithm and

Mellor-Crummey and Scott's algorithm are not starvation-free.

2.7 Discussion

We have presented a scalable mutual exclusion algorithm for shared memory

multiprocessors that does not require any hardware support other than atomic

read and write operations. Our algorithm has better worst-case time complexity

than any previously published mutual exclusion algorithm based on read/write

atomicity, requiringO(logN) remote operations under any amount of contention.

We have also presented an extension of our algorithm for fast mutual exclusion in

the absence of contention that generates O(1) remote operations in the presence

of contention and O(N) in the absence of contention.

In the time complexity calculations given in this chapter, the distinction

between remote and local operations is based upon a static assignment of shared

variables to processes. Other de�nitions, which incorporate speci�c architectural

details of systems, are also possible. For example, for programs intended for

machines with coherent caching, it might be appropriate to consider a read of
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a shared variable x by a process p to be local if x has not been written by

another process since p's most recent access of x. However, because of the many

parameters that go into de�ning a cache-coherence protocol, such de�nitions

can be problematic. The next chapter provides a means to calculate the time

complexity of concurrent programs for cache-coherent models.

A natural approach to measuring the time complexity of concurrent programs

would be to simply count the total number of operations executed. However,

a straightforward application of such an approach does not provide any insight

into the behavior of mutual exclusion algorithms under heavy contention. In

particular, in any algorithm in which processes busy-wait, the number of opera-

tions needed for one process to get to its critical section is unbounded. In order

to serve as a measure of time complexity, a measure should be both intuitive and

easy to compute. In sequential programming, the usual measure of time com-

plexity, which is obtained by simply counting operations, satis�es these criteria.

By contrast, there has been much disagreement on how time complexity should

be measured in concurrent programs, and a complexity measure satisfying these

criteria has yet to be adopted. We believe that an appropriate time complexity

measure for concurrent algorithms is one based on the number of remote mem-

ory references. As seen in this chapter, such a measure can be used to make

meaningful distinctions concerning the scalability of concurrent programs.
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Chapter 3

Time/Contention Trade-o�s for

Multiprocessor Synchronization

3.1 Introduction

In this chapter, we consider bounds on time for mutual exclusion, a subject

that has received scant attention in the literature. Past work on the complexity

of mutual exclusion has almost exclusively focused on space requirements [17];

the limited work on time bounds that has been done has focused on partially

synchronous models [43].

The lack of prior work on time bounds for mutual exclusion within asyn-

chronous models is probably due to di�culties associated with measuring the

time spent within busy-waiting constructs. In fact, because of such di�culties,

there has been scarcely little work of any kind on time bounds for asynchronous

concurrent programming problems for which busy-waiting is inherent. One of

the primary contributions of this chapter is to show that it is possible to establish

meaningful time bounds for such problems.

In Chapter 2, we proposed a time measure for concurrent programs that dis-
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tinguishes between local and remote accesses of shared memory [60]. Under our

measure, the time complexity of a concurrent program is measured by counting

only remote accesses of shared variables; local accesses are ignored.

We present several lower-bound results for mutual exclusion that are based

on the time complexity measure proposed in Chapter 2. Our results establish

trade-o�s between time complexity and write- and access-contention for solutions

to the mutual exclusion problem. The write-contention (access-contention) of

a concurrent program is the number of processes that may be simultaneously

enabled to write (access) the same shared variable. Limiting access-contention

is an important consideration when designing algorithms for problems, such as

mutual exclusion and shared counting, that must cope well with high competi-

tion among processes [9, 28, 29, 53]. Performance problems associated with high

access-contention can be partially alleviated by employing coherent caching tech-

niques to reduce concurrent reads of the same memory location. However, even

when such techniques are employed, limiting write-contention is still an impor-

tant concern.

We show that, for any N -process mutual exclusion algorithm, if write-

contention is w, and if each atomic operation accesses at most v remote variables,

then there exists an execution involving only one process in which that process

executes 
(log
vw
N) remote operations for entry into its critical section. We fur-

ther show that, among these operations, 
(
q
log

vw
N ) distinct remote variables

are accessed. For algorithms with access-contention c, we show that the latter

bound can be improved to 
(log
vc
N).

These results have a number of important implications. For example, because

the �rst access of any variable causes a cache miss, the latter two bounds imply
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that a time/contention trade-o� exists even if coherent caching techniques are

employed. Also, because the execution that establishes these bounds involves

only one process, it follows that fast mutual exclusion algorithms require arbi-

trarily high write-contention in the worst case. These bounds apply not only

to the mutual exclusion problem, but also to a class of decision problems that

includes the leader-election problem.

In most shared-memorymultiprocessors, an atomic operation may access only

a constant number of remote variables. In fact, most commonly-available syn-

chronization primitives access only one remote variable; examples include read,

write, test-and-set, fetch-and-store, compare-and-swap, and fetch-and-add. If v

is taken to be a constant, then our results imply that, for any N -process mutual

exclusion algorithm with write-contention w, some process executes 
(log
w
N)

remote operations in the absence of competition for entry into its critical section.

Further, among these remote operations, 
(
q
log

w
N ) distinct remote variables

are accessed. For algorithms with access-contention c, the latter bound is im-

proved to 
(log
c
N). It can be shown that the �rst and last of these bounds are

asymptotically tight.

In the mutual exclusion algorithm depicted in Figure 2.3, only reads and

writes are used, i.e., v = 1 holds. Note that this algorithm has access-contention

(and hence write-contention) two. Thus, this algorithm gives us an upper bound

matching the �rst (last) bound mentioned in the previous paragraph, for the class

of algorithms with constant write-contention (access-contention). In Section 3.4,

we present an algorithm that provides us upper bounds matching these lower

bounds for arbitrary contention.

Related work includes previous research by Dwork et al. given in [23], where
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it is shown that solving mutual exclusion with access-contention c requires


((log2N)=c) memory references. Our work extends that of Dwork et al. in

several directions. First, the implications concerning fast mutual exclusion and

cache coherence noted above do not follow from their work. Second, we con-

sider programs in which atomic operations may access multiple shared variables,

whereas they only consider reads, writes, and read-modify-writes. Third, in

our main result, we restrict only write-contention, and if v is a constant, then

we obtain a tight bound of 
(log
w
N), which exceeds the bound established by

them. Finally, and most importantly, Dwork et al. make no distinction between

local and remote shared memory accesses. Because busy-waiting is required for

mutual exclusion in general, an unbounded number of memory accesses (local

or remote) are required in the worst case. It is our belief that time complexity

results that do not distinguish between local and remote accesses of shared mem-

ory are of questionable value as a measure of performance of mutual exclusion

algorithms under contention.

The rest of the chapter is organized as follows. In Section 3.2, we present our

model of shared memory systems. In Section 3.3, we de�ne a simpli�ed version

of the mutual exclusion problem called the \minimal" mutual exclusion problem.

The above-mentioned time bounds are then established in Sections 3.4 and 3.5.

We end the chapter with some discussion in Section 3.6.

3.2 Shared-Memory Systems

Our model of a shared-memory system is similar to that given by Merritt and

Taubenfeld in [46]. A system S = (C;P; V ) consists of a set of computations C,
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a set of processes P = f1; 2; : : : ; Ng, and a set of variables V . A computation is

a �nite sequence of events.

An event is denoted [R;W; i], where R = f(xj; uj)j1 � j � mg for some

m, W = f(yk; vk)j1 � k � ng for some n, and i 2 P ; this notation represents

reading value uj from variable xj, for 1 � j � m, and writing value vk to variable

yk, for 1 � k � n. Each variable in R (W ) is assumed to be distinct. We say

that this event accesses each such xj and yk. We use R:var to denote the set of

variables xj such that (xj; uj) 2 R for some uj, and W:var to denote the set of

variables yk such that (yk; vk) 2 W for some vk.

Each variable is local to at most one process and is remote to all other

processes. (Note that we allow variables that are remote to all processes.) An

initial value, denoted xinit, is associated with each variable x. An event is local

if it does not access any remote variable, and is remote otherwise.

We use he; : : :i to denote a computation that begins with the event e, and

hi to denote the empty computation. We de�ne the length of computation H,

denoted jHj, as the number of events in H. H � G denotes the computation

obtained by concatenating computations H and G. If G is a subsequence of H,

then H � G is the computation obtained by removing all events in G from H.

The value of variable x at the end of computation H, denoted value(x;H), is

the last value that is written to x in H (or xinit if x is not written in H). More

formally, we de�ne value(x;H) recursively as follows.

value(x;H) �

if H = hi then xinit

else if H = G � h[R;W; i]i then

if (x; v) 2 W then v
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else value(x;G) � � �

Similarly, we de�ne the last event to write variable x inH, denoted writer(x;H),

as follows. If x is not written by any event in H, then we let writer(x;H) = ?.

writer(x;H) �

if H = hi then ?

else if H = G � h[R;W; i]i then

if (x; v) 2 W then [R;W; i]

else writer(x;G) � � �

An extension of computation H is a computation of which H is a pre�x. For

a computation H and a set of processes Y , HY denotes the subsequence of H

that contains all events in H of processes in Y .

Computations H and G are equivalent with respect to a set of processes Y ,

denoted H[Y ]G, i� HY = GY . Note that [Y ] is an equivalence relation. We now

present our model of shared-memory systems.

De�nition: A shared-memory system S = (C;P; V ) is a system that satis�es

the following properties.

� (P1) If H 2 C and G is a pre�x of H, then G 2 C.

� (P2) If H � h[R;W; i]i 2 C, G 2 C, G[Y ]H, and i 2 Y , and if for all

x 2 R:var, value(x;G) = value(x;H) holds, then G � h[R;W; i]i 2 C.

� (P3) If H � h[R;W; i]i 2 C, G 2 C, G[Y ]H, and i 2 Y , then G �

h[R0;W 0; i]i 2 C for some R0 and W 0 such that R0:var = R:var and

W 0:var = W:var.
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� (P4) For any H 2 C, H � h[R;W; i]i 2 C only if for all (x; v) 2 R, v =

value(x;H) holds. 2

For simplicity, we call a remote event a remote read if it reads a remote

variable, and a remote write if it writes remote variables. Note that a remote

event can be both a remote read and a remote write.

Consider a shared-memory system S = (C;P; V ). A computation H is a

Y -computation i� either H = hi and Y � P , or Y is the minimal subset of P

such that H = HY holds. For simplicity, we abbreviate the preceding de�nitions

when applied to a singleton set of processes. For example, if Y = fig, then we

use Hi to mean Hfig, i-computation to mean fig-computation, and [i] to mean

[fig].

In the following sections, we establish time bounds involving various notions

of contention. Consider a shared-memory system S = (C;P; V ). The strictest

notion of contention is static in nature. In particular, consider a variable x in

V . A process i in P is a reader (writer) of x i� there is an event of i that

reads (writes) x in some computation in C. We say that x is a k-reader (k-

writer) variable i� there are k readers (writers) of x. The other two notions

of contention that we employ are dynamic in nature. For H 2 C and x 2 V ,

let overwriters(x;H) � fi j H � h[R;W; i]i 2 C where x 2 W:varg. Then,

the write-contention of S is maxx2V;H2C(joverwriters(x;H)j). Similarly, let

contenders(x;H) � fi j H � h[R;W; i]i 2 C where x 2 (R:var [ W:var)g.

Then, the access-contention of S is maxx2V;H2C(jcontenders(x;H)j). These

notions of contention bound the number of processes that may simultaneously

write (access) the same memory location.
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3.3 Minimal Mutual Exclusion

Our main results concerning the mutual exclusion problem are based on a sim-

pli�ed version of the problem, which we call the \minimal mutual exclusion

problem".

Minimal Mutual Exclusion Problem: We de�ne the minimal mutual exclu-

sion problem for a shared-memory system S = (C;P; V ) as follows. Each process

i 2 P has a local variable i:dine that ranges over fthink; hungry; eatg. Variable

i:dine is initially think and is accessed only by the following events:

Think i � [fg; f(i:dine; think)g; i]

Hungry
i
� [fg; f(i:dine; hungry)g; i]

Eati � [fg; f(i:dine; eat)g; i]

The allowable transitions of i:dine are as follows: for any H 2 C, H �hThink ii 2

C i� value(i:dine;H) = eat; H � hHungry
i
i 2 C i� value(i:dine;H) = think;

and if H � hEatii 2 C, then value(i:dine;H) = hungry. System S solves the

minimal mutual exclusion problem i� the following requirements are satis�ed.

� Exclusion: For any H 2 C and processes i 6= j, value(i:dine;H) = eat )

value(j:dine;H) 6= eat.

� Progress: For any H 2 C and process i 2 P , if H is an i-computation,

then either H contains Eati, or there exists an i-computation G such that

H �G � hEatii 2 C. 2

Note that the Progress requirement above is much weaker than that usually

speci�ed for the mutual exclusion problem. (This, of course, strengthens our
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impossibility proofs.) Note also that any solution to the leader election problem

easily solves the minimal mutual exclusion problem. Thus, our time bounds

apply not only to the mutual exclusion problem, but also to the leader election

problem, and any other decision problem that can be used to directly solve leader

election.1

Before presenting our main results, we give bounds for the case of statically-

de�ned contention. In this theorem and those that follow, we assume that S is

a shared-memory system and that i 2 P .

Theorem 3.1: For any S = (C;P; V ) that solves the minimal mutual exclu-

sion problem, if each event accesses at most v remote variables, and if either all

variables in V are k-reader variables, or all variables in V are k-writer variables,

then there exists an i-computation in C that contains 
(N=vk) remote events

but no Eat i event.

Proof: Suppose that all variables in V are k-reader variables. (A similar ar-

gument applies if all variables are k-writer variables.) By the Progress require-

ment of the minimal mutual exclusion problem, there exists an i-computation

H(i) � Eat i in C for each i 2 P such that H(i) does not contain Eat i. Let

C 0 = fH(i) j i 2 Pg.

It can be shown that for each i and j such that i 6= j, H(i) contains a write

of a variable that is read in H(j). (Otherwise, we could show that H(i) �H(j) �

Eat i � Eat j is a computation in C, violating the Exclusion requirement.) Select

1For example, the ranking problem. In this problem, each process is assigned a \rank"

between 1 and N . The process that obtains a rank of 1 can be de�ned to be the \leader".
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one such variable for each pair (i; j) where i 6= j. Let V 0 be the set of the

variables selected.

Because each variable is a k-reader variable, H(i) contains writes of at least

d(N � 1)=ke variables in V 0. If there exists i 2 P such that d(N � 1)=2ke such

variables are remote to i, then the theorem easily follows. So, assume that each

process i 2 P has at least d(N � 1)=2ke such variables, denoted as Li, as local

variables.

Observe that Li � V 0 and, because the variables in Li are local to i, Li\Lj =

fg holds for any i 6= j. By the construction of V 0, for each x 2 Li, there exists

H(j) in C 0 that contains a remote event reading x, where j 6= i. Thus, there

exists a set of remote events in C 0 that collectively read at least d(N � 1)=2ke

variables in Li (remotely). Thus, there exists a set of remote events in C 0 that

collectively read at least dN(N�1)=2ke variables in V 0 (remotely). If each event

accesses at most v remote variables, then by the pigeon-hole principle, there ex-

ists an i-computation in C 0 that contains at least d(N�1)=2vke remote events. 2

For any N -process system S that satis�es the conditions of Theorem 3.1,

some process i executes 
(N=vk) remote events in the absence of competition.

If we remove process i from system S, we obtain a system that satis�es the

conditions of the theorem with N replaced by N � 1. Thus, there is a process

j 6= i in system S that executes 
((N � 1)=vk) remote events in the absence of

competition. Continuing in this manner, at least half the processes in S execute

at least 
(N=2vk) remote events in the absence of competition. Thus, we have

the following corollary.

89



Corollary 3.1: For any system S satisfying the conditions of Theorem 3.1,

there exist 
(N) processes i in P for which the conclusion of the theorem holds.

2

Similar corollaries apply to the theorems in the following sections.

In [6], a mutual exclusion algorithm requiring O(N) remote memory refer-

ences per critical section acquisition is given that employs only single-reader,

single-writer variables. Thus, if v and k are taken to be positive constants, then

the bound of Theorem 3.1 is asymptotically tight. In the remainder of the paper,

we consider more interesting bounds based on dynamic notions of contention.

3.4 Main Result: Bounding Remote Events

In this section, we show that for any system with write-contention w, if an

event may access at most v remote variables, then 
(log
vw
N) remote events are

required in the absence of competition to solve the minimal mutual exclusion

problem.

This bound has important consequences for distributed shared-memory mul-

tiprocessing systems. On such systems, remote events require a traversal of a

global interconnection network and hence are more expensive than local events.

Thus, for such machines, the lower bound of Theorem 3.3 below not only gives

the inherent time complexity of the problem, it also bounds the communication

complexity measured in terms of global tra�c.

We begin by presenting several lemmas that are needed to prove the main

theorem. The �rst lemma directly follows from the de�nitions of value(x;H)
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and writer(x;H).

Lemma 3.1. writer(x;H) = writer(x;G) ) value(x;H) = value(x;G). 2

Theorem 3.3 is proved by considering a class of computations, as de�ned by

a set of conditions. Each of these conditions refers to an arbitrary computation

H in this class. The �rst condition is as follows.

� (C1) For events [R;U; i] and [T;W; j] in H, if (R:var \ W:var) 6= fg holds

and [T;W; j] precedes2 [R;U; i] in H, then i = j. Informally, no process

reads a variable that is accessed by a preceding write of another process in

H.

We will use this condition and those that follow to inductively construct

longer and longer computations. Condition (C1) eliminates \information 
ow"

between processes in the computations so constructed.

The next lemma gives us a means for projecting a computation onto a set of

processes so that the resulting projection is itself a computation.

Lemma 3.2: For any S = (C;P; V ), if G �H is a computation in C satisfying

(C1), then for any Y � P , G �HY 2 C.

Proof: We prove that G �HY 2 C by induction on the length of HY .

Induction Base. Because G �H 2 C holds, by (P1), G 2 C holds.

2Although our de�nition of an event allows multiple instances of the same event, we assume

that such instances are distinguishable from each other. (For simplicity, we do not extend our

notion of an event to include an additional identi�er for distinguishability.)
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Induction Hypothesis. Suppose that Lemma 3.2 holds for HY if jHY j = m.

Induction Step. We now considerHY of lengthm+1. LetHY = he0; e1; : : : ; em�1;

emi. Let H = H 0
� hemi �H

00.

By (P1), G �H 0
2 C. Observe that G �H 0

Y
= G � he0; e1; : : : ; em�1i. Hence,

by the induction hypothesis, G � H 0
Y
2 C. Next, we prove G � HY 2 C by

considering two cases. Let em = [R;W; i] for some i 2 Y .

Because G �H 0
� hemi is a pre�x of G �H, by (P1), G �H 0

� hemi 2 C. Note

that G �H 0 [Y ] G �H 0
Y
. Thus, to prove that G � HY 2 C, it su�ces to prove

that, for any x 2 R:var, value(x;G �H 0) = value(x;G �H 0
Y
). In particular, if

the latter holds, then (P2) implies that G �HY = G �H 0
Y
� hemi 2 C also holds.

If R = fg, then this remaining proof obligation is vacuous, so in the remainder

of the proof, assume that R 6= fg.

We consider two cases according to whether x is written in G � H 0. If

writer(x;G � H 0) = ?, then writer(x;G � H 0
Y
) = ?, and by Lemma 3.1,

value(x;G � H 0) = value(x;G � H 0
Y
). If writer(x;G � H 0) = [L;U; j], then

because G �H satis�es (C1), j = i. It follows that writer(x;G �H 0
Y
) = [L;U; j],

and by Lemma 3.1, value(x;G � H 0) = value(x;G � H 0
Y
). This concludes the

proof of Lemma 3.2. 2

Before presenting the remaining lemmas, we state the remaining three condi-

tions that serve to characterize the class of computations considered in the main

theorem. Recall that in these conditions, H denotes an arbitrary computation

from the class to be considered.

The �rst of these conditions refers to \active" processes. IfH = hi or Hi 6= hi,
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then process i is active in H; otherwise i is inactive in H. The notion of an

active process will arise in subsequent inductive proofs. Initially, all processes

are active; in a non-null computation, only those processes that have taken steps

are active.

� (C2) For any event [R;W; i] in H, if x 2 (R:var [W:var), and if x is local

to a process j that is active in H, then i = j. Informally, no local variable

of an active process is accessed by other processes in H.

� (C3) For any events [R;W; i] and [T;U; j] in H, if (W:var \ U:var) 6= fg,

then i = j. Informally, each variable is written by at most one process in

H.

� (C4) For any pre�x G of H, value(i:dine;G) 6= eat. Informally, no process

eats in H.

By (C2), \information 
ow" between processes can only occur through re-

mote events in the computations we inductively construct. Condition (C3) makes

it easier for us to make an active process inactive, i.e., remove its events from

a given computation. In particular, because each variable is written by at most

one process, if a process is made inactive, then the variables it writes simply take

on their initial values. Condition (C4) arises because we intend to compute the

time complexity required for a process to eat for the �rst time.

The next two lemmas give us means for extending a computation. We will

usually use these lemmas to extend a computation by appending local events.

Lemma 3.3: Consider S = (C;P; V ). Let F;G, and H be computations such

that for some i 2 P , F is an i-computation, no event in F accesses a variable
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that is written by processes other than i in either G or H, H 2 C, and G[i]H.

If G � F 2 C, then H � F 2 C.

Proof: As in the statement of the lemma, assume the following: (i) F is an

i-computation; (ii) no event in F accesses a variable that is written by processes

other than i in either G or H; (iii) H 2 C; (iv) G[i]H; and (v) G � F 2 C. We

prove that H � F 2 C by induction on the length of F .

Induction Base. If jF j = 0, then H �F = H. By assumption (iii), H 2 C holds.

Induction Hypothesis. Suppose that Lemma 3.3 holds when jF j = m.

Induction Step. We now consider F of length m + 1. Let F = he0; e1; : : : ; emi.

We use (P2) to prove that H � he0; e1; : : : ; emi 2 C. By assumption (v),

G � he0; e1; : : : ; em�1i � hemi 2 C : (3.1)

By (P1), (3.1) implies that G � he0; e1; : : : ; em�1i 2 C holds. Thus, by the

induction hypothesis, we have the following.

H � he0; e1; : : : ; em�1i 2 C (3.2)

By assumption (iv), G[i]H holds, so the following holds.

G � he0; e1; : : : em�1i [i] H � he0; e1; : : : em�1i (3.3)

Let em = [R;W; i]. By assumption (ii), [R;W; i] does not access a variable

that is written by processes other than i in either G or H. Thus, each x

in R:var is not written by other processes in either G or H. Thus, G[i]H

implies that writer(x;G) = writer(x;H), which implies that writer(x;G �

he0; e1; : : : em�1i) = writer(x;H � he0; e1; : : : em�1i). By Lemma 3.1, this implies

that the following holds.

value(x;G � he0; e1; : : : em�1i) = value(x;H � he0; e1; : : : em�1i) (3.4)
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Thus, by (3.1), (3.2), (3.3), (3.4), and (P2), we have H � he0; e1; : : : ; emi 2 C. 2

Lemma 3.4: Consider S = (C;P; V ) and Q � P , where every process in Q is

active in H. Without loss of generality, assume that the processes are numbered

so that Q = f1; 2; : : : ; jQjg. Let H and L(j), 1 � j � jQj, be computations

satisfying the following conditions: L(j) is a j-computation; H � L(j) 2 C; and

no event in L(j) accesses any variable that is accessed by other processes in

H � L(1) � L(2) � � � � � L(jQj). Then, H � L(1) � L(2) � � � � � L(jQj) 2 C.

Proof: As in the statement of the lemma, we have the following: (i) L(j) is a

j-computation; (ii) H �L(j) 2 C; and (iii) no event in L(j) accesses any variable

that is accessed by other processes in H � L(1) � L(2) � � � � � L(jQj). We prove

that H � L(1) � L(2) � � � � � L(jQj) 2 C by induction on jQj.

Induction Base. By (P1) and assumption (ii), H 2 C.

Induction Hypothesis. Assume that H � L(1) � L(2) � � � � � L(j � 1) 2 C, where

1 � j � jQj.

Induction Step. We use Lemma 3.3 to prove that H �L(1)�L(2)� � � � �L(j) 2 C.

By assumption (i),

H [j] H � L(1) � L(2) � � � � � L(j � 1) : (3.5)

By (3.5), the induction hypothesis, and assumptions (i), (ii), and (ii), Lemma

3.3 implies that H � L(1) � L(2) � � � � � L(j) 2 C holds. 2

According to the next lemma, if n processes are competing for entry into

their critical sections, and if each of these n processes has no knowledge of the
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others, then at least n � 1 of the processes has at least one more remote event

to execute. To formally capture the latter, consider a system S = (C;P; V ) that

solves the minimal mutual exclusion problem and let i 2 P and H 2 C. We say

that i has a remote event after H i� there exists an i-computation M such that

M does not contain Eati, M has a remote event, and H �M 2 C.

Lemma 3.5: Suppose that S = (C;P; V ) solves the minimal mutual exclusion

problem. Let Y � P be a set of n processes, and let H be a Y -computation in

C satisfying (C1), (C2), and (C4). Then, at least n � 1 processes in Y have a

remote event after H.

Proof: Assume to the contrary that fi; jg � Y have no remote event after H.

BecauseH satis�es (C1), by Lemma 3.2, Hi 2 C. Also, because H satis�es (C4),

Hi satis�es (C4). Hence, because S satis�es the Progress requirement, there

exists an i-computation G such that Hi �G�hEatii 2 C, and G does not contain

Eati. Similarly, there exists a j-computation G0 such that Hj �G
0
� hEatji 2 C,

and G0 does not contain Eatj. We consider three cases.

Case 1 . G contains a remote event. Let G = F � h[R;W; i]; : : :i, where [R;W; i]

is the �rst remote event in G. We prove that i has a remote event after H, which

is a contradiction to our assumption. In particular, we use (P3) to prove that

H � F � h[R0;W 0; i]i 2 C, where R0:var = R:var and W 0:var = W:var. Because

Hi �G � hEatii 2 C holds, by (P1), we have the following.

Hi � F � h[R;W; i]i 2 C (3.6)

We now use Lemma 3.3 to prove that H � F 2 C. The following assertions are
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used in applying Lemma 3.3.

H 2 C (3.7)

Hi [i] H (3.8)

Hi � F 2 C (3.9)

(3.7) holds by the de�nition of H, (3.8) holds by the de�nition of [i], and (3.9)

follows from (3.6) and (P1). Observe that F is an i-computation consisting of

local events. Thus, because i is active in H and Hi, and because both H and

Hi satisfy (C2), no event in F accesses a variable that is written by processes

other than i in either H or Hi. Hence, by (3.7), (3.8), (3.9), and Lemma 3.3, the

following holds.

H � F 2 C (3.10)

Observe that (3.8) implies that the following holds.

H � F [i] Hi � F (3.11)

By (3.6), (3.10), (3.11), and (P3), H�F �h[R0;W 0; i]i 2 C, where R0:var = R:var

and W 0:var = W:var. Because H � F � h[R0;W 0; i]i 2 C, i has a remote event

after H, which is a contradiction.

Case 2 . G0 contains a remote event. We can prove that j has a remote event

after H. The proof is similar to that of Case 1, and hence is omitted.

Case 3 . G and G0 do not contain any remote event. We prove that S does not

solve the minimal mutual exclusion problem.

We �rst use Lemma 3.3 to prove thatH�G�hEat ii 2 C holds. By assumption,

we have the following.

Hi �G � hEat ii 2 C (3.12)

97



Observe that G � hEat ii is an i-computation consisting of local events. Thus,

because i is active in H and Hi, and because H and Hi both satisfy (C2), no

event in G�hEat ii accesses a variable that is written by processes other than i in

eitherH or Hi. Hence, by (3.7), (3.8), (3.12), and Lemma 3.3, H�G�hEatii 2 C.

Similarly, H �G0
� hEatji 2 C.

Let F = H �G � hEatii �G
0
� hEatji. It is straightforward to use Lemma 3.4

to prove that F 2 C. (Let L(1) = G � hEatii and let L(2) = G0
� hEatji.) Note

that value(i:dine;F ) = eat ^ value(j:dine; F ) = eat holds, which implies that

S does not solve the minimal mutual exclusion problem. 2

The next theorem by Tur�an [58] will be used in subsequent lemmas.

Theorem 3.2 (Tur�an): Let G = hV;Ei be an undirected multigraph,3 where

V is a set of vertices and E is a set of edges. If the average degree is d, then

there exists an independent set4 with at least djV j=(d + 1)e vertices. 2

Our next lemma provides the induction step that leads to the lower bound

in Theorem 3.3.

Lemma3.6: Let S = (C;P; V ) be a shared-memory systemwith write-contention

w that solves the minimal mutual exclusion problem. Let Y � P be a set of n

processes, and let H be a Y -computation in C satisfying (C1), (C2), (C3), and

3A multigraph is a graph in which multiple edges are allowed between any two vertices. For

brevity, we will henceforth use \graph" to mean an undirected multigraph.

4An independent set of a graph G = hV;Ei is a subset V 0 � V of vertices such that no edge

in E is incident to two vertices in V 0.
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(C4) such that each process in Y executes r remote events in H. Suppose that

each event accesses at most v remote variables. Then, there exist Z � Y , where

jZj = d(n�1)=(2v+1)2vwe, and a Z-computation G in C satisfying (C1), (C2),

(C3), and (C4) such that each process in Z executes r + 1 remote events in G.

Proof: The proof strategy is as follows. We show that there exists Z � Y that

can execute another remote event without violating any of the conditions (C1)

through (C4). We \eliminate" processes not in Z, i.e., ones that may violate

some condition. Finally, we construct a Z-computation G that satis�es (C1),

(C2), (C3), and (C4).

Lemma 3.5 implies that there exists Y 1 � Y , where jY 1j � n� 1, such that

the following holds: for any i 2 Y 1, there exists an i-computation B(i) such

that H �B(i) 2 C, B(i) does not contain Eati, and B(i) has at least one remote

event. For i 2 Y 1, let B(i) = L(i) � h[Ri;Wi; i]; : : :i where [Ri;Wi; i] is the �rst

remote event in B(i). Note that, by (P1), the following holds.

H � L(i) � h[Ri;Wi; i]i 2 C (3.13)

We construct Y 2, a subset of Y 1, as follows. First, select a process i 2 Y 1.

Let X = fx j x 2 Wi:var and x is remote to ig, i.e., X is the set of remote

variables written by the event [Ri;Wi; i]. By assumption, jXj � v. Let QX =

fj j j 2 Y 1 ^ j 6= i ^ (Wj:var \X) 6= fgg, i.e., QX includes those processes

other than i that write variables in X. Because write-contention is w, it is

straightforward to use Lemma 3.4 to show that jQXj � v(w � 1). Delete i and

all processes in QX from Y 1, and add i to Y 2. Repeat the above procedure until

Y 1 becomes empty. It follows, by construction, that

jY 2j � d(n� 1)=vwe : (3.14)
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Now, we identify any possible \information 
ow" between the events

f[Ri;Wi; i] j i 2 Y 2g and the events of processes in Y 2 in H. Recall that

f[Ri;Wi; i] j i 2 Y 2g contains events that can be applied after H. We construct a

graph hY 2; Ei as follows. We do not distinguish a vertex representing p from the

process p when this does not cause any confusion. Informally, an edge joining two

processes represents possible information 
ow between the two processes. Our

proof strategy is to prohibit information 
ow between active processes. Suppose

that x 2 Rp:var [Wp:var and x is remote to p. Without loss of generality, we

assume x is local to q for some q 6= p. Note that q may or may not be a member

of Y 2. We construct E by the following rules.

� (R1): If q 2 Y 2, then introduce an edge (p; q).

� (R2): If there is process w 2 Y 2 that writes to x in H, where w 6= p ^

w 6= q, then introduce an edge (p;w). Note that, because H satis�es (C2),

q =2 Y 2 holds.

Consider the event [Ri;Wi; i], where i 2 Y 2. Because (R1) and (R2) are

exclusive, at most one edge is introduced for each remote variable this event

accesses. Therefore, because each event accesses at most v remote variables, at

most v edges are introduced by this event in total. It follows that the average

degree in hY 2; Ei is at most 2v. By Theorem 3.2 and (3.14), this implies that

there exists a subgraph hY 3; fgi of hY 2; Ei, where

jY 3j � d(n� 1)=(2v + 1)vwe : (3.15)

Without loss of generality, assume the processes are numbered so that Y 3 =

f1; 2; : : : ; jY 3jg. Consider the following computation.

H 0 = HY 3 � L(1) � L(2) � � � � � L(jY 3j) � h[R1;W1; 1]; [R2;W2; 2]; : : : ;
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[RjY 3j;WjY 3j; jY 3j]i

We will use H 0 to construct the computation G mentioned at the beginning

of the proof. In order to motivate the construction of G, we �rst prove that H 0

satis�es conditions (C2) through (C4). We consider each of these conditions as

a separate case. In these cases, we make use of the fact that, because H satis�es

(C2) through (C4), HY 3 also satis�es (C2) through (C4).

Condition (C4). By construction, L(i) does not contain Eati, and [Ri;Wi; i] 6=

Eati. Hence, H
0 satis�es (C4). 2

Condition (C3). HY 3 satis�es (C2) and (C3), and each L(i) consists only of local

events, so HY 3 �L(1) �L(2) � � � � �L(jY 3j) satis�es (C3). Hence, to complete the

proof that H 0 satis�es (C3), it su�ces to prove that for each distinct i and j in

Y 3, [Ri;Wi; i] does not write a variable that is written by [Rj;Wj; j] or by any

event of process j in HY 3 or L(j).

By (R1), [Ri;Wi; i] does not access a variable that is local to process j. Hence,

[Ri;Wi; i] does not write a variable that is locally written by process j in HY 3

or any variable that is written by j in L(j). By (R2), [Ri;Wi; i] does not ac-

cess a variable that is remotely written by j in H. Hence, [Ri;Wi; i] does not

write a variable that is remotely written by j in HY 3. By the de�nition of Y 3

(speci�cally, the construction of Y 2), the remote variables written by [Ri;Wi; i]

and [Rj;Wj ; j] are distinct. Hence, [Ri;Wi; i] does not write a variable that is

written by [Rj;Wj ; j]. Hence, we conclude that H
0 satis�es (C3). 2

Condition (C2). No L(i) accesses a remote variable, and hence, HY 3 � L(1) �

L(2) � � � � �L(jY 3j) satis�es (C2). By (R1), no [Ri;Wi; i] accesses a variable that

is local to another process in Y 3. Hence, H 0 satis�es (C2). 2

101



The above reasoning leaves only condition (C1). We now show that H 0 may

violate this condition. By (R1) and (R2), for each j 6= i, [Ri;Wi; i] does not

read a variable that is written by any event of process j in HY 3 or L(j). Note,

however, that [Ri;Wi; i] may read a variable that is written by [Rj;Wj; j]. Such

con
icts are the only way that H 0 may violate (C1). We now apply another graph

argument in order to eliminate such con
icts among the events f[Ri;Wi; i] j i 2

Y 3g. Suppose that x 2 Rp:var and x is remote to p. Then, we construct a graph

hY 3; E0
i, where the edges in E0 are de�ned according to the following rule.

� (R3): If there is process w 6= p such that x 2 Ww:var and w 2 Y 3, then

introduce an edge (p;w).

Because H 0 satis�es (C3), p introduces at most one edge for each remote

variable it reads. Because each event reads at most v remote variables, p intro-

duces at most v edges in total. Thus, by Theorem 3.2 and (3.15), there exists a

subgraph hZ; fgi of hY 3; E 0
i, where

jZj � d(n� 1)=(2v + 1)2vwe : (3.16)

The set Z represents the subset of the original n processes in Y that can execute

another remote event without violating any of the conditions (C1) through (C4).

We show this below.

Without loss of generality, assume the processes are numbered so that Z =

f1; 2; : : : ; jZjg. The computation G we seek is de�ned as follows.

G = HZ �L(1) �L(2) � � � � �L(jZj) � h[R1;W1; 1]; [R2;W2; 2]; : : : ; [RjZj;WjZj; jZj]i

Observe that, because H 0 satis�es (C2) through (C4), G also satis�es (C2)

through (C4). We now show that G satis�es (C1).
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Condition (C1). Because H satis�es (C1) and (C2), HZ satis�es (C1) and (C2).

Hence, because each L(i) consists only of local events,HZ�L(1)�L(2)�� � ��L(jZj)

satis�es (C1). Let p be any process in Z. To complete the proof that G satis�es

(C1), it su�ces to prove that no variable x in Rp:var is written in G by a process

other than p.

We �rst show that x is not written by processes other than p in HZ � L(1) �

L(2) � � � � � L(jZj). By (R1) and (R2), [Rp;Wp; p] does not access a variable

that is written in H by other processes in Z. This implies that x is not written

by processes other than p in HZ . (R1) implies that [Rp;Wp; p] does not access

a variable that is local to another process in Z. Because each L(i) consists of

only local events, this implies that x is not written by processes other than p

in HZ � L(1) � L(2) � � � � � L(jZj). Furthermore, by (R3), x is not written by

[Rj;Wj; j], where j 6= p. Hence, we conclude that G satis�es (C1). 2

To complete the proof of the lemma, we need to show that G is actually a

computation in C. This is established in the following claim.

Claim 3.1. G 2 C.

Proof: The proof is by induction on the subsequence h[R1;W1; 1]; : : : ;

[RjZj;WjZj; jZj]i.

Induction Base. We use Lemmas 3.2, 3.3, and 3.4 to establish the

base case. Because H satis�es (C1), by Lemma 3.2, HZ 2 C. Con-

sider j 2 Z. By (3.13) and (P1), H � L(j) 2 C. Because j 2 Z,

H[j]HZ. Because H and HZ satisfy (C2), and because L(j) consists

only of local events, no event in L(j) accesses any variable accessed

by processes other than j in H or HZ. By Lemma 3.3, this implies
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that HZ � L(j) 2 C.

As above, because G satis�es condition (C2), no event in L(j)

accesses any variable accessed by another process in HZ � L(1) �

L(2) � � � � � L(jZj). By Lemma 3.4, it follows that HZ � L(1) � L(2) �

� � � � L(jZj) 2 C.

Induction Hypothesis. Assume that

HZ � L(1) � L(2) � � � � � L(jZj) � h[R1;W1; 1]; [R2;W2; 2]; : : : ;

[Rj�1;Wj�1; j � 1]i 2 C : (3.17)

Induction Step. We use (P2) to prove that HZ � L(1) � L(2) � � � � �

L(jZj)� h[R1;W1; 1]; [R2;W2; 2]; : : : ; [Rj;Wj; j]i 2 C. Because j 2 Z,

the following holds.

HZ � L(1) � L(2) � � � � � L(jZj) � h[R1;W1; 1]; [R2;W2; 2]; : : : ;

[Rj�1;Wj�1; j � 1]i [j] H � L(j) (3.18)

Consider x in Rj :var. Because G satis�es (C1), x is not writ-

ten by a process other than j in HZ � L(1) � L(2) � � � � � L(jZj) �

h[R1;W1; 1]; [R2;W2; 2]; : : : ; [Rj�1;Wj�1; j � 1]i. Hence, we have the

following.

(8x : x 2 Rj :var :: value(x; HZ � L(1) � L(2) � � � � � L(jZj) �

h[R1;W1; 1]; [R2;W2; 2]; : : : ; [Rj�1;Wj�1; j � 1]i)

= value(x; H � L(j))) (3.19)

By (3.13), (3.17), (3.18), (3.19), and (P2), we conclude that HZ �

L(1)�L(2)�� � � �L(jZj)�h[R1;W1; 1]; [R2;W2; 2]; : : : ; [Rj;Wj; j]i 2 C.

2
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By construction, each process in Z executes r + 1 remote events in G. As

shown above, G satis�es conditions (C1) through (C4). Hence, by (3.16) and

Claim 3.1, the lemma follows. 2

We now present our �rst main result. According to this result, there exists

a fundamental trade-o� between write-contention and time-complexity in solu-

tions to the mutual exclusion problem. This result also shows a trade-o� between

the degree of atomicity and time-complexity.

Theorem 3.3: For any S = (C;P; V ) with write-contention w > 1 that solves

the minimal mutual exclusion problem, if each event accesses at most v remote

variables, then there exists an i-computation in C that contains 
(log
vw
N) re-

mote events but no Eat i event.

Proof: hi is a P -computation and satis�es (C1), (C2), (C3), and (C4). By re-

peatedly applying Lemma 3.6, this implies that there exists a computation F in C

that satis�es (C1) and (C4) and that contains 
(log((2v+1)2vw)N) = 
(log
vw
N)

remote events of some process i in P . By Lemma 3.2, Fi 2 C holds, from which

the theorem follows. 2

Corollary 3.2: For any system S satisfying the conditions of Theorem 3.3,

there exist 
(N) processes i in P for which the conclusion of the theorem holds.

2

If v is taken to be a positive constant, then it is possible to show that the
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bound of Theorem 3.3 is asymptotically tight for any value of w. In particular,

an algorithm by Mellor-Crummey and Scott given in [45] solves the mutual

exclusion problem for w processes, in O(1) time, with access-contention (and

hence write-contention) w. By applying this solution within a balanced w-ary

tree with N leaves, it is possible to obtain an N -process �(log
w
N) mutual

exclusion algorithm with access-contention w.

Note that Mellor-Crummey and Scott's algorithm uses load-and-store and

compare-and-swap. Even with weaker atomic operations, logarithmic behav-

ior can be achieved. In particular, an N -process �(log2N) mutual exclusion

algorithm based on read/write atomicity has been given in Figure 2.3. This

algorithm has access-contention (and hence write-contention) two.

3.5 Bounds for Cache-Coherent Multiproces-

sors

On cache-coherent shared-memory multiprocessors, the number of remote mem-

ory references may be reduced: if a process repeatedly accesses the same remote

variable, then the �rst access may create a copy of the variable in a local cache

line, with further accesses being handled locally. In this section, we count the

number of distinct remote variables a process must access to solve the minimal

mutual exclusion problem. A lower bound on such a count not only implies a

lower bound on the number of cache misses a process causes, but also implies

that these cache misses will incur global tra�c.

We prove two lower bounds. First, in Theorem 3.4 below, we show that

if the conditions of Theorem 3.3 are strengthened so that at most c processes
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can concurrently access (read or write) any variable, then some process ac-

cesses 
(log
vc
N) distinct remote variables before eating. Second, in Theorem

3.5 below, we show that with the conditions of Theorem 3.3 unchanged, i.e.,

write-contention is w, then some process accesses 
(
q
log

vw
N ) distinct remote

variables before eating. Before establishing the �rst of these results, we intro-

duce some additional de�nitions.

De�nition: Consider a remote event e of a process p in a computation H. Let

X be the remote variables accessed by e. If e is the �rst event by p in H that

accesses some variable in X, then we say that e is an expanding event in H. If

e is a read (write) event, and if e is the �rst event by p in H that reads (writes)

some variable in X, then we say that e is an expanding read (write) event in H.

If e is neither an expanding read nor an expanding write, then we say that e is

a nonexpanding event in H. 2

An expanding event can be an expanding read, or an expanding write, or

both. Note, however, that an expanding read (write) is not necessarily an ex-

panding event. We count the number of expanding events in order to determine

the number of distinct remote variables accessed. Observe that if a process

executes r expanding events, then it accesses at least r distinct remote variables.

Because the �rst result of this section is based on a restriction on all con-

current accesses (rather than only concurrent writes) of the same variable, it is

necessary to replace condition (C3) by the following.

� (C5) For any events [R;W; i] and [T;U; j] in H, if ((R:var [ W:var) \

(T:var[U:var)) 6= fg, then i = j. Informally, each variable is accessed by
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at most one process in H.

Our next lemma provides the induction step that leads to the lower bound

in Theorem 3.4.

Lemma 3.7: Let S = (C;P; V ) be a shared-memory system with access-

contention c that solves the minimal mutual exclusion problem. Let Y � P

be a set of n processes, and let H be a Y -computation in C satisfying (C2),

(C4), and (C5) such that each process in Y executes r expanding remote events

in H. Suppose that each event accesses at most v remote variables. Then, there

exist Z � Y , where jZj = d(n � 1)=(2v + 1)vce, and a Z-computation G in

C satisfying (C2), (C4), and (C5) such that each process in Z executes r + 1

expanding remote events in G.

Proof: The proof strategy is as follows. We show that there exists Z � Y that

can execute another remote event without violating any of the conditions (C2),

(C4), or (C5). We eliminate processes not in Z, i.e., ones that may violate some

condition. Finally, we construct a Z-computation G that satis�es (C2), (C4),

and (C5).

Because H satis�es (C5), it is possible to prove a result similar to Lemma 3.5

showing that there exists Y 1 � Y , where jY 1j � n � 1, such that the following

holds: for any i 2 Y 1, there exists an i-computationB(i) such that H�B(i) 2 C,

B(i) does not contain Eati, and B(i) has at least one expanding remote event.

(If there are two processes that do not have an expanding remote event after

H, then the Exclusion requirement can be violated; note that (C5) implies that

these processes do not access any common variable in their entry sections.) For
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i 2 Y 1, let B(i) = F (i) � h[Ri;Wi; i]; : : :i where [Ri;Wi; i] is the �rst expanding

remote event in B(i).

We construct Y 2, a subset of Y 1, as follows. First, select a process i 2 Y 1.

Let X = fx j x 2 Ri:var [ Wi:var and x is remote to ig, i.e., X is the set of

remote variables accessed by the event [Ri;Wi; i]. By assumption, jXj � v. Let

QX = fj j j 2 Y 1 ^ j 6= i ^ (Rj:var[Wj:var)\X 6= fgg, i.e.,QX includes those

processes other than i that access variables in X. Because access-contention is

c, it is straightforward to use Lemma 3.4 to show that jQXj � v(c� 1). Delete i

and all processes in QX from Y 1, and add i to Y 2. Repeat the above procedure

until Y 1 is empty. By construction,

jY 2j � d(n� 1)=vce : (3.20)

Observe that if i 2 Y 2, j 2 Y 2, and i 6= j hold, then [Ri;Wi; i] and [Rj;Wj ; j]

do not access a common variable. Thus, there is no information 
ow among

f[Ri;Wi; i] j i 2 Y 2g. Now, we identify any possible information 
ow between

f[Ri;Wi; i] j i 2 Y 2g and the events in H of processes in Y 2. Recall that

f[Ri;Wi; i] j i 2 Y 2g contains events that can be applied after H.

Suppose that x 2 Rp:var [ Wp:var and x is remote to p. Without loss of

generality, we assume x is local to q for some q 6= p. Note that q may or may

not be a member of Y 2. We construct E by the following rules.

� (R1): If q 2 Y 2, then introduce an edge (p; q).

� (R2): If there is process w 2 Y 2 that accesses x inH, where w 6= p ^ w 6= q,

then introduce an edge (p;w). Note that, because H satis�es (C2), q =2 Y 2

holds.
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Because (R1) and (R2) are exclusive, at most one edge is introduced for each

remote variable an event accesses. Because each event accesses at most v remote

variables, at most v edges are introduced for each remote event. We eliminate all

edges by applying Theorem 3.2. The number of vertices is reduced by a factor of

1=(2v + 1). These remaining vertices represent the subset of processes selected

from the original n processes in Y . We use Z to denote this subset of Y . Note

that, for any i 2 Z, by Rule (R1), [Ri;Wi; i] does not access any variable that

is local to another process in Z, and by Rule (R2), it does not access a variable

that is accessed in H by other processes in Z.

Without loss of generality, assume the processes are numbered so that Z =

f1; 2; : : : ; jZjg. By (3.20), we have jZj � d(n�1)=(2v+1)vce. The computation

G we seek is de�ned as follows.

G = HZ �F (1) �F (2) � � � ��F (jZj) � h[R1;W1; 1]; [R2;W2; 2]; : : : ; [RjZj;WjZj; jZj]i

Because H satis�es (C5), H also satis�es (C1). Thus, by Lemma 3.2, HZ 2 C.

It is straightforward to use this fact to prove that G 2 C.

By construction, each process in Z executes r + 1 expanding remote events

in G. To complete the proof of Lemma 3.7, it su�ces to prove that G satis�es

(C2), (C4), and (C5). We consider each of these conditions as a separate case.

In these cases, we make use of the fact that, because H satis�es (C2), (C4), and

(C5), HZ also satis�es (C2), (C4), and (C5).

Condition (C2). Because HZ satis�es (C2), and because no F (i) contains an

expanding remote event, HZ �F (1) � F (2) � � � � �F (jZj) satis�es (C2). By (R1),

no [Ri;Wi; i] accesses a variable that is local to another process in Z. Hence, G

satis�es (C2).

Condition (C4). By construction, F (i) does not contain Eati, and [Ri;Wi; i] 6=
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Eati. Hence, G satis�es (C4).

Condition (C5). HZ satis�es (C2) and (C5), and each F (i) does not contain an

expanding remote event, so HZ �F (1) �F (2) � � � � �F (jZj) satis�es (C5). Hence,

to complete the proof that G satis�es (C5), it su�ces to prove that for each

distinct i and j in Z, [Ri;Wi; i] does not access a variable that is accessed by

[Rj;Wj; j] or by any event of process j in HZ or F (j).

Because F (j) contains no expanding remote event, any variable accessed

by process j in F (j) is either local to j or accessed remotely by j in H. By

(R1), [Ri;Wi; i] does not access a variable that is local to process j. By (R2),

[Ri;Wi; i] does not access a variable that is remotely accessed by j in H. Hence,

[Ri;Wi; i] does not access a variable that is remotely accessed by j in HZ. By

the de�nition of Z (speci�cally, the construction of Y 2), the remote variables

accessed by [Ri;Wi; i] and [Rj;Wj ; j] are distinct. Hence, [Ri;Wi; i] does not

access a variable that is accessed by [Rj;Wj ; j]. Hence, we conclude that G

satis�es (C5).

This concludes the proof of Lemma 3.7. 2

Theorem 3.4: For any S = (C;P; V ) with access-contention c > 1 that solves

the minimal mutual exclusion problem, if each event accesses at most v remote

variables, then there exists an i-computation in C containing no Eat i event in

which 
(log
vc
N) distinct remote variables are accessed. 2

Proof: hi is a P -computation and satis�es (C2), (C4), and (C5). By repeatedly

applying Lemma 3.7, this implies that there exists a computation F in C that

satis�es (C4) and (C5) (and hence C(1)) and that contains 
(log
vc
N) expanding
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remote events of some process i in P . By Lemma 3.2, Fi 2 C holds, from which

the theorem follows. 2

Corollary 3.3: For any system S satisfying the conditions of Theorem 3.4,

there exist 
(N) processes i in P for which the conclusion of the theorem holds.

2

The tree-based algorithms mentioned after Corollary 3.2 have time complex-

ity �(log
c
N), i.e, the bound of Theorem 3.4 is asymptotically tight for any value

of c if v is taken to be a positive constant.

In the remainder of this section, we prove a lower bound on the number of

distinct remote variable accesses required for solving the minimal mutual exclu-

sion problem with write-contention w. Before proving this result, we de�ne the

notion of a \critical" remote event. Such events are used in the next theorem

to count the number of distinct remote variables a process must access in its

entry section. After showing that some process must execute 
(log
vw
N) critical

remote events before entering its critical section, we investigate how this bound

is related to the number of distinct remote variables accessed.

De�nition: Consider a computation H that contains a nonexpanding event e

by process i. Let X denote the remote variables accessed by e. Let S � ff j

for some x 2 X, f is the last event by i in H that accesses x before eg. Observe

that jSj � jXj. The �rst event of S in H is called the predecessor of e in H.

Note that any su�x of H that contains the predecessor of e contains events by

i (before e) that collectively access all variables in X. 2

112



De�nition: Consider a remote event e of a process i in a computation H. Event

e is a critical event in H i� one of the following holds: e is an expanding write

in H; e is an expanding read in H; e is a nonexpanding event and there is an

expanding write by i between e and its predecessor in H. 2

The next lemma is a variation of Lemma 3.5 that deals with critical remote

events. Suppose that S = (C;P; V ) solves the minimalmutual exclusion problem

and let i 2 P and H 2 C. Corresponding to the de�nition prior to Lemma 3.5,

we say that i has a critical remote event after H i� the following holds: there

exists a remote event e of process i, and an i-computation L consisting of local

events, each di�ering from Eati, such that H �L�e 2 C holds, where e is critical

in H � L � e.

Lemma 3.8: Suppose that S = (C;P; V ) solves the minimal mutual exclusion

problem. Let Z � P be a set of n processes, and let H be a Z-computation in

C satisfying (C1), (C2), (C3), and (C4). Then, there exists a Z-computation

H 0 in C satisfying (C1), (C2), (C3), and (C4) such that H 0 contains all events

contained in H and at least n � 1 processes in Z have a critical remote event

after H 0.

Proof: Lemma 3.5 implies that at least n�1 of the processes in Z have a remote

event after H. If all n � 1 of these remote events are critical after H, then the

conclusion of the lemma holds. So, assume that one of these events is noncritical

after H. Then, there exists a process p in Z and a computation

H � L � hei 2 C ; (3.21)
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where L is a p-computation consisting of only local events, and e is a noncritical

remote event of p in H � L � hei. Because e is noncritical, we have

H � L � hei = X � hfi � Y � L � hei ; (3.22)

where f is the predecessor of e in H �L� hei, and Y contains no expanding write

by p.

Let G � X �hfi�Yp �L�hei� (Y �Yp). Observe that G is a Z-computation.

We will �rst show that G 2 C holds in a series of steps, and then show that G

satis�es (C1) through (C4). Observe that G contains all events contained in H

and more remote events than H. By the Progress requirement, this implies that

we can apply this argument only a �nite number of times, i.e., if we repeatedly

apply Lemma 3.5 and construct a new computation in the manner in which G

is constructed, then we eventually obtain a computation H 0 such that applying

Lemma 3.5 yields n�1 processes in Z, each of which has a critical remote event

after H 0. By our construction, H 0 is a computation in C, satis�es (C1) through

(C4), and contains all events contained in H.

To begin the construction of G, note that, because H 2 C, (3.22) implies

H = X � hfi � Y 2 C. Furthermore, by assumption, H satis�es (C1). Hence, by

Lemma 3.2, we have the following.

X � hfi � Yp 2 C (3.23)

We now apply Lemma 3.3 to prove that X � hfi � Yp � L 2 C holds. In

applying Lemma 3.3, we use the following assertions.

X � hfi � Y [p] X � hfi � Yp (3.24)

X � hfi � Y � L 2 C (3.25)
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(3.24) holds by de�nition, and (3.25) follows from (3.21), (3.22), and (P1).

Because H satis�es (C2), by (3.22), both X � hfi � Y and X � hfi � Yp also

satisfy (C2). Also, recall that L is a p-computation consisting of local events

and that p is active in H. Thus, no event in L accesses a variable that is written

by processes other than p in either X � hfi �Y or X � hfi �Yp. Hence, by (3.23),

(3.24), (3.25), and Lemma 3.3, the following holds.

X � hfi � Yp � L 2 C (3.26)

The next step in the proof is to use (P2) to establish that X �hfi�Yp �L�hei

is in C, where e is as de�ned at the beginning of the proof. Let e = [Rp;Wp; p].

The following assertion follows from (3.22).

X � hfi � Yp � L [p] H � L (3.27)

Because H � L � hei satis�es (C1), for all x 2 Rp:var, the following holds.

value(x; X � hfi � Yp � L) = value(x; H � L) (3.28)

By (3.21), (3.26), (3.27), (3.28), and (P2), it follows that

X � hfi � Yp � L � hei 2 C : (3.29)

We now show that G is in C by establishing the following claim.

Claim 3.2. X � hfi � Yp � L � hei � (Y � Yp) 2 C.

Proof: Let (Y �Yp) = he0; e1; : : : ; emi. The proof is by induction on

jY � Ypj.

Induction Base. By (3.29), X � hfi � Yp � L � hei 2 C holds.

Induction Hypothesis. Suppose that X � hfi �Yp �L� hei � he0; e1; : : : ;
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em�1i 2 C holds.

Induction Step. We prove thatX�hfi�Yp�L�hei�he0; e1; : : : ; emi 2 C

holds. Without loss of generality, assume that Y = Q�hemi�T . Then,

by (P1), (3.25) implies that the following holds.

X � hfi �Q � hemi 2 C (3.30)

Let em = [R;W; i] for some i 6= p. Because i 6= p, the following holds.

X � hfi � Yp � L � hei � he0; e1; : : : ; em�1i [i] X � hfi �Q (3.31)

Let x 2 R:var. We now show that x is not written by any event in

Yp, L, or hei. Suppose that x is written by e or by an event in Yp. e

is noncritical and hence is not an expanding write. Also, Yp does not

contain any expanding write by p. Thus, by (3.22), x is also written

by p in X � hfi. Because i 6= p, this implies that H does not satisfy

(C1), which is a contradiction.

Now, suppose that x is written by an event in L. Recall that L

consists only of local events of p. Thus, event em = [R;W; i], which is

inH, reads a local variable of process p 6= i. Because p is active inH,

this implies that H does not satisfy (C2), which is a contradiction.

Thus, we conclude that x is not written by any event in Yp, L, or hei.

This implies that, for each x in R:var, writer(x; X � hfi � Yp � L �

hei � he0; e1; : : : ; em�1i) = writer(x; X � hfi � Q) holds. By Lemma

3.1, this implies that the following holds.

value(x; X�hfi�Yp�L�hei�he0; e1; : : : ; em�1i) = value(x; X�hfi�Q)

(3.32)
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By the induction hypothesis, (3.30), (3.31), (3.32), and (P2), X �

hfi � Yp � L � hei � he0; e1; : : : ; emi 2 C. 2

Having shown that G is in C, we now show that G satis�es (C1) through

(C4). Observe that the events in L � hei are the only events in G that are not

in H. L consists only of local events of process p, none of which are Eatp. Also,

e, being a noncritical remote event, does not access any remote variable that p

does not access in H. Hence, because H satis�es (C2) through (C4), it follows

that G also satis�es (C2) through (C4).

As for (C1), our proof obligation is to show that no event inG reads a variable

previously written by another process. Because H satis�es (C1), by (3.22), no

event in X � hfi � Yp reads a variable previously written by another process.

Now, consider events in L � hei � (Y � Yp). Observe that L consists only of

local events of p, p is active in H, and H satis�es (C2). Hence, no event in L

reads a variable that is previously written by another process in G.

If e reads a variable that is previously written by another process in G, then

that variable is written in X, because hfi � Yp � L consists of events by p. If e

reads a variable that is written by another process in X, then, by the de�nition

of a predecessor, there exists an event in hfi�Yp that accesses that same variable.

However, this implies that H violates (C1) or (C3), which is a contradiction.

Finally, because H satis�es (C1), no event in Y �Yp reads a variable written

by another process in X � hfi � Yp. By the reasoning at the end of the proof of

Claim 3.2, no event in Y �Yp reads a variable that is written by p in Yp �L� hei.

We conclude that G satis�es (C1).

We have shown that if some process in Z has a next remote event after H

that is noncritical, then there exists a Z-computation in C satisfying (C1), (C2),
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(C3), and (C4) that contains more remote events than H. As noted previously,

if this argument could be applied repeatedly, then it would be possible to con-

struct a computation in C that violates the Progress requirement. This proves

the lemma. 2

The next lemma is a stronger version of Lemma 3.6 in which only critical

remote events are counted rather than all remote events.

Lemma3.9: Let S = (C;P; V ) be a shared-memory systemwith write-contention

w that solves the minimal mutual exclusion problem. Let Y � P be a set of n

processes, and let H be a Y -computation in C satisfying (C1), (C2), (C3), and

(C4) such that each process in Y executes r critical remote events in H. Suppose

that each event accesses at most v remote variables. Then, there exist Z � Y ,

where jZj = d(n�1)=(2v+1)2vwe, and a Z-computation G in C satisfying (C1),

(C2), (C3), and (C4) such that each process in Z executes r + 1 critical remote

events in G.

Proof: Lemma 3.8 implies that there exists Y 1 � Y , where jY 1j � n� 1, such

that the following holds: for any i 2 Y 1, there exists an i-computation L(i)

consisting of local events, such that H �L(i) � [Ri;Wi; i] 2 C, where [Ri;Wi; i] is

a critical remote event in H � L(i) � [Ri;Wi; i]. The rest of the proof is identical

to that of Lemma 3.6. 2

According to the following theorem, among the 
(log
vw
N) remote events

mentioned in Theorem 3.3, 
(
q
log

vw
N) distinct remote variables are accessed.
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Theorem 3.5: For any S = (C;P; V ) with write-contention w > 1 that solves

the minimal mutual exclusion problem, if each event accesses at most v remote

variables, then there exists an i-computation in C containing no Eat i event in

which 
(
q
log

vw
N ) distinct remote variables are accessed.

Proof: hi is a P -computation and satis�es (C1), (C2), (C3), and (C4). By

repeatedly applying Lemma 3.9, this implies that there exists a computation F

in C that satis�es (C1) and (C4) and that contains 
(log
vw
N) critical remote

events of some process i in P . By Lemma 3.2, Fi 2 C. LetW denote the number

of expanding writes in Fi, let R denote the number of expanding reads in Fi, and

let E denote the number of nonexpanding critical remote events in Fi. Then,

because Fi contains 
(logvw N) critical remote events,

(W +R+ E) � c � log
vw
N (3.33)

holds for some positive constant c. Let D denote the number of distinct remote

variables accessed in Fi. Observe that D is at least as big as W and R. Also, D

is at least as big as the number of distinct remote variables accessed by events

in E. The following claim provides an upper bound on the number of events in

E.

Claim 3.3. There are at most D nonexpanding critical events be-

tween two successive expanding writes in Fi.

Proof: Let x and y denote two successive expanding writes in Fi, and

let Fi = X � hxi �Y � hyi �Z. By assumption, Y does not contain an

expanding write. Let e0; e1; : : : ; em denote the nonexpanding critical

events in Y . By the de�nition of a critical event, their predecessors
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in Fi appear in X. We claim that each ej, where 1 � j � m, accesses

a remote variable that is not accessed in e0; : : : ; ej�1. Otherwise, the

predecessor of ej in Fi is not an event in X, which is a contradiction.

Because e0 accesses at least one remote variable, e0; e1; : : : ; em access

at least m+ 1 distinct remote variables. Thus, m < D holds, which

proves the claim. 2

By Claim 3.3, at most D nonexpanding critical events may occur between an

expanding write and the next expanding write (if any). In addition, by the

de�nition of a critical event, no nonexpanding critical remote events may exist

before the �rst expanding write. Thus, we have at most D nonexpanding critical

remote events per expanding write, i.e., E � DW . Because D � W and D � R

hold, this implies that

D �max(W;R;E=W ) : (3.34)

We now show that D � m �

q
log

vw
N for some positive constant m. Assume,

to the contrary, that D < m �

q
log

vw
N . Then, by (3.34), we have W < m �

q
log

vw
N and R < m �

q
log

vw
N . By (3.33), this implies that

E

W
>
c � log

vw
N � 2m �

q
log

vw
N

m �

q
log

vw
N

:

By (3.34), this inequality implies thatD � s�
q
log

vw
N for some positive constant

s. 2

Corollary 3.4: For any system S satisfying the conditions of Theorem 3.5,

there exist 
(N) processes i in P for which the conclusion of the theorem holds.

2
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3.6 Discussion

The time bounds proved in this chapter establish that trade-o�s exist between

time complexity and write- and access-contention for solutions to the minimal

mutual exclusion problem. These time bounds also show that similar trade-o�s

exist between time complexity and atomicity. Because any algorithm that solves

the leader election or mutual exclusion problems also solves the minimal mutual

exclusion problem, these trade-o�s apply to these problems as well. Our results

imply that synchronization in shared-memory multiprocessors has some inherent

cost involving the global interconnect, either in terms of a larger amount of global

tra�c, or in terms of higher contention.

One may be interested in determining the e�ect of contention on space re-

quirements. It is quite easy to show that solving the minimal mutual exclusion

problem with write-contention w requires at least N=w variables. In particular,

it can be shown that every process writes a variable before eating. So, consider

the computation in which every process is enabled to perform its �rst write. Be-

cause write-contention is w, the total number of variables enabled to be written

is 
(N=w). It can be shown that this bound is tight; it is possible to obtain a

deadlock-free solution to mutual exclusion with write-contention w by arranging

test-and-set variables in a balanced w-ary tree with dN=we leaves.
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Chapter 4

Hardware Support for Local Spin

Synchronization

4.1 Introduction

A concurrent program consists of a collection of sequential programs called pro-

cesses, which communicate by accessing shared data structures called objects.

Associated with each object is a set of operations; such operations provide the

only means for accessing the object. Coarse-grained atomic operations can be

arbitrarily powerful and therefore are convenient to use when designing con-

current programs. However, a program with atomic operations that are overly

complex cannot be readily translated into machine instructions and hence can-

not be considered suitable for execution. In view of this, concurrent programs

are often developed in a top-down fashion: under this approach, a program is

�rst developed using coarse-grained objects, and then each coarse-grained object

is implemented by �ne-grained objects.

In this chapter, we consider the latter problem, i.e., that of implementing

one kind of object in terms of another. Our speci�c goal is to determine the
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extent to which such implementations can be achieved without busy-waiting on

remote variables. As seen in Chapter 2, such busy-waiting should be avoided if

good scalability is needed. Our focus in this chapter is on the distributed shared

memorymultiprocessors; we investigate implementations of shared objects with-

out global busy-waiting on such machines. Recall that on such machines each

shared variable is local to one processor and is remote to all others.

Objects in the most general form allow conditional operations, i.e., operations

with enabling conditions that involve shared variables. An example of such

an object is the semaphore object that allows the P primitive, which consists

of an assignment \X := X � 1", where X is shared, that may be executed

only when the enabling condition \X > 0" holds. We represent conditional

operations by means of the syntax \await B ! S", where B is a boolean

expression over program variables and S is a multiple-assignment. This operation

can be executed only when its enabling expression B is true. It is atomically

executed (when enabled) by performing its assignment S. We abbreviate such

an operation as \await B" if its assignment is null, and as \S" if its enabling

expression is identically true. Observe that variables are read if they appear in

the right hand side of assignment S, and that they are written if they appear in

the left hand side of S. Also variables are used to specify when such assignments

can be executed, if they appear in the enabling condition B.

In this chapter, we determine if there exist �ne-grained shared objects from

which other objects with arbitrary conditional operations of the form \await

B ! S" can be implemented without global busy-waiting. We show that very

simple �ne-grained objects su�ce, particularly single-reader, single-writer vari-

ables.
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Recent work on wait-free synchronization has dealt with the implementation

of objects that are only read or written. The seminal work on this subject is

Lamport's paper on interprocess communication [36]; other representative papers

include [1, 4, 5, 8, 12, 16, 18, 31, 33, 42, 48, 51, 54, 57, 59]. In work on wait-

free synchronization, the central problem is that of implementing one class of

objects from another class of objects without any waiting. Because waiting in

any form is precluded in such implementations, both classes of objects are clearly

restricted to allow only operations that may read or write shared variables.

In a recent paper [6], Anderson showed that any object that allow only op-

erations of the form \S" can be implemented from single-reader, single-writer

variables, without busy-waiting on remote variables. In this chapter, we extend

past work on object implementations by considering operations with enabling

conditions.

In the rest of this chapter, we say that a class C of objects is implementable

from another class D of objects i� any operation of C can be implemented by

using operations of D without global busy-waiting.

The key result of this chapter is as follows:

Any object that allows operations of the form \await B ! S" is

implementable by using simpler objects that allow only operations of

the form \X := y" and \y := X", where y is a private boolean vari-

able and X is a shared, single-reader, single-writer boolean variable.1

This result establishes that on distributed shared memory machines, any

concurrent program can be re�ned in practice to one in which only local spins

1An m-reader, n-writer variable can be read by m processes and can be written by n

processes.
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are employed, and that only very simple primitives are required for local-spin

synchronization.

The rest of this chapter is organized as follows. In Section 4.2, we de�ne

what it means to implement an object of one class by using objects of another

class. The result mentioned above are established in Sections 4.3 and 4.4. We

discuss the implications of our results in Section 4.5.

4.2 Implementations

As stated in the introduction, we consider a class C of objects is implementable

from another class D of objects i� any operation of C can be implemented

without global busy-waiting by using operations of D. In this section, we de�ne

the notion of an implementation formally. Except for modi�cations to handle

liveness conditions, our notion of implementation is similar to that given by

Herlihy in [27], which is based on the I/O automata of Lynch and Tuttle [44].

The following description is adopted from Herlihy [27].

4.2.1 I/O automata

We model concurrent programs using a simpli�ed form of I/O automata [44].

I/O automata provide a convenient way for describing what it means for one

object to implement another.

An I/O automaton A is a nondeterministic automaton with the following

components:

� A set of states, including a distinguished nonempty set of initial states.
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� A set of actions, which are partitioned into sets of internal and external

actions. External actions are divided into input and output actions.

� A transition relation, which is a set of triples (s, e, t), with states s, t and

action e. Such a triple, called a step, indicates that an automaton in state

s can transit to state t by executing the action e.

If (s, e, t) is a step, then we say that e is enabled at s. Otherwise, we say

that e is disabled at s. A history of an automaton A is a sequence s0
e0
!s1

e1
!� � �,

where each (si; ei; si+1) is a step of A and s0 is an initial state.

We can compose a set of I/O automata fA1; : : : ; Ang to get a new I/O au-

tomaton A. A state of the composed automaton A is the Cartesian product of

states of component automata Ai's, and an initial state is de�ned analogously.

The set of input actions of A is obtained from the union of sets of input actions

of each Ai, by eliminating input actions that belong to output actions of any

component automata. The output actions and internal actions of A are simply

all output actions and all internal actions of each Ai respectively. The transi-

tion relation of A is the set of triples (s; e; t) such that, for every component

automaton Ai, either e is an action of Ai and the projection of the triple onto

Ai is a step of Ai, or e is not an action of Ai and the projection of s and t onto

Ai yields identical states for Ai. The subhistory of H consisting of actions of Ai

is denoted by HjAi, where H is a history of a composite automaton A.

4.2.2 Concurrent Programs

A concurrent program consists of a set of processes and a set of objects. In the

remainder of this section, we use P to denote a process, X an object, op an
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operation of X, and res a result. P is an I/O automaton with output actions

invoke(P , op, X) and input actions respond(P , res, X). X has input actions

invoke(P , op, X), and output actions respond(P , res, X). These actions are

referred to as invocations and responses. An invocation and a response match if

their process and object names are the same. If an invocation is not followed by

a matching response, then it is said to be a pending invocation.

A concurrent program fP1; : : : ; Pn;A1; : : : ; Amg is an I/O automaton com-

posed from processes fP1; : : : ; Png and objects fA1; : : : ; Amg by identifying invoke

actions of processes and objects with corresponding respond actions of objects

and processes respectively. If a history has an invocation as its �rst action and if

it alternates matching invocations and responses, it is called a sequential history.

Each history H induces a partial order on its operations: an operation p

precedes another operation q in this ordering, denoted p �H q if the response

for p precedes the invocation for q. Observe that if H is sequential, then �H is

a total order. A concurrent program fP1; : : : ; Pn;A1; : : : ; Amg is linearizable if,

for each history H, there is a sequential history S such that HjPi = SjPi for any

Pi and �H is a subset of �S. In other words, each operation \appears" to take

e�ect instantaneously at some point between its invocation and its response.

Henceforth, every object we consider is assumed to be linearizable.

4.2.3 Implementations

An implementation of an object A is a concurrent program fF1; : : : ; Fn;Rg ob-

tained by composing an object R with processes Fi's called front-ends. Front-

ends communicate only by applying operations to R. Input actions of R are

composed with matching output actions of each Fi, and input actions of each Fi
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with matching output actions of R. These composed actions are internal actions

of A. The external actions of A are all the external actions of each Fi.

A history � of an automaton A is fair if the following conditions hold for

each action e of A:

� If � is �nite, then e is disabled in the �nal state of �.

� If � is in�nite, then either � contains an in�nite number of executions of

e, or � contains an in�nite number of states in which e is disabled.

Note this de�nition corresponds to weak fairness of every action.2 Unless

otherwise noted, we henceforth assume that all histories are fair.

Let Ij be an implementation of Aj. Following Lynch and Tuttle [44] and

Herlihy [27], we say that Ij is correct, if for every fair history H of every system

fP1; : : : ; Pn;A1; : : : ; Ij; : : : ; Amg, there exists a fair history H
0 of fP1; : : : ; Pn;

A1; : : : ; Aj; : : : ; Amg, such that HjfP1; : : : ; Png = H 0
jfP1; : : : ; Png.

A local spinning implementation is a correct implementation that in every

history of the implementation, no invocation of Pi is pending across an in�nite

number of steps of Fi that access variables remote to Pi.

4.2.4 Reasoning about Programs

For brevity, we represent concurrent programs using pseudocode rather than as

I/O automata. It is straightforward to translate such a program into a collection

of I/O automata. We brie
y explain the correspondence between such programs

and I/O automata.

2Alternatively, we could have de�ned weak fairness for every process. Our result would still

hold if we used such a notion of fairness.
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A program in pseudocode is speci�ed using labeled await statements; it

corresponds to processes in I/O automata. The variables used in the program

represent objects; a state of an object corresponds to an assignment of values to

such variables that are used to represent that object. A statement, in the pro-

gram for process P , that accesses variables that represent an object X, speci�es

actions invoke(P; op;X) and respond(P; res;X). Each process of a concurrent

program has a special private variable called its program counter : the statement

with label k in process p may be executed only when the value of the program

counter of p equals k. The statements and program counters suggest a transition

relation in I/O automata.

To facilitate the presentation, we assume that shared variables appear only

in await statements. For an example of the syntax we employ for programs, see

Figure 4.3. Note that the fairness requirement of Section 4.2.3 implies that each

continuously enabled statement is eventually executed. Unless otherwise noted,

we henceforth assume that all histories are fair.

4.2.5 Example: A Semaphore Lock

A lock program that uses a semaphore object X is depicted in 4.1. The

program may be considered as a representation of the I/O automata with a

set of states fp; q; r; sg, where p is the initial state. The set of actions is

finvoke(u; \await X > 0 ! X := X � 1"; X);

respond(u; \await X > 0 ! X := X � 1"; X);

invoke(u; \X := X + 1"; X);

respond(u; \X := X + 1"; X)g.

The invoke actions are the input actions of X and output actions of u, and
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shared var X : 0::1

initially X = 1

=� X is a shared object with operations

\await X > 0 ! X := X � 1" and \X := X + 1" �=

process u

while true do

0: await X > 0 ! X := X � 1;

1: Critical Section;

2: X := X + 1

od

Figure 4.1: A semaphore lock program.

respond actions are the output actions of X and input actions of u. And the

transition relation is

f(p; invoke(u; \await X > 0 ! X := X � 1"; X); q);

(q; respond(u; \await X > 0 ! X := X � 1"; X); r);

(r; invoke(u; \X := X + 1"; X); s);

(s; respond(u; \X := X + 1"; X); p)g.

Suppose that there is another process v that executes the same program as u.

The in�nite history in which v is blocked at its �rst statement while u executes

in�nite number of statements is a fair history, because actions of v are disabled

in�nitely often.

4.2.6 Implementations by Critical Sections

Suppose that object C is implemented by a set of objects D. If C is an object in

program P , and if program Q is obtained from P by substituting D for C, then
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we refer to P as the implemented program, and Q as the implementation. One

way to ensure linearizable implementation is to use critical sections. Because

most of the implementations discussed in this chapter are based upon critical

sections, we discuss this approach in more detail in this section.

In the usual de�nition of the mutual exclusion problem, there are no con-

straints on when critical sections may be executed, other than mutual exclusion

and starvation-freedom requirements de�ned in Section 1.2. As a result, the mu-

tual exclusion problem is not a very useful paradigm when implementing await

statements. To see this, consider the statement \await B ! S". Not only

does this statement specify that S must be executed atomically, it also gives an

enabling condition B that must be true prior to each such execution. Thus, if S

is to be implemented as a critical section, then, in addition to mutual exclusion

and starvation-freedom, the following condition must hold: the critical section

for S can be executed only when B is true. The usual de�nition of the mutual

exclusion problem does not take this requirement into account.

With this discussion in mind, we now present the conditions required of an

implementation (when using critical sections). Assume that the await state-

ments of the implemented program are denoted \await Bk ! Sk", where k � 0.

Then, an implementation is obtained by replacing each \await Bk ! Sk" by a

program fragment Pk of the following form.

Entry Section;

Critical Section;

Exit Section

The entry and exit sections are not allowed to modify any variable of the imple-

mented program. Further, the critical section is required to have the e�ect of
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atomically performing the assignment Sk when executed in isolation. Informally,

an implementation is correct i� the following requirements hold for each k.

� Boundedness: Pk is free of unbounded do-od loops that may generate an

unbounded number of remote memory references.

� Exclusion: For each j 6= k, if Sj and Sk have variables in common, then

the critical section of Pj cannot be executed concurrently with that of Pk.

� Synchrony: When the critical section of Pk �rst becomes enabled,Bk holds.

� Progress: The critical and exit sections of Pk eventually terminate, and if

Bk holds continuously, then the entry section of Pk also eventually termi-

nates.

As shown later, these requirements can be de�ned formally using invariants and

leads-to assertions.

4.3 Results

In this section, we present the main result of the chapter. We �rst consider a

number of lemmas that are needed in order to establish Theorem 4.1.

Lemma 4.1: Any shared object is implementable by shared objects that only

have operations of the form \await B" or \S". 2

We establish this lemma in Section 4.4 by considering a variant of the mu-

tual exclusion problem called the conditional mutual exclusion problem. In the

conditional mutual exclusion problem, there is a predicate associated with each
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process that must be true when that process executes its critical section. This

problem is motivated by our desire to implement operations of the form \await

B ! S" by a bounded number of invocations of operations of the form \await

B" and \S". Our solution to this problem shows that it is possible to implement

any operation that combines both waiting and assignment in terms of operations

that do not. The next two lemmas show that we can simplify operations of the

form \await B" and \S", respectively.

Lemma 4.2: Any shared object that only has operations of the form \await

B" or \S" is implementable by shared objects that only have operations of the

form \S".

Proof: We use B1; : : : ; BN to denote the enabling predicates of operations of

the form \await B". The implementation is obtained by replacing each oper-

ation of the form \await Bk" by an operation of the form \await Xk", where

Xk is a \fresh" shared boolean variable; Xk is initially true i� predicate Bk is

initially true. Each operation of the form \S" that may possibly modify Bk is

modi�ed to also atomically assign Xk := Bk. This ensures that Xk = Bk is kept

invariant for each k. Note that we have not introduced an unbounded number

of invocations.

Observe that we may implement \await Xk" by a busy-waiting loop \while

:Xk do od", and that each Xk is a single-reader, multi-writer variable. Now

we can implement Xk in a wait-free manner using single-reader, single-writer

boolean variables [1, 4, 5, 8, 12, 16, 18, 31, 33, 36, 42, 48, 51, 54, 57, 59]. All

these variables are made local to the waiting process that invokes \await B".
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Although, we now have a process that may invoke an unbounded number of

operations (for evaluating :Xk repeatedly), note that this process accesses only

local variables in the busy-waiting loop. Thus, Lemma 4.2 holds. 2

Our �nal lemma shows that we can implement \S" by single-reader, single-

writer variables.

Lemma 4.3: Any object whose operation is of the form \S" is implementable

by single-reader, single-writer variables.

Proof: Our proof obligation is to show that any operation of the form \S" can

be implemented by using operations of the form \X := y" and \y := X", where

y is a private boolean variable and X is a shared, single-reader, single-writer,

boolean variable, without busy-waiting on remote variables.

Anderson has shown in [6] that the mutual exclusion problem can be solved

without global busy-waiting using only single-reader, single-writer, boolean vari-

ables. In this solution, global busy-waiting is avoided and shared variables are

accessed only within statements of the form \X := y" and \y := X", where y

is private and X is shared. Let ENTRY and EXIT denote the entry and exit

sections of such a solution. Then, we can implement each await statement of

the form \S" as follows.

ENTRY;

S;

EXIT

By the properties of the mutual exclusion problem, S cannot be executed con-
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currently with any other statement that may modify the variables appearing

in S. It is therefore straightforward to implement S in terms of single-reader,

single-writer boolean variables.

Unfortunately, there is a potential problem with our implementation as it

stands now. Suppose, for example, that the implemented program contains an

assignment of the form \A; B := true; false". Consider the program fragment

in the implementation that replaces this assignment. Suppose that this program

fragment happens to be executed when :A ^ B holds, and that in the critical

section of this program fragment, A is assigned before B. Observe that A and B

both hold in the interval between these two assignments. Thus, it is possible for

a single process p to execute two consecutive await statements \await A" and

\await B" in this interval. Such an execution corresponds to a linearization in

which \await A" occurs after the program fragment for \A; B := true; false"

and \await B" occurs before. However, because \await A" and \await B" are

supposed to be executed consecutively by p, such an execution is not linearizable.

This scenario can be prevented by replacing the statement \await B" by a

program fragment of the following form.

ENTRY;

EXIT;

await B

With this modi�cation, ENTRY and EXIT are executed by p between the state-

ments \await A" and \await B". Thus, these two statements both cannot be

executed in the interval between the assignments to A and B as described above.

By introducing additional ENTRY and EXIT sections in this manner, it is possi-

ble to obtain a correct implementation without introducing global busy-waiting.
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2

The preceding three lemmas establish the following theorem, which implies

that any object can be \reduced", using local-spin techniques, to one whose

operations is as �ne-grained as possible.

Theorem 4.1: Any object can be implemented by single-reader, single-writer

variables. 2

4.4 Conditional Mutual Exclusion

In this section, we de�ne the conditional mutual exclusion problem. We then

present a program that solves this problem in which only await statements of

the form \await B" and \S" are used. Our solution to this problem is used

in the proof of Lemma 4.1 in Section 4.3. In the conditional mutual exclusion

problem, there are N processes, each of which has the following structure.

do true !

Noncritical Section;

Entry Section;

Critical Section;

Exit Section

od

Associated with each process i is an enabling condition B[i] that must be

true when that process enters its critical section. An enabling predicate's value

can be changed only by a process in its critical section. It is assumed that each
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process begins execution in its noncritical section. It is further assumed that each

critical section execution terminates. By contrast, a process is allowed to halt in

its noncritical section. No variable appearing in any entry or exit section may

be referred to in any noncritical section. Also, with the exception of enabling

predicates, no such variable may be referred to in any critical section. Let ES(i)

(CS(i)) be a predicate that is true i� the value of process i's program counter

equals a label of a statement appearing in its entry section (critical section). Let

BCS(i) be a predicate that is true i� the value of process i's program counter

equals the label of the �rst statement in its critical section. (For simplicity,

we assume that this statement is executed once per critical section execution.)

Then, the requirements that must be satis�ed by a program that solves this

problem are as follows.

� Exclusion: (8i; j : i 6= j :: CS(i) ) :CS(j)) is an invariant. Informally,

at most one process can execute its critical section at a time.

� Synchrony: (8i :: BCS(i) ) B[i]) is an invariant. Informally, when a

process �rst enters its critical section, its enabling predicate is true.

� Progress: (8i :: ES(i) 7! CS(i) _ :B[i]) holds. Informally, if a process

is in its entry section and its enabling predicate continuously holds, then

that process eventually executes its critical section.

We also require that each process in its exit section eventually enters its noncrit-

ical section; this requirement holds trivially for the solution considered in this

chapter, so we will not consider it further. Observe that the conditional mutual

exclusion problem reduces to the mutual exclusion problem when each process's

enabling predicate is always identically true.
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process i

do true !

Noncritical Section;

ENTRY;

do :B[i] ! EXIT; ENTRY od;

Critical Section;

EXIT

od

Figure 4.2: Using mutual exclusion to solve conditional mutual exclusion.

If global busy-waiting is allowed, then it is straightforward to use a solution

to the mutual exclusion problem to obtain a program that solves the conditional

mutual exclusion problem. In particular, consider the program given in Figure

4.2, which is taken from [10]; in this program, ENTRY and EXIT denote entry

and exit sections from an N -process solution to the mutual exclusion problem.

In order to execute its critical section, process i repeatedly executes ENTRY and

EXIT, checkingB[i] in between. Its critical section is entered only if B[i] is true;

otherwise, EXIT and ENTRY are executed again. Note that when process i has

executed ENTRY but not EXIT, it is e�ectively within its \mutual exclusion

critical section".

A program that solves the conditional mutual exclusion problem without

global busy-waiting is given in Figure 4.3. This program uses the doubly linked

list that is implemented by Pred and Suc; Pred [0] points to the tail of the list

and Suc[0] points to the head of the list. The program also uses the queue that

is implicitly implemented by Count , Head , and ticket .

Loosely speaking, this program works as follows. When process i wants to

enter its critical section, it �rst enters the queue by executing statement 1, and
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then waits until it becomes the �rst process in the queue (Head = ticket ). Then,

if its enabling predicate B[i] holds, it can enter its critical section. Otherwise,

process i executes statement 4 to insert its process id to the tail of the doubly

linked list (Pred[0]), and executes statement 5 to remove itself from the (implicit)

queue. Then process i waits until \noti�ed" by another process that i is enabled

to enter its critical section (Turn = i). In this case, process i executes statement

8 to delete its id from the doubly linked list and executes its critical section.
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After executing the critical section, process i traverses the linked list to see

if there is an enabled process. If j is the �rst enabled process in the list, then

process i informs process j that j may enter its critical section. If there is no

enabled process in the list, process i incrementsHead to allow the next process in

the queue, if any, to proceed. Note that processes in the list are given \priorities"

over processes in the queue.

Observe that when multiple processes contend for the critical section, they

are blocked at statement 2 or at statement 6. Also observe that a process, after

executing its critical section, \wakes up" at most one process by executing either

statement 12 or statement 15. From this fact, it can be shown that the following

invariant holds, which implies that the Exclusion requirement is satis�ed.

invariant (Ni :: i@f8g) � 1

When process i enters its critical section, it does so either by executing state-

ment 3 when B[i] holds, or by getting a \noti�cation" at statement 6 from an-

other process that executes statement 12. Such a noti�cation occurs only if B[i]

holds. Thus, the following invariant holds, which implies that the Synchrony

requirement holds.

invariant (8i :: i@f8g ) B[i])

As explained above, processes are ordered in the list and the queue. Because

such an order is statically kept in the program, it is straightforward to show that

the following assertion holds, which implies that the Progress requirement holds.
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(8i :: i@f1::7g 7! i@f8g _ :B[i])

4.5 Discussion

Anderson's results [6] imply that objects with unconditional operations are im-

plementable by single-reader, single-writer variables, in distributed shared mem-

ory machines and cache-coherent machines. Our results show that objects with

conditional operations are also implementableby single-reader, single-writer vari-

ables, in distributed shared memory machines. In other words, any conditional

operation can be implemented by using only simple reads and writes to such

variables, and local spinning. Our results also show that, from a computational

standpoint, operations that combine both waiting and assignment, such as the

P semaphore primitive, are not fundamental.
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shared var Pred ; Suc : array[0::N ] of 0::N ;

B : array[1::N ] of boolean

Count ; Head ; Turn : 0::N

initially (8 j :: Pred [j] = 0 ^ Suc[j] = 0) ^

Count = 0 ^ Head = 0 ^ Turn = 0

process i f i ranges over 1::N g

private var more : boolean;

scan; ticket : 0::N

do true !

0: Noncritical Section;

1: ticket; Count := Count ; (Count + 1) mod (N + 1);

2: await (Head = ticket) ;

3: if :B[i] then

4: Pred [i]; Suc[i]; Pred [0]; Suc[Pred[0]] := Pred [0]; 0; i; i;

5: Head := (Head + 1) mod (N + 1);

6: await (Turn = i);

7: Suc[Pred [i]]; Pred [Suc[i]]; Turn := Suc[i]; Pred [i]; 0

�;

8: Critical Section;

9: more; scan := true; Suc[0];

10: while more ^ (scan 6= 0) do

11: if B[scan] then

12: Turn; more := scan; false

else

13: scan := Suc[scan]

�

od;

14: if more then

15: Head := (Head + 1) mod N

�

od

Figure 4.3: Program for conditional mutual exclusion.
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Chapter 5

Concluding Remarks

5.1 Summary of Results

In this thesis, we have presented several results concerning scalable synchroniza-

tion in shared-memory multiprocessing systems.

In Chapter 2, we proposed a time complexity measure that captures the

communication overhead of shared-memory concurrent programs. Under our

proposed measure, the time complexity of a concurrent program is measured

by the number of remote memory references induced by the program. Our

performance studies show that this measure is useful as a metric of the scalability

of concurrent programs.

We presented a scalable N -process mutual exclusion algorithm based on

read/write atomicity that has O(logN) time complexity. Its time complexity

is better than that of any previous solutions to the mutual exclusion problem

based on read and write instructions. We also presented an extension of our

algorithm in which only O(1) memory references are required to achieve mu-

tual exclusion in the absence of contention. Our performance studies indicate
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that these algorithms exhibit scalable performance under heavy contention. In

fact, our mutual exclusion algorithm out-performs all prior algorithms based on

read/write atomicity, and its performance under heavy contention rivals that of

the fastest queue-based spin locks that employ strong primitives such as compare-

and-swap or fetch-and-add.

In Chapter 3, we obtained several trade-o�s between the contention and

time complexity in synchronization algorithms. We showed that, if at most

v remote variables can be accessed atomically, any solution to the N -process

minimal mutual exclusion problem with write-contention w has 
(log
vw
N) time

complexity. We further showed that such a solution must access 
(
q
log

vw
N)

distinct remote variables. For algorithms with access-contention c, we improved

the latter bound to 
(log
vc
N). As any solution to the mutual exclusion or the

leader election problem also solves the minimal mutual exclusion problem, our

trade-o�s hold for these problems as well.

In most shared-memory multiprocessors, an atomic operation may access

only a constant number of remote variables. In this case, the �rst and the last of

our bounds are asymptotically tight. These results also show that our N -process

�(log2N) mutual exclusion algorithm based on read/write atomicity is optimal.

In Chapter 4, we showed that local-spin techniques are applicable to a wide

class of synchronization problems with read/write atomicity. In particular, we

showed that any shared object, no matter how complicated, can be implemented

from single-reader, single-writer variables without global busy-waiting on dis-

tributed shared memory multiprocessors.
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5.2 Future Research

For wait-free algorithms, Herlihy has characterized synchronization primitives by

consensus number [27]. Such a characterization is not applicable when waiting

is introduced. One way of determining the power of synchronization primitives

in this case is to compare the time complexity of mutual exclusion using such

primitives. For instance, it is possible to solve the mutual exclusion problem

withO(1) time complexityusing fetch-and-store or fetch-and-add, while the best-

known upper bound for read/write algorithms isO(logN) as achieved in Chapter

2. If a lower-bound result could be proved showing that this gap is fundamental,

then this would establish that reads and writes are weaker than read-modify-

writes from a performance standpoint. This would provide contrasting evidence

to Herlihy's hierarchy, from which it follows that reads and writes are weaker

than read-modify-writes from a resiliency standpoint. It is interesting to note

that there exist read/write mutual exclusion algorithms with write-contention

N that have O(1) time complexity in the absence of competition [3, 37, 60].

Thus, establishing the above-mentioned lower bound for read/write algorithms

will require proof techniques that di�er from those given in Chapter 2.

We do not know whether the bound of Theorem 3.5 is tight. We conjecture

that this bound can be improved to 
(log
vw
N), which has a matching algorithm

when v is taken to be a constant [60].

It is our belief that the most important contribution of Chapter 3 is to show

that meaningful time bounds can be established for concurrent programming

problems for which busy-waiting is inherent. We hope that our work will spark

new work on time complexity results for such problems.

In Chapter 4, we have primarily limited our attention to determining the
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possibility of object implementations without global busy-waiting in distributed

shared memorymultiprocessors. Other issues, such as performance, are yet to be

considered. In all of our implementations, statements are implemented by using

mutual exclusion. This is partly due to the fact that in our main result, namely

the implementation of statements of the form \await B ! S", no restrictions

are placed upon the variables appearing in B or S: such a statement could con-

ceivably reference every shared variable of a program! Without such restrictions,

an implementation must ensure that only one such statement is executed at a

time. By imposing restrictions on variable access, it should be possible to im-

plement await statements with greater parallelism. The development of such

implementations is an important avenue for further research. Extending the re-

sults of Chapter 4 in order to apply to cache-coherent multiprocessors would also

be interesting.
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