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Summary

G protein-coupled receptors (GPCRs) are a large and heterogeneous superfamily of re-
ceptors that are key cell players for their role as extracellular signal transmitters. Class C
GPCRs, in particular, are of great interest in pharmacology. The lack of knowledge about
their full 3-D structure prompts the use of their primary amino acid sequences for the con-
struction of robust classifiers, capable of discriminating their different subtypes. In this
paper, we investigate the use of feature selection techniques to build Support Vector Ma-
chine (SVM)-based classification models from selected receptor subsequences described as
n-grams. We show that this approach to classification is useful for finding class C GPCR
subtype-specific motifs.

1 Introduction

G protein-coupled receptors (GPCRs) are cell membrane proteins with a key role in regulating
the function of cells due to their transmembrane location. This strategic location between extra-
and intracellular media, together with an evolutionary-optimized 3D structure, confers them the
ability to transmit extracellular signals, activating intra-cellular signal transduction pathways,
making them particularly attractive for pharmacological research.

The functionality of a protein depends at large on its structural configuration in 3D, which
determines its ability for ligand recognition. GPCR crystallization has been a challenging task
riddled by technical obstacles until recently. The first GPCR crystal 3D structure was not fully-
determined until 2000 [15] and, despite active research, only the structure of approximately
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12% of the human GPCR superfamily, most of them belonging to class A, has been determined
so far [9]. The transmembrane domains (TM) of the other GPCR classes are less represented,
with, currently, two structures for class B, two for class C and one for class F (see [1] for
comparison between classes A, B and F, and [22] and [10] for the crystal structures of the TM
domain of the two class C receptors).

The current investigation focuses precisely on the characterization of class C, which is one
of the five GPCR families. As the full 3D structure of their members is widely unknown, an
alternative approach for feature selection relies on the analysis of GPCR primary structure, i.e.
of the amino acid (AA) sequences, which are publicly available from several databases

The research whose results are reported in this paper specifically focuses on the class C subset
of a publicly available GPCR database. These data were analyzed in a previous study [12]
using a supervised, multi-class classification approach that yielded relatively high accuracies
in the discrimination of the seven constituting subtypes of the class. This previous work used
several transformations of the unaligned sequences based on the physicochemical properties
of their AAs. In the current study, we go one step further and apply feature selection prior to
classification with SVMs from n-gram subsequence features.

A key relevant objective of this work is the analysis of the constructed classifiers in order to
find subfamily-specific motifs that might reveal information about ligand binding processes.
A further motivation for this study is both the scarcity of structural information for the TM
domain of class C GPCRs and the functional complexity found in some members of this family,
for which minor changes in ligand structure lead to sharp changes in receptor selectivity and
pharmacological profiles [21].

The remaining of the paper is structured as follows: Section 2 provides a brief description
of the investigated receptors: both a general description of GPCRs and the specific analyzed
database. This is followed, in section 3, by a description of the classifiers, the data transforma-
tion methods and the feature selection techniques. Experimental results are summarily reported
and discussed in section 4. The paper wraps up with a conclusions section.

2 Materials

2.1 Class C GPCRs

GPCRs are cell membrane proteins with the key function of transmitting signals from outside
to inside the cell. For this reason, they are involved in many physiological functions both
in health and disease and, as a consequence, they are of special relevance in pharmacology.
GPCRDB[20], the widely used database of GPCRs that was employed in our experiments,
divides the GPCR superfamily into five major classes based on the ligand types, functions, and
sequence similarities.

The current study concerns class C of these receptors. This class has become an increasingly
important target for new therapies, particularly in areas such as pain, anxiety, neurodegenera-
tive disorders and as antispasmodics. They are also important from structural and mechanistic
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viewpoints.

Whereas all GPCRs are characterized by sharing a common seven-transmembrane helices
(7TM) domain, most class C GPCRs include, in addition, an extracellular large domain, the
Venus Flytrap (VFT) and a cystein rich domain (CRD) connecting both [16] . The extracellu-
lar domain contains the orthosteric site where the endogenous neurotransmitter binds whereas
the 7TM domain contains allosteric sites where synthetic allosteric modulators bind and the
intracellular region where cytosolic signaling proteins such as G-proteins or β-arrestin bind.
Allosteric modulators are currently at the center of pharmaceutical research as they offer some
advantages over orthosteric ligands, including higher subtype selectivity because of the greater
sequence divergence of allosteric sites relative to orthosteric sites [23].

Class C is further subdivided into seven types: Metabotropic glutamate (mG), Calcium sensing
(CS), GABA-B (GB), Vomeronasal (VN), Pheromone (Ph), Odorant (Od) and Taste (Ta), which
will be the classes considered in our classification analysis.

2.2 Analyzed data

The data analyzed in this study were extracted from GPCRDB1[20], a curated and publicly
accessible database of GPCRs. The investigated dataset (version 11.3.4 as of March 2011)
comprises a total of 1,510 class C GPCR sequences, belonging to seven subfamilies and in-
cluding: 351 mG, 48 CS, 208 GB, 344 VN, 392 Ph, 102 Od and 65 Ta. The lengths of these
sequences vary from 250 to 1,995 AAs. The mean lengths for each subfamily are 904 (mG),
949 (CS), 893 (GB), 826 (VN), 851 (Ph), 611 (Od) and 836 (Ta).

Figure 1 displays the evolutionary relationships between the seven sequence subfamilies using a
phylogenetic tree (PT). A PT is a dendrogram-like graphical representation of the evolutionary
relationship between the taxonomic groups that share a set of homologous sequence segments.
Specifically, Figure 1 shows a Treevolution radial PT plot [18] for the 1,510 GPCR sequences
under investigation and their separation into subclasses. This representation provides evidence
of the heterogeneity of some of the subfamilies (such as mG, Ph and Od), as they are shown
to occupy several different evolutionary branches of the tree. Although less obvious in this
particular representation, there is some degree of overlapping between the different subfamilies
in their tree representation.

3 Methods

In this study, SVMs [19] were used for the supervised classification of the alignment-free amino
acid sequences into the seven subclasses of class C GPCRs. Given the multi-class problem set-
ting, the LIBSVM implementation [4] was used. The AA sequences of varying lengths were
first transformed into fixed-size feature representations. In previous work, we used transforma-
tions based on the physicochemical properties of the sequences [12] for this purpose. Instead,
in this work we use short protein subsequences in the form of n-gram features. The n-grams,

1http://www.gpcr.org/7tm
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Figure 1: Treevolution radial phylogenetic tree for the 1,510 sequences under investigation [3].
Each outer leaf of each branch corresponds to a single sequence, tree colors represent families of
descendant nodes. Subfamilies mG, Ph and Od are shown to cover several unrelated evolutionary
branches.

described in section 3.2, were created from three different existing alphabets that have pre-
viously been used for the classification of GPCR sequences [6]. Different feature selection
methods are also used to reduce the dimensionality of the data with the objective of finding the
parsimonious set of n-grams that might best discriminate the class C subfamilies.

3.1 Amino acid alphabets

The 20 standard AAs can be grouped in different ways depending on the criteria used for ana-
lyzing the similarities between their physicochemical properties [8]. An appropriate grouping
of AAs reduces the size of the alphabet and may decrease noise. Here, besides the basic 20-AA
alphabet (AAA), we used two alternative amino acid groupings (See Table 1): the Sezerman
(SEZ) alphabet, which includes 11 groups, and the Davies Random (DAV), including 9 groups.
They have both been evaluated in the classification of GPCRs into their 5 major classes [6].
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Table 1: Amino acid grouping schemes.

1 2 3 4 5 6 7 8 9 0 X

SEZ IVLM RKH DE QN ST A G W C YF P
DAV SG DVIA RQN KP WHY C LE MF T

3.2 N-grams

The concept of n-gram has widely been used in protein analysis ([2],[14]). A successful ap-
plication of text classification methods for the classification of class A GPCRs was presented
in [5]. While a discretization of the n-gram features was used in that study, we instead use
the relative frequencies of the n-grams, which are non-discrete variables, in our experiments.
Therefore, the n-gram feature representation corresponds here to the measurement of the rel-
ative frequency of each n-gram in a sequence. Due to the exponential growth of the size of
n-grams, we limit the reported research to n-grams of sizes 1, 2 and 3.

3.3 SVMs

SVM classifiers are founded on the statistical learning theory first introduced in [19]. SVMs
map the feature vectors xi, i = 1, . . . , N , where xi εRn and N is the number of instances,
into possibly higher dimensional spaces by means of a function φ . The objective is to find
a linear separating hyperplane, which separates the feature vectors according to its class label
with a maximal margin, while minimizing the classification error ξ. The use of non-linear
kernel functions allows SVMs to separate input data in higher dimensional spaces that would
not be separable with linear classifiers in the original input space.

The radial basis function (RBF) kernel, specified as K(xi, xj) = e(−γ||xi−xj ||), is a popular non-
linear kernel. To use it, the SVM needs to adjust two parameters through grid search: the error
penalty parameter C and the parameter γ of the RBF function. The goal of separating the seven
subclasses of the class C GPCRs requires the extension of the original two-class classification
approach of SVMs to a multi-class classification approach. To that end, we have chosen the
“one-against-one” approach to build the global classification model, which is implemented in
the LIBSVM2 library [4].

3.4 Performance measures

Two different measures were used to evaluate the test performance of the multi-class trained
classifiers, namely the Accuracy (ACC), which is the ratio of correctly classified instances
to all instances, and the Matthews Correlation Coefficient (MCC), which indicates how pre-
dictable the target variable is knowing the other variables: its value ranges from -1 to 1, where
1 corresponds to a perfect classification, 0 to a random classification and -1 to complete mis-
classification. The MCC is usually accepted to be a balanced figure of merit when classes are of

2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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unbalanced sizes (although, as described in section 2.2, the classes analyzed in our experiments
are not too unbalanced).

For the individual (binary) classification of each subtype, we report the MCC and two further
common measures: Precision and Recall. The former is the ratio of cases belonging to a class
that are correctly classified to the cases predicted to belong to such class, whereas the later
is the ratio of cases belonging to a class that are correctly classified to the cases that actually
belong to that class.

The multi-class trained classifier is evaluated through a 5-fold cross-validation (CV) with strat-
ification. The reported measures are the mean values of the respective metric over the five
iterations of the 5-CV.

In summary, we measure the Accuracy and MCC at the global level in our experiments, while
we measure the Precision, Recall and MCC at class level.

3.5 Feature selection

Many irrelevant features are likely to exist in the different n-gram frequency representations
of the data. To ameliorate the classification process by minimizing the negative impact of
irrelevant features, we use two different feature selection approaches in this study: sequen-
tial forward feature selection with an SVM-classifier and a classifier-independent basic filter
method that computes two-sample t-tests among the C GPCR subfamilies.

A sequential forward selection algorithm [11] is used to find the reduced set of features that
best discriminated the data subtypes. This kind of algorithm is a so-called wrapper method,
where the classification model search is performed within the subset feature search [17].

The algorithm starts from an empty candidate feature set and adds, in each iteration, the feature
which most improves the accuracy (i.e., that which minimizes the misclassification rate). The
algorithm uses an SVM classifier in which the accuracy is evaluated using a 5-CV to test the
candidate feature set. The algorithm stops when the addition of a further feature does not
increase the accuracy over a threshold set at 1e−6.

As an alternative filtering approach, a two-sample t-test was used to evaluate the discriminating
power of each feature. This univariate statistical test analyzes whether there are foundations
to consider two independent samples as coming from populations (normal distributions) with
unequal means by analyzing the values of the given feature. In our case, we used t-tests with
0.01 confidence. If the t-test suggested that this hypothesis was true (i.e. the null hypothesis
was rejected), the feature was considered to significantly distinguish between the two different
subtypes of class C GPCRs.

As we face a multi-class classification problem, the t-test results were examined for the 21
feasible two-class combinations of the 7 class C subfamilies. We decided to calculate the two-
sample t-test values at this detail because the multi-class LIBSVM implementation internally
performs a comparison of the data between each class (one-vs-one implementation). Therefore,
the t-test exactly evaluates the data considered in each binary classifier, making the ranking of
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Table 2: N-gram classification results for the different alphabets without feature selection, where
N is the size of a feature set and ACC stands for classification accuracy (ratio of correctly classified
sequences to all sequences).

AAA SEZ DAV

N-GRAM N ACC N ACC N ACC

1-gram 20 0.870 11 0.820 9 0.780
2-gram 400 0.930 121 0.926 81 0.910

1,2-gram 420 0.930 132 0.921 90 0.916

the features possible according to their overall significance (i.e., in how many binary classifiers
a feature is significant).

Note that, as explained in the following sections, the t-test filtering method is not used here
only as an alternative to dimensionality reduction using a wrapper approach; in fact, it is used
as a first classifier-independent feature selection step in problems that are computationally too
demanding for classifier-dependent feature selection from very high-dimensional data sets.

4 Experiments

4.1 Classification according to n-gram representation

First, we built classification models with n-grams for each of the three alphabets (AAA, SEZ,
DAV). Table 2 shows the classification results obtained when no feature selection method was
applied, as well as the size of the feature set for each alphabet. Note that each element in each
alphabet is itself considered as a 1-gram, regardless the number of constituent AAs. Obviously,
the size of the n-gram feature set increases significantly with the size of the alphabet. Results
are shown for 1-grams, 2-grams, and the combination of both.

The construction of an SVM model from 3-grams for all three alphabets was unsuccessful,
probably due to the existence of a large set of irrelevant features. This was the primary reason
behind the decision of applying feature selection as part of the classification process.

4.2 Sequential forward feature selection

Table 3 shows the classification results when sequential forward selection was performed on
each n-gram dataset. For each alphabet (AAA, SEZ and DAV), this table shows a comparison
between the original size of the n-grams (N) and the number of selected features found by the
algorithm (FS), as well as the corresponding classification accuracy.

The experiments show that the feature selection algorithm was successful, with only one ex-
ception: in the case of the 1,2,3-gram feature set (combination of all n-grams) of the AAA-
alphabet: due to the large number of features, the computational cost of the forward selection
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Table 3: N-gram classification results using sequential forward feature selection, for the three
different alphabets.

AAA SEZ DAV

N-GRAM N FS ACC N FS ACC N FS ACC

1-gram 20 17 0.880 11 10 0.790 9 7 0.770
2-gram 400 48 0.930 121 25 0.906 81 31 0.900

1,2-gram 420 54 0.926 131 37 0.916 90 42 0.920
1,2,3-gram 8420 - - 1331 34 0.925 818 34 0.923

Table 4: Classification results with t-test-based subset selection, with subsets of features that are
significant in a given number of t-tests, from 20 down to 12.

AAA SEZ DAV

SIGNIF N ACC N ACC N ACC

20 1 0.370 2 0.500 0 -
19 15 0.880 8 0.770 10 0.830
18 49 0.931 39 0.900 23 0.880
17 105 0.933 79 0.922 58 0.910
16 212 0.937 149 0.930 99 0.920
15 357 0.936 253 0.936 164 0.926
14 585 0.943 386 0.935 238 0.933
13 909 0.937 505 0.943 325 0.930
12 1284 0.942 633 0.940 429 0.927

algorithm is too high. In fact, this was the result that prompted us to investigate a classifier-
independent filter feature selection method that could provide us with a first rough selection of
features to be used as a preliminary step to a subsequent process of forward feature selection.

4.3 t-Test filtering

In order to handle the 1,2,3-gram feature sets, which, due to their size, were either impossible
or very difficult to use in the previous methods, we decided to use the t-test filtering method to
create a ranking of the features. Table 4 shows this ranking according to the overall significance
of the attributes. This means that, for each alphabet, we counted how many features were
significant (column N ) in at least 20,19,18, etc. of the total 21 two-class tests. The ACC
values shown for each subset are the classification accuracies of an SVM-classifier built on
each feature set.

4.4 t-Test filtering and forward selection

The filtering method described in the previous section found feature subsets with high classifi-
cation accuracy. Nevertheless, given their high dimensionality, we decided to apply the forward
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Table 5: Classification results with forward selection on top of t-test-based selection for a subset
solution in which features are significant in at least 12 of the 21 t-tests.

AAA SEZ DAV

FEAT N ACC FEAT N ACC FEAT N ACC

1284 49 0.939 633 59 0.939 429 60 0.940

selection algorithm to these subsets as a subsequent dimensionality reduction step.

Table 5 shows the results of applying forward selection starting from the n-gram subset reported
in the last row of Table 4 (features relevant in at least 12 classifiers), for each alphabet. The
initial number of features (FEAT), the number of selected features (N) and the corresponding
classification accuracies are shown.

4.5 Discussion

4.5.1 Classification from n-grams with and without feature selection

The results reported in Table 4 provide clear evidence of the usefulness of the t-test-based sim-
ple feature ranking method, as parsimonious feature subsets that outperform the classification
accuracies obtained without feature selection or with forward selection on its own were found.
For example, the 1,2,3-gram representation of the AAA alphabet achieves an accuracy of 0.943
with 585 attributes, improving on the 0.930 accuracy obtained directly with the 2-gram repre-
sentation using only forward selection (as reported in Table 3). In the case of the SEZ alphabet,
the same 0.943 accuracy was obtained with this filtered 1,2,3-gram representation with 505 fea-
tures; this has again to be compared to the 0.926 obtained with the 2-gram representation (Table
2) and the 0.925 obtained with the 1,2,3-gram representation (Table 3). Using the DAV alpha-
bet, we found a subset with 238 features that yielded a 0.933 accuracy, whereas the 1,2,3-gram
representation with forward selection yielded a 0.920 (Table 3).

Nevertheless, the filter selection method on its own still renders rather high-dimensional op-
timal solutions and the slight classification improvement it generates might not be enough to
counter-balance the complexity of the solution. In fact, the most interesting results, as reported
in Table 5, come from the application of the classifier-dependent forward selection to the re-
sults of the filter method. Results show that this approach was quite successful at reducing the
number of attributes by as much as 96% while retaining an accuracy in the area of 0.94 for all
three alphabets.

Overall, the experimental results reported in the previous section support the interest of using
feature selection on the analyzed n-gram data: data dimensionality has been notably reduced
without compromising classification quality. Forward selection has been shown to be an effec-
tive method, although it is computationally too costly when the size of the feature set is too
high from the onset. In this situation, a fast univariate t-test-based filtering method becomes
an appropriate solution to reduce the feature candidate set as a preprocessing step prior to the
forward selection algorithm.
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Figure 2: Graphical representation of the Precision, Recall and MCC per subfamily, for the AAA
alphabet.

To the best of the authors’ knowledge, the reported classification results are the best to date
using the class C GPCRDB database, comparing favourably to those in [7, 12, 13]. These results
correspond to the reduced SEZ dataset with 505 attributes (See Table 4) and a SVM model with
parameter C=2, γ= 2−10 achieving a mean accuracy (ACC) of 0.943 and a mean MCC of 0.93.
Figure 2 shows the corresponding per-class classification results, i.e. the Precision, Recall and
MCC of each binary classification.

4.5.2 Qualifying feature selection from t-test values

An analysis of the t-test values (hypothesis value and p-value) allows measuring to what degree
an individual feature discriminates between two classes. Test values are first analyzed to detect
the 3-grams with the best discrimination capabilities. We subsequently analyze if these 3-grams
may be part of larger n-grams which may also be discriminative.

The close scrutiny of the test values of the reduced feature set of the AAA alphabet (See Table
5: 49 features, including 33 3-grams, 13 2-grams and 3 1-grams) revealed that the 3-grams
CSL, ITF and FSM are the most significantly discriminative.

CSL, in particular, is the most significant one according to the t-test values of 20 two-sample
tests. This feature was only found not to be significant for the mG vs. Ph discrimination.
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Figure 3: Mean values of CSL (top), FSML (center) and ITFS (bottom) N-gram features for the 7
class C GPCR subfamilies.
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The ITF n-gram is deemed to be significant in 18 tests and an analysis of longer n-grams (results
not reported) showed that the the ITFS 4-gram is specially discriminating, with a significant
impact on the discrimination of 19 binary classifiers (i.e., all but mG vs. Ta and CS vs. Ta).
Furthermore, the ITFSM 5-gram is still highly discriminative, showing significant values for
17 tests.

Another relevant 3-gram is FSM, which is significant for 18 two-class tests. An analysis of
longer n-grams showed that the FSML 4-gram is highly discriminative (in 18 tests: all but mG
vs. GB, mG vs. Ta and GB vs. Ta). The FSMLI 5-gram was also found to be significant for 15
tests.

Figure 3 shows the mean values of n-gram features CSL, ITFS, and FSML for the 7 class C
GPCR subtypes.

Beyond mean values, a statistical analysis of the most discriminative 3-grams, CLS, ITF and
FSM, revealed the existence of extreme values in some subfamily distributions, which would
require a deeper analysis: Figures 4, 5 and 6 display box plots of the corresponding n-grams.
The box describes the range of values between the first and the third quartiles (Q1 and Q3) with
the median (Q2) as the horizontal line inside the box. The crosses are data considered to be
outliers, which, in this case, are points which fall below Q1-1.5(IQR) or above Q3+1.5(IQR),
where IQR is the interquartile range described by the box. The interval in which the data are
considered not to be outliers is represented in the plot by the dashed lines stemming from the
box.

The n-gram CSL (Figure 4), which was found to be discriminant in 20 two-class tests, has its
maximum values for classes Od, VN, Ph and mG, whereas this n-gram is mostly non-existent
in classes Cs and GB. The statistical analysis of the distribution of this n-gram confirms that
CSL is suitable for the description of nearly all subfamilies (except GB) as only a relative
small number of outlier values exist for all of them. In subfamily GB, this n-gram is mostly
non-existent, but 17% of the sequences of this subclass appear as outliers (corresponding to
sequences containing this n-gram). In consequence, subfamily GB is not well represented by
n-gram CSL as its distribution is not uniform. A superficial analysis of the location of the
n-grams in the sequence shows that in class Od, this n-gram appears near the middle of the
sequences as well as near to their end. In the case of Ta, it appears often near the beginning,
while in VN it appears in all positions (beginning, middle and end).

The n-gram ITF (Figure 5) was found to be discriminant in 18 tests and has maximum values
for the subfamilies Od, Ph, VN and CS. The data of the corresponding box plot confirms that
this n-gram is suitable for the discrimination of these subfamilies as the existence of extreme
values is quite low in these cases. For GB and Ta, this n-gram is mostly non-existent as both
the median and the IQR are zero and a low number of sequences have a positive frequency of
this n-gram. Despite the fact that mG also has a median and IQR with value zero, mG has to
be considered a special case as its distribution has approx. 10% of outliers, which correspond
to sequences containing this n-gram. Regarding the subsequence specific location of the ITF
n-gram, it appears in any position (beginning, middle and end) in class Od, while in Ph and
VN, it is predominantly located at the end, and in CS it is found near the middle section.

Finally, n-gram FSM (Figure 6), which was deemed significant in 18 tests, shows maximum
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Figure 4: Box plot of the CSL n-gram.

values for subfamilies Od, VN, Ph and CS and is mostly non-existent in subfamilies mG, GB
and Ta. Nevertheless, the box plot representation suggests that this n-gram describes properly
Od and CS as subclasses with presence of this n-gram and GB and Ta as subfamilies not con-
taining this n-gram. Subfamilies mG, VN and Ph show a higher number of outliers, namely
5%(mG), 14%(VN) and 13%(Ph), which indicates that the appearance of FSM in these sub-
families is not uniform. Regarding the location of the n-gram, FSM appears in the class Od at
the middle and at the end of the sequence. In the case of CS, it appears at the middle; in Vn, it
appears at the end, and in Ph, both at the end and beginning.

Overall, these n-grams might be the basis for an ulterior investigation of specific motifs in class
C GPCR sequences that might provide clues about ligand binding processes.

5 Conclusions

Class C GPCRs, a family of receptors of great interest in pharmacology, are usually investigated
from their primary sequences. This study has addressed the problem of class C GPCR subtype
discrimination according to a novel methodology that transforms the sequences according to
the frequency of occurrence of the low level n-grams of different AA alphabets.

These sequence transformations generate high-dimensional data sets that are likely to include
plenty of irrelevant information. For this reason, dimensionality reduction through combination
of a two-sample t-test and forward feature selection was implemented as part of classification
with SVMs.

Reduced sets of n-grams that yielded similar classification accuracies were found for each of
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Figure 5: Box plot of the ITF n-gram.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
−3

mG CS GB VN Ph Od Ta

Figure 6: Box plot of the FSM n-gram.
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the three transformation alphabets. These results are the best reported to date using the class C
data from the GPCRDB database.

The analysis of the features of the AAA alphabet using the values obtained in the t-tests has
provided insight about the n-grams that are best at discriminating between the GPCR subfam-
ilies. This might be considered as preliminary evidence of the existence of subfamily-specific
motifs that might reveal information about ligand binding processes. For this reason, the pro-
posed method will be extended in future work to the analysis of larger n-grams. From this
analysis, we expect to find larger n-grams that might actually be considered as potentially true
subtype-specific motifs.

The analysis of the statistical distributions of the attribute values provided further insight about
the nature of the analyzed data. Although the highly discriminative n-grams contributed to
achieve high classification accuracy, the detected n-grams were not equally suitable to explain
the data of all subfamilies. The n-grams were only appropriate to describe the distribution
of the values of given subsets of subfamilies. This may be the result of the heterogeneity of
some of these subfamilies. As explained in Section 2.2, some subfamilies group nodes which
are descendants from evolutionary unrelated proteins leading to separate groups. On the other
hand, the data also contains overlapping data as some subclasses contain sequences which are
descendants from a common ancestor. This might come to explain why, in this multi-class
classification problem, the feature selection algorithm required to reach a certain number of
attributes (10-30) to achieve high classification accuracies. In future work, we will address this
issue by taking into account the possible subdivisions of the analyzed subfamilies.

The study of the location of n-grams in the sequence revealed that they do not appear at the
same locations in different subfamilies. This discovery encourages us to apply the proposed
feature selection method to separated sequence segments in order to compare n-grams specific
to their subsequence specific location.
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