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By Arthur J. Baroody

Xena, a first grader, determines the sum of 6 + 
5 by saying almost inaudibly, “Six,” and then, 
while surreptitiously extending five fingers 

under her desk one at a time, counting, “Seven, 
eight, nine, ten, eleven.” Yolanda, a second grader, 
tackles 6 + 5 by mentally reasoning that if 5 + 5 is 
10 and 6 is 1 more than 5, then 6 + 5 must be 1 more 
than 10, or 11. Zenith, a third grader, immediately 
and reliably answers, “Six plus five is eleven.” 

The three approaches just described illustrate 
the three phases through which children typically 
progress in mastering the basic number combina-
tions—the single-digit addition and multiplication 
combinations and their complementary subtraction 
and division combinations:

•	 Phase 1: Counting strategies—using object 
counting (e.g., with blocks, fingers, marks) or 
verbal counting to determine an answer

•	 Phase 2: Reasoning strategies—using known 

information (e.g., known facts and relationships) 
to logically determine (deduce) the answer of an 
unknown combination

•	 Phase 3: Mastery—efficient (fast and accurate) 
production of answers

Educators generally agree that children should 
master the basic number combinations—that is, 
should achieve phase 3 as stated above (e.g., 
NCTM 2000). For example, in Adding It Up: 
Helping Children Learn Mathematics (Kilpatrick, 
Swafford, and Findell 2001), the National Research 
Council (NRC) concluded that attaining compu-
tational fluency—the efficient, appropriate, and 
flexible application of single-digit and multidigit 
calculation skills—is an essential aspect of math-
ematical proficiency.

Considerable disagreement is found, however, 
about how basic number combinations are learned, 
the causes of learning difficulties, and how best to 
help children achieve mastery. Although exagger-
ated to illustrate the point, the vignettes that follow, 
all based on actual people and events, illustrate the 
conventional wisdom on these issues or its practi-
cal consequences. (The names have been changed 
to protect the long-suffering.) This view is then 
contrasted with a radically different view (the  
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number-sense view), originally advanced by Wil-
liam Brownell (1935) but only recently supported 
by substantial research.

Vignette 1: Normal children can master the basic 
number combinations quickly; those who cannot 
are mentally impaired, lazy, or otherwise at fault.

Alan, a third grader, appeared at my office 
extremely anxious and cautious. His apprehension 
was not surprising, as he had just been classified 
as “learning disabled” and, at his worried parents’ 
insistence, had come to see the “doctor whose 
specialty was learning problems.” His mother had 
informed me that Alan’s biggest problem was that 
he could not master the basic facts. After an initial 
discussion to help him feel comfortable, we played 
a series of mathematics games designed to create 
an enjoyable experience and to provide diagnostic 
information. The testing revealed, among other 
things, that Alan had mastered some of the single-
digit multiplication combinations, namely, the n × 0, 
n × 1, n × 2, and n × 5 combinations. Although 
not at the level expected by his teacher, his perfor-
mance was not seriously abnormal. (Alan’s class 
had spent just one day each on the 10-fact fami-
lies n × 0 to n × 9, and the teacher had expected 
everyone to master all 100 basic multiplication 

combinations in this time. When it was pointed out 
that mastering such combinations typically takes 
children considerably more time than ten days, the 
teacher revised her approach, saying, “Well, then, 
we’ll spend two days on the hard facts like the 9-
fact family.”)

Vignette 2: Children are naturally unmindful of 
mathematics and need strong incentives to learn 
it.

Bridget’s fourth-grade teacher was dismayed 
and frustrated that her new students had appar-
ently forgotten most of the basic multiplication and 
division facts that they had studied the previous 
year. In an effort to motivate her students, Mrs. 
Burnside lit a blowtorch and said menacingly, “You 
will learn the basic multiplication and division 
facts, or you will get burned in my classroom!” 
Given the prop, Bridget and her classmates took 
the threat literally, not figuratively, as presumably 
the teacher intended.

Vignette 3: Informal strategies are bad habits that 
interfere with achieving mastery and must be pre-
vented or overcome. 

Carol, a second grader, consistently won the 
weekly ’Round the World game. (The game entails 
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having the students stand and form a line and 
then asking each student in turn a question—for 
example, “What is 8 + 5?” or “How much is 
9 take away 4?” Participants sit down if they 
respond incorrectly or too slowly, until only one 
child—the winner—is left.) Hoping to instruct and 
motivate the other students, Carol’s teacher asked 
her, “What is your secret to winning? How do you 
respond accurately so quickly?” Carol responded 
honestly, “I can count really fast.” Disappointed 
and dismayed by this response, the teacher wrote 
a note to Carol’s parents explaining that the girl 
insisted on using “immature strategies” and was 
proud of it. After reading the note, Carol’s mother 
was furious with her and demanded an explana-
tion. The baffled girl responded, “But, Mom, I’m a 
really, really fast counter. I am so fast, no one can 
beat me.”

Vignette 4: Memorizing basic facts by rote through 
extensive drill and practice is the most efficient 
way to help children achieve mastery. 

Darrell, a college senior, can still recall the 
answers to the first row of basic division combina-
tions on a fifth-grade worksheet that he had to com-
plete each day for a week until he could complete 
the whole worksheet in one minute. Unfortunately, 
he cannot recall what the combinations themselves 
were.

How Children Learn 
Basic Combinations
The conventional wisdom and the number-sense 
view differ dramatically about the role of phases 
1 and 2 (counting and reasoning strategies) in 
achieving mastery and about the nature of phase 3 
(mastery) itself.

Conventional wisdom: Mastery grows out of 
memorizing individual facts by rote through 
repeated practice and reinforcement.

Although many proponents of the conventional 
wisdom see little or no need for the counting and 
reasoning phases, other proponents of this perspec-
tive at least view these preliminary phases as oppor-
tunities to practice basic combinations or to imbue 
the basic combinations with meaning before they are 
memorized. Even so, all proponents of the conven-
tional wisdom view agree that phases 1 and 2 are not 
necessary for achieving the storehouse of facts that 
is the basis of combination mastery. This conclusion 
is the logical consequence of the following common 

assumptions about mastering the number combina-
tions and mental-arithmetic expertise:

•	 Learning a basic number combination is a 
simple process of forming an association or 
bond between an expression, such as 7 + 6 or 
“seven plus six,” and its answer, 13 or “thirteen.” 
This basic process requires neither conceptual 
understanding nor taking into account a child’s 
developmental readiness—his or her existing 
everyday or informal knowledge. As the teach-
ers in vignettes 1 and 4 assumed, forming a 
bond merely requires practice, a process that 
can be accomplished directly and in fairly short 
order without counting or reasoning, through 
flash-card drills and timed tests, for example. 

•	 Children in general and those with learning dif-
ficulties in particular have little or no interest in 
learning mathematics. Therefore, teachers must 
overcome this reluctance either by profusely 
rewarding progress (e.g., with a sticker, smile, 
candy bar, extra playtime, or a good grade) or, 
if necessary, by resorting to punishment (e.g., a 
frown, extra work, reduced playtime, or a fail-
ing grade) or the threat of it (as the teacher in 
vignette 2 did).

•	 Mastery consists of a single process, namely, fact 
recall. (This assumption is made by the teacher 
and the mother in vignette 3.) Fact recall entails 
the automatic retrieval of the associated answer 
to an expression. This fact-retrieval component 
of the brain is independent of the conceptual and 
reasoning components of the brain.

Number-sense view: Mastery that underlies 
computational fluency grows out of discovering 
the numerous patterns and relationships that 
interconnect the basic combinations.

According to the number-sense view, phases 1 
and 2 play an integral and necessary role in achiev-
ing phase 3; mastery of basic number combinations 
is viewed as an outgrowth or consequence of num-
ber sense, which is defined as well-interconnected 
knowledge about numbers and how they operate or 
interact. This perspective is based on the following 
assumptions for which research support is growing:

•	 Achieving mastery of the basic number com-
binations efficiently and in a manner that pro-
motes computational fluency is probably more 
complicated than the simple associative-learn-
ing process suggested by conventional wisdom, 
for the reason that learning any large body of 
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Vertical keeping-track method (based on Wynroth [1986])

Phase 1. Encourage children to summarize the results of their informal multiplication computations in a 
table. For example, suppose that a child needs to multiply 7 × 7. She could hold up seven fingers, count 
the fingers once (to represent one group of seven), and record the result (7) on the first line below the 

. She could repeat this process a second time (to represent two groups of seven) and write 14 on the 
next line. The child could continue this process until she has counted her fingers a seventh time to 
represent seven groups of seven, then record the answer, 49, on the seventh line below . This written 
record could then be used later to compute the product of 8 × 7 (eight groups of seven). The child would 
just count down the list until she comes to the product for 7 × 7 (1 seven is 7, 2 sevens is 14, . . . , 7 
sevens is 49) and count on seven more (50, 51, 52, 53, 54, 55, 56). In time, children will have created 
their own multiplication table. 

Phase 2. Once the table is completed, children can be encouraged to find patterns or relationships within 
and between families. See, for example, part III (“Product Patterns”) of probe 5.5 on page 5–25 and the 
“Multiplication and Division” section in box 5.6 on page 5–32, Baroody with Coslick (1998).

Figure 1

factual knowledge meaningfully is easier than 
learning it by rote. Consider, for example, the 
task of memorizing the eleven-digit number 
25811141720. Memorizing this number by rote, 
even if done in chunks (e.g., 258-111-417-20), 
requires more time and effort than memorizing 
it in a meaningful manner—recognizing a pat-
tern or relationship (start with 2 and repeatedly 
add 3). Put differently, psychologists have long 
known that people more easily learn a body of 
knowledge by focusing on its structure (i.e., 
underlying patterns and relationships) than by 
memorizing individual facts by rote. Further-
more, psychologists have long known that well-
connected factual knowledge is easier to retain 
in memory and to transfer to learning other 
new but related facts than are isolated facts. As 
with any worthwhile knowledge, meaningful 
memorization of the basic combinations entails 
discovering patterns or relationships. For exam-
ple, children who understand the “big idea” of 
composition—that a whole, such as a number, 
can be composed from its parts, often in differ-

ent ways and with different parts (e.g., 1 + 7, 2 
+ 6, 3 + 5, and 4 + 4 = 8)—can recognize 1 + 7, 
2 + 6, 3 + 5, and 4 + 4 as related facts, as a fam-
ily of facts that “sum to eight.” This recognition 
can help them understand the related big idea of 
decomposition—that a whole, such as a number, 
can be decomposed into its constitute parts, 
often in different ways (e.g., 8 = 1 + 7, 2 + 6, 
3 + 5, 4 + 4, . . . ). Children who understand the 
big ideas of composition and decomposition are 
more likely to invent reasoning strategies, such 
as translating combinations into easier or known 
expressions (e.g., 7 + 8 = 7 + [7 + 1] = [7 + 7] + 
1 = 14 + 1 or 9 + 7 = 9 + [1 + 6] = [9 + 1] + 6 = 
10 + 6 = 16). That is, children with a rich grasp 
of number and arithmetic patterns and relation-
ships are more likely to achieve level 2.

•	 Children are intrinsically motivated to make 
sense of the world and, thus, look for regularities. 
Exploration and discovery are exciting to them.

•	 Combination mastery that ensures computa-
tional fluency may be more complicated than 
suggested by the conventional wisdom. Typi-

×

1 1 2 3 4 5 6 7 8 9

2 2 4 6 8 10 12 14 16 18

3 3 6 9 12 15 18 21 24 27

4 4 8 12 16 20 24 28 32 36

5 5 10 15 20 25 30 35 40 45

6 6 12 18 24 30 36 42 48

7 7 14 21 28 35 42 49 56

8 8 16 24 32 40 48

9 9 18 27 45

987654321
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Examples of a composition-decomposition activity (based on Ba-
roody, Lai, and Mix [in press])

The Number Goal game
Two to six children can play this game. A 
large, square center card is placed in the 
middle with a number, such as 13, printed 
on it. From a pile of small squares, all facing 
down and having a number from 1 to 10, 
each player draws six squares. The players 
turn over their squares. Taking turns, each 
player tries to combine two or more of his or 
her squares to yield a sum equal to the num-
ber on the center card. 

If a player had squares 2, 3, 5, 5, 5, and 8, 
she could combine 5 and 8 and also combine 
3, 5, and 5 to make 13. Because each solution 
would be worth 1 point, the player would get 2 points for the round. If the 
player had chosen to combine 2 + 3 + 8, no other possible combinations of 13 
would be left, and the player would have scored only 1 point for the round. 
An alternative way of playing (scoring) the game is to award points for both 
the number of parts used to compose the target number (e.g., the play 3 + 5 + 
5 and 5 + 8 would be scored as 5 points, whereas the play 2 + 3 + 8 would be 
scored as 3 points).

Number Goal Tic-Tac-Toe (or Three in a Row)
This game is similar to the Number Goal 
game. Two children can play this game. 
From a pile of small squares, all facing down 
and having a number from 1 to 10, each 
player draws six squares. The players turn 
over their squares. Taking turns, each player 
tries to combine two or more of his or her 
squares to create a sum equal to one of the 
numbers in the 3 x 3 grid. If a player can do 
so, she or he places her or his marker on that 
sum in the 3 x 3 grid, discards the squares 
used, and draws replacement squares. The 
goal is the same as that for tic-tac-toe—that 
is, to get three markers in a row.

cally, with practice, many of the reasoning 
strategies devised in phase 2 become semiauto-
matic or automatic. Even adults use a variety of 
methods, including efficient reasoning strategies 
or—as Carol did in vignette 3—fast counting, 
to accurately and quickly determine answers to 
basic combinations. For example, children may 
first memorize by rote a few n + 1 combinations. 
However, once they realize that such combi-
nations are related to their existing counting 
knowledge—specifically their already efficient 
number-after knowledge (e.g., “after 8 comes 
9”)—they do not have to repeatedly practice 
the remaining n + 1 combinations to produce 
them. That is, they discover the number-after 
rule for such combinations: “The sum of n + 1 

is the number after n in the counting sequence.” 
This reasoning process can be applied effi-
ciently to any n + 1 combination for which a 
child knows the counting sequence, even those 
counting numbers that a child has not previ-
ously practiced, including large combinations, 
such as 1,000,128 + 1. (Note: The application of 
the number-after rule with multidigit numbers 
builds on previously learned and automatic rules 
for generating the counting sequence.) In time, 
the number-after rule for n + 1 combinations 
becomes automatic and can be applied quickly, 
efficiently, and without thought. 

Recent research supports the view that the basic 
number-combination knowledge of mental-arith-
metic experts is not merely a collection of isolated 
or discrete facts but rather a web of richly inter-
connected ideas. For example, evidence indicates 
not only that an understanding of commutativity 
enables children to learn all basic multiplication 
combinations by practicing only half of them but 
also that this conceptual knowledge may also 
enable a person’s memory to store both combi-
nations as a single representation. This view is 
supported by the observation that the calculation 
prowess of arithmetic savants does not stem from a 
rich store of isolated facts but from a rich number 
sense (Heavey 2003). In brief, phases 1 and 2 are 
essential for laying the conceptual groundwork—
the discovery of patterns and relationships—and 
providing the reasoning strategies that underlie the 
attainment of computational fluency with the basic 
combinations in phase 3.

Reasons for  
Children’s Difficulties
According to the conventional wisdom, learning 
difficulties are due largely to defects in the learner. 
According to the number-sense view, they are due 
largely to inadequate or inappropriate instruction.

Conventional wisdom: Difficulties are due to 
deficits inherent in the learner.

All too often, children’s learning difficulties, 
such as Alan’s as described in vignette 1, are attrib-
uted largely or solely to their cognitive limitations. 
Indeed, children labeled “learning disabled” are 
often characterized as inattentive, forgetful, prone to 
confusion, and unable to apply knowledge to even 
moderately new problems or tasks. As vignette 1 
illustrates, these cognitive characteristics are pre-

Figure 2
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sumed to be the result of mental-processing deficits 
and to account for the following nearly universal 
symptoms of children labeled learning disabled:

•	 A heavy reliance on counting strategies
•	 The capacity to learn reasoning strategies but an 

apparent inability to spontaneously invent such 
strategies

•	 An inability to learn or retain basic number 
combinations, particularly those involving num-
bers greater than 5 (e.g., sums over 10)

•	 A high error rate in recalling facts (e.g., “asso-
ciative confusions,” such as responding to 8 + 7 
with “16”—the sum of 8 + 8—or with “56”—
the product of 8 × 7)

In other words, children with learning difficulties, 
particularly those labeled learning disabled, seem 
to get stuck in phase 1 of number-combination 
development. They can sometimes achieve phase 
2, at least temporarily, if they are taught reasoning 
strategies directly. Many, however, never achieve 
phase 3.

Number-sense view: Difficulties are due to 
defects inherent in conventional instruction.

Although some children labeled learning dis-
abled certainly have impairments of cognitive pro-
cesses, many or even most such children and other 
struggling students have difficulties mastering the 
basic combinations for two reasons. One is that, 
unlike their more successful peers, they lack ade-
quate informal knowledge, which is a critical basis 
for understanding and successfully learning for-
mal mathematics and devising effective problem-
 solving and reasoning strategies. For example, they 
may lack the informal experiences that allow them 
to construct a robust understanding of composition 
and decomposition; such understanding is founda-
tional to developing many reasoning strategies.

A second reason is that the conventional 
approach makes learning the basic number combi-
nations unduly difficult and anxiety provoking. The 
focus on memorizing individual combinations robs 
children of mathematical proficiency. For example, 
it discourages looking for patterns and relation-
ships (conceptual learning), deflects efforts to 
reason out answers (strategic mathematical think-
ing), and undermines interest in mathematics and 
confidence in mathematical ability (a productive 
disposition). Indeed, such an approach even sub-
verts computational fluency and creates the very 
symptoms of learning difficulties often attributed to 

children with learning disabilities and seen in other 
struggling children:

•	 Inefficiency. Because memorizing combinations 
by rote is far more challenging than meaningful 
memorization, many children give up on learning 
all the basic combinations; they may appear inat-
tentive or unmotivated or otherwise fail to learn 
the combinations (as vignettes 1 and 4 illustrate). 
Because isolated facts are far more difficult to 
remember than interrelated ones, many children 
forget many facts (as vignette 2 illustrates). Put 
differently, as vignette 4 illustrates, a common 
consequence of memorizing basic combinations 
or other information by rote is forgetfulness. If 
they do not understand teacher-imposed rules, 
students may be prone to associative confusion. 
If a child does not understand why any number 
times 0 is 0 or why any number times 1 is the 
number itself, for instance, they may well con-
fuse these rules with those for adding 0 and 1 
(e.g., respond to 7 × 0 with “7” and to 7 × 1 with 
“8”). Because they are forced to rely on counting 
strategies and use these informal strategies sur-
reptitiously and quickly, they are prone to errors 
(e.g., in an effort to use skip-counting by 7s to 
determine the product 4 × 7, or four groups of 
seven, a child might lose track of the number of 
groups counted, count “7, 14, 21,” and respond 
“21” instead of “28”).

•	 Inappropriate applications. When children 
focus on memorizing facts by rote instead of 
making sense of school mathematics or connect-
ing it with their existing knowledge, they are 
more prone to misapply this knowledge because 
they make no effort to check themselves or 
they miss opportunities for applying what they 
do know (e.g., they fail to recognize that the 
answer “three” for 2 + 5 does not make sense). 
For example, Darrell’s rote and unconnected 
knowledge in vignette 4 temporarily satisfied 
his teacher’s demands but was virtually useless 
in the long run.

•	 Inflexibility. When instruction does not help 
or encourage children to construct concepts or 
look for patterns or relationships, they are less 
likely to spontaneously invent reasoning strate-
gies, and thus they continue to rely on counting 
strategies. For example, children who do not 
have the opportunity to become familiar with 
composing and decomposing numbers up to 18 
are unlikely to invent reasoning strategies for 
sums greater than 10.
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Road Hog car-race games

Additive composition version
In this version of Road Hog, each player has two race cars. The aim of the game is to be the first player to have both race cars reach 
the finish line. On a player’s turn, he or she rolls two number cubes to determine how many spaces to move the car forward. (Cars 
may never move sideways or backward.) Play at the basic level involves two six-sided number cubes with 0 to 5 dots each. At the inter-
mediate level, one number cube has 0 to 5 dots; the other, the numerals 0 to 5. This distinction may encourage counting on (e.g., for a 
roll of 4 and •

 • • , a child might start with “four” and then count “five, six, seven” while successively pointing to the three dots). At the 
advanced level, both number cubes have the numerals 0 to 5. A similar progression of number cubes can be used for the super basic, 
super intermediate, and super advanced levels that involve sums up to 18 (i.e., played with six-sided number cubes, both having dots; 
or one number cube having dots and the other having numerals; or both number cubes having the numerals 5 to 9). 

After rolling the number cubes, a player must decide whether to move each race car the number of spaces specified by one number 
cube in the pair (e.g., for a roll of 3 and 5, the player could move one car three spaces and the other five) or sum the two number 
cubes and move one car the distance specified by the sum (e.g., with a roll of 3 and 5, the player could move a single car the sum of 
3 + 5, or 8, spaces). Note that in this version and all others, opponents must agree that the answer is correct. If an opponent catches 
the player in an error, the latter forfeits her or his turn.

Deciding which course to take depends on the circumstances of the game at the moment and a player’s strategy. The racetrack, a 
portion of which is depicted below, consists of hexagons two or three wide. In the example depicted, by moving one car three spaces 
and the other car five spaces, the player could effectively block the road. The rules of the game specify that a car cannot go off the road 
or over another car. Thus, the cars of other players must stop at the roadblock created by the “road hog”—regardless of what number 
they roll.

Additive decomposition versions
The game has two decomposition versions. In both versions, the 
game can be played at three levels of difficulty. The basic level 
involves cards depicting whole numbers from 1 to 5; the inter-
mediate level, 1 to 10; and the advanced level, 2 to 18. 

In single additive decomposition, a child draws a card, for 
example, 3+?, which depicts a part (3), and a missing part ( ), 
and a second card, which depicts the whole (5). The child must 
then determine the missing part (2), move one car a number of 
spaces equal to the known part (3), and move the other car a 
number of spaces equal to the missing part (2).

In double additive decomposition, a child draws a number 
card, such as 5, and can decompose it into parts any way she or 
he wishes (e.g., moving one car five spaces and the other none 
or moving one car three spaces and the other two).

Teachers may wish to tailor the game to children’s individual needs. For example, for highly advanced children, the teacher may set 
up a desk with the version of the game involving whole numbers from 10 to 18.

Multiplicative decomposition versions
The multiplicative decomposition versions would be analogous to those for additive decomposition. For example, at the basic level, 
a player would draw a card—for example, 3 + ?—and would have to determine the missing factor—6. At the advanced level, a player 
would draw a card—for example, 18—and would have to determine both nonunit factors—2 and 9 or 3 and 6 (1 and 18 would be illegal).

Figure 3

Helping Children Master 
Basic Combinations
Proponents of the conventional wisdom recom-
mend focusing on a short-term, direct approach, 
whereas those of the number-sense view recom-
mend a long-term, indirect approach.

Conventional wisdom: Mastery can best be 
achieved by well-designed drill.

According to the conventional wisdom, the 
best approach for ensuring mastery of basic num-

ber combinations is extensive drill and practice. 
Because children labeled learning disabled are 
assumed to have learning or memory deficits, 
“over-learning” (i.e., massive practice) is often 
recommended so that such children retain these 
basic facts.

In recent years, some concern has arisen about 
the brute-force approach of requiring children, 
particularly those labeled learning disabled, to 
memorize all the basic combinations of an opera-
tion in relatively short order (e.g., Gersten and 
Chard [1999]). That is, concerns have been raised 
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about the conventional approach of practicing and 
timed-testing many basic combinations at once. 
Some researchers have recommended limiting the 
number of combinations to be learned to a few at a 
time, ensuring that these are mastered before intro-
ducing a new set of combinations to be learned. A 
controlled- or constant-response-time procedure 
entails giving children only a few seconds to 
answer and providing them the correct answer if 
they either respond incorrectly or do not respond 
within the prescribed time frame. These proce-
dures are recommended to minimize associative 
confusions during learning and to avoid reinforcing 
incorrect associations and “immature” (counting 
and reasoning) strategies. In this updated version of 
the conventional wisdom, then, phases 1 and 2 of 
number-combination development are still seen as 
largely unnecessary steps for, or even a barrier to, 
achieving phase 3.

Number-sense view: Mastery can best be 
achieved by purposeful, meaningful, inquiry-
based instruction—instruction that promotes 
number sense.

A focus on promoting mastery of individual basic 
number combinations by rote does not make sense. 
Even if a teacher focuses on small groups of combi-
nations at a time and uses other constant-response-
time procedures, the limitations and difficulties of 
a rote approach largely remain. For this reason, the 
NRC recommends in Adding It Up that efforts to 
promote computational fluency be intertwined with 
efforts to foster conceptual understanding, strategic 
mathematical thinking (e.g., reasoning and problem-
solving abilities), and a productive disposition. Four 
instructional implications of this recommendation 
and current research follow. 

1. Patiently help children construct number sense 
by encouraging them to invent, share, and refine 
informal strategies (e.g., see phase 1 of fig. 1, 
p. 25). Keep in mind that number sense is not 
something that adults can easily impose. Help 
children gradually build up big ideas, such as 
composition and decomposition. (See fig. 2, 
p. 26, and fig. 3, p. 28, for examples of games 
involving these big ideas.) Children typically 
adopt more efficient strategies as their number 
sense expands or when they have a real need to 
do so (e.g., to determine an outcome of a dice 
roll in an interesting game, such as the additive 
composition version of Road Hog, described in 
fig. 3). 

2. Promote meaningful memorization or mastery of 
basic combinations by encouraging children to 
focus on looking for patterns and relationships; 
to use these discoveries to construct reasoning 
strategies; and to share, justify, and discuss their 
strategies (see, e.g., phase 2 of fig. 1). Three 
major implications stem from this guideline:

•	 Instruction should concentrate on “fact fami-
lies,” not individual facts, and how these 
combinations are related (see box 5.6 on pp. 
5–31 to 5–33, Baroody with Coslick [1998] 
for a thorough discussion of the developmen-
tal bases and learning of these fact families). 

•	 Encourage children to build on what they 
already know. For example, mastering sub-
traction combinations is easier if children 
understand that such combinations are 
related to complementary and previously 
learned addition combinations (e.g., 5 – 3 
can be thought of as 3 + ? = 5). Children who 
have already learned the addition doubles by 
discovering, for example, that their sums are 
the even numbers from 2 to 18, can use this 
existing knowledge to readily master 2 × n 
combinations by recognizing that the latter 
is equal to the former (e.g., 2 × 7 = 7 + 7 = 
14). Relating unknown combinations to pre-
viously learned ones can greatly reduce the 
amount of practice needed to master a family 
of combinations.

•	 Different reasoning strategies may require 
different approaches. Research indicates 
that patterns and relationships differ in their 
salience. Unguided discovery learning might 
be appropriate for highly salient patterns or 
relationships, such as additive commutativity. 
More structured discovery learning activities 
may be needed for less obvious ones, such 
as the complementary relationships between 
addition and subtraction (see, e.g., fig. 4).

3. Practice is important, but use it wisely.

•	 Use practice as an opportunity to discover 
patterns and relationships.

•	 Practice should focus on making reasoning 
strategies more automatic, not on drilling 
isolated facts.

•	 The learning and practice of number com-
binations should be done purposefully. Pur-
poseful practice is more effective than drill 
and practice. 
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•	 Practice to ensure that efficiency not be done 
prematurely—that is, before children have 
constructed a conceptual understanding of 
written arithmetic and had the chance to go 
through the counting and reasoning phases.

4. Just as “experts” use a variety of strategies, 
including automatic or semi-automatic rules 
and reasoning processes, number-combina-
tion proficiency or mastery should be defined 
broadly as including any efficient strategy, not 
narrowly as fact retrieval. Thus, students should 
be encouraged in, not discouraged from, flex-
ibly using a variety of strategies.

Conclusion
An approach based on the conventional wisdom, 
including its modern hybrid (the constant-response-
time procedure) can help children achieve mastery 
with the basic number combinations but often 
only with considerable effort and difficulty. Fur-
thermore, such an approach may help children 
achieve efficiency but not other aspects of com-
putational fluency—namely, appropriate and flex-
ible application—or other aspects of mathematical 
proficiency—namely, conceptual understanding, 
strategic mathematical thinking, and a productive 
disposition. Indeed, an approach based on the con-
ventional wisdom is likely to serve as a roadblock 
to mathematical proficiency (e.g., to create inflex-
ibility and math anxiety). 

Achieving computational fluency with the basic 
number combinations is more likely if teachers use 
the guidelines for meaningful, inquiry-based, and 
purposeful instruction discussed here. Children 
who learn the basic combinations in such a manner 
will have the ability to use this basic knowledge 
accurately and quickly (efficiently), thoughtfully in 
both familiar and unfamiliar situations (appropri-
ately), and inventively in new situations (flexibly). 
Using the guidelines for meaningful, inquiry-
based, and purposeful approach can also help 
students achieve the other aspects of mathematical 
proficiency: conceptual understanding, strategic 
mathematical thinking, and a productive disposi-
tion toward learning and using mathematics. Such 
an approach can help all children and may be par-
ticularly helpful for children who have been labeled 
learning disabled but who do not exhibit hard signs 
of cognitive dysfunction. Indeed, it may also help 
those with genuine genetic or acquired disabilities. 

What’s Related (based on Baroody [1989])

Objectives: (a) Reinforce explicitly the addition-subtraction complement prin-
ciple and (b) provide purposeful practice of the basic subtraction combina-
tions with single-digit minuends (basic version) or teen minuends (advanced 
version)

Grade level: 1 or 2 (basic version); 2 or 3 (advanced version)

Participants: Two to six players

Materials: Deck of subtraction combinations with single-digit minuends (basic 
version) or teen minuends (advanced version) and a deck of related addition 
combinations

Procedure: From the subtraction deck, the dealer deals out three cards faceup 
to each player (see figure). The dealer places the addition deck in the middle 
of the table and turns over the top card. The player to the dealer’s left begins 
play. If the player has a card with a subtraction combination that is related to 
the combination on the addition card, he or she may take the cards and place 
them in a discard pile. The dealer then flips over the next card in the addition 
deck, and play continues. The first player(s) to match (discard) all three sub-
traction cards wins the game (short version) or a point (long version). (Unless 
the dealer is the first to go out, a round should be completed so that all play-
ers have an equal number of chances to make a match.)

Figure 4
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