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ABSTRACT

Differential semblance velocity estimators have well-defined and smooth high fre-
quency asymptotics. A version appropriate for analysis of CMP gathers and layered
acoustic models has no secondary minima within a sublevel set of velocity profiles,
independent of data frequency content, unlike other estimators such as stack power
and output least squares. The sublevel set is characterized by the interaction between
reflector density and velocity variability.

Introduction

The inverse problem of reflection seismology includes as an important subproblem the
estimation of compressional wave velocity as a function of position, on a scale of hundreds
of meters or kilometers. This estimation, often called “velocity analysis”, is critical in
seismic data processing. Attempts to treat it as a data-fitting problem have largely
foundered on the strongly nonlinear relation between seismic data and the long scale
component of wave velocity. Various objective functions, including notably output least
squares, have proven to have great numbers of spurious stationary points, both close to
and far away from a reasonable model estimate, so that only global optimization methods
are likely to be successful (Gauthier et al., 1986; Scales et al., 1991; Sen and Stoffa,
1991b; Sen and Stoffa, 1991a; Chauris, 2000). Since global optimization on the scale of
field seismograms and reasonable subsurface models entails infeasible computational cost,
these approaches have had little impact on seismic data processing practice.

Differential semblance (Symes, 1986) is an alternate measure of the fit of a long-
scale velocity model to data, which appears not to have the pathological mathematical
features of other misfit measures, in particular spurious stationary points. It has been
used to extract reasonable estimates of long scale wave velocity from both synthetic and
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field seismograms, using only local (Newton-like) optimization, and appears in principle
feasible on field scale (Symes and Carazzone, 1991a; Symes and Versteeg, 1993; Kern and
Symes, 1994; Araya et al., 1996; Symes, 1997; Minkoff and Symes, 1997; Chauris et al.,
1998; Chauris and Noble, 2001; Mulder and ten Kroode, 2001).

The purpose of this paper is to give an asymptotic analysis of the version of differential
semblance based on layered acoustics. This is the simplest specialization of elastodynamics
able to describe principal features of field data, at least in some cases. The principal result
is roughly this: if the velocity is restricted to vary on a scale sufficiently long relative to the
density of reflected wave energy in time, and if the data is consistent with this assumption,
then (i) the only zero of the differential semblance function occurs at the correct velocity,
and (ii) the only stationary point with a sufficiently small value of the objective occurs
at the correct velocity.

This paper approximates the seismic response of a layered model by linearization
about the long-scale model, and uses high frequency asymptotics to approximate the re-
flection seismogram and many associated quantities. A related investigation using high
frequency asymptotics of the linearized response and approximate kinematics (the “hy-
perbolic moveout” approximation) was able to establish a stronger result, without any
assumption about a relation of length scales between data and velocity distribution: that
the only stationary points are global minima (Symes, 1999). The approach of (Symes,
1999) is essentially followed here, with amendments due to the use of exact rather than
approximate kinematics. On the other hand the paper (Symes, 1991) reached very similar
conclusions to those presented here, without linearization or high frequency asymptotics,
but using plane wave reflection data and theory available only for plane waves in lay-
ered media. The development presented here avoid these restrictions, and hopefully will
serve as a model for an analysis of multidimensional (nonlayered) differential semblance,
which has so far been investigated only numerically (Symes and Carazzone, 1991a; Symes
and Versteeg, 1993; Kern and Symes, 1994; Chauris et al., 1998; Chauris and Noble,
2001; Mulder and ten Kroode, 2001).

The paper begins by defining the convolutional (linearized asymptotic) model for lay-
ered acoustics, and discussing various types of error inherent in this approximation, the
domain of the data, and natural admissible model sets. This groundwork supports an
asymptotic analysis of the differential semblance objective, which reveals that in the case
of noise free data it is essentially a data-weighted mean square error in RMS ray parameter
(a geometric optics quantity associated with traveltimes). This observation leads directly
to the main results, and demonstrates the essentially tomographic nature of differential
semblance velocity estimation. A crucial step is the derivation of hyperbolic systems link-
ing various geometric optics quantities directly to the wave equation coefficients; these
systems may have some interest in themselves.
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The Convolutional Model for Laterally Homogenous Acoustics

Linearization of the acoustic model for a layered fluid and application of high frequency
asymtotics leads to the convolutional model of reflection seismograms. The convolutional
model is one of the simplest models of the reflection process within which to pose the
velocity analysis problem. This model has been the basis for much data processing since
at least the 1950’s, and is described and used extensively in every textbook on the subject
(Dobrin, 1976; Robinson and Treitel, 1980). I present it here as the result of various
approximations to the basic physics of seismic waves. The few derivations of the convolu-
tional model from first principles to have appeared in print are unfortunately marred by
misprints or outright mistakes, so I have included a complete derivation in an appendix.

Remark: A similar model for plane wave traces is almost equally simple, and was the
subject of earlier work on differential semblance (Symes and Carazzone, 1991b; Minkoff
and Symes, 1997). However synthesis of accurate plane wave traces is a nontrivial task.
Accordingly the version of the model developed here uses offset domain data.

To some approximation, seismic waves obey the laws of linear elastodynamics, with
material properties (density, Hooke tensor,...) depending on position x € R*. A layered
elastic material has material properties depending only on the depth z3 = z > 0. Constant
density layered acoustic materials (fluids) have vanishing shear moduli and are charac-
terized completely by the velocity v(z). The acoustic wave equation governs pressure
fluctuations p(t, x) about equilibrium in such a material:

in which f(#,x) is the divergence of a body force density representing energy inputs
(“sources”). An isotropic point source takes the form f(¢,x) = w(t)d(x — x;,), and is a
crude approximation to actual source dynamics. The source position x4 is an auxiliary
datum of the seismic experiment, as is the source time function w(t).

While the surface of the Earth acts as a significant boundary for seismic waves, it
is possible to some extent to process seismic measurements to remove the effects of this
boundary, so this paper will treat the seismic wavefield as defined in all of R3.

Idealized “2D” seismic data is the measurement of the pressure fluctuations at a set
of receiver positions x, at or near the surface, which are also auxiliary data of the seismic
experiment. The rotation and translation invariance of layered materials leads to the
conclusion that the simulated seismic data can be a function only of the offset, i.e. the
source - receiver distance. Therefore a complete data set consists of measurements at
receiver positions along the half xz-axis through the source position: x, = x, + (z,0,0)”
for x > 0. The acoustic model predicts that this idealized “2D” seismic data depends on
velocity v:

Fl)(t, z) = p(t,x, + (z,0,0)")

3
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The forward map F relating velocity profile to data is nonlinear, as it expresses the
relation between the coefficients of a linear equation and its solution. Linearization ex-
presses the velocity profile as v(1 + r), in terms of a reference velocity, still denoted by
v, and a relative perturbation r = ‘%’ called the reflectivity. A perturbation calculation

leads to a formal derivative or linearized forward map
DFlr ~ Flo(1+r)] — Flv]

which is related to the solution of a perturbational wave equation in the same way that F
is related to the pressure fluctuation field. It is widely believed that this approximation
is accurate when (i) v is relatively smooth, and (ii) r is oscillatory. So far only numerical
evidence exists to support this presumption, except for the rigorous treatment of layered
acoustics in (Lewis and Symes, 1991).

Application of yet another layer of perturbation theory, this time in the form of high-
frequency asymptotics, leads directly to the convolutional model. Fortunately, the fre-
quency or scale dichotomy apparently responsible for the success of the linearization
approximation is also a necessary condition for success of high-frequency asymptotics.

The two-way time function T'(z,z) plays a critical role in the description of this ap-
proximation. It is related to the solution of the point source problem for the eikonal
equation

IVr(z2)] = % (2 2) - 7V(0+)  (VETE)

by T'(z,x) = 27(z,2/2).

Denote by tn.. and z,., the maximum time and offset respectively. That is, data will
be regarded as functions on [0, tnax] X [0, Zmax]. We assume the existance of a function
tm ¢ [0, Tmax] — R so that z — T(z,z) is invertible on [t,,(%), tmax], With inverse Z(-, z) :

[t (), tmax] — R. Relations between v, t,,.x and z,,,x which assure existance of a suitable
t,, will be discussed in the next section.

Since T' is smooth, invertibility is equivalent to the assumption that the logarithm of
the stretch factor

stt.r) = Zt,a) = (Z—f(zu,xm)) 1)

is bounded on
R={(t,x) : 2 € [0, Tmax], t € [tm(T), tmax]} (2)

Let ¢g € C3°((0, tmax) X (0, Zmax)) be a cutoff function or mute, with supp(¢y) C R.
The convolutional model for the linearized forward map is:

DF[vlr ~ Fulr(t,x) = ¢o(t, x)w 4 [a(-, z)r(Z (-, x), )] (¢, x) (3)
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where a, an amplitude derived from geometric acoustics, is also a functional of v.

The developments to follow will also assume that a process (“source signature deconvo-
lution”) has been applied to the data, so that w ~ §. For realistic modeling, w must have
Fourier transform of (essentially) compact support, so this assumption not really defen-
sible. Nonetheless I shall assume it: the resulting errors do not seem to make the theory
diverge too far from computational practice (Araya et al., 1996; Symes, 1998; Gockenbach
and Symes, 1999). That is, replace (3) by

Flolr(t,z) = ¢o(t, x)a(t, z)r(Z(t, x), x) (4)

Note that many of the assumptions introduced to arrive at the convolutional model -
seismic waves as acoustic waves in a fluid, neglect of boundary conditions at the Earth’s
surface, isotropic point model for the energy source, source signature deconvolution, con-
tinuous sampling along a line to represent the data, linearization and high frequency
asymptotics, and above all the layered medium assumption - are drastic approximations.
Each and every one contradicts well-known features of field data. While such data can
be preprocessed to remove inconsistencies with this model to some extent, the reader
should bear in mind that the convolutional model is an oversimplification of seismic data
formation.

The following computations will introduce yet more sources of asymptotic error - and
only asymptotic error. In other words, operators will be replaced with others that differ
by relatively smoothing perturbations. Rather than carry along a variety of expressions
that accumulate this repeated dropping of a smoothing error, I will use the symbol “O(\)”
to suggest proportionality of the asymptotic error to a dominant wavelength in the data:
A =B+ O()\) means A = B + K where K is smoothing relative to A and B. Of course
statements like this are meaningful when A and B are operators defined by oscillatory
integrals, and elliptic at least microlocally.

For example, equation (4) should really be regarded as an asymptotic approximation
to a linearized fundamental solution of the wave equation:

Flolr(t,z) = a(t,x)r(Z(t,x),x) = DF[v]r + O(X)

Admissible Models

The developments to follow require the restriction of v to admissible sets A of models,
on which the convolutional model as defined above is reasonably well behaved. A simple
way to define such sets is to impose simple bounds on the derivatives of v: for each k € Z,
there exists C}, > 0 for which

dk
\@aogv(z)) <Cp:eR,
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That is, logv is restricted to a bounded subset of C*(R.).

For k£ = 0, I will be a bit more restrictive: impose smooth upper and lower “envelope”
velocities as hard constraints: vmin(2) < v(2) < vmax(2), 2 € Ry Tt is natural to assume
that the velocity is known at and near the surface, so assume the existance of z,;, > 0 so
that that vin(2) = Umax(2) = vy for 0 < 2z < zyi,. These bounds derive from geophysical
measurements and general knowledge about rock physics (for example 0 < z < z;;, could
represent the water column in simulation of a marine survey), so should be regarded as
distinct from the bounds implied by the first condition (membership in a bounded set in
C™).

It will also be useful to have a constant velocity profile available, so assume also that
v(z) = vy € A, ie. that vpin(2) < vy < vmax(2), 2 € Ry

Note that admissible sets as define here are convex.

Neither the traveltime T'(z,z) nor the other quantities introduced in the previous
section are well-defined globally. For each choice of admissible set A, it is possible to
choose domains of definition uniformly for v € A, as follows.

Geometric optics implies the following formulae for the time 7'(z, p) and offset X (z, p)
of a ray with ray parameter (slowness) p reflected from a horizontal surface at depth z:

(Qp 1

Xep) =2 dc—28% 1 =2/ d 5
(zp) =2 | g TV / SR

(see (Aki and Richards, 1980), section 12.1). These formulae presume that v(¢)p < 1 for
0 < (¢ < z. Choose ppax 50 that v(2)pmax < 1 for z € Ry, v € A. Such a choice is possible
in view of the bounds defining A. Then (5) defines a C*° map Z[v] : Ry X [0, pmax] — R%.

Claim: Set
ZminV0Pmax

Tmax = )
\V - Vo Pmax

220 + 12
ti(t) = S, 0 < & < Tynas
Vo
tmax 2 tm (xmax)
with t,ax Otherwise arbitrary. Let R be defined as in (2). Then R C Nye4 (Range=[v]),

and Z[v] is a diffeomorphism on the preimage of R. Moreover, decompose
8R = Fin U FO U Fout

with
1—‘in -

F[]:

(tm(x),2) : 0 <2 < Tpax}
(tm(z),2) : 0 <2 < Tyax}

S

6
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Fou‘c = {(t; xmax) : tm(xmax) S t S tmax} U {(tmaxa :E) 0 S 4y S xmax}
then I, is an inflow boundary, and 'y, is an outflow boundary, for the ray vector field
o _oro oxo o
0z 0z0t 0z Oz
uniformly for v € A.

Proof: It is straightforward to see that R C Range(=Z[vg]). To see the same for arbitrary
v € A, construct the homotopy in A:

vy = (1 = 0)vg + ov
Pick (¢,x) € R; it is required to show that the equations
l= T[va](zaapa)a T = X[Y)a](zaapa)

have a unique solution (z,, p,) for all o € [0, 1], this being clear for o = 0.

Suppose (z,,p,) is a solution. Since

ZminVoPo Zo Zva(z)pa
x:X(z,p)zi—l-/ dz
e V1 —uvgp?  Jzmin 1 —v,(2)%p2
< T = Lﬂsmx
\V 1 - Uﬂpgnax
and 2op

b V1—vp?

is increasing, it follows that p, < pmax, i.e. any path segment o — (z,,p,) stays within
the strip 0 < p < pmax. The inverse Jacobian of =, and all partial derivatives up to any
finite order, are bounded uniformly in v € A and over the half-strip, whence follows the
existance of € > 0 for which the implicit function theorem guarantees a unique solution
on (0 —€,0+¢€)NJ0,1] given a solution at o. Since such a solution stays in the strip, it
follows that the end is reached.

The inflow boundary property is clear, as the rays are the images of p = const lines
in the strip, and Ty, is the image of z = z;,. Similarly, since dX/dz > 0 and d7T'/dz > 0
throughout the strip, any ray which reaches either part of I'y,; makes a positive inner
product with the outward pointing normal. QED

An important consequence is that the mute ¢y € C$°(R?) may be chosen uniform over
v € A, and that uniform bounds exist for every value of the stretch factor s(¢, z).

All of these operators, suppressed smoothing errors included, depend parametrically
on v. The estimates which establish the relative smoothing are uniform as v ranges over
admissible classes of velocities A. Therefore the errors are effectively small, not just
smooth, in view of the assumed frequency dichotomy.
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Asymptotic Approximation of Differential Semblance

According to the prescription given in (Symes, 2001), construction of the DS functional
requires operators with canonical relation the same as, and inverse to, that of the linearized
forward map, restricted to each data bin. In the case of CMP gathers considered here,
a data bin is simply a trace, indexed by offset x. Thus the operator with canonical
relation inverse to (respectively the same as) that of the linearized forward map is a
prestack migration (respectively demigration) operator, yielding (respectively acting on)
x- dependent reflectivity functions r(z,x) (or image volumes).

In the development to follow, the asymptotic approximation (4) is used in place of
the linearized forward map. This either reflects actual computation, if the asymptotic
approximation is implemented numerically (as in (Araya et al., 1996; Symes, 1998; Gock-
enbach and Symes, 1999)) or is an approximation if some other technique is used (Symes,
1993; Symes and Versteeg, 1993; Kern and Symes, 1994).

To find an operator with the inverse canonical relation, it’s merely necessary to use
the inverse change of variables: set

Glold(z,5) = g(z,)60(T (2, 2), 2)d(T (2, 2), 7) 7)
where the amplitude g(z, x) is at your disposal. Similarly
Blv)r(t,z) = ¢o(t, 2)b(t,x)r(Z(t, x), ) (8)
with b(¢, z) equally arbitrary. The operator measuring semblance differentially is

_9
- Ox

Select ¢ € Cg°(R) so that ¢ = 0 on supp(1 — ¢y), and choose H to be a square root of the
positive definite Helmholtz operator I — Vix with any convenient boundary conditions,
say Dirichlet on [0, fax] X [0, Zmax). The differential semblance operator W : A — OPS°
is defined as (Symes, 2001)

0

Wv] = ¢H ¢y B[v]0G[v]

and the basic differential semblance function .Jy[v, d] by

1
Tolo,d) = SIW[eJdl 2

The principal symbol of Wv| will play a useful role in the sequel. To compute it, note
that

o(t, x)HpoBlv]0G[v]d(t, x) = ¢(t, x)b(t, x) %[g(z,x)qﬁg(T(z,x),:r)d(T(z,:r),x)]

z2=Z(t,r)
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= ottt a2t a).0) (G200 00 + 57 ) dle) + OO
= ¢1(t, x) (p(t, :r)% + %) d(t,z) + O(N)

where or

is the arrival (horizontal) slowness of the reflected ray passing offset = at time ¢,

and the elided terms involve derivatives of b and ¢, but do not involve derivatives of the
data d.

Note that (¢,z) — (Z(t,z), P(t,z)) is simply the inverse diffeomorphism of the map
defined in (5).

Applying the inverse square root of the Helmholtz operator produces

H¢B[v|0G[v]d = Hp <% + ng) + O(X)

whence the symbol of Wv] may easily be extracted.

The ray slowness P(t,x) is locally a smooth function of the velocity v in any fixed
open subset of the mute zone - here “smooth” means “when restricted to the intersection
of A and any finite dimensional subspace of C*°”. Assume that the C'* multipliers b and
g are smooth in their dependence on v also (for example, constant). Then Jylv,d] is a
smooth function of (v,d) € A x L*(R) as well.

Noise Free Data

Assume that the data d are model-consistent, that is
d(t,x) = a*(t,z)r*(Z*(t,x)) + O()\)

for target offset independent reflectivity r* and velocity v*.

Note that
P oT o7 oT
0= o T(Z(t0),0) = 5 (Z(t2),2) 5 (t.2) + (4 (t,2),2)
50 YA
-~ = — P
ER (t,z) s(t,z)P(t, x)
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(s being the stretch factor, defined above). Thus

Z(t,w)) = —S*(t;fr)P*(t;fr)(aaC)(Z*(t;fr))

Fr

(s* is the stretch factor belonging to v*) whence

Blv]oG[v]d(t, z) = b(t, z)g(Z(t, ), x) (— + P(t, :r)%) (a*(t, x)r*(Z*(t, x)))

*

=0b(t,z)g(Z(t,x),x)s"(t,z)(P(t,x) — P*(t,z))a"(t, x) 687“2

(Z*(t,x)) + O(N)

According to the calculus of pseudodifferential operators,

H¢B[v]0G[v]d =
(1 v) o, (s*<P - P*)a*%z‘)) o

\YZAERY
VZ* - NZ*
=W(t,x, 0, 0,)d(t, )
in which W € OPS" has principal symbol
s*(P — P*)
' \/1 + s%2(1 4+ p*?)

— (1= V?) %o, (S*(P_p*) d) + O

¢

[Note that HpBOG is equivalent to a WDO whose principal symbol is a multiplier only
because noise free data d(t,z) = a*(t,z)r*(Z*(t,z)) is conormal.] All of the factors this
expression are a priori independent of v, except for ¢;. Accordingly assume from now on
that b(t, ) and g(z,z), heretofore arbitrary, are chosen in such a way that

01(t, ) = ¢(t, ©)b(t, 2)g(Z(t, x), x)

is independent of v. This can be accomplished in a number of ways: since ¢ may be chosen
independent of v, as noted above, one obvious way to achieve this property is to choose
b=g=1.

Granted this additional constraint,
Jolo.d) = [ dede B (6a)(P(t,o) = PP(62) 0 (2 (L) 4+ 00) (9)
R

where
S*,Q

1+ s%2(1 4 p*2?)

is independent of v, i.e. depends only on v* and A, and “+O()\)” means, for this and other
quadratic forms to follow, “differs by a quadratic form < d, Kd > with K € OPS~!”.

B*(t,x) = (a*)*¢?

”

10



W. W. Symes Stationary Values are Global Mins

Analysis of Stationary Points

As Jy[v,d] has just been revealed to be a weighted mean-square error in slowness
P(t,x), the first task is to establish a usable relationship between P and v. As it turns
out, a nonlinear hyperbolic system links these functions.

Define
1

w2) = =2 Za)

Then constancy of P along characteristics means that the vector field defined in (6)
annihilates it. Up to a factor, this is

, Up(t) = U(t,0)

oP oP
U— +P—=0 10
ot o (10)
The fact that v is a function of z implies
ou oU
P—+—=0 11
ot * ox (11)

Cauchy data on inflow boundary components are

U(t,0) = Up(t), P(tm(z),2) = — (12)

vt

Denote from now on AP = P — P*, AU = U — U*. Then it follows from (10,11) that

0AP OAP  OP* oP*

U 5 + P o + 5 AU + &rAP_O (13)
OAU  O0AU oU*
P 5 T o T 5 AP =0 (14)

with Cauchy data
AU(1,0) = AU(1) = Ty(t) — U3 (1), AP(t(), ) = 0 (15)

This linear hyperbolic system for AU, AP is most easily analysed in the (z, p) coordinate
system (for v), as the coordinate lines are characteristic: set

Au(z,p) = AU(T(z,p), X(2,p)) = u(z) —u(Z*(T(2,p), X(z,p)))

Ap(z,p) = AP(T(2,p), X (2,p)) =p — P*(T(2,p), X(2,p))

o(z,p) = v(z)(1 — v*(2)p*) 3 66Pt* (T'(z,p), X (2, p))
Bp) = 0(2) (L~ ) O (T (2 p), X (2,1)

(SIS

>8U*

V) = ([ dco© - vt )

0

(T'(2,p), X(2,p))

11
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In (z,p) coordinates, (13,14,15) become

A A
Q—i—aAu—i—ﬁAp—O 0 u+’yAp:0 (16)

0z op
Ap(zmiﬂip) = 07 0 S p S Pmax (17)

The domain for the system (16,17) is the preimage S of R under the map = : (z,p) —
(T'(z,p), X(2,p)). S is a subset of the strip Ry X [0, pmax]; the “top” part of its boundary
consists of {(zmm,p) :0 <P < Pmax}-

Define ¢y € C5°(S) by ¥y = ¢o(Z). Then integrating the second equation in (16) and
using the first gives

0Ap

doadu(-,0) = ~ty (a— +9aptaf VAP>

Further integration in p yields
9(2)Au(z,0) =

. /Upmax dp (2, p) (aaAZp(z,p) + B(z,p)Ap(z, p) + a(z, p) /Op dp'v(zap')ﬁp(zap')> (18)

in which

9(z) = /0 ,, dp o(z, p)a(z, p)

Now set ¢ = ¢(Z); recall that supp ¢ C {(¢,z) : ¢o(t,z) = 1}, so 1 stands in the same
relation to 1. The functions log(g), «, 3, and ~ are bounded uniformly over supp ¢ and
over v,v* € A. Thus

TAU(t / at6(1, 0)AU (1) = | 0 e O)Z—Z(Z,O)Au(z, 0)

Z(t,0) )8T Pmax

(5Ap

o (z,p) + B(z,p)Ap(z,p) + a(z,p) / dp'y(z,p") Ap(z, p))

_/p Cdp (AAP)(Z(1,0) +/7t0 dZ/ma dp (nAp)(z,p) (19)

in which A\, u € C§°(S) also lie in a bounded set determined by .A.

Integration and repeated use of Cauchy-Schwarz inequality yields
|ZAUs || 220 tmax) < CllG0AP|L2(r) (20)

Here and in the rest of this section, C stands for a constant dependending on on A but
not otherwise on v, v*.

12
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The inequality (20) indicates that the L? norm of AP controls the discrepancy between
v and v*, in some sense, but Jy[v,d| is a weighted L? mean square of AP. Therefore
the next task is to understand the way in which the quantity /.Jy[v, d] dominates the
unweighted norm. This would initially appear to be out of the question, as the weight
contains as its essential factor a scaled version of the data, and there is no reason to expect
the data to be uniformly non-vanishing - in fact, to model the behaviour of field data, r*
must be permitted to vanish or be very small over intervals of positive length. However,
AP is not arbitrary: it satisfies a differential equation, and this fact comes to the rescue.

Lemma: Suppose that f € C'[0,7],g € C°0,7] and w € L'0,Z], are nonnegative
functions related by

df
—| <
‘dz <af+y
with @ € R;. Denote by P the set of all partitions 0 = 2y < 21 < ... < z; = Z of [0, Z]
for which
1 Zi41 1 7 )
7/ w:—/ w, 1=20,..,1—1
Zig1 — Zi Jz Z Jo
Set

E* = supp max; ealziv1—2)

A*[w] = infp max; (zi41 — 2)
G )Gk s fa) < [ = (L) (Frend)

Remark: The factor A* encapsulates the degree of uniformity of the weight w. If w =0
over an interval [a,b] C [0, Z], then clearly b —a < A*.

Proof: Follows from standard differential inequalities. QED

From the inflow/outflow structure of R, it follows that S = {(z,p) : zmn < 2z <
Zmax (D), 0 < p < pmax} for a piecewise smooth function 2.« : [0, Pmax] — Ry. So

Sosd) = [ dp [ dz B p) 8ol )P (2 (2 o) X )P

Zmin

in which B; depends on v as well as v* but is uniformly bounded over S and v, v* € A.

From (16) it follows that for 0 < p < pax,

< C(|Au(z,p)I” + [Ap(2.p)[*), 2 € [2min; Zmax(P)]

8Ap(z )
92 y P

with C' as before uniform over v, v* € A. Define
w(z,p) = Bi(z,p)[r*(Z2°(T(2,p), X (2,p)))]*

13
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(21) implies that
Zmax(p)
/ dzw(z,p) Ap(z, p)|?

min

> wip) [ [ a2 ap(ap)? — o fwp) [T dz duz ) (@2)
E 2 V4

min min

in which

1 Zmax(p)
W) = ———— [ ey

Zmax (p) — Zmin min

Using the bounds implicit in the definition of A, it is easy to establish that
A'lw(-,p)] < CA™[r7]

with a constant C' uniform over v,v* € A and 0 < p < ppax. Integrate (22) in p and use
the second equation in (16) to get

Al > €l sy | (3=~ CATT) I00Plgy — €t [, s iz, 0)Au(,0)7
v+

(23)
The second integral on the RHS of (23) is a measure of the difference between v and
* ||27

v*, or Uy and Uj. The first term also bounds another such measure, namely ||ZAU,
according to (20). Without additional constraint, however, the L? norm of AU, can be
arbitrarily larger than that of ZU;. Assume now that v,v* € A; C A, and that there
exists K depending on Ay so that

v,v" € Ap = |ldo(, )AUU)HU Ry < Kldo(-, )IUUHN (Ry)

Essentially this implies that A; is the intersection of .4 with a finite dimensional subman-
ifold of C*°. It is guaranteed for example if 4 is chosen so that the reciprocal square
velocities lie in a finite dimentional affine subspace of C'*°.

This inequality together with (20) and (23) imply that
Jolv, d] > Clltyr*|| 2w, ) (Cs — ColEA 1)) [| g ZAU |17 2(m
which establishes

Theorem 1: There exist constants C' and 0, depending only on A, so that if KA*[r*] < 6

then
|po AU |12,y < Cy/ K Jylv, d]

Remark: The size of K roughly signifies the degree of oscillation permitted in the square
slowness Uy. So the condition KA*[r*] < 6 can be interpreted to mean: as the degree of
oscillation in Uy (and Ug) increases, the density of reflectors required for unique velocity
determination increases proportionally.

14
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Denote by dv a perturbation in v, and by P the corresponding perturbation in P:
i.e. P = DP[v]|dv. The differentiability of P as a functional of v as v varies over a finite
dimensional submanifold of C* follows from Hamilton-Jacobi theory, or alternatively
from the formulae presented above for P.

The analysis of stationary points hinges on showing that J; is close to quadratic in
v —v*, in the sense that if 0v = v — v* then DJylv, d]év ~ const. Jy[v, d]. To see this, note
that (9) implies,

D Jylv, d)dv = /R dt dz B*(t,x)0P(t, z)(P(t,x) — P*(t,x))[r*(Z*(t,x))]* + O())

= Jolv,d] + /R dt dz B*(t,x)(0P(t,x) — AP(t,z))AP(t,x)[r*(Z*(t,z))]* + O(\) (24)

which suggests that the key issue is the size of 0P (t,z) — AP(t,x). As was the case for
AP, §P is part of the solution of a first order hyperbolic system:

0oP ooP 0P oP

U=+ Pt —0U 4 =3P =0 (25)
U 06U  OU
Pt ot o AP =0 (26)

with the same Cauchy data as the system for AU, AP:
dU(t,0) = AUy(t) = Uy(t) — Uy (t), 0P(tm(x),z) =0 (27)

Subtracting (13), (14), and (15) from (25), (26), and (27) yields a system for JP—AP, §U —
AU. As before, this system is best tackled in the characteristic (for v) (z,p) coordinates.
Define

P (2,p) = (0P — AP)(T(2,p), X(z,p)), v (2,p) = (60U — AU)(T'(2,p), X(z,p))

Then p’, u' solve a hyperbolic system of the form

op' 0Ap 0Ap OAD 0Ap
L ! 1 1 — /IA /IA /IA 6I/A 28
az+au+ﬁp ¢, +p “ap L P75, T p@p (28)
ou’ ) O0Ap 0Ap
— = \N'Ap—— "Ap—— 29
5, TP pg, TH AP (29)
W(2,0) =0, 0 <2z < Zmaxi P (Zmin, p) =0, 0 < p < Prnax (30)

in which o/, 3,7, ", 3",~4",0", N, i/ and their derivatives satisfy uniform bounds for
(z,p) € S and as v, v* range over A.

Standard energy estimates as in the preceding paragraphs lead to
/S ho(p)? <

15
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2 2
c (/5 o Au? (%) +/S¢0Au2 (%) +/S%Ap2 <8AP> /lbo <6AP> )

Claim: Each of the summands on the right is bounded by ||¢0AP||4L2(R), with the bound
uniform over v, v* € Ay.

For example,

A 2 e (2) A 2
/ %Aqﬂ a_p (/ %AU ) Sllpz ,,,,, <z<Zmax /p dp w
S op 0 op

From (20) and the defining inequality of Ay,
[ t0lu® < CllGoAP
On the other hand, from (16),

0 0Ap 86 O 0Ap
9> op —I-(oz 8>A+6Au+ﬁp—0

whence follows by standard energy estimates that

Panax(2) OAp ’ z 2 2
/ dp o (zp)) <C w/ dp o (Au® + Ap”)
J0 8[) z J0
< CllpoAP|[72 (g
So the conclusion holds for the first summand. The others are handled similarly. QED

Changing variables again, it follows that
[¢o(6P — AP)||12(r) < Cll¢po AP 72y

SO

/R dt dz B*(t,z)(0P(t, ) — AP(t,z))AP(t, 2)[r*(Z*(t,z))]?

1

gM%mﬂ<AdeW@@@P@@—AP@@YWQNumwy

< Oy dolv, dlflr* | r2my) |90 (6P — AP)||r2(r)
1eCy/ Jolv, dlIr*|| 2 g ) |90 A P72 gy

Theorem 1 and inequality (23) imply that this is in turn bounded by
< CJolv, d)?

provided that A*[r*] is sufficiently small.

16
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Together with the expression in (23) for the derivative of .Jy, this bound implies that,
for A*[r*] sufficiently small,

DJo[v, d)ov < J[v,d] — CJolv, d]? + O(N)
from which follows

Theorem 2: Given Ay with the properties described above, there exists €, d; > 0 so that
if A*[r*] < §y and Jy[v,d] < e, then

Violv,d =0 = Jolv,d] = O(\)
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