
Asymptotic Analysis of Di�erential Semblance forLayered AcousticsWilliam. W. Symes �
ABSTRACTDi�erential semblance velocity estimators have well-de�ned and smooth high fre-quency asymptotics. A version appropriate for analysis of CMP gathers and layeredacoustic models has no secondary minima within a sublevel set of velocity pro�les,independent of data frequency content, unlike other estimators such as stack powerand output least squares. The sublevel set is characterized by the interaction betweenre
ector density and velocity variability.IntroductionThe inverse problem of re
ection seismology includes as an important subproblem theestimation of compressional wave velocity as a function of position, on a scale of hundredsof meters or kilometers. This estimation, often called \velocity analysis", is critical inseismic data processing. Attempts to treat it as a data-�tting problem have largelyfoundered on the strongly nonlinear relation between seismic data and the long scalecomponent of wave velocity. Various objective functions, including notably output leastsquares, have proven to have great numbers of spurious stationary points, both close toand far away from a reasonable model estimate, so that only global optimization methodsare likely to be successful (Gauthier et al., 1986; Scales et al., 1991; Sen and Sto�a,1991b; Sen and Sto�a, 1991a; Chauris, 2000). Since global optimization on the scale of�eld seismograms and reasonable subsurface models entails infeasible computational cost,these approaches have had little impact on seismic data processing practice.Di�erential semblance (Symes, 1986) is an alternate measure of the �t of a long-scale velocity model to data, which appears not to have the pathological mathematicalfeatures of other mis�t measures, in particular spurious stationary points. It has beenused to extract reasonable estimates of long scale wave velocity from both synthetic and�The Rice Inversion Project, Department of Computational and Applied Mathematics, Rice University,Houston TX 77251-1892 USA, email symes@caam.rice.edu1



W. W. Symes Stationary Values are Global Mins�eld seismograms, using only local (Newton-like) optimization, and appears in principlefeasible on �eld scale (Symes and Carazzone, 1991a; Symes and Versteeg, 1993; Kern andSymes, 1994; Araya et al., 1996; Symes, 1997; Minko� and Symes, 1997; Chauris et al.,1998; Chauris and Noble, 2001; Mulder and ten Kroode, 2001).The purpose of this paper is to give an asymptotic analysis of the version of di�erentialsemblance based on layered acoustics. This is the simplest specialization of elastodynamicsable to describe principal features of �eld data, at least in some cases. The principal resultis roughly this: if the velocity is restricted to vary on a scale su�ciently long relative to thedensity of re
ected wave energy in time, and if the data is consistent with this assumption,then (i) the only zero of the di�erential semblance function occurs at the correct velocity,and (ii) the only stationary point with a su�ciently small value of the objective occursat the correct velocity.This paper approximates the seismic response of a layered model by linearizationabout the long-scale model, and uses high frequency asymptotics to approximate the re-
ection seismogram and many associated quantities. A related investigation using highfrequency asymptotics of the linearized response and approximate kinematics (the \hy-perbolic moveout" approximation) was able to establish a stronger result, without anyassumption about a relation of length scales between data and velocity distribution: thatthe only stationary points are global minima (Symes, 1999). The approach of (Symes,1999) is essentially followed here, with amendments due to the use of exact rather thanapproximate kinematics. On the other hand the paper (Symes, 1991) reached very similarconclusions to those presented here, without linearization or high frequency asymptotics,but using plane wave re
ection data and theory available only for plane waves in lay-ered media. The development presented here avoid these restrictions, and hopefully willserve as a model for an analysis of multidimensional (nonlayered) di�erential semblance,which has so far been investigated only numerically (Symes and Carazzone, 1991a; Symesand Versteeg, 1993; Kern and Symes, 1994; Chauris et al., 1998; Chauris and Noble,2001; Mulder and ten Kroode, 2001).The paper begins by de�ning the convolutional (linearized asymptotic) model for lay-ered acoustics, and discussing various types of error inherent in this approximation, thedomain of the data, and natural admissible model sets. This groundwork supports anasymptotic analysis of the di�erential semblance objective, which reveals that in the caseof noise free data it is essentially a data-weighted mean square error in RMS ray parameter(a geometric optics quantity associated with traveltimes). This observation leads directlyto the main results, and demonstrates the essentially tomographic nature of di�erentialsemblance velocity estimation. A crucial step is the derivation of hyperbolic systems link-ing various geometric optics quantities directly to the wave equation coe�cients; thesesystems may have some interest in themselves.
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W. W. Symes Stationary Values are Global MinsThe Convolutional Model for Laterally Homogenous AcousticsLinearization of the acoustic model for a layered 
uid and application of high frequencyasymtotics leads to the convolutional model of re
ection seismograms. The convolutionalmodel is one of the simplest models of the re
ection process within which to pose thevelocity analysis problem. This model has been the basis for much data processing sinceat least the 1950's, and is described and used extensively in every textbook on the subject(Dobrin, 1976; Robinson and Treitel, 1980). I present it here as the result of variousapproximations to the basic physics of seismic waves. The few derivations of the convolu-tional model from �rst principles to have appeared in print are unfortunately marred bymisprints or outright mistakes, so I have included a complete derivation in an appendix.Remark: A similar model for plane wave traces is almost equally simple, and was thesubject of earlier work on di�erential semblance (Symes and Carazzone, 1991b; Minko�and Symes, 1997). However synthesis of accurate plane wave traces is a nontrivial task.Accordingly the version of the model developed here uses o�set domain data.To some approximation, seismic waves obey the laws of linear elastodynamics, withmaterial properties (density, Hooke tensor,...) depending on position x 2 R3. A layeredelastic material has material properties depending only on the depth x3 = z � 0. Constantdensity layered acoustic materials (
uids) have vanishing shear moduli and are charac-terized completely by the velocity v(z). The acoustic wave equation governs pressure
uctuations p(t;x) about equilibrium in such a material:1v2 @2p@t2 �r2p = fin which f(t;x) is the divergence of a body force density representing energy inputs(\sources"). An isotropic point source takes the form f(t;x) = w(t)�(x � xs), and is acrude approximation to actual source dynamics. The source position xs is an auxiliarydatum of the seismic experiment, as is the source time function w(t).While the surface of the Earth acts as a signi�cant boundary for seismic waves, itis possible to some extent to process seismic measurements to remove the e�ects of thisboundary, so this paper will treat the seismic wave�eld as de�ned in all of R3.Idealized \2D" seismic data is the measurement of the pressure 
uctuations at a setof receiver positions xr at or near the surface, which are also auxiliary data of the seismicexperiment. The rotation and translation invariance of layered materials leads to theconclusion that the simulated seismic data can be a function only of the o�set, i.e. thesource - receiver distance. Therefore a complete data set consists of measurements atreceiver positions along the half x-axis through the source position: xr = xs + (x; 0; 0)Tfor x � 0. The acoustic model predicts that this idealized \2D" seismic data depends onvelocity v: F [v](t; x) = p(t;xs + (x; 0; 0)T )3



W. W. Symes Stationary Values are Global MinsThe forward map F relating velocity pro�le to data is nonlinear, as it expresses therelation between the coe�cients of a linear equation and its solution. Linearization ex-presses the velocity pro�le as v(1 + r), in terms of a reference velocity, still denoted byv, and a relative perturbation r = �vv called the re
ectivity. A perturbation calculationleads to a formal derivative or linearized forward mapDF [v]r ' F [v(1 + r)]�F [v]which is related to the solution of a perturbational wave equation in the same way that Fis related to the pressure 
uctuation �eld. It is widely believed that this approximationis accurate when (i) v is relatively smooth, and (ii) r is oscillatory. So far only numericalevidence exists to support this presumption, except for the rigorous treatment of layeredacoustics in (Lewis and Symes, 1991).Application of yet another layer of perturbation theory, this time in the form of high-frequency asymptotics, leads directly to the convolutional model. Fortunately, the fre-quency or scale dichotomy apparently responsible for the success of the linearizationapproximation is also a necessary condition for success of high-frequency asymptotics.The two-way time function T (z; x) plays a critical role in the description of this ap-proximation. It is related to the solution of the point source problem for the eikonalequation kr�(z; x)k = 1v(z) ; �(z; x) � pz2 + x2v(0) = o(pz2 + x2)by T (z; x) = 2�(z; x=2).Denote by tmax and xmax the maximum time and o�set respectively. That is, data willbe regarded as functions on [0; tmax] � [0; xmax]. We assume the existance of a functiontm : [0; xmax]! R so that z 7! T (z; x) is invertible on [tm(x); tmax], with inverse Z(�; x) :[tm(x); tmax]! R. Relations between v; tmax and xmax which assure existance of a suitabletm will be discussed in the next section.Since T is smooth, invertibility is equivalent to the assumption that the logarithm ofthe stretch factor s(t; x) = @Z@t (t; x) =  @T@z (Z(t; x); x)!�1 (1)is bounded on R � f(t; x) : x 2 [0; xmax]; t 2 [tm(x); tmax]g (2)Let �0 2 C10 ((0; tmax)� (0; xmax)) be a cuto� function or mute, with supp(�0) � R.The convolutional model for the linearized forward map is:DF [v]r ' F [v]r(t; x) = �0(t; x)w �t [a(�; x)r(Z(�; x); x)](t; x) (3)4



W. W. Symes Stationary Values are Global Minswhere a, an amplitude derived from geometric acoustics, is also a functional of v.The developments to follow will also assume that a process (\source signature deconvo-lution") has been applied to the data, so that w ' �. For realistic modeling, w must haveFourier transform of (essentially) compact support, so this assumption not really defen-sible. Nonetheless I shall assume it: the resulting errors do not seem to make the theorydiverge too far from computational practice (Araya et al., 1996; Symes, 1998; Gockenbachand Symes, 1999). That is, replace (3) byF [v]r(t; x) = �0(t; x)a(t; x)r(Z(t; x); x) (4)Note that many of the assumptions introduced to arrive at the convolutional model -seismic waves as acoustic waves in a 
uid, neglect of boundary conditions at the Earth'ssurface, isotropic point model for the energy source, source signature deconvolution, con-tinuous sampling along a line to represent the data, linearization and high frequencyasymptotics, and above all the layered medium assumption - are drastic approximations.Each and every one contradicts well-known features of �eld data. While such data canbe preprocessed to remove inconsistencies with this model to some extent, the readershould bear in mind that the convolutional model is an oversimpli�cation of seismic dataformation.The following computations will introduce yet more sources of asymptotic error - andonly asymptotic error. In other words, operators will be replaced with others that di�erby relatively smoothing perturbations. Rather than carry along a variety of expressionsthat accumulate this repeated dropping of a smoothing error, I will use the symbol \O(�)"to suggest proportionality of the asymptotic error to a dominant wavelength in the data:A = B + O(�) means A = B +K where K is smoothing relative to A and B. Of coursestatements like this are meaningful when A and B are operators de�ned by oscillatoryintegrals, and elliptic at least microlocally.For example, equation (4) should really be regarded as an asymptotic approximationto a linearized fundamental solution of the wave equation:F [v]r(t; x) = a(t; x)r(Z(t; x); x) = DF [v]r +O(�)Admissible ModelsThe developments to follow require the restriction of v to admissible sets A of models,on which the convolutional model as de�ned above is reasonably well behaved. A simpleway to de�ne such sets is to impose simple bounds on the derivatives of v: for each k 2 Z+,there exists Ck � 0 for which ����� dkdzk (log v(z))����� � Ck; z 2 R+5



W. W. Symes Stationary Values are Global MinsThat is, log v is restricted to a bounded subset of C1(R+).For k = 0, I will be a bit more restrictive: impose smooth upper and lower \envelope"velocities as hard constraints: vmin(z) � v(z) � vmax(z); z 2 R+. It is natural to assumethat the velocity is known at and near the surface, so assume the existance of zmin > 0 sothat that vmin(z) = vmax(z) � v0 for 0 � z � zmin. These bounds derive from geophysicalmeasurements and general knowledge about rock physics (for example 0 � z � zmin couldrepresent the water column in simulation of a marine survey), so should be regarded asdistinct from the bounds implied by the �rst condition (membership in a bounded set inC1).It will also be useful to have a constant velocity pro�le available, so assume also thatv(z) � v0 2 A, i.e. that vmin(z) � v0 � vmax(z); z 2 R+.Note that admissible sets as de�ne here are convex.Neither the traveltime T (z; x) nor the other quantities introduced in the previoussection are well-de�ned globally. For each choice of admissible set A, it is possible tochoose domains of de�nition uniformly for v 2 A, as follows.Geometric optics implies the following formulae for the time T (z; p) and o�set X(z; p)of a ray with ray parameter (slowness) p re
ected from a horizontal surface at depth z:X(z; p) = 2 Z z0 d� v(�)pq1� v2(�)p2 ; T (z; p) = 2 Z z0 d� 1v(�)q1� v2(�)p2 (5)(see (Aki and Richards, 1980), section 12.1). These formulae presume that v(�)p < 1 for0 � � � z. Choose pmax so that v(z)pmax < 1 for z 2 R+; v 2 A. Such a choice is possiblein view of the bounds de�ning A. Then (5) de�nes a C1 map �[v] : R+� [0; pmax]! R2.Claim: Set xmax = zminv0pmaxq1� v20p2maxtm(x) = qz2min + x2v0 ; 0 � x � xmaxtmax � tm(xmax)with tmax otherwise arbitrary. Let R be de�ned as in (2). Then R � \v2A (Range�[v]),and �[v] is a di�eomorphism on the preimage of R. Moreover, decompose@R = �in [ �0 [ �outwith �in = f(tm(x); x) : 0 � x � xmaxg�0 = f(tm(x); x) : 0 � x � xmaxg6



W. W. Symes Stationary Values are Global Mins�out = f(t; xmax) : tm(xmax) � t � tmaxg [ f(tmax; x) : 0 � x � xmaxgthen �in is an in
ow boundary, and �out is an out
ow boundary, for the ray vector �eld@@z = @T@z @@t + @X@z @@x (6)uniformly for v 2 A.Proof: It is straightforward to see that R � Range(�[v0]). To see the same for arbitraryv 2 A, construct the homotopy in A:v� = (1� �)v0 + �vPick (t; x) 2 R; it is required to show that the equationst = T [v�](z�; p�); x = X[v�](z�; p�)have a unique solution (z�; p�) for all � 2 [0; 1], this being clear for � = 0.Suppose (z�; p�) is a solution. Sincex = X(z�; p�) = zminv0p�q1� v20p2� + Z z�zmin dz zv�(z)p�q1� v�(z)2p2�� xmax = zminv0pmaxq1� v20p2maxand p 7! zvpp1� v2p2is increasing, it follows that p� � pmax, i.e. any path segment � 7! (z�; p�) stays withinthe strip 0 � p � pmax. The inverse Jacobian of �, and all partial derivatives up to any�nite order, are bounded uniformly in v 2 A and over the half-strip, whence follows theexistance of � > 0 for which the implicit function theorem guarantees a unique solutionon (� � �; � + �) \ [0; 1] given a solution at �. Since such a solution stays in the strip, itfollows that the end is reached.The in
ow boundary property is clear, as the rays are the images of p = const linesin the strip, and �in is the image of z = zmin. Similarly, since dX=dz > 0 and dT=dz > 0throughout the strip, any ray which reaches either part of �out makes a positive innerproduct with the outward pointing normal. QEDAn important consequence is that the mute �0 2 C10 (R2) may be chosen uniform overv 2 A, and that uniform bounds exist for every value of the stretch factor s(t; x).All of these operators, suppressed smoothing errors included, depend parametricallyon v. The estimates which establish the relative smoothing are uniform as v ranges overadmissible classes of velocities A. Therefore the errors are e�ectively small, not justsmooth, in view of the assumed frequency dichotomy.7



W. W. Symes Stationary Values are Global MinsAsymptotic Approximation of Di�erential SemblanceAccording to the prescription given in (Symes, 2001), construction of the DS functionalrequires operators with canonical relation the same as, and inverse to, that of the linearizedforward map, restricted to each data bin. In the case of CMP gathers considered here,a data bin is simply a trace, indexed by o�set x. Thus the operator with canonicalrelation inverse to (respectively the same as) that of the linearized forward map is aprestack migration (respectively demigration) operator, yielding (respectively acting on)x- dependent re
ectivity functions r(z; x) (or image volumes).In the development to follow, the asymptotic approximation (4) is used in place ofthe linearized forward map. This either re
ects actual computation, if the asymptoticapproximation is implemented numerically (as in (Araya et al., 1996; Symes, 1998; Gock-enbach and Symes, 1999)) or is an approximation if some other technique is used (Symes,1993; Symes and Versteeg, 1993; Kern and Symes, 1994).To �nd an operator with the inverse canonical relation, it's merely necessary to usethe inverse change of variables: setG[v]d(z; x) = g(z; x)�0(T (z; x); x)d(T (z; x); x) (7)where the amplitude g(z; x) is at your disposal. SimilarlyB[v]r(t; x) = �0(t; x)b(t; x)r(Z(t; x); x) (8)with b(t; x) equally arbitrary. The operator measuring semblance di�erentially is@ = @@xSelect � 2 C10 (R) so that � = 0 on supp(1��0), and choose H to be a square root of thepositive de�nite Helmholtz operator I � r2t;x with any convenient boundary conditions,say Dirichlet on [0; tmax]� [0; xmax]. The di�erential semblance operator W : A ! OPS0is de�ned as (Symes, 2001) W [v] = �H�0B[v]@G[v]and the basic di�erential semblance function J0[v; d] byJ0[v; d] = 12kW [v]dk2L2(R)The principal symbol of W [v] will play a useful role in the sequel. To compute it, notethat�(t; x)H�0B[v]@G[v]d(t; x) = �(t; x)b(t; x) " @@x [g(z; x)�0(T (z; x); x)d(T (z; x); x)]#z=Z(t;x)8



W. W. Symes Stationary Values are Global Mins= �(t; x)b(t; x)g(Z(t; x); x) @T@x (Z(t; x); x) @@t + @@x! d(t; x) +O(�)= �1(t; x) p(t; x) @@t + @@x! d(t; x) +O(�)where P (t; x) = @T@x (Z(t; x); x)is the arrival (horizontal) slowness of the re
ected ray passing o�set x at time t,�1(t; x) = �(t; x)b(t; x)g(Z(t; x); x);and the elided terms involve derivatives of b and g, but do not involve derivatives of thedata d.Note that (t; x) 7! (Z(t; x); P (t; x)) is simply the inverse di�eomorphism of the mapde�ned in (5).Applying the inverse square root of the Helmholtz operator producesH�B[v]@G[v]d = H�1  @d@x + P @d@t!+O(�)whence the symbol of W [v] may easily be extracted.The ray slowness P (t; x) is locally a smooth function of the velocity v in any �xedopen subset of the mute zone - here \smooth" means \when restricted to the intersectionof A and any �nite dimensional subspace of C1". Assume that the C1 multipliers b andg are smooth in their dependence on v also (for example, constant). Then J0[v; d] is asmooth function of (v; d) 2 A� L2(R) as well.Noise Free DataAssume that the data d are model-consistent, that isd(t; x) = a�(t; x)r�(Z�(t; x)) +O(�)for target o�set independent re
ectivity r� and velocity v�.Note that0 = @@xT (Z(t; x); x) = @T@z (Z(t; x); x)@Z@x (t; x) + @T@x (Z(t; x); x)so @Z@x (t; x) = �s(t; x)P (t; x)9



W. W. Symes Stationary Values are Global Mins(s being the stretch factor, de�ned above). Thus@@xr�(Z�(t; x)) = �s�(t; x)P �(t; x)(@r�@z )(Z�(t; x))(s� is the stretch factor belonging to v�) whenceB[v]@G[v]d(t; x) = b(t; x)g(Z(t; x); x) @@x + P (t; x) @@t! (a�(t; x)r�(Z�(t; x)))= b(t; x)g(Z(t; x); x)s�(t; x)(P (t; x)� P �(t; x))a�(t; x)@r�@z (Z�(t; x)) +O(�)According to the calculus of pseudodi�erential operators,H�B[v]@G[v]d =(I �r2)� 12�1  s�(P � P �)a�@r�@z (Z�)!+O(�)= (I �r2)� 12�1 �s�(P � P �) rZ� � rrZ� � rZ�d�+O(�)=W (t; x; @t; @x)d(t; x)in which W 2 OPS0 has principal symbol�1 s�(P � P �)q1 + s�;2(1 + p�;2)[Note that H�B@G is equivalent to a 	DO whose principal symbol is a multiplier onlybecause noise free data d(t; x) = a�(t; x)r�(Z�(t; x)) is conormal.] All of the factors thisexpression are a priori independent of v, except for �1. Accordingly assume from now onthat b(t; x) and g(z; x), heretofore arbitrary, are chosen in such a way that�1(t; x) = �(t; x)b(t; x)g(Z(t; x); x)is independent of v. This can be accomplished in a number of ways: since � may be chosenindependent of v, as noted above, one obvious way to achieve this property is to chooseb � g � 1.Granted this additional constraint,J0[v; d] = ZR dt dxB�(t; x)(P (t; x)� P �(t; x))2[r�(Z�(t; x))]2 +O(�) (9)where B�(t; x) = (a�)2�2 s�;21 + s�;2(1 + p�;2)is independent of v, i.e. depends only on v� and A, and \+O(�)" means, for this and otherquadratic forms to follow, \di�ers by a quadratic form < d;Kd > with K 2 OPS�1".10



W. W. Symes Stationary Values are Global MinsAnalysis of Stationary PointsAs J0[v; d] has just been revealed to be a weighted mean-square error in slownessP (t; x), the �rst task is to establish a usable relationship between P and v. As it turnsout, a nonlinear hyperbolic system links these functions.De�ne u(z) = 1v2(Z(t; x)) ; U0(t) = U(t; 0)Then constancy of P along characteristics means that the vector �eld de�ned in (6)annihilates it. Up to a factor, this isU @P@t + P @P@x = 0 (10)The fact that v is a function of z impliesP @U@t + @U@x = 0 (11)Cauchy data on in
ow boundary components areU(t; 0) = U0(t); P (tm(x); x) = xv20t (12)Denote from now on �P = P � P �; �U = U � U�. Then it follows from (10,11) thatU @�P@t + P @�P@x + @P �@t �U + @P �@x �P = 0 (13)P @�U@t + @�U@x + @U�@t �P = 0 (14)with Cauchy data�U(t; 0) = �U0(t) = U0(t)� U�0 (t); �P (tm(x); x) = 0 (15)This linear hyperbolic system for �U;�P is most easily analysed in the (z; p) coordinatesystem (for v), as the coordinate lines are characteristic: set�u(z; p) = �U(T (z; p); X(z; p)) = u(z)� u�(Z�(T (z; p); X(z; p)))�p(z; p) = �P (T (z; p); X(z; p)) = p� P �(T (z; p); X(z; p))�(z; p) = v(z)(1� v2(z)p2)� 12 @P �@t (T (z; p); X(z; p))�(z; p) = v(z)(1� v2(z)p2)� 12 @P �@x (T (z; p); X(z; p))
(z; p) = �Z z0 d�v(�)(1� v2(�)p2)� 32� @U�@t (T (z; p); X(z; p))11



W. W. Symes Stationary Values are Global MinsIn (z; p) coordinates, (13,14,15) become@�p@z + ��u+ ��p = 0; @�u@p + 
�p = 0 (16)�p(zmin; p) = 0; 0 � p � pmax (17)The domain for the system (16,17) is the preimage S of R under the map � : (z; p) 7!(T (z; p); X(z; p)). S is a subset of the strip R+� [0; pmax]; the \top" part of its boundaryconsists of f(zmin; p) : 0 � p � pmaxg.De�ne  0 2 C10 (S) by  0 = �0(�). Then integrating the second equation in (16) andusing the �rst gives  0��u(�; 0) = � 0  @�p@z + ��p+ � Z p0 
�p!Further integration in p yields g(z)�u(z; 0) =� Z pmax0 dp  0(z; p) @�p@z (z; p) + �(z; p)�p(z; p) + �(z; p) Z p0 dp0
(z; p0)�p(z; p0)! (18)in which g(z) = Z pmax0 dp  0(z; p)�(z; p)Now set  = �(�); recall that supp� � f(t; x) : �0(t; x) = 1g, so  stands in the samerelation to  0. The functions log(g); �; �; and 
 are bounded uniformly over supp andover v; v� 2 A. ThusI�U0(t) � Z t0 dt �(t; 0)�U0(t) = Z Z(t;0)0 dz  (z; 0)@T@z (z; 0)�u(z; 0)= � Z Z(t;0)0 dz  (z; 0)g(z) @T@z (z; 0) Z pmax0 dp  0(z; p) @�p@z (z; p) + �(z; p)�p(z; p) + �(z; p) Z p0 dp0
(z; p0)�p(z; p0)!= Z pmax0 dp (��p)(Z(t; 0); p) + Z Z(t;0)0 dz Z pmax0 dp (��p)(z; p) (19)in which �; � 2 C10 (S) also lie in a bounded set determined by A.Integration and repeated use of Cauchy-Schwarz inequality yieldskI�U0kL2([0;tmax) � Ck�0�PkL2(R) (20)Here and in the rest of this section, C stands for a constant dependending on on A butnot otherwise on v; v�. 12



W. W. Symes Stationary Values are Global MinsThe inequality (20) indicates that the L2 norm of �P controls the discrepancy betweenv and v�, in some sense, but J0[v; d] is a weighted L2 mean square of �P . Thereforethe next task is to understand the way in which the quantity qJ0[v; d] dominates theunweighted norm. This would initially appear to be out of the question, as the weightcontains as its essential factor a scaled version of the data, and there is no reason to expectthe data to be uniformly non-vanishing - in fact, to model the behaviour of �eld data, r�must be permitted to vanish or be very small over intervals of positive length. However,�P is not arbitrary: it satis�es a di�erential equation, and this fact comes to the rescue.Lemma: Suppose that f 2 C1[0; Z]; g 2 C0[0; Z] and w 2 L1[0; Z], are nonnegativefunctions related by �����dfdz ����� � af + gwith a 2 R+. Denote by P the set of all partitions 0 = z0 < z1 < ::: < zI = Z of [0; Z]for which 1zi+1 � zi Z zi+1zi w = 1Z Z Z0 w; i = 0; :::; I � 1Set E� = supP maxi e2a(zi+1�zi)��[w] = infP maxi (zi+1 � zi) 1Z Z Z0 w! 1E� Z Z0 f ���[w] Z Z0 g! � Z Z0 fw �  E�Z Z Z0 w! Z Z0 f + Z Z Z0 g!(21)Remark: The factor �� encapsulates the degree of uniformity of the weight w. If w = 0over an interval [a; b] � [0; Z], then clearly b� a � ��.Proof: Follows from standard di�erential inequalities. QEDFrom the in
ow/out
ow structure of R, it follows that S = f(z; p) : zmin � z �zmax(p); 0 � p � pmaxg for a piecewise smooth function zmax : [0; pmax]! R+. SoJ [v; d] = Z pmax0 dp Z zmax(p)zmin dz B1(z; p)j�p(z; p)j2[r�(Z�(T (z; p); X(z; p)))]2in which B1 depends on v as well as v� but is uniformly bounded over S and v; v� 2 A.From (16) it follows that for 0 � p � pmax,�����@�p@z (z; p)����� � C(j�u(z; p)j2 + j�p(z; p)j2); z 2 [zmin; zmax(p)]with C as before uniform over v; v� 2 A. De�new(z; p) = B1(z; p)[r�(Z�(T (z; p); X(z; p)))]213



W. W. Symes Stationary Values are Global Mins(21) implies that Z zmax(p)zmin dz w(z; p)j�p(z; p)j2� W�(p) 1E� Z zmax(p)zmin dz j�p(z; p)j2 � C��[w(�; p)] Z zmax(p)zmin dz j�u(z; p)j2! (22)in which W�(p) = 1zmax(p)� zmin Z zmax(p)zmin dz w(z; p)2Using the bounds implicit in the de�nition of A, it is easy to establish that��[w(�; p)] � C��[r�]with a constant C uniform over v; v� 2 A and 0 � p � pmax. Integrate (22) in p and usethe second equation in (16) to getJ0[v; d] � Ck 1r�k2L2(R+) "� 1E� � C1��[r�]� k�0�Pk2L2(R) � C2�� ZR+ dz j 0(z; 0)�u(z; 0)j2#(23)The second integral on the RHS of (23) is a measure of the di�erence between v andv�, or U0 and U�0 . The �rst term also bounds another such measure, namely kI�U0k2,according to (20). Without additional constraint, however, the L2 norm of �U0 can bearbitrarily larger than that of IU0. Assume now that v; v� 2 Af � A, and that thereexists K depending on Af so thatv; v� 2 Af ) k�0(�; 0)�U0)k2L2(R+) � Kk�0(�; 0)IU0k2L2(R+)Essentially this implies that Af is the intersection of A with a �nite dimensional subman-ifold of C1. It is guaranteed for example if Af is chosen so that the reciprocal squarevelocities lie in a �nite dimentional a�ne subspace of C1.This inequality together with (20) and (23) imply thatJ0[v; d] � Ck 1r�kL2(R+)(C3 � C4K2��[r�])k�0I�U0k2L2(R+)which establishesTheorem 1: There exist constants C and �, depending only on A, so that if K��[r�] � �then k�0�U0kL2(R+) � CqKJ0[v; d]Remark: The size of K roughly signi�es the degree of oscillation permitted in the squareslowness U0. So the condition K��[r�] � � can be interpreted to mean: as the degree ofoscillation in U0 (and U�0 ) increases, the density of re
ectors required for unique velocitydetermination increases proportionally. 14



W. W. Symes Stationary Values are Global MinsDenote by �v a perturbation in v, and by �P the corresponding perturbation in P :i.e. �P = DP [v]�v. The di�erentiability of P as a functional of v as v varies over a �nitedimensional submanifold of C1 follows from Hamilton-Jacobi theory, or alternativelyfrom the formulae presented above for P .The analysis of stationary points hinges on showing that J0 is close to quadratic inv� v�, in the sense that if �v = v� v� then DJ0[v; d]�v ' const: J0[v; d]. To see this, notethat (9) implies,DJ0[v; d]�v = ZR dt dxB�(t; x)�P (t; x)(P (t; x)� P �(t; x))[r�(Z�(t; x))]2 +O(�)= J0[v; d] + ZR dt dxB�(t; x)(�P (t; x)��P (t; x))�P (t; x)[r�(Z�(t; x))]2 +O(�) (24)which suggests that the key issue is the size of �P (t; x) ��P (t; x). As was the case for�P , �P is part of the solution of a �rst order hyperbolic system:U @�P@t + P @�P@x + @P@t �U + @P@x �P = 0 (25)P @�U@t + @�U@x + @U@t �P = 0 (26)with the same Cauchy data as the system for �U;�P :�U(t; 0) = �U0(t) = U0(t)� U�0 (t); �P (tm(x); x) = 0 (27)Subtracting (13), (14), and (15) from (25), (26), and (27) yields a system for �P��P; �U��U . As before, this system is best tackled in the characteristic (for v) (z; p) coordinates.De�nep0(z; p) = (�P ��P )(T (z; p); X(z; p)); u0(z; p) = (�U ��U)(T (z; p); X(z; p))Then p0; u0 solve a hyperbolic system of the form@p0@z + �0u0 + � 0p0 = �00�u@�p@z + � 00�u@�p@p + 
00�p@�p@z ++�00�p@�p@p (28)@u0@z + 
0p0 = �00�p@�p@z + �00�p@�p@p (29)u0(z; 0) = 0; 0 � z � zmax; p0(zmin; p) = 0; 0 � p � pmax (30)in which �0; � 0; 
0; �00; � 00; 
00; �00; �00; �00 and their derivatives satisfy uniform bounds for(z; p) 2 S and as v; v� range over A.Standard energy estimates as in the preceding paragraphs lead toZS  0(p0)2 �15



W. W. Symes Stationary Values are Global MinsC 0@ZS  0�u2  @�p@p !2 + ZS  0�u2  @�p@z !2 + ZS  0�p2  @�p@p !2 + ZS  0�p2  @�p@z !21AClaim: Each of the summands on the right is bounded by k�0�Pk4L2(R), with the bounduniform over v; v� 2 Af .For example,ZS  0�u2  @�p@p !2 � �ZS  0�u2� supzmin�z�zmax Z pmax(z)0 dp  @�p@p !2From (20) and the de�ning inequality of Af ,ZS  0�u2 � Ck�0�Pk2L2(R)On the other hand, from (16),@@z @�p@p +  �
 + @�@p!�p+ @�@p�u+ �@�p@p = 0whence follows by standard energy estimates thatZ pmax(z)0 dp  0  @�p@p (z; p)!2 � C Z zzmin dz Z pmax(z)0 dp  0(�u2 +�p2)� Ck�0�Pk2L2(R)So the conclusion holds for the �rst summand. The others are handled similarly. QEDChanging variables again, it follows thatk�0(�P ��P )kL2(R) � Ck�0�Pk2L2(R)so ����ZR dt dxB�(t; x)(�P (t; x)��P (t; x))�P (t; x)[r�(Z�(t; x))]2����� qJ0[v; d]�ZR dt dxB�(t; x)(�P (t; x)��P (t; x))2[r�(Z�(t; x))]2� 12� CqJ0[v; d]kr�kL2(R+)k�0(�P ��P )kL2(R)leCqJ0[v; d]kr�kL2(R+)k�0�Pk2L2(R)Theorem 1 and inequality (23) imply that this is in turn bounded by� CJ0[v; d] 32provided that ��[r�] is su�ciently small. 16
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