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Abstract

In this work, we applied the classical numerical method of the secant in the p-adic case to calculate the cubic root of a
p-adic number a ∈ Q∗

p where p is a prime number, and this through the calculation of the approximate solution of the
equation x3 − a = 0. We also determined the rate of convergence of this method and evaluated the number of iterations
obtained in each step of the approximation.

Computing both the cubic root and other roots of a p-adic number is useful both for their theoretical values as for their
theoretical applications in the field of theoretical computer science and cryptography.
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1. Introduction

Let Qp be the field of p-adic numbers where p is a prime number. Our main goal is to compute the approximate finite
p-adic expansion of the cubic root for the p-adic number a ∈ Q∗

p. This is done by determining the approximate solution
of the equation

x3 − a = 0. (1)

The solution of (1) is approximated by a p-adic number sequence (xn)n ⊂ Q∗
p constructed by the secant method.

Knapp and Xenophotos (2010) used numerical methods to find the reciprocal of an integer modulo pn.

2. Preliminaries

Definition 3. Let p be a prime number. The field Qp of p-adic numbers is the completion of the field Q of rational numbers

with respect to the p-adic norm |·|p defined by

∀x ∈ Qp : |x|p =
{

p−vp(x), if x � 0
0, if x = 0,

where vp is the p-adic valuation defined by vp(x) = max {r ∈ Z : pr | x}.
The p-adic norm induces a metric dp given by

dp : Qp ×Qp −→ R+

(x, y) �−→ dp(x, y) = |x − y|p ,

this metric is called the p-adic metric.

Theorem 4. (F. B. Vej, 2000) Given a p-adic number a ∈ Qp, there exists a unique sequence of integers (βn)n≥k, with

k = vp(x), such that βn ∈ {0, . . . , p − 1} for all n and

a = βn pn + βn+1 pn+1 + ... + β−1 p−1 + β0 + β1 p2... =

∞∑
k=n

βk pk

with βk ∈ Z and βk ∈ {0, 1, 2, ..., p − 1} for each k ≥ n.
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The short representation of a is βnβn+1...β−1 · β0β1..., where only the coefficients of the powers of p are shown. We can
use the p-adic point · as a device for displaying the sign of n as follows:

βnβn+1...β−1 · β0β1..., for n < 0
·β0β1β2..., for n = 0

·00...0β0β1..., for n > 0.

Definition 5. A p-adic number a ∈ Qp is said to be a p-adic integer if this canonical expansion contains only non negative

power of p.

The set of p-adic integers is denoted by Zp. We have

Zp =

⎧⎪⎪⎨⎪⎪⎩ ∞∑
k=0

βk pk, 0 ≤ βk ≤ p − 1

⎫⎪⎪⎬⎪⎪⎭ = {a ∈ Qp : vp(a) ≥ 0
}
=
{
a ∈ Qp : |a|p ≤ 1

}
.

Definition 6. A p-adic integer a ∈ Zp is said to be a p-adic unit if the first digit β0 in the p-adic expansion is different of

zero. The set of p-adic units is denoted by Z∗
p. Hence we have

Z∗
p =

⎧⎪⎪⎨⎪⎪⎩ ∞∑
k=0

βk pk, β0 � 0

⎫⎪⎪⎬⎪⎪⎭ = {a ∈ Qp : |a|p = 1
}
.

Lemma 7. (F. B. Vej, 2000) Given a ∈ Qp and k ∈ Z, then{
y ∈ Qp : |y − a|p ≤ pk

}
= a + p−kZp

Proposition 8. (F. B. Vej, 2000) Given a p-adic number a ∈ Qp \ {0}, there exist n ∈ Z and u ∈ Z∗ such that a = pn · u.

Proposition 9. (S. Katok, 2007) Let (an)n be a p-adic number sequence. If lim
n→∞an = a ∈ Q \ {0}, then lim

n→∞|an|p = |a|p. The

sequence of norms
(
|an|p

)
n

must stabilize for sufficiently large n.

Definition 10. Let p be a prime number. Then the Hensel code of length M of any p-adic number a = pm · u ∈ Qp is the

pair (manta, expa) = (amam+1 . . . .a0 · at,m), where the M = |m|+ t+ 1 leftmost digits and the value m of the related p-adic

expansion are called the mantissa and the exponent, respectively.

We use the notation H(p,M, a) where p is a prime and M is the integer which specifies the number of precision digits of

the p-adic expansion.

For a general overview about p-adic numbers and their properties, the reader can consult [1, 3-5].

Theorem 11. (Hensel’s lemma) (S. Katok, 2007) Let F(x) = c0 + c1x + ... + cnxn be a polynomial whose coefficients are

p-adic integers i.e.
(
F ∈ Zp[x]

)
. Let

F′(x) = c1 + 2c2x + 3c3x2 + ... + ncnxn−1

be the derivative of F(x). Suppose a0 is a p-adic integer which satisfies F(a0) ≡ 0( mod p) and F′(a0) � 0( mod p).
Then there exists a unique p-adic integer a such that F(a) = 0 and a ≡ a0( mod p).

Theorem 12. (S. Katok, 2007) A polynomial with integer coefficients has a root in Zp if and only if it has an integer root

modulo pk for any k � 1.

Definition 13. A p-adic number b ∈ Qp is said to be a cubic root of a ∈ Qp of order k ∈ N if b3 ≡ a
(

mod pk
)
.

3. Main Results

Proposition 14. A rational integer a not divisible by p has a cubical root in Zp (p � 3) if and only if a is a cubic residue

modulo p.

Proof. Consider the p-adic continuous function f (x) = x3−a and its derivative f ′(x) = 3x2. If a is a cubic residue modulo
p, then

a ≡ a3
0( mod p)

for a0 ∈ {1, 2, ..., p − 1}. Hence f (a0) ≡ 0( mod p) and f ′(a0) = 3a2
0 � 0( mod p) because p � 3 and a0 � 0.

Consequently, the solution is in Zp. Conversely, if a is a non-cubic residue, Theorem (10) implies the non-existence of
cubic roots in Zp. �
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Corollary 15. Let p be a prime number, then

1. If p � 3, then a = pvp(a).u ∈ Qp

(
u ∈ Z∗

p

)
has a cubic root in Qp if and only if vp(a) = 3m, m ∈ Z and u = v3 for

some unit v ∈ Z∗
p.

2. If p = 3, then a = 3v3(a).u ∈ Q3

(
u ∈ Z∗

3

)
has a cubic root in Q3 if and only if v3(a) = 3m, m ∈ Z and u ≡ 1(

mod 9) or u ≡ 2( mod 3).

Proof. Let a, x ∈ Qp be

a = pvp(a) · (a0 + a1 p + a2 p2 + ...) = pvp(a) · u, a0 � 0 (2)
(3)

x = pvp(x) · (x0 + x1 p + x2 p2 + ...) = pvp(x) · v, x0 � 0. (4)

Let us note that u and v are p-adic unit intergers according to definition 4

u = a0 + a1 p + a2 p2 + ... =

∞∑
i=0

ai p
i ∈ Z∗

p (5)

v = x0 + x1 p + x2 p2 + ... =

∞∑
i=0

xi p
i ∈ Z∗

p,

Then, imposing the cubic condition, we obtain

x3 = a ⇐⇒ p3vp(x)(x0 + x1 p + x2 p2 + ...)3 = pvp(a)(a0 + a1 p + a2 p2 + ...)
⇐⇒ p3vp(x) · v3 = pvp(a) · u,

The latter is equivalent to the following system⎧⎪⎪⎪⎨⎪⎪⎪⎩
vp(a) = 3vp(x)
v3 = u

x3
0 − a ≡ 0 ( mod p).

(6)

Additionally, we consider f (x) = x3
0 − a and its derivative f ′(x0) = 3x2

0 satisfies

∣∣∣ f ′(x0)
∣∣∣
p
= |3|p =

{
1, if p � 3
1
3 , if p = 3 (7)

Then we have

1. if p � 3, by Hensel’s lemma the solution of f (x0) = x3
0 − a = 0 exists.

2. if p = 3, equation (6) is reduced to⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x0 + x13 + x232 + ...)3 = a0 + a13 + a232 + ...

x3
0 − a0 ≡ 0( mod 3),

where x0, a0 ∈ {1, 2}. This gives⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(
1 + x13 + x232 + ...

)3
= 1 + a13 + a232 + ..., if x0 = 1

(
2 + x13 + x232 + ...

)3
= 2 + a13 + a232 + ..., if x0 = 2.

(a) If x0 = 1, then (
1 + x13 + x232 + x333 + ...

)3
= 1 + 32(x1 + 3(x2 + x2

1 + x3
1) + ...) = u,

we get
u = 1 + a13 + a232 + ... =

(
1 + x13 + x232 + x333

)3 ≡ 1( mod 9), (8)

and a1 = 0.
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(b) If x0 = 2, then(
2 + x13 + x232 + x333 + ...

)3
= 2 + 2 · 3 + 32(22 · x1) + 33(22x2 + 2x2

1 + x3
1) + ... = u,

so
u = 2 + a13 + a232 + ... =

(
2 + x13 + x232 + ...

)3 ≡ 2( mod 3), (9)

and a1 = 2.

�

Let a ∈ Q∗
p be a p-adic number such that

|a|p = p−vp(a) = p−3m, m ∈ Z.

We know that if there exists a p-adic number d such that d3 = a and (xn)n is a sequence of the p-adic numbers that
converges to a p-adic number d � 0, then from a certain rank one has

|xn|p = |d|p = p−m. (10)

3.1 The secant method

An elementary method to determine zeros of a given function is the secant method. This method can be derived from the
Newton method, where we replace the derivative f ′(xn) by the approximation

f ′(xn) ≈ f (xn) − f (xn−1)
xn − xn−1

,∀n ∈ N∗. (11)

The iterative formula of the secant method is

xn+1 = xn − f (xn)(xn − xn−1)
f (xn) − f (xn−1)

,∀n ∈ N∗, (12)

Obtaining the following recurrence relation

xn+1 =
a + xnx2

n−1 + x2
nxn−1

x2
n + xnxn−1 + x2

n−1

,∀n ∈ N∗. (13)

Determining the rate of convergence of an iterative method is to study the comportment of the sequence (en+n0 )n defined
by en+n0 = xn+n0 − xn+n0−1 obtained at each step of the iteration where n0 ∈ N.

Roughly speaking, if the rate of convergence of a method is s, then after each iteration the number of correct significant
digits in the approximation increases by a factor of approximately s.

Theorem 16. If xn0−1 is the cubic root of a of order α and xn0 is the cubic root of a of order β then

1. If p � 3, then xn+n0−1 is the cubic root of a of order Jn, where the sequence (Jn)n is defined by

Jn =

[
1√
5

(β − α(1 − Φ))Φn + 1√
5

(−β + αΦ) (1 − Φ)n
]
+

−3
([

1√
5

(
Φn+1 − (1 − Φ)n+1

)]
− 1

)
m,∀n ∈ N.

(14)

2. If p = 3, then xn+n0−1 is the cubic root of a of order J′n, where the sequence (J′n)n is defined by

J′n =
[

1√
5

(β − α(1 − Φ))Φn + 1√
5

(−β + αΦ) (1 − Φ)n
]
+

−3
([

1√
5

(
Φn+1 − (1 − Φ)n+1

)]
− 1

)
(m + 1),∀n ∈ N,

(15)

were Φ = 1+
√

5
2 is the golden ratio and m is the exponent in the p-adic expansion of a.
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Proof. Let (xn)n be the sequence defined by (13). Then

x3
n+1 − a =

(
a + x3

n + x3
n−1 + 3xnx2

n−1 + 3x2
nxn−1

) (
x3

n − a
) (

x3
n−1 − a

)
(
x2

n + xnxn−1 + x2
n−1

)3 ,∀n ∈ N∗. (16)

Since ⎧⎪⎪⎪⎨⎪⎪⎪⎩
x3

n0−1 − a ≡ 0( mod pα)

x3
n0
− a ≡ 0( mod pβ)

=⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∣∣∣∣x3

n0−1 − a
∣∣∣∣
p
≤ p−α

∣∣∣x3
n0
− a

∣∣∣
p
≤ p−β.

This gives

∣∣∣x3
n0+1 − a

∣∣∣
p
=

∣∣∣∣a + x3
n0
+ x3

n0−1 + 3xn0 x2
n0−1 + 3x2

n0
xn0−1

∣∣∣∣
p∣∣∣∣x2

n0
+ xn0 xn0−1 + x2

n0−1

∣∣∣∣3
p

· ∣∣∣x3
n0−1 − a

∣∣∣
p
· ∣∣∣x3

n0
− a

∣∣∣
p

≤ p−αp−β · 1∣∣∣∣x2
n0
+ xn0 xn0−1 + x2

n0−1

∣∣∣∣3
p

· max
{
|a|p ,

∣∣∣x3
n0

∣∣∣
p
,
∣∣∣x3

n0−1

∣∣∣
p
,
∣∣∣3xn0 x2

n0−1

∣∣∣
p
,
∣∣∣3x2

n0
xn0−1

∣∣∣
p

}
,

and, hence, we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∣∣∣∣x3

n0+1 − a
∣∣∣∣
p
≤ p−αp−β · 1

p−6m · max
{
p−3m, p−3m, p−3m, p−3m, p−3m

}
, if p � 3,

∣∣∣∣x3
n0+1 − a

∣∣∣∣
3
≤ 3−α3−β · 1

3−3·3−6m · max
{
3−3m, 3−3m, 3−3m, 3−(3m+1), 3−(3m+1)

}
, if p = 3.

This is equivalent to verify either ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∣∣∣∣x3

n0+1 − a
∣∣∣∣
p
≤ p−(α+β−3m), if p � 3,

∣∣∣∣x3
n0+1 − a

∣∣∣∣
3
≤ 3−(α+β−3(m+1)), if p = 3.

Or, in virtue of lemma 5 ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x3

n0+1 − a ≡ 0( mod pα+β−3m), if p � 3,

x3
n0+1 − a ≡ 0( mod 3α+β−3(m+1)), if p = 3

On the other hand, we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∣∣∣∣x3

n0+2 − a
∣∣∣∣
p
≤ p3m · ∣∣∣x3

n0
− a

∣∣∣
p
·
∣∣∣∣x3

n0+1 − a
∣∣∣∣
p
= p−(α+2β−6m), if p � 3,

∣∣∣∣x3
n0+2 − a

∣∣∣∣
3
≤ 33(m+1)

∣∣∣x3
n0
− a

∣∣∣
p
·
∣∣∣∣x3

n0+1 − a
∣∣∣∣
p
= 33m+3, if p = 3.

Consequently ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x3

n0+2 − a ≡ 0( mod pα+2β−6m), if p � 3,

x3
n0+2 − a ≡ 0( mod 3α+2β−6(m+1)), if p = 3.

In this manner, we find that if p � 3, then

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x3

n0−1 − a ≡ 0( mod pα)

x3
n0
− a ≡ 0( mod pβ)

=⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x3
n0+1 − a ≡ 0( mod pα+β−3m)

x3
n0+2 − a ≡ 0( mod pα+2β−6m)

x3
n0+3 − a ≡ 0( mod p2α+3β−12m)

x3
n0+4 − a ≡ 0( mod p3α+5β−21m)

.

.

.
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and if p = 3, then

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x3

n0−1 − a ≡ 0( mod 3α)

x3
n0
− a ≡ 0( mod 3β)

=⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x3
n0+1 − a ≡ 0( mod 3α+β−3(m+1))

x3
n0+2 − a ≡ 0( mod 3α+2β−6(m+1))

x3
n0+3 − a ≡ 0( mod 32α+3β−12(m+1))

x3
n0+4 − a ≡ 0( mod 33α+5β−21(m+1))

.

.

.

1. If p � 3, then
x3

n+n0−1 − a ≡ 0( mod pJn ),∀n ∈ N, (17)

where the sequence (Jn)n is defined by
Jn = Fn − mAn,∀n ∈ N. (18)

Where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
F0 = α , F1 = β

∀n ∈ N∗ : Fn+1 = Fn−1 + Fn,
(19)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
A0 = A1 = 0

∀n ∈ N∗ : An+1 = An−1 + An + 3.
(20)

The sequences (Fn)n and (An)n are linear recurrent sequences whose general terms are given respectively by

Fn =

[
1√
5

(
β − 1−√5

2 α
) (

1+
√

5
2

)n

+ 1√
5

(
−β + 1+

√
5

2 α
) (

1−√5
2

)n]
=

[
1√
5

(β − α(1 − Φ))Φn + 1√
5

(−β + αΦ) (1 − Φ)n
]
,∀n ∈ N,

(21)

and

An = 3
([

1√
5

((
1+

√
5

2

)n+1
−
(

1−√5
2

)n+1
)]
− 1

)
= 3

([
1√
5

(
Φn+1 − (1 − Φ)n+1

)]
− 1

)
,∀n ∈ N.

(22)

We obtain
Jn =

[
1√
5

(β − α(1 − Φ))Φn + 1√
5

(−β + αΦ) (1 − Φ)n
]
+

−3
([

1√
5

(
Φn+1 − (1 − Φ)n+1

)]
− 1

)
m,∀n ∈ N.

(23)

2. If p = 3, then
x3

n+n0−1 − a ≡ 0( mod 3J′n ),∀n ∈ N, (24)

where the sequence (J′n)n is defined by

J′n = Fn − (m + 1) · An =

=

[
1√
5

(β − α(1 − Φ))Φn + 1√
5

(−β + αΦ) (1 − Φ)n
]
+

−3
([

1√
5

(
Φn+1 − (1 − Φ)n+1

)]
− 1

)
(m + 1),∀n ∈ N.

�

Corollary 17. Suppose that xn0−1 is the cubic root of a of order α and that xn0 is the cubic root of a of order β then

1. If p � 3, then xn+n0 − xn+n0−1 ≡ 0( mod pλn ) where the sequence (λn)n is defined by

λn =

[
1√
5

(β − α(1 − Φ))Φn + 1√
5

(−β + αΦ) (1 − Φ)n
]
+

−m

(
3
[

1√
5

(
Φn+1 − (1 − Φ)n+1

)]
− 1

)
.

(25)
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2. If p = 3, then xn+n0 − xn+n0−1 ≡ 0( mod 3λ
′
n ) where the sequence

(
λ′n
)
n is defined by

λ′n=
[

1√
5

(β − α(1 − Φ))Φn + 1√
5

(−β + αΦ) (1 − Φ)n
]
+

−
(
m

(
3
[

1√
5

(
Φn+1 − (1 − Φ)n+1

)]
−1

)
+3

[
1√
5

(
Φn+1 − (1 − Φ)n+1

)]
− 2

)
,∀n ∈ N.

(26)

Proof. Starting from equation (13), we have

xn+1 − xn = − 1(
x2

n + xnxn−1 + x2
n−1

) (x3
n − a

)
,∀n ∈ N∗. (27)

We obtain ∣∣∣xn+n0 − xn+n0−1
∣∣∣
p
=

∣∣∣∣∣∣∣ 1
x2

n+n0−1 + xn+n0−1xn+n0−2 + x2
n+n0−2

∣∣∣∣∣∣∣
p

∣∣∣x3
n+n0−1 − a

∣∣∣
p
.

So ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∣∣∣xn+n0 − xn+n0−1

∣∣∣
p
≤ p−Jn · p2m = p−(Jn−2m), if p � 3,∣∣∣xn+n0 − xn+n0−1

∣∣∣
3 ≤ 3−J′n · 3(2m+1) = 3−(J′n−(2m+1)), if p � 3.

Therefore ⎧⎪⎪⎪⎨⎪⎪⎪⎩
xn+n0 − xn+n0−1 ≡ 0( mod pλn ), if p � 3,

xn+n0 − xn+n0−1 ≡ 0( mod 3λ
′
n ), si p = 3.

Such as

λn = Jn − 2m =

=

[
1√
5

(β − α(1 − Φ))Φn + 1√
5

(−β + αΦ) (1 − Φ)n
]
− m

(
3
[

1√
5

(
Φn+1 − (1 − Φ)n+1

)]
− 1

)
,∀n ∈ N,

and
∀n ∈ N : λ′n = J′n − (2m + 1).

Hence we obtain

λ′n = J′n − (2m + 1) =

=

[
1√
5

(β − α(1 − Φ))Φn + 1√
5

(−β + αΦ) (1 − Φ)n
]
+

−
(
m

(
3
[

1√
5

(
Φn+1 − (1 − Φ)n+1

)]
−1

)
+3

[
1√
5

(
Φn+1 − (1 − Φ)n+1

)]
− 2

)
,∀n ∈ N.

�

3.2 Conclusions

According to the results obtained in the previous section, we obtain the following conclusions:

1. If p � 3,then

(a) The rate of convergence of the sequence (xn)n is of order λn.

(b) Since |1 − Φ| < 1, then

λn � 1√
5

(β − α(1 − Φ))Φn − m

(
3√
5
Φn+1 − 1

)
, (28)

and if β − α(1 − Φ) − 3Φm > 0, then the number of iterations n to obtain M correct digits is

n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ln
( √

5(M−m)
β−α(1−Φ)−3Φm

)
lnΦ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (29)

(c) Using Hensel codes, equation (13) can be rewritten as

H(p, λn+1, x) =
H3(p,∞, x) + H(p, λn, x) · H2(p, λn−1, x) + H2(p, λn, x) · H(p, λn−1, x)

H2(p, λn, x) + H(p, λn, x) · H(p, λn−1, x) + H2(p, λn−1, x)
. (30)
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2. If p = 3, then

(a) The rate of convergence of the sequence (xn)n is of order λ′n.

(b) If β − α(1 − Φ) − 3Φ(m + 1) > 0, then the necessary number n of iterations to obtain M correct digits is

n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ln
( √

5(M−(m+2))
β−α(1−Φ)−3Φ(m+1)

)
lnΦ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (31)

(c) Using Hensel codes, equation (13) takes the form

H(3, λ′n+1, x) =
H3(3,∞, x) + H(3, λ′n, x) · H2(3, λ′

n−1, x) + H2(3, λ′n, x) · H(3, λ′
n−1, x)

H2(3, λ′n, x) + H(3, λ′n, x) · H(3, λ′
n−1, x) + H2(3, λ′

n−1, x)
. (32)

Finally, the problem to ask is to increase the rate of convergence of the sequence (xn)n as much as we wants. For this,
we search an iteration function g that allows us to accelerate the rate of convergence and which satisfies the following
relation

g( 3√
a) = 3√

a, g(1)( 3√
a) = g(2)( 3√

a) = ... = g(s−1)( 3√
a) = 0, g(s)( 3√

a) � 0. (33)

To increase the rate of convergence of the sequence (xn)n as much as we wants, it is necessary to solve the problem of
letting

g(x) = 3√
a + (x − 3√

a)sh(x), s ∈ N, (34)

and choosing the function h(x) in order to make the cubic roots of a in coefficients of a function g(x) disappear.
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