
Comparing High Level MapReduce Query
Languages

R.J. Stewart, P.W. Trinder, and H-W. Loidl

Mathematical And Computer Sciences
Heriot Watt University

DRAFT VERSION

Abstract. The MapReduce parallel computational model is of increas-
ing importance. A number of High Level Query Languages (HLQLs) have
been constructed on top of the Hadoop MapReduce realization, primar-
ily Pig, Hive, and JAQL. This paper makes a systematic performance
comparison of these three HLQLs, focusing on scale up, scale out and
runtime metrics. We further make a language comparison of the HLQLs
focusing on conciseness and computational power. The HLQL develop-
ment communities are engaged in the study, which revealed technical
bottlenecks and limitations described in this document, and it is impact-
ing their development.

1 Introduction

The MapReduce model proposed by Google [8] has become a key data process-
ing model, with a number of realizations including the open source Hadoop [3]
implementation. A number of HLQLs have been constructed on top of Hadoop
to provide more abstract query facilities than using the low-level Hadoop Java
based API directly. Pig [18], Hive [24], and JAQL [2] are all important HLQLs.

This paper makes a systematic investigation of the HLQLs. We investigate
specifically, whether the HLQLs are indeed more abstract: that is, how much
shorter are the queries in each HLQL compared with direct use of the API?
What performance penalty do the HLQLs pay to provide more abstract queries?
How expressive are the HLQLs - are they relationally complete, SQL equivalent,
or even Turing complete? More precisely, the paper makes the following research
contributions with respect to Pig, Hive, and JAQL.

A systematic performance comparison of the three HLQLs based on three pub-
lished benchmarks on a range of Hadoop configurations on a 32 node Beowulf
cluster. The study extends previous, predominantly single language studies. The
key metrics we report are the scale up, scale out and runtime of each language.
The performance baseline for each benchmark is a direct implementation using
the Hadoop API, enabling us to assess the overhead of each HLQL (Section 6).

2

A language comparison of the three HLQLs. For each benchmark we compare the
conciseness of the three HLQLs with a direct implementation using the Hadoop
API using the simple source lines of code metric (Section 4.2). We further com-
pare the expressive power of the HLQLs (Section 3.2).

Our study is already impacting HLQL development. The HLQL development
communities were engaged in the study, replicating our results and provided
recommendations for each benchmark. A preliminary set of the results from the
study [20] has been widely downloaded (1,200 downloads at present).

2 Related Work

2.1 MapReduce

Google propose MapReduce (MR) as “a programming model and an associated
implementation for processing and generating large data sets” [8], and argue
that many real world tasks are expressible using it. MR programmers are only
required at a minimum to specify two functions: map and reduce. The logical
model of MR describes the data flow from the input of key/value pairs to the
list output:

Map(k1,v1) -> list(k2,v2)
Reduce(k2, list (v2)) -> list(v3)

The Map function takes an input pair and produces a set of intermediate
key/value pairs. The Reduce function accepts the intermediate key2 and a set
of values for that key. It merges these values to form a possibly smaller set of
values [8]. The model has built-in support for fault tolerance, data partitioning,
and parallel execution, absolving considerations like reliability and distributed
processing away from the programmer.

In relation to High Performance Computing (HPC) platforms, [25] states that
the MapReduce model is comparatively strong when nodes in a cluster require
gigabytes of data. In such cases, network bandwidth soon becomes the bottleneck
(leaving nodes idle for extended time periods) for alternative HPC architectures
that use such APIs as Message Passing Interface (MPI), over shared filesystems
on the network. MPI gives close control to the programmer who coordinates the
dataflow via low-level routines and constructs, such as sockets, as well as higher-
level algorithms for the analysis. In contrast, MapReduce operates only at the
higher level, leaving the programmer to think in terms of functions on key and
value pairs, and the data flow is implicit [25].

2.2 Hadoop

Hadoop [3] is an Apache open source MR implementation, which is well suited
for use in large data warehouses, and indeed has gained traction in industrial

3

datacentres at Yahoo, Facebook and IBM. The software stack of Hadoop is pack-
aged with a set of complimentary services, and higher level abstractions from
MR. The core elements of Hadoop however, are MapReduce - the distributed
data processing model and execution environment; and the Hadoop Distributed
Filesystem (HDFS) - a distributed filesystem that runs on large clusters. The
HDFS provides high throughput access to application data, is suitable for appli-
cations that have large data sets, and the detection and recovery from faults is
a primary design goal of the HDFS. In addition, Hadoop provides interfaces for
applications to move tasks closer to the data, as moving computation is cheaper
than moving very large quantities of data [4].

Example MapReduce Application Word count is a simple MapReduce ap-
plication (Listing 1.1), commonly used for demonstration purposes [8]. The map
function tokenizes a list of strings (one per line) as maps, and assigns an arbi-
trary value to each key. The reduce function iterates over this set, incrementing
a counter for each key occurrence.

Listing 1.1. Pseudo Code: MapReduce Word Count

map(’ input . dat ’){
Tokenizer tok <− f i l e . t oken i z e () ;

whi l e (tok . hasMoreTokens){
output (tok . next () , ” 1 ”) ; // l i s t (k2 , v2)

}
}

reduce (word , va lue s){
I n t eg e r sum = 0 ;

whi l e (va lue s . hasNext ()){
sum += va lues . next () ;

}
output (word , sum) ; // l i s t (v3)

}

3 High Level Query Languages

Justifications for higher level query languages over the MR paradigm are pre-
sented in [15]. It outlines the lack of support that MR provides for complex
N-step dataflows, that often arise in real-world data analysis scenarios. In ad-
dition, explicit support for multiple data sources is not provided by MR. A
number of HLQLs have been developed on top of Hadoop, and we review Pig
[18], Hive [24], and JAQL [2] in comparison with raw MapReduce. Their rela-
tionship to Hadoop is depicted in Figure 1. Programs written in these languages
are compiled into a sequence of MapReduce jobs, to be executed in the Hadoop
MapReduce environment.

4

Fig. 1. HLQL Implementation Stack

3.1 Language Query Examples

Pig - A High Level Data Flow Interface for Hadoop Pig Latin is a high
level dataflow system that aims at a sweet spot between SQL and MapReduce,
by providing high-level data manipulation constructs, which can be assembled in
an explicit dataflow, and interleaved with custom MR functions [15]. Programs
written in Pig Latin are firstly parsed for syntactic and instance checking. The
output from this parser is a logical plan, arranged in a directed acyclic graph,
allowing logical optimizations, such as projection pushdown to be carried out.
The plan is compiled by a MR compiler, which is then optimized once more by
a MR optimizer performing tasks such as early partial aggregation, using the
MR combiner function. The MR program is then submitted to the Hadoop job
manager for execution.

Pig Latin provides both simple scalar types, such as int and double, and also
complex non-normalized data models. A bytearray type is supported, to facilitate
unknown data types and lazy conversion of types, in addition to three collection
types: map, tuple and bag. The Pig word count query is given in Listing 1.2.

Listing 1.2. Pig Word Count Benchmark

myinput = LOAD ’ input . dat ’ USING PigStorage () ;
grouped = GROUP myinput BY \$0 ;
counts = FOREACH grouped GENERATE group ,

COUNT(myinput) AS t o t a l ;
STORE counts INTO ’ PigOutput . dat ’ USING PigStorage () ;

Hive - A Data Warehouse Infrastructure for Hadoop Hive QL provides
a familiar entry point for data analysts, minimizing the pain to migrate to the
Hadoop infrastructure for distributed data storage and parallel query processing.
Hive supports queries expressed in a SQL-like declarative language - HiveQL,
which are compiled into MR jobs, much like the other Hadoop HLQLs. HiveQL

5

provides a subset of SQL, with features like from clause subqueries, various types
of joins, group bys, aggregations and create table as select all make HiveQL very
SQL like.

Hive structures data into well-understood database concepts like tables, columns,
rows, and partitions. It supports all the major primitive types: integers, floats,
doubles and strings, as well as collection types such as maps, lists and structs.
Hive also includes a system catalogue, a metastore, that contains schemas and
statistics, which are useful in data exploration, query optimization and query
compilation [23]. Just like with the Pig compilation process, Hive includes a
query compiler, which is a component that compiles HiveQL into a directed
acyclic graph of MR tasks. The Hive word count query is given in Listing 1.3.

Listing 1.3. Hive Word Count Benchmark

CREATE EXTERNAL TABLE Text (words STRING)
LOCATION ’ input . dat ’ ;
FROM Text INSERT OVERWRITE DIRECTORY ’ HiveOutput . dat ’
SELECT words , COUNT(words) as t o t a l s
GROUP BY words ;

JAQL - A JSON Interface to MapReduce JAQL is a functional data query
language, which is built upon JavaScript Object Notation Language (JSON) [6].
JAQL is a general purpose data-flow language that manipulates semi-structured
information in the form of abstract JSON values. It provides a framework for
reading and writing data in custom formats, and provides support for common
input/output formats like CSVs, and like Pig and Hive, provides operators such
as filtering, transformations, sort, group bys, aggregation, and join [2].

JSON supports atomic values like numbers and strings, and has two container
types: arrays and records of name-value pairs, where the values in a container
are arbitrary JSON values. Databases and programming languages suffer an
impedance mismatch as both their computational and data models are so differ-
ent [1]. As the JSON model provides easy migration of data to and from some
popular scripting languages like Javascript and Python, JAQL is extendable with
operations written in many programming languages because JSON has a much
lower impedance mismatch than XML for example, yet much richer datatypes
than relational tables [2]. The JAQL word count query is given in Listing 1.4.

Listing 1.4. JAQL Word Count Benchmark

$input = read (l i n e s (’ input . dat ’)) ;
$ input −> group by $word = $
in to { $word , num: count ($) }
−> wr i t e (de l (’ JAQLOutput . dat ’ ,{ f i e l d s : [‘ ‘ words ’ ’ , ‘ ‘ num’ ’ })) ;

6

3.2 HLQL Comparison

Language Design The language design motivations are reflected by the con-
trasting features of each high level query language. Hive provides Hive QL, a
SQL like language, presenting a declarative language (Listing 1.3). Pig by com-
parison provides Pig Latin (Listing 1.2), a dataflow language influenced by both
the declarative style of SQL (it includes SQL like functions), and also the more
procedural MR (Listing 1.1). Finally, JAQL is a functional, higher-order pro-
gramming language, where functions may be assigned as variables, and later
evaluated (Listing 1.4). In contrast, Pig and Hive are strictly evaluated during
the compilation process, to identify type errors prior to runtime.

Computational Power Figure 2 illustrates the computational power of Pig,
Hive, and JAQL, the MR model, and the MapReduceMerge model [27]. MapRe-
duceMerge was designed to extend MR, by implementing relational algebra op-
erators, the lack of which signifies that MR itself is not relationally complete.
Indeed, MR is a simple model for applications to be encapsulated for computa-
tion in distributed environments.

Fig. 2. Computational Power Comparison

Relational Completeness Relational algebra is a mathematical notation that de-
fines relations in standardized algebraic syntax which are combined to create
the operators and functions required for relational completeness [7]. The struc-
tured query language, SQL, is regarded as relationally complete as it provides
all operations in relational algebra set, and in addition offers a set of aggregation
functions, such as average, count, and sum.

Turing Completeness A language that contains conditional constructs; recur-
sion capable of indefinite iteration; and a memory architecture that emulates an
infinite memory model is said to be Turing Complete.

User Defined Functions Pig, Hive and JAQL are all extendable with the use
of user defined functions (UDF). These allow programmers to introduce custom

7

data formats and bespoke functions. They are always written in Java, a Turing
complete language.

4 Conciseness

4.1 Application Kernels

The HLQLs are benchmarked using three applications: two that are canonical
and published, and a third that is a typical MR computation. The word count
in Figure 3 is the canonical MR example [10]. The dataset join in Figure 4 is
another canonical example, with published implementations for Java, Pig, Hive
and JAQL [9, 26, 11, 16]. The web log aggregation example in Figure 5 is a new
benchmark that is typical of webserver log manipulation. Each can be described
concisely in SQL, as:

SELECT words, COUNT(words) as totals

GROUP BY words;
Fig. 3. Word Count

SELECT t1.*

FROM TABLE1 t1

JOIN TABLE2 t2 ON (t1.field = t2.field);
Fig. 4. Dataset Join

SELECT userID, AVG(timeOnSite) as averages, COUNT(pageID)

GROUP BY userID;
Fig. 5. Web Log Processing

4.2 Comparative Code Size

Table 1 shows the source lines of code count to satisfy the requirements used in
the word count, join, and web log processing applications.

Table 1. Source Lines of Code Comparison

Java Pig Pig/Java JAQL JAQL/Java Hive Hive/Java
Ratio Ratio Ratio

Word Count 45 4 8.9% 6 13.3% 4 8.9%
Join 114 5 4.4% 5 4.4% 13 11.4%
Log Processing 165 4 2.4% 3 1.8% 11 6.7%

Mean Ratio (100%) 5.2% 6.5% 9%

The aim of the high level languages Pig, Hive and JAQL is to provide an
abstract data querying interface to remove the burden of the MR implementa-
tion away from the programmer. However, Java MR applications requires the

8

programmer to write the map and reduce methods manually, and hence require
program sizes of a magnitude of at least 7.5 (Table 1). It would appear that con-
ciseness is thus achieved for the equivalent implementations in the HLQLs, and
Section 6 will determine whether or not programs pay a performance penalty for
opting for these more abstract languages. Refer to further language discussion,
in Section 7.

5 Performance Experiment Design

This section outlines the runtime environment used for the performance com-
parisons, justifies the number of reducers used in each experiment, and explains
the importance of key distribution for MapReduce applications.

5.1 Language Versions, Hardware & Operating Systems

The experiments utilize Pig version 0.6, Hive version 0.4.0, an svn snapshot of
JAQL (r526), and Hadoop version 0.20.1. The benchmarks were run on a cluster
comprising of 32 nodes running Linux CentOS 5.4; Kernel 2.6.18 SMP; Intel
Pentium 4, 3Ghz dual core, 1MB cache, 32bit; 1GB main memory; Intel Pro
1Gbps Full Duplex; HDD capacity 40GB.

5.2 Reducer Tasks

Guidelines have been outlined for setting a sensible value for the number of
reducers for Hadoop jobs. This value is determined by the number of Processing
Units (nodes) PUs in the cluster, and the maximum number of reducers per
node R, as PU × R × 0.9 [17].

5.3 Key Distribution

A potential bottleneck for MR performance can occur when there exists a con-
siderable range in the number of values within the set of keys generated by the
map function (see Section 2.1). In Section 6.1, we measure the performance of
each language when processing input data with skewed key distribution. The
skewed dataset was generated using an existing package [22], developed by the
Pig language design team at Yahoo.

6 Performance Results

The application kernels outlined in Section 4.1 are used in this section to measure
the language performance for scale-up, scale-out and runtime. It also shows the
effect on runtime when tuning the number of reducers, for each language. A full
specification of the Hadoop runtime parameters for all of the experiments that
are described, can be found in Section 3.2 of [19].

9

6.1 Scaling Input Size

To measure the scale-up performance of each language, the size of the cluster was
fixed at 20 PU’s. Scaling with uniform key distribution computation is shown
in figures 6 and 7, and with a skewed key distribution computation is shown in
figures 8 and 9.

Fig. 6. Word Count Scale Up - Uniform
Distribution

Fig. 7. Web Log Processing Scale Up - Uni-
form Distribution

Fig. 8. Word Count Scale Up - Skewed Dis-
tribution

Fig. 9. Dataset Join Scale Up - Skewed Dis-
tribution

A prominent feature of these measurements is that total runtime increases
with input size. Two trends emerge, such that JAQL and Pig achieve similar
scale up performance, though both Hive and Java perform considerably better.
In the web log processing with the smallest input size, JAQL is the most efficient
processing engine (Figure 7), achieving the lowest runtime of all of the languages
- 26% quicker than the lower level Java implementation.

10

Skewed Keys The word count and join applications were executed on datasets
with skewed key distribution, in Figures 8 and 9. Both JAQL and Java per-
formances are impaired by the skewed key distribution in the join application,
scaling up less well. On feeding preliminary join results (Figure 9) back to the
JAQL development team, a problem with the JAQL delimited output method
was identified, and subsequently fixed [21]. Both Pig and Hive appear to handle
the skewed key distribution more effectively. In Figure 9, where input size is x20,
both Pig and Hive outperform the Java implementation. A complete result set
from the skewed key runtime experiments can be found at [19].

6.2 Scaling Processing Units

To measure the scale-out performance of each language, the size of computation
was fixed, and the number of worker nodes was increased from 1 to 20. The
results of these scale-out benchmarks are depicted in Figures 10 and 11.

Fig. 10. Runtime for Dataset Join Fig. 11. Runtime for Web Log Processing

Beyond 4 PU’s, there is no apparent improvement for JAQL, whereas Pig,
Hive and Java are all able to utilize the additional processing capacity up to
16 PU’s, at which point, no further cluster expansion is beneficial to runtime
performance.

A fundamental contrast between the join and the web log processing applica-
tion, in Figures 10 and 11 respectively, is the input size for the two applications.
As a result, less work is required by every run of the web log processing appli-
cation, and more for the join application. These results clearly illustrate one
common design challenge for parallel systems - In the join application (Figure
10), a sufficient workload eluded to a diminished runtime, shifting from using
1 PU, to 2 - a trivial case study. However, there was only modest computa-
tional requirements for the web log processing application, Figure 11. It appears
that, as a consequence, the communication and coordination overheads associ-
ated with work distribution (2 or more PU’s) is detrimental to overall runtime
performance.

11

6.3 Proportional Scale Out of Input Size & Processing Units

In this experiment, the required computation (C) is increased in proportion with
the number of PU’s P in the cluster, with a multiplying factor m. Ideal perfor-
mance would achieve no increase in the computation time T as m increases.

T = mC / mP

In reality however, this is not attainable, as communication and task coordi-
nation costs influence overall runtime, hindering runtime performance.

Fig. 12. Dataset Join Scale Out Fig. 13. Relative Dataset Join Scale Out

Whilst Java achieves the quickest runtime for the join operation when scaling
out (Figure 12), Pig and Hive achieve performance parity with Java for the
relative scale out performance, Figure 13. The exception is JAQL, which scales
less well.

6.4 Controlling Reducers

All MR jobs are split into many map and reduce tasks. The computational gran-
ularity - the computation size per reduce task, may have a significant influence
of performance.

Whilst the number of map tasks for a MR job is calculated by the Hadoop
runtime engine, there is a degree of flexibility for the number of reduce tasks
associated with a job. When these experiments were conducted in May 2010,
Hive, Pig and the Hadoop Java API provided an additional performance tuning
parameter to specify the number of reducers to be used, whilst JAQL did not.
Figures 14 and 15 are annotated where the reducers parameter is set at 18, in

12

Fig. 14. Controlling Reducers: Dataset
Join

Fig. 15. Controlling Reducers: Log Pro-
cessing

accordance with the formula in Section 5.2.

A consequence of too-fine granularity is in an increase in runtime as the re-
duce tasks parameter increases to 128, shown in Figure 15. In addition, poor
runtime performance is seen where the reduce tasks parameter is set well below
the recommended value, 18. The join application in Figure 14 shows that despite
the parameter guidance value of 18, Pig and Java achieve quickest runtime at
23 reducers, after which, performance gradually degrades.

In summary, the additional expressive power of controlling the number of
reducer tasks can optimize performance by as much as 48% (see Figure 14)
compared to the default setting, set by the default Hadoop configuration, of just
1 reducer. In addition, the results illustrate that the guideline for the value of
this parameter (detailed in Section 5.2) is approximately optimal for this “control
knob” in achieving the quickest runtime for the application.

7 Language Discussion

A common feature of Pig, Hive and JAQL is that they can be extended with
special-purpose Java functions. This means that they are not limited to the core
functionality of each language, and the computational power is increased with
the use of such user defined functions, as detailed in Section 3.2.

Pig is the most concise language, with an average ratio (relative to Java) of
just 5.2%, as shown in Table 1. Pig has built-in optimization for joining skewed
key distribution, which outperforms data handling found in a non-adaptive Java
MR join application, shown in Figure 9. The discussion of tuning reduce tasks in
Section 6.4, in Figure 14, shows that Pig takes advantage of an increasing number
of reduce tasks, and handles an undesirably high level of specified reducer tasks
comparatively well in Figure 15.

13

Hive was the best performer for the scale-up, scale-out and speed-up experiments
for each of the three benchmarks, and throughout these experiments, overall
runtime was only fractionally slower than Java. Like Pig, Hive took advantage
of tuning the reducers parameter in the join application, in Figure 14. Both Pig
and Hive are shown to have SQL equivalent computational power 1.

JAQL is a lazy higher-order functional language and is Turing Complete, whereas
Pig Latin and Hive QL are not. Throughout the benchmark results, JAQL does
not compete with the runtime of Hive or Java. However, it does achieve a speed-
up of approximately 56% for the join benchmark, shown in Figure 10. The run-
time improvements through controlling the number of reducers (Section 6.4)
were not measured for JAQL at the date of experiment execution (May, 2010),
though this feature has subsequently been added to the language [5]. This high-
lights one challenge for comparative studies such as this report - these languages
are relatively new, and are moving targets when attempting to construct fair
and relevant performance and feature comparisons.

One particularly apt challenge when writing comparative studies such as this,
is that each project - each HLQL, is a “moving target”. Active development con-
tinues to evolve each language, with new features being added with each release.
Pig 0.8, for example, was released on the 17th December 2010, and provides sup-
port for UDFs in scripting languages, and also a safeguard against the omission of
the “number of reducers” tuning parameter. Given such an omission, Pig uses its
own heuristic to set this value, to avoid inefficient runtimes discussed in Section
6.4. Pig version 0.8 also introduces a PigStats utility, enabling “Pig to provide
much better visibility into what is going on inside a Pig job than it ever did be-
fore” [12]. This utility would be an invaluable tool for further comparisons, and
tuning, of Pig performance for more opaque and complex programs. Likewise,
Hive 0.7 was released on the 29th March 2011, which adds data indexing, a con-
currency model, and an authentication infrastructure, amongst other things [13].

The complimentary nature of these HLQLs is discussed in [14], by a mem-
ber of the Pig development team. The analogy outlines three separate tasks
involved with data processing: data collection; data preparation, performed in
“data factories”; and data presentation, performed in “data warehouses”, and
this study has focused on the latter two. The data engineers at Yahoo appear
to believe that Pig, with its support for pipelines and iterative processing, is a
good solution for data preparation. Similarly Hive, with its support for ad-hoc
querying and its query support for business intelligence tools, is a natural fit
for data presentation. The conclusion in [14] is that the combination of Pig and
Hive therefore provides a complete data processing toolkit for Hadoop.

1 with the minor exception that Pig does not currently provide support for arbitrary
theta joins

14

8 Conclusion

This report has presented a comparative study of three high level query lan-
guages, that focus on data-intensive parallel processing, built on top of the
MapReduce framework in Hadoop. These languages are Pig, Hive and JAQL, and
a set of benchmarks were used to measure the scale-up, scale-out and runtime
of each language, and ease of programming and language features were discussed.

Hive was shown to achieve the quickest runtime for every benchmark, whilst
Pig and JAQL produced largely similar results for the scalability experiments,
with the exception of the join application, where JAQL achieved relatively poor
runtime. Both Hive and Pig have the mechanics to handle skewed key distribu-
tion for some SQL like functions, and these abilities were tested with the use of
skewed data in the join application. The results highlight the success of these
optimizations, as both languages outperformed Java when input size was above
a certain threshold.

The report also highlighted the abstract nature of these languages, showing
that the source lines of code for each benchmark is much smaller than the Java
implementation for the same benchmark, by a factor of at least 7.5. Pig and
Hive enable programmers to control the number of reducers within the language
syntax (as of May 2010), and this report showed that the ability to tune this
parameter can greatly improve the runtime performance for these languages.
JAQL was shown to be the most computationally powerful language, and it was
argued that JAQL was Turing Complete.

References

1. Malcolm P. Atkinson and Peter Buneman. Types and persistence in database
programming languages. ACM Comput. Surv., 19(2):105–190, 1987.

2. Kevin S. Beyer, Vuk Ercegovac, Rajasekar Krishnamurthy, Sriram Raghavan, Jun
Rao, Frederick Reiss, Eugene J. Shekita, David E. Simmen, Sandeep Tata, Shiv-
akumar Vaithyanathan, and Huaiyu Zhu. Towards a scalable enterprise content
analytics platform. IEEE Data Eng. Bull., 32(1):28–35, 2009.

3. D Borthakur. The Hadoop Distributed File System: Architecture and Design.
2007. http://www.hadoop.apache.org.

4. Dhruba Borthakur. The Hadoop Distributed File System: Architecture and Design.
The Apache Software Foundation, 2007.

5. code.google.com/p/jaql. Jaql developers message board.
6. D. Crockford. The application/json media type for javascript object notation

(json). RFC 4627 (Informational), July 2006.
7. C. J. Date. An Introduction to Database Systems. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1991.
8. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, 2008.
9. The Apache Software Foundation. Hadoop - published java implementation of the

join benchmark. http://goo.gl/R4ZRd.

15

10. The Apache Software Foundation. Hadoop - wordcount example. http://wiki.
apache.org/hadoop/WordCount.

11. The Apache Software Foundation. Hive - language manual for the join function.
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Joins.

12. The Apache Software Foundation. Pig 0.8 - release notes. December 2010. http:
//goo.gl/ySUln.

13. The Apache Software Foundation. Hive 0.7 - release notes. March 2011. http:
//goo.gl/3Sj67.

14. Alan Gates. Pig and hive at yahoo. August 2010. http://goo.gl/OVyM1.
15. Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan M.

Narayanamurthy, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and
Utkarsh Srivastava. Building a high-level dataflow system on top of map-reduce:
the pig experience. Proc. VLDB Endow., 2:1414–1425, August 2009.

16. IBM. Jaql - language manual for the join function. http://code.google.com/p/
jaql/wiki/LanguageCore#Join.

17. Arun C Murthy. Programming Hadoop Map-Reduce: Programming, Tuning and
Debugging. In ApacheCon US, 2008.

18. Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig latin: a not-so-foreign language for data processing. In SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD international conference on Management
of data, pages 1099–1110, New York, NY, USA, 2008. ACM.

19. Robert J Stewart. Performance and programmability comparison of mapreduce
query languages: Pig, hive, jaql & java. Master’s thesis, Heriot Watt Univer-
sity, Edinburgh, United Kingdom, May 2010. http://www.macs.hw.ac.uk/∼rs46/
publications.php.

20. Robert J Stewart. Slideshow presentation: Performance results of high level query
languages: Pig, hive, and jaql. http://goo.gl/XbsmI, April 2010.

21. JAQL Development Team. Email discussion on jaql join runtime performance
issues. private communication, September 2010.

22. Pig Development Team. Pig DataGenerator. http://wiki.apache.org/pig/
DataGeneratorHadoop.

23. Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang 0002, Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive - a
petabyte scale data warehouse using hadoop. In ICDE, pages 996–1005, 2010.

24. Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a ware-
housing solution over a map-reduce framework. Proc. VLDB Endow., 2(2):1626–
1629, 2009.

25. Tom White. Hadoop - The Definitive Guide: MapReduce for the Cloud. O’Reilly,
2009.

26. Yahoo. Pigmix - unit test benchmarks for pig. http://wiki.apache.org/pig/PigMix.
27. Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-reduce-

merge: simplified relational data processing on large clusters. In SIGMOD ’07:
Proceedings of the 2007 ACM SIGMOD international conference on Management
of data, pages 1029–1040, New York, NY, USA, 2007. ACM.

