
AirTouch: Interacting With Computer Systems At A Distance

Daniel R. Schlegel, Albert Y. C. Chen, Caiming Xiong, Jeffrey A. Delmerico, Jason J. Corso
Dept. of Computer Science and Engineering

SUNY at Buffalo
{drschleg, aychen, cxiong, jad12, jcorso}@buffalo.edu

Abstract

We present AirTouch, a new vision-based interaction sys-
tem. AirTouch uses computer vision techniques to extend
commonly used interaction metaphors, such as multitouch
screens, yet removes any need to physically touch the dis-
play. The user interacts with a virtual plane that rests in
between the user and the display. On this plane, hands
and fingers are tracked and gestures are recognized in a
manner similar to a multitouch surface. Many of the other
vision and gesture-based human-computer interaction sys-
tems presented in the literature have been limited by re-
quirements that users do not leave the frame or do not per-
form gestures accidentally, as well as by cost or special-
ized equipment. AirTouch does not suffer from these draw-
backs. Instead, it is robust, easy to use, builds on a fa-
miliar interaction paradigm, and can be implemented us-
ing a single camera with off-the-shelf equipment such as a
webcam-enabled laptop. In order to maintain usability and
accessibility while minimizing cost, we present a set of basic
AirTouch guidelines. We have developed two interfaces us-
ing these guidelines—one for general computer interaction,
and one for searching an image database. We present the
workings of these systems along with observational results
regarding their usability.

1. Introduction
Since the inception of graphical computer systems in

April 1981 [8], interaction with graphical computer systems
has evolved over the past thirty years to include such inter-
face metaphors as the mouse and keyboard, pen computing,
touch, and recently multitouch [22]. These enabling devel-
opments have allowed interaction to become more accessi-
ble and natural. A recent and notable example is the Apple
iPad, which sold more than 3 million units within its first
three months [1]. Despite the broad range of technologies
in these developments, they all rely on one basic principle:
interaction happens on two-dimensional plane.

As an enabling technology, computer vision has great

potential to further improve the naturalness of these inter-
action metaphors and also to take interaction off of the
two-dimensional plane constraint. Indeed, multiple at-
tempts have been made over the past decade to create meth-
ods for computer interaction using computer vision (e.g.,
[7, 12, 14, 19, 22–24]), though none of these systems have
achieved widespread use. Computer vision systems that al-
low for human interaction generally use some sort of inter-
face defined by the gestures the user can perform. These
gestures must happen within the field of view and range
of some camera device. Many systems utilizing a gesture
based interface allow for the gestures to happen at many
distances before the camera with largely the same effect.

Perhaps the simplest paradigm attempted by some of
these systems involves extending the concept of Marking
Menus (also known as “pie menus”) to computer vision,
which only require a users hand to be present in a spe-
cific region of the cameras view to perform an action [5].
Extensions of these ideas led to two mature vision interac-
tion systems based on localized interaction within certain
“hot spots” in the environment [13,25]. However, the local-
ized interaction does not allow generalized control. Many
other systems attempt to use gestures for general computer
use. One example relies on the posture of the hand for ges-
tures [14], a technique used by others as well [19]. Simi-
larly, Toshiba has produced a system for general computer
control where the user holds their hand up and pushes it to-
wards the screen to indicate a click [18]. Other systems such
as GestureVR [7], which allows the pose and motion of the
hand in 3D space to control a virtual reality simulation, are
more actively sensitive to the depth of the hand.

These systems have performed well in laboratory set-
tings, but many have not been evaluated or used in general
settings for two primary reasons. First, in most cases, when
the system is on, it is continuously watching for gesturing
users such as in [19]. From a usability perspective, this trait
yields a limiting scenario in which the user cannot act natu-
rally and assume whatever poses are comfortable for them.
Solutions to the “always on” nature of a system which force
unnatural postures as shown in the user study for [5], which

1978-1-4244-9495-8/10/$26.00 ©2010 IEEE

requires that the user hold their arm away from the body
unsupported for long periods of time, are not much of an
improvement. Second, many of these systems are difficult
to set up, tuned to a specific use case or software package,
and can require very expensive hardware. GestureVR [7]
requires two cameras configured for stereo-vision, some-
thing that may be difficult for general use, while [14] uses
only one camera, but uses projectors and a camera inside a
robotic head to follow the user for specific kiosk applica-
tions.

In contrast, the AirTouch system we propose overcomes
both of these issues while concurrently bringing to bear
well-known interaction metaphors like multitouch in a com-
puter vision setting. AirTouch’s driving innovation is to
create a virtual interaction surface in the space, i.e., the
“air,” between the user and the computer. The user then
“touches” this virtual interaction surface, i.e., this air, and
his or her actions are mapped in a natural way to the com-
puter system. The interaction surface acts as an analog to
two-dimensional plane metaphors while also incorporating
a third dimension for determination of whether the user has
“touched” the plane. This limited three-dimensionality re-
moves the restrictiveness of a physical plane while main-
taining its usability. As we demonstrate in two example im-
plementations, AirTouch enables natural human-computer
interaction at a distance without requiring the user to adapt
his or her behavior in any significant way, or spend time
calibrating the system. Furthermore, in its simplest form
(Section 3.1), it will augment the existing computer sys-
tem software without requiring any rewrite of existing plat-
form software; the only burden on the user is the availabil-
ity of a commodity camera (i.e., webcam). Our two exam-
ple AirTouch systems have been successfully publicly de-
moed [15].

One existing system has similar qualities to the pro-
posed AirTouch system: GWindows [23]. Wilson’s sys-
tem features an “engagement plane” that is approximately
20 inches from the screen. The user moves his/her hand to
the plane then speaks instructions to the computer to control
windows on the screen such as “move,” “close,” or “scroll.”
The system uses dwell time to engage actions. The user
study has indicated the system may be too cumbersome
and the cross-modal input was less natural than gesturing
alone [23].

In the next section, we describe the design considerations
we have incorporated into the AirTouch system. Section 3
then describes two implementations of the AirTouch ideas:
one for general computer use (mouse pointing and click-
ing, and scrolling) and another for intuitive content-based
image retrieval (CBIR). In both sections, we incorporate a
discussion that includes responses from public user demon-
strations.

2. Design Considerations for Vision-Based In-
teraction Systems at a Distance

Before getting to the specifics of our two implemented
AirTouch systems, we describe some design considerations
that have driving our research. These considerations are of-
fered in the spirit of our established predecessors, such as
Shneiderman’s direct manipulation [17]. We divide them
into the two key categories for vision-based HCI systems:
gesturing and ease of use.

2.1. Gesturing

Gesturing is an extensively studied and important sub-
ject. Despite the abundance of gesturing systems (some
were covered in the introduction), a few gesture-based in-
teraction metaphor have gained widespread acceptance. Ex-
amples include multitouch gestures such as pinch-to-zoom
and drag-to-scroll. Other input methods have different
gestures—pen computing devices use gestures such as “pen
flicks” for turning pages, scrolling, or going back in a web
browser. These types of gestures are all unobtrusive, easy
for the user to adapt to, and have potential to increase the
user productivity. In order to bring these advantages to a
vision-based interface we propose a few guidelines.

First, the user must be able to act normally between ges-
tures, which is particularly important as without it the inter-
face is obtrusive and difficult to use. In the AirTouch system
manipulative gestures—those that affect the system state—
occur on a plane of interaction. This means that when the
users are not interfacing with the plane there is no manipu-
lative effect on the system.

Gestures that occur inside the space should correspond to
the planar metaphor. The gestures should both require the
plane as the place where they should occur and the plane
should afford the gestures. This constraint prevents the user
confusion from gesture locality issues—e.g., why a gesture
can occur in one place versus another or only under certain
conditions. Many multi-touch gestures already correspond
to this metaphor—using them would minimize the learning
curve. Finally, when a gesture has been accepted by the
system a cue should appear, whether visual or audible by
some other means. Since the user is not physically touching
something it can become frustrating if the user performs a
gesture and it appears nothing has happened.

2.2. Ease of Use

One advantage of touch screens and pen computing sys-
tems is that they only infrequently require calibration and
are transparent across different users. Many of these sys-
tems are also portable and require little or no setup between
sessions. A vision system meant for widespread general use
must attempt to mimic these advantages.

2

MacBook

AirTouch

Input from webcam:
detect for "trigger" signal

Learn the model
of the "input device" AirTouch starts!

Figure 1. An example calibration gesture where the user motions
with both hands.

On the issue of calibration, it must be quick1, simple and
occur at most once per user session. Examples might in-
clude calculating a homography by having the users point
at on-screen cues, or having a gesture pre-defined for cali-
bration as seen in Fig. 1. Determination of the location of
the interaction plane in space should be determined by this
calibration as well. Users seem to adapt well to slight cali-
bration errors so extreme attention to detail is not required.

Additionally, the user must be able to leave and re-enter
the camera frame with no effect on their ability to utilize the
system. If the user moves their hands out of the view of the
camera or stands up for a moment it should have no negative
effect—when the user’s hands are again visible s/he should
be able to use the system as s/he would have had they not
left the field of view of the camera.

The system must be cost-effective and easy to set-up:
built-in webcams or other off-the-shelf cameras. It may be
desirable to use more than one camera for stereo vision or
another application but the issue of cost and ease must be
seriously considered.

In the two sample implementations we have completed
(see Section 3) these guidelines have resulted in reportedly
pleasant user experiences.

3. Implementations
We have created two AirTouch systems that implement

the functionality and basic guidelines given above while
performing drastically different tasks: general computer use
and CBIR.

3.1. Computer Vision for General HCI

The Computer Vision for General HCI (CVHCI) system
allows the user to interact with the generic computer sys-
tem from afar. In this context the AirTouch system is used
to mimic a touch screen floating in space. The user interacts
with the system through various pointing gestures. Process-
ing the users interactions happens on two distinct levels—
tracking and gesturing—which, when combined, allow for

1Quick is, of course, a user-dependent quality. Recall some recent sys-
tems took minutes to boot.

a highly usable system for human-computer interaction.

3.1.1 Tracking

To reliably track the user’s hands in a computationally in-
expensive way, we use the CAMSHIFT [4] algorithm, a
Kalman filter [9], and require the users to wear gloves with
colored fingertips. The use of gloves could be relaxed via
skin-color tracking [19], though we use them primarily be-
cause of the low computational overhead of the involved
algorithms and because our major focus was demonstrat-
ing the AirTouch concept rather than developing an effi-
cient tracking system. Colored gloves are used with much
success in other real-time applications such as MIT’s hand
tracking system for virtual manipulation of objects [20].
The CAMSHIFT algorithm allows us to determine not only
the X and Y coordinates of each tracked finger, but also the
diameter of the tracked area, which we treat as a proxy to
the Z-axis using only one camera. The Kalman filter is used
to increase the robustness of the tracking and to minimize
jitter.

The initial calibration stage requires the user to point at
five positions on the screen to establish a homography that
allows the conversion of camera to screen coordinates. The
finger is recognized using prior histograms and shape data.
The user dwells at each point for a very short period of time
to indicate selection. The diameter of the finger is noted at
the detection point, definingDtouch, the “depth” location of
the AirTouch plane.

To allow the user to act normally in front of the cam-
era, we use adaptive color histograms to provide the fin-
ger tracking with robustness to lighting changes and quick
movement. Periodically, the histogram of the tracked region
is reevaluated and compared with the histogram on which
the tracker’s backprojection is currently based; if there is a
large enough discrepancy, the histogram is updated to re-
flect the color of the tracked object in the current environ-
ment. The level of match is determined by a sum-of-squares
difference metric between the values of the bins of the cur-
rent histogram and the histogram in the bounding box of the
currently tracked object. The histogram from initial calibra-
tion is stored and a restriction is placed on the algorithm not
to allow drift from the original greater than 30% for any bin.

The histograms we use are in the HSV color space since
lighting and camera white balance changes cause variation
largely in the saturation and value components with less ef-
fect on hue. For this reason, we only use the hue histogram
in tracking and we threshold the saturation and value chan-
nels to try to maximize the presence of the tracked hue in the
backprojection. When the histogram is updated, the satu-
ration and value threshold values are updated automatically
using a binary search of the respective spaces to find the best
backprojection, the one containing the most positive pixels

3

in the tracked area. This update assists with not only with
lighting changes but also with quick movement by ensuring
the track is not lost if the hand blurs with fast motion caus-
ing a slightly different histogram. To account for a user’s
hand leaving the frame, we have configured the tracking al-
gorithm to continually search the lower half of the image for
objects matching the color histograms of the size expected
of a finger. The lower half has been selected as our search
area since the user is most likely to return their hands to the
view of the camera from their lap or a desk.

After each frame from the camera is processed by the
tracker, the relevant data is extracted into an observation O
such that

Ot = (Xscr,i, Yscr,i, Xrel,i, Yrel,i, Di, Vi) (1)

where i is the finger’s ID, Xscr,Yscr are the screen coor-
dinates referenced by the finger, Xrel,Yrel are the relative
distances to the first (pointer) finger, D is the diameter of
the finger, and V is its velocity in relation to the previous
observation Ot−1. Only Ot and Ot−1 are maintained by
the system at any time. The observation is submitted to the
gesture processing system after it is generated.

3.1.2 Gesturing

The system currently allows for three gestures for interac-
tion with the computer: mouse movement, mouse click-
ing, and scrolling (see Figure 2). All three gestures are
variations on pointing at the screen. To move the mouse
the user moves their pointer finger in front of the cam-
era at a distance outside of the AirTouch plane. This can
be likened to how a Tablet PC or Wacom tablet handles
mouse movement—then pen can hover above the interface
and still change the location of the mouse pointer. Mouse
clicking is actually two gestures—moving the pointer fin-
ger into the plane to activate mouse down, and removing
it to mimic mouse up. In other words, we have a virtual
touch screen that allows for click-and-drag type actions. Fi-
nally, the scrolling gesture is accomplished by moving both
the pointer and middle fingers into the interaction plane and
moving them vertically, which is common on multitouch
trackpads. Recognition of a finger i’s containment in the
plane is computed by taking the difference of Dtouch from
the calibration and Di from the observation.

All of these gestures result in calls directly to the win-
dowing system that would otherwise be made by the mouse.
We therefore require none of the client software be modified
for our system to work. We have also implemented an API
for applications to plug-in to AirTouch and add their own
gestures, but the details are beyond the scope of this paper.

Figure 2. The CVHCI Gestures. (a) shows moving the mouse
around the screen. (b) shows the user moving their hand in to
and out of the plane with their pointer finger to click. (c) shows
the user using two fingers in the plane moving vertically to scroll.

3.1.3 Discussion

The system has undergone informal user testing, and initial
results appear to be promising. Two anticipated issues—
users’ inability to adapt to an invisible plane and that hand
fatigue would quickly set in—appear to be absent, but will
require further study.

An early version of the system was demoed with approx-
imately 15 students and faculty attempting to use the sys-
tem. While at the time the system was too rough to get
much data, we observed that with only minimal time (tens
of seconds) using the system users tend to adapt to the lo-
cation of the plane even if there are slight calibration errors
or the system had been calibrated by another person, which
suggests a one-time “factory” calibration may be possible.

Users have also reported after using the system for sig-
nificant amounts of time (for example a 3-hour demo given
at CVPR [15]) the phenomena known as “Gorilla Arm”
does not readily occur. We believe this stems from the user
being able to sit in a relaxed position, and not being required
to constantly have their hands in the view of the camera.
Fatigue can occur after extended periods of time, but more
testing is required to determine where this threshold is and
what the implications might be.

4

Freestyle Sketching Stage

AirTouch waits in background

for the initialization signal

Initialize

Terminate

Output

 image

database

Start:

Results

CBIR

query

Figure 3. Overview of the AirTouch-based Freestyle Sketching
system.

Users reported an affinity for the use of the touchscreen-
type interaction metaphor as it is one that they were already
familiar and comfortable with. Many people have com-
mented that they would like to see a system like this uti-
lized for computer control in areas other than at a desk—
ranging from a 10-foot interface for interacting with large-
scale data, to cell phones, and even for use with automotive
computers. Our approach’s credibility as an usable inter-
face is bolstered by a usability study that found users liked
the idea of an invisible “engagement plane” and prefered
gesturing to manipulate the system rather than voice com-
mands [23]. Presumably users like the sensation that they
are actually manipulating the on-screen controls using their
hands.

3.2. AirTouch-based Freestyle Sketching for CBIR

In this AirTouch-based Freestyle Sketching for CBIR sys-
tem, we demonstrate that the true power of AirTouch is not
limited to gesture-based HCI input; it is more of a general-
purpose, unrestrained way of interacting with computers.
In short, the user performs freestyle sketching on the self-
defined virtual plane.2 Anything from the user’s finger and
fist to a special gesture, or even a mug can be specified as the
input device during the initialization stage. The input device
is then continuously detected and tracked; when it intersects
with the virtual plane, it is treated as if a pen is touching the
surface of a paper, and the trajectory is added to the canvas.
When a termination gesture is detected, the canvas is out-
putted to trigger a Content-based Image Retrieval (CBIR)
query. Figure 3 is an overview of how the AirTouch-based
Freestyle Sketching system triggers a CBIR query.

3.2.1 System Setup and Initialization

For the goal of requiring only minimum calibration effort
and portability, a single webcam setup is again used in
the AirTouch-based Freestyle Sketching system. An ini-
tialization process similar to those of the Computer Vision

2This “plane” could be some more complex segment of space such as
a quadratic or a patch from a sphere, rather than a strict plane.

Curved surface
formed by arms
swinging naturally.

Projected onto the
2d surface captured
by the video camera. The hand's size

becomes smaller as
it nears the corners
of the projected surface.

Figure 4. When the user thinks that he or she is drawing on a 2D
virtual plane vertical to the camera, its often a curved one due to
the way human arms rotate.

for General HCI system could be used to learn the size
of the user-chosen input device, where multiple corners
of the virtual plane need to be specified. However, this
Freestyle Sketching system doesn’t require as detailed dis-
tance measurement as the HCI system demonstrated pre-
viously. Therefore, the initialization process is simplified
to just touching one corner, with the additional assumption
and constraint that the virtual plane is strictly orthogonal to
the webcam. A robust optical-flow-based transition model
is developed in Sec. 3.2.2 to deal with the curvatures in the
virtual surface while determining the relative distance of the
input device to the surface.

The user-chosen input device is learned during the ini-
tialization stage, and is continuously detected and tracked
during the sketching stage. Since a simple contour-based
CBIR system is used in this initial implementation, the user
is limited to sketching the contour of the to-be-queried ob-
ject with one continuous sketch. This restriction is to be re-
laxed in future AirTouch-based Freestyle Sketching subsys-
tems as the CBIR subsystem gets more sophisticated (refer
to Sec. 3.2.3.)

3.2.2 Freestyle Sketching Stage

Prior to the sketching stage, the input gesture and device is
detected occasionally at less than 1fps. However, once the
sketching stage starts, the system works at 15fps in order to
let the user have a real-time response. Therefore, once the
input device intersects with the virtual surface, we reduce
the computational load by only sparsely selecting feature
points and calculating the optical flow within the image re-
gion that contains the input device. The classical Shi and
Tomasi algorithm [16] is used to select the feature points,
and Pyramidal Lucas Kanade [3] is used to compute the op-
tical flow between the frames. Due to the occasional inaccu-
racy caused by optical flow estimations, a commonly used
region-based flow-averaging approach as in [2] is used to
estimate the motion of the whole input device and a Kalman
filter [21] is used to further stabilize the tracking results.

During the sketching stage, the distance between the in-

5

x

x x x xx
xx

x x x
xx

x

When the input device moves away from the virtual surface, the motion vectors
inside the tracked input device would move towards the center of the object.
Red arrows are the motion vectors and green X's are the feature points selected.

Figure 5. Estimating the relative change-of-distance between an
object and the video camera via the movements of the optical flow
vectors within the object. Fist figure courtesy of artist Loston Wal-
lace (http://lostonwallace.deviantart.com/).

put device and the single video camera needs to be contin-
uously estimated. However, notice that the virtual surface
formed by the user freely swinging their hands is often not a
flat 2D surface when being projected into the video capture
device, as shown in Fig. 4. This would cause the captured
image of the hand to become smaller as it nears the corners
of the image. To remedy this problem, multiple samples of
the input device need to be captured at different corners of
the image during the initialization stage, which would con-
tradict our goal of minimizing system calibration. Luckily,
with frames being processed at real-time rates, an easy way
to determine if the input device have left the virtual surface
exists by simply looking at where the tracked feature points
are moving: when the object moves away from the camera,
the optical flows within the object flow towards the center
of the object, as shown in Fig. 5; when it moves towards the
camera, the optical flows flow away from the center.

Based on this observation, we record the change-of-
distance between the optical flow vectors and the distribu-
tion of their angles for all optical flow vectors originating
within the image region of the user-chosen input device. We
use the entropy E(·) of the angle distribution Xt (at frame
t) to estimate the coherency of the motion vector orienta-
tions. It is approximated through the discrete entropy of an
n bin histogram:

E(Xt) = −
n∑

i=1

f(xti) log f(xti) . (2)

When the input device is moving on or near the virtual
surface with little noise, Xt peaks at bins that correspond
to the moving direction, which results in relatively smaller
E(Xt) values. When the input device is moving either to-
wards or away from the virtual surface, Xt’s distribution is
spread out covering multiple bins, which results in relatively
largerE(Xt) values. The two distributions are learned non-
parametrically offline and the threshold τ for determining
the two cases is fixed throughout run-time.

On surface Off surface

flows toward center

flows away from center

coherent flows

coherent flows

Figure 6. The state-transition model used in for determining when
the input-device touches the user-defined virtual surface.

When E(X) > τ , we know that the motion vectors are
not moving towards the same direction, i.e. the input de-
vice is either moving towards or away from the camera, or
performing non-rigid transformations. Non-rigid transfor-
mation of the input device is beyond the scope of this dis-
cussion, since even sophisticated models with multiple cali-
bration points are not guaranteed to handle the situation. As
for discriminating between “moving towards” or “moving
away” from the camera, the average distance from the in-
dividual motion vectors to the center of the input-device is
compared from frame to frame:

∆ =

m∑
j=1

D(vt+1
j , ot+1)/m−

m∑
j=1

D(vtj , o
t)/m (3)

D(·) is the euclidean distance between any two points on
the image, vtj is the origin of the jth of m motion vector
within the region of the input-device in frame t, and ot is
the center of the input device, tracked and updated by the
Kalman filter.

A simple two-state transition model is used to determine
when the user has interacted with the virtual surface, as
shown in Fig. 6. When

E(X) > τ && ∆ < 0 (4)

the input device is moving from on surface to off surface,
and when

E(X) > τ && ∆ > 0 (5)

the input device is moving from off surface back to on sur-
face. This method for determining the intersection of the
input device and virtual surface not only requires minimal
calibration, but is also very robust to virtual surface defor-
mations and adds little additional computation cost. This
system, implemented in mixed C/C++ runs at 30+ fps on
Intel Core 2 Duo 2.2Ghz machines.

3.2.3 CBIR Query Stage

Current CBIR systems roughly fall into two categories: (1)
sample query image based systems that retrieve similar im-
ages in terms of low-level features such as color, texture,
and salient points; (2) semantic based systems that retrieve

6

images by query keywords such as “find images with sky
and sea”. The first type of CBIR system is prone to re-
turning completely irrelevant images with analogous low-
level features, while the second type is constrained by the
limited amount of keywords/classes the system recognizes.
Another drawback of the sample query image based CBIR
system is the hassle of finding a sample query image itself.

Inspired by Marr’s theory that primal sketches [6] alone
provide enough information to recognize the object and
scene, we have developed a CBIR system that retrieves
images containing objects similar to what the user has
sketched. The CBIR subsystem uses the AirTouch-based
Freestyle Sketching subsystem’s output as input. The re-
trieval system itself consists of the following parts:

1. For each image in our query database, we construct
an edge map which is seen as our ‘primal sketch’ by
using the boundary detector proposed by Martin et al.
[10]. We then trace the boundaries, vectorize them,
and compute the vector field for each image by using
orientation diffusion [11].

2. When an image query is performed, after extracting
and vectorizing the boundaries of the image, we calcu-
late the distance between the query image and images
in the database by calculating the difference of the ori-
entation of points in the boundary of query image with
the corresponding points’ orientation of the image in
the database. Then we rank the images by the distance.

3.2.4 Discussion

In the same way as the CVHCI system, the AirTouch-
based Freestyle Sketching for CBIR system has been openly
demonstrated with more than 15 outside users testing
the system. The flow-averaging technique we employed
showed robustness towards the individual flow calculation
errors, which is often caused by the unintended rotation of
the input device. The two-state transition model provides a
robust way of estimating the relative distance between the
user-chosen input device and the video camera. As opposed
to methods that are trained on skin color or equipped with
specific hand-detection models, humans entering or leaving
the background (as shown in the last frame of the freestyle
sketching stage in Fig. 3) have little effect on the system’s
accuracy or efficiency.

Issues that our test users reported are often related to the
simple contour-based CBIR subsystem. As shown in the re-
sults of Fig. 3, our contour-based image queries are prone
to returning semantically-different, yet contour-wise similar
images. A more sophisticated sketching model that is ca-
pable of sensing multiple-levels of pressure applied to the
virtual surface (like the Wacom styluses) would allow the
users to draw more realistic images, therefore allowing the

CBIR system to perform better queries. However, with the
goal and restriction of having as simple calibration as possi-
ble, the accuracy of the pressure-estimation process would
decrease as the number and level of pressure-levels it senses
increases. Another possible route would be to develop a nat-
ural and easy-to-use drawing mechanism for color and even
texture.

4. Conclusion
The issue of natural and comfortable interaction between

humans and computers has received much study in recent
years. On several occasions vision systems have been pro-
posed in an attempt to create a natural method for interact-
ing with machines while not directly touching them. These
systems have primarily been restricted to lab settings, likely
due to robustness problems, difficulty of set-up, and cost
issues. In contrast, we have focused our efforts on a vision-
based interaction system that uses standard hardware and
extends already well-known interaction metaphors.

The concept of using a virtual plane inhabiting the space
in front of a camera to delimit the regions in which a ges-
ture can occur has shown to have promise as an interface
metaphor. The methods described here allow for more com-
plete use of the capabilities of simple consumer-grade cam-
eras to perceive depth and use this to augment the gesture
systems which are common in research that do not exten-
sively utilize the capabilities of the z-axis.

We believe that this interface metaphor is one which has
nearly limitless applications in offices, labs, households,
industry, and on the move. We hope this system will be
adopted by others and used to promote efficient and natural
methods of human-computer interaction.

5. Acknowledgements
We are grateful for the support provided by NSF CA-

REER IIS-0845282 and NSF CNS-0855220.

References
[1] Apple Inc. Apple sells three million ipad in 80 days.

http://www.apple.com/pr/library/2010/06/22ipad.html.
[2] X. Bai, J. Wang, D. Simons, and G. Sapiro. Video SnapCut:

robust video object cutout using localized classifiers. In ACM
SIGGRAPH 2009. ACM, 2009.

[3] J. Bouguet et al. Pyramidal implementation of the lucas
kanade feature tracker description of the algorithm. Intel
Corporation, Microprocessor Research Labs, OpenCV Doc-
uments, 1999.

[4] G. R. Bradski. Computer vision face tracking for use in a
perceptual user interface. Technical report, Intel Technology
Journal, Q2 2008.

[5] L. Bretzner, S. Lenman, and B. Eiderbck. Computer vision
based recognition of hand gestures for human-computer in-
teraction. Technical report, University of Stockholm, 2002.

7

[6] C. Guo, S. Zhu, and Y. Wu. Towards a mathematical theory
of primal sketch and sketchability. In Proceedings of IEEE
International Conference on Computer Vision, 2003.

[7] S. K. Jakub Segen. Video-based gesture interface to interac-
tive movies. In Proceedings of the Sixth ACM International
Conference on Multimedia, pages 39–42, 1998.

[8] J. Johnson, T. Roberts, W. Verplank, D. Smith, C. Irby,
M. Beard, and K. Mackey. The Xerox Star: A Retrospec-
tive. Computer Graphics, 22(9):11–26, 1989.

[9] R. E. Kalman. A New Approach to Linear Filtering and Pre-
diction Problems. Transactions of the ASMA; Journal of Ba-
sic Engineering, 82:35–45, 1960.

[10] D. Martin, C. Fowlkes, and J. Malik. Learning to detect nat-
ural image boundaries using brightness and texture. In Proc.
of NIPS, pages 1255–1262, 2002.

[11] P. Perona. Orientation diffusions. In cvpr, page 710. Pub-
lished by the IEEE Computer Society, 1997.

[12] E. Petajan. Vision-based HCI applications. In B. Kisacanin,
V. Pavlovic, and T. S. Huang, editors, Real-Time Vision for
Human-Computer Interaction. Springer, 2005.

[13] C. Pinhanez. The everywhere displays projector: A device
to create ubiquitous graphical environments. In Proceedings
of UBICOMP, volume LNCS 2201, pages 315–331, 2001.

[14] P. Robertson, R. Laddaga, and M. V. Kleek. Virtual mouse
vision based interface. In Proceedings of IUI’04, pages 177–
183, January 2004.

[15] D. R. Schlegel, J. A. Delmerico, and J. Corso. Armchair
Interface: Computer Vision for General HCI. In IEEE Con-
ference on Computer Vision and Pattern Recognition: Demo
Track, 2010.

[16] J. Shi and C. Tomasi. Good features to track. In Proceedings
of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 593–593. Citeseer, 1994.

[17] B. Shneiderman. Direct Manipulation: A Step Beyond Pro-
gramming Languages. IEEE Computer, 16(8):57–69, 1983.

[18] Toshiba Research Europe Ltd. Cambridge Research Labora-
tory. Projects: Gesture user interfaces, May 2010.

[19] C. von Hardenberg and F. Bérard. Bare-hand human-
computer interaction. In Proceedings of the ACM Workshop
on Perceptive User Interfaces, November 2001.

[20] R. Wang and J. Popovi. Real-time hand-tracking with a color
glove. ACM Transactions on Graphics, 2009.

[21] G. Welch and G. Bishop. An introduction to the Kalman
filter. University of North Carolina at Chapel Hill, Chapel
Hill, NC, 1995.

[22] W. Westerman, J. G. Elias, and A. Hedge. Multi-touch:
A new tactile 2-d gesture interface for human-computer in-
teraction. In Proceedings of the Human Factors and Er-
gonomics Society 45th Annual Meeting, pages 632–636,
2001.

[23] A. Wilson and N. Oliver. Gwindows: Towards robust
perception-based ui. In IEEE Workshop on Human Com-
puter Interaction at Conference on Computer Vision and Pat-
tern Recognition, 2003.

[24] C. R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-Time Tracking of the Human Body. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(7):780–785, 1997.

[25] G. Ye, J. J. Corso, D. Burschka, and G. D. Hager. VICs: A
Modular HCI Framework Using Spatio-Temporal Dynamics.
Machine Vision and Applications, 16(1):13–20, 2004.

8

		2010-12-08T08:06:53-0600
	Preflight Ticket Signature

