Optimal Control with Weighted Average Costs and
Temporal Logic Specifications

Eric M. Wolff Ufuk Topcu Richard M. Murray
Control and Dynamical Systems Control and Dynamical Systems Control and Dynamical Systems
California Institute of Technology  California Institute of Technology  California Institute of Technology
Pasadena, California 91125 Pasadena, California 91125 Pasadena, California 91125
Email: ewolff@caltech.edu Email: utopcu@cds.caltech.edu Email: murray@cds.caltech.edu

Abstract—We consider optimal control for a system subject repeatedly visit set of regions, but visit a high-weightioeg
to temporal logic constraints. We minimize a weighted average more often than others. Thus, we minimize a weighted average
cost function that generalizes the commonly used average costoqst function over system trajectories subject to the caimt

function from discrete-time optimal control. Dynamic program- that . t l logi ecification is satisfied. Thistc
ming algorithms are used to construct an optimal trajectory for at a given temporal logic specincaton | Istied.

the system that minimizes the cost function while satisfying a function generalizes the average cost-per-stage costidanc
temporal logic specification. Constructing an optimal trajectory commonly studied in discrete-time optimal contral [4].
takes only polynomially more time than constructing a feasible Optimality has been considered in the related area of
trajectory. We demonstrate our methods on simulations of \epicle routing[[21L]. Vehicle routing problems generaltbe
autonomous driving and robotic surveillance tasks. . y
traveling salesman problem, and are thus NP-complete. A

different approach to control with LTL specifications corige
the controller design problem into a mixed-integer lineao-p

As the level of autonomy expected of robots, vehicles, an@lam [12]. However, this approach is restricted to properti
other cyberphysical systems increases, there is a need dpecified over a finite horizon. Chatterjee et al. [5] create
expressive task-specification languages that can encattede control policies that minimize an average cost functionhie t
behaviors. Temporal logics such as linear temporal logidJL presence of an adversary. The approach_in [20] is the most
are promising formal languages for robotics. LTL provideslosely related to our work. Motivated by surveillance sk
a natural framework to specify desired properties such @y minimize the maximum cost between visiting specific
response (if A, then B), liveness (always eventually A)esaf regions. Our work is complementary to [20] in that we instead
(always not B), stability (eventually always A), and prigri minimize a weighted average cost function.

(first A, then B, then C). The main contribution of this paper is a solution to the
Temporal logics have been used in the robotics and contpbblem of, given a transition system model, creating aesyst
communities to reason about system properties. A framewarkjectory that minimizes a weighted average cost function

for automatically generating controllers for linear syste subject to temporal logic constraints. We solve this pnoble
that satisfy a given LTL specification is presented lin/ [16by searching for system trajectories in the product automat
Sampling-based approaches for more general dynamical sysifted space that contains only behaviors that are validHe
tems are given in [11, 19]. Controllers can be constructedhnsition system and also satisfy the temporal logic $ioeei
that satisfy a specification in the presence of an advetsatian. An optimal system trajectory corresponds to a cycle in
environment|[17], and receding horizon control can redbee tthe product automaton, which is related to the well-studied
resulting computational complexity of synthesizing suoin-c cost-to-time ratio problem in operations research. We give
trol policies [23]. While these approaches all generateilfiéas computationally efficient dynamic programming algorithms
control policies that satisfy a temporal logic specificatioo for finding the optimal system trajectory. In fact, it takesyo
practical optimality notions can be imposed in their sgdin polynomially more effort to calculate an optimal solutidvai

Often there are numerous control policies for a systemfeasible solution, i.e., one that just satisfies the spadidin.
that satisfy a given temporal logic specification, so it is We present preliminaries on system models, task-
desirable to select one that is optimal with respect to sorapecification languages, and graph theory in Sediibn Il. The
cost function, e.g., time or fuel consumption. Since terapormain problem is formulated in Sectignllll and reformulated
logic specifications include properties that must be satisfias an equivalent graph problem in Section IV. We solve
over infinite state sequences, it is important that the fofm this equivalent problem for finite-memory and infinite-megno
the cost function is also well-defined over infinite sequencepolicies in Sectiong V-A an@_VAB respectively. These tech-
We consider an average cost, which is bounded under certaiques are demonstrated on numerical examples motivated by
mild assumptions discussed in Sectign 1. Additionally, &@ym autonomous driving and surveillance tasks in Sedfidn VI. We
be desired to give varying weights to different behavioses, i conclude with future directions in Sectién VII.

I. INTRODUCTION



Il. PRELIMINARIES sequel, we will create a run with the minimal weighted averag

We now provide preliminaries on the modeling and spe€9St. Thus, the de_signer can give transitions that she ghink
ification languages, weighted transition systems and Hine3€ Preferable a higher weight than the rest. As an example,
temporal logic respectively, used throughout the paper. consider an autonomous car that is supposed to visit differe

An atomic propositioris a statement that has a unique trutfpcations in a city while obeying the rules-of-the-road. In

value (True or False). this case, a task specification would encode the locaticats th
. should be visited and the rules-of-the-road. Costs mighhbe
A. Modeling Language time required to traverse different roads. Weights miglcbele

We use finite transition systems to model the system behawveferences such as visiting certain landmarks. An example
ior. In robotics, however, one is usually concerned with-corscenario is discussed in detail in Sectiod VI.
tinuous systems that may have complex dynamic constrairgs.
This gap is partially bridged by constructive procedures fo i s i ] .
exactly abstracting relevant classes of continuous system We are interested in using linear temporal logic (LTL) to
including unicycle models, as finite transition systemsZ3, CO”C_'SGW and unambiguously specify dgswed system beha_w
d]. Additionally, sampling-based methods, such as rapidiyTL 1S @ powerful formal Ianguage that is relevant to rob_suc
exploring random tree$ [18] and probabilistic roadmap§, [15°€cause it allows system behaviors such as response,dg/ene
gradually build a finite transition system that approxirsatesafety, stability, priority, and guarantee to be specified.
a continuous system, and have been studied in this contextiowever, the syntax and semantics of LTL are not relevant

[11,[19]. Examples of how one can abstract continuous dynaffll the theory developed in this paper, so we only mention
ics by discrete transition systems are giverl Il [2] 3, b[ g1, 1them as needed for the examples in Sedfidn V1. The interested

' reader can find a comprehensive treatment of LTLlin [1].
Definition 1. A weighted (finite) transition systera a tuple |nstead, we follow the automata-based approach of Vardi and
T = (S, R, 50, AP, L, c,w) consisting of (i) a finite set of states\yo|per [22], and consider non-deterministic Buchi auteanat
S, (i) a transition relation? ¢ 5.5, (iii) an initial stateso € S, (hereafter called Buchi automata), which accept the cléss o
(iv) a set of atomic propositiond P, (v) a labeling function |anguages equivalent to-regular languages. Thus, our results
L:S - 247, (vi) a cost function:: R — R, (vii) and a weight hold for any property that can be specified as.anegular
functionw : R - Ryo. language, which is a regular language extended by infinite

We assume that the transition system is non-blocking, so f&Petition (denoted by). In particular, LTL is a subset ab-
each state ¢ S, there exists a statee S such that(s, ¢) € R. regular languages, so an equivalent Buchi automaton can be
A run of the transition system is an infinite sequence &onstructed for any LTL formulg [1].
its states,c = sos1s2... Wheres; ¢ S is the state of the pefinition 2. A Buchi automaton is a tuple
system at index (also denotedr;) and (s;,s;+1) € R for 4 - (Q,%,6,Q0,Acc) consisting of (i) a finite set of
i=0,1,.... A word is an infinite sequence of labels(c) =  states(, (ii) a finite alphabets, (i) a transition relation
L(so)L(s1)L(s2) ... whereo = sgs1s2... is a run. §<QxXxQ, (v) a set of initial stateg), < Q, (v) and a
Let S;; be the set of all runs up to indek An infinite-  get of accepting states AcaQ.
memorycontrol policy is denoted byr = (40, 41,...) Where | et $% pe the set of infinite words oveE. A run for o =
pu = Si —~ R maps a partial runsps; ...sp € Sp 10 @ NeW 4,4, 4, ... ¢ ¥ denotes an infinite sequenggqi g, . .. of
transition. A policyr = (u, i, ...) is finite-memoryif 1u: S states inA such thatgy € Qo and (g;, A, gis1) € 6 for i > 0.
M — R x M, where the finite seM is called the memory. Rungyq:¢» ... is accepting (acceptedy ¢; € Acc for infinitely
For the deterministic transition system models we consid@gany indicesi ¢ N appearing in the run.
the run of a transition system implicitly encodes the cdntro - ] . )
policy. An infinite-memoryrun is a run that can be imple- Intun!vely, arunis gccepted by a Buchi automaton if a state
mented by an infinite-memory policy. Similarly for finite-in Acc is visited infinitely often. _ _ _
memory runs. We use the definition of an accepting run in a Buchi
When possible, we will sometimes abuse notation and reféftomaton and the fact that every LTL formuja can be
to the cost(t) of a statet € S, instead of a transition between'®Presented by an equivalent Buchi automatop to define
states. In this case, we enforce thes,¢) = c(t) for all Satisfaction of an LTL formulg.

transitions (s,¢) € R, i.e., the cost of the state is mappegefinition 3. Let A, be a Buchi automaton corresponding to
to all incoming transitions. Similar notational simplift@ is  the LTL formula¢. A run o = sgsiso... in T satisfiesy,

used for weights and should be clear from context. denoted by & ¢, if the word L(o) is accepted byA.,.

The cost function: can be viewed concretely as a physical
cost of a transition between states, such as time or fuet Tfs- Graph Theory
cost can be negative for some transitions, which could, forThis section lists basic definitions for graphs that will be
example, correspond to refueling if the cost is fuel consumpecessary later. Let = (V, E') be a directed graph (digraph)
tion. The weight functionv can be viewed as the importancevith |V| vertices andE| edges. Lete = (u,v) € E denote
of each transition, which is a flexible design parameterhi tan edge from vertex: to vertexv. A walk is a finite edge

Specification Language



sequenceeg, eq,...,e,, and acycleis a walk in which the a runo* such that

initial vertex is equal to thg final vertex. pathis gwalk with J(0*) = inf {J(0) | o is finite-memory run ofT, o = o},
no repeated vertices, andsample cycles a path in which the ?)
initial vertex is equal to the final vertex.

: . . ) i.e., runc* achieves the infimum ir{2).
A digraph G = (V, E) is strongly connectedf there exists

a path between each pair of vertices € V. A digraphG’ = An optimal satisfying infinite-memory ruis defined simi-
(V',E') is asubgraphof G = (V,E) if V' ¢V andE' c E. larly for infinite-memory runs off .
A digraph G’ c G is astrongly connected componeifitit is ~ Although we show in Sectiof ViB that infinite-memory
a maximal strongly connected subgraph(af runs are generally necessary to achieve the infimunilin (2),
we focus on finite-memory runs, as these are more practical
I1l. PROBLEM STATEMENT than their infinite-memory counterparts. However, findimg a

optimal satisfying finite-memory run is potentially ill-ped,

In this section, we formally state the main problem of thes the infimum might not be achieved due to the constraint
paper and give an overview of our solution approach. Leéfat the run must also satisfy. This happens when it is
T =(S,R,s0, AP, L,c,w) be a weighted transition systempossible to reduce the cost of a satisfying run by including a
and ¢ be an LTL specification defined ovetP. arbitrarily long, low weighted average cost subsequence. F
instance, consider the rum = (spsps1)“. Let ¢(so,50) = 1,
c(s1,80) = ¢(s0, s1) = 2 and the weights equal 1 for each tran-
sition. Assume that a specification is satisfiedifis visited

Definition 4. Let o be a run of7 whereo; is the state at the
i-th index of o. The weighted average cosif run o is

) Sroc(oi, o) infinitely often. Then,J (o) can be reduced by including an
J(0) = limsup == ———=, @ arbitrarily | ber of self transitions frosp to s i
nooo oo W(0i, 0i41) arbitrarily large number of self transitions frosp to s in o,
even though these do not affect satisfaction of the spetidita
where.J maps runs of/” to R u oco. Intuitively, one should restrict these repetitions to mékding

Since LTL specifications are typically defined over infinit&" optimal satisfying finite-memory run Well—pqsed. W.e will
sequences of states, we consider the (weighted) average EBQW that one can 'al\./vays compute assuboptimal 'f.|n|te-
function in (1) to ensure that the cost function is boundéds T memory run by restrlctm_g the length of the_se repetitions. W
cost function is well-defined when (Y0, 7s51) < oo for all defer the details to S_ectllv_, when we will have developed
1 >0, and (i) there exists @ ¢ N such thatw(o;,0;41) > 0 for the necessary technical machinery.
infinitely many: > j, which we assume is true for the sequelProblem 1. Given a weighted transition systefnand an LTL
Assumption (ii) enforces that a run does not eventuallyt vigipecificationp, compute an optimal satisfying finite-memory
only states with zero weights. runo* of T if one exists.

To better understand the weighted average cost functi&ré
J, consider the case where(s,t) = 1 for all transitions
(s,t) € R. Let a coste(s,t) be arbitrarily fixed for each tran-
sition (s,t) € R. Then,J(o) is the average cost per transitio
between states (or average cost per stagel (¥ ¢) = 1 for
states ins,t € S’ ¢ .S andw(s,t) = 0 for states inS-.5’, then
J (o) is the mean time per transition between states’in IV. REFORMULATION OF THE PROBLEM

As an example, consider = (sgs1) wheresgs; repeats  We solve Problerfl]1 by first creating a product automaton
indefinitely. Letc(sg,s1) = 1, ¢(s1,80) = 2, w(sg,s1) = 1, that represents runs that are allowed by the transitioresyst
and w(s1,80) = 1. Then, J(o) = 1.5 is the average cost 7 and also satisfy the LTL specificatign We can limit our
per transition. Now, letw(sy,sg) = 0. Then,J(o) = 3 is the search for finite-memory runs, without loss of generality, t
average cost per transition frosg to s;. runs in the product automaton that are of the fosm =

The weighted average cost function is more natural thapre(osur)”. Hereopre is a finite walk andss is a finite cycle
the minimax cost function of Smith et all_|20] in somehat is repeated infinitely often. Runs with this structure a
application contexts. For example, consider an autonomasgid to be inprefix-suffixform. We observe that the weighted
vehicle repeatedly picking up people and delivering themverage cost only depends oy, which reduces the problem
to a destination. It takes a certain amount of fuel to travéd searching for a cycleg, in the product automaton. This
between discrete states, and each discrete state has a fdaaich can be done using dynamic programming techniques
number of people that need to be picked up. A natural probldor finite-memory runs. The optimal accepting ray is then
formulation is to minimize the fuel consumption per persoprojected back oy aso*, which solves Probleri] 1.
picked up, which is a weighted average cost where fuel is the
cost and the number of people is the weight. The cost functio
in [20] cannot adequately capture this task.

mark 1. For completeness, we show how to compute
optimal satisfying infinite-memory runs in Section V-B. Bee
runs achieve the minimal weighted average cost, but do so
rby adding arbitrarily long progressions of states that db no
change whether or not the specification is satisfied.

Product Automaton

r'We use the standard product automaton construction, due to
Vardi and Wolper|[22], to represent runs that are allowed by
Definition 5. An optimal satisfying finite-memory ruof 7 is  the transition system and satisfy the LTL specification.



Definition 6. Let T = (S,R,s0, AP, L,c,w) be a weighted to that of [20]; we optimize a different cost function on the
transition system andd = (Q,24%,5,Qo,Acc) be a Buchi Vardi and Wolper|[22] product automaton construction.
automaton. Theproduct automatoriP = 7 x A is the tuple
P :=(Sp,0p,ACCp,sp o, APp, Lp,cp,wp), consisting of

() a finite set of state$r =5 x Q,

(i) a transition relation o < Sp x Sp, where _ , _ . .
((5,9),(s'.¢')) € dop if and only if (s,s') € R It is well-known that if there exists an accepting run in

and (¢, L(s),¢') €6, 73 for an LTIT formula ¢, then the_re exists an accepting run
in prefix-suffix form for ¢ [1]. This can be seen since the
product automatorP is finite, but an accepting run is infinite
and visits an accepting state infinitely often. Thus, attleas
one accepting state must be visited infinitely often, and thi
can correspond to a repeated cycle including the accepting
state. For an accepting rutp, the suffixogys is a cycle in the
product automatorP that satisfies the acceptance condition,
i.e., it includes an accepting state. The prefjy. is a finite
wp((5,9),(s',¢")) = w(s,s') for all ((s,9),(s",¢)) « run from an initial stat&io t% a state on apn a!i:%:epting cycle.
op. The following lemma shows that a minimum weighted
A run op = (s0,q0)(51,q1) ... is acceptingif (s;,q;) e average cost run can be found searching over finite-memory
Accp for infinitely many indicesi € N. runs of the formop = opre(sur)*.

The projection of a runop = (s0,q0)(s1,q1)--- In the | emma 2. There exists at least one accepting finite-memory

product automatorP is the runo = sgs; ... in the transition ., of P that minimizes/ and is in prefix-suffix form, i.e.,
system. The projection of a finite-memory run7mis a finite- op = opre(Tsu) -

memory run in7 [1].

The following proposition relates accepting runs7inand Proof: Let ogen be an accepting finite-memory run
P and is due to Vardi and Wolper [22]. that is not in prefix-suffix form and has weighted average cost

J (ogen). Sinceogyenis accepting, it must visit an accepting state

Proposition 1. ([22]) Let A, be a Buchi automaton cor- s, . ¢ S, infinitely often. Let the finite walkoye be from an
responding to the LTL formulg. For any accepting run jnjtial statesp , to the first visit ofsace Now consider the set
op = (50,90)(51,41) - - - in the product automato® = TxA,,  of walks between successive visitsstg, Each walk starts and
its projectiono = spsi ... in the transition systerfi” satisfies ends ats,e. (so it is a cycle), is finite with bounded length,
¢. Conversely, for any rum = sgs1 ... in 7 that satisfiesp, and has a weighted average cost associated with it. For each
there exists an accepting rump = (so,q0)(s1,q1) ... in the  cycle 7, compute the weighted average cost™). Let oy
product automaton. be the finite cycle with the minimum weighted average cost
over all 7. Then, J(op) = J(opre(osuf)”) < J(0gen). Since
ogen Was arbitrary, the claim follows. [ |

The next proposition shows that the weighted average cost
of a run does not depend on any finite prefix of the run.

Definition 7. Let opre be a finite walk inP andos,s be a finite
cycle inP. A run op is in prefix-suffiform if it is of the form

op = Jpre(Usuf)w-

(i) a set of accepting states Asc= S x Acc,
(iv) a set of initial states's ¢, with (s, q0) € Sp o if go € Qo,
(v) a set of atomic propositiond Pp = Q,
(vi) a labeling functionLp : S x Q — 29,
(vii) a cost functionep : 6p - R, wherecp((s,q),(s',q')) =
c(s,s’) for all ((s,q),(s',q")) € ép, and
(viii) a weight function wp : dp — Ry, where

Lemma 1. For any accepting ruwp in P and its projections
in 7, J(op) = J(o). Conversely, for any in 7 that satisfies
©, there exists an accepting rurp in P with J(op) = J (o).

Proof: Consider a rurvp = (so,q0)(s1,41) ... In P. By
definition, for stateq(s;,q:), (Si+1,¢i+1) € Sp and s;, s;41 €
ST, the COStC'p((Si,qi)7(Si+17qi+1)) = C(Si,8i+1) and the
weightwp ((si,q:), (5i+1,4i+1)) = w(si, si41) forall i > 0, so
J(op) = J(o). Now consider a rurr = sps;... in 7 that Proof: From Definition[1, costs and weights depend only
satisfiesp. Propositio L gives the existence of an acceptingn the transition—not the index. Also, from the assumptions
run op = (S0,490)(s1,41) ... in P, and soJ(op) = J(o). M that directly follow equation[{1), transitions with posi

By Lemmall, an accepting rus;, with minimal weighted weight occur infinitely often. Thus,
average cost in the product automaton has a projection in the . > c(0,0ie1)
transition systemr* that is a satisfying run with minimal J(o) = hmsupm
weighted average cost. e o AT T .
~ limsup Yico (05,0401) + iy (04, 0441)
B. Prefix-Suffix Form nooe Y tw(os,0001) + X1y w(o, 0441)

Y (00, 0441)

Proposition 2. Let o = sgs1... be a run (in7 or P) and
Okioo = SKSk+1 - - - D€ the runc starting at indexk € N. Then,
their weighted average costs are equal, i.&(¢) = J(0k:00)-

We show that Problenh] 1 is equivalent to finding a run = limsup = J(Ohioo)-
of the form op = opre(0sur)®, in the product automatof® nooo e W(Ti, 0i41) '
that minimizes the weighted average cost functigh (1). We [ ]

equivalently treat the product automaton as a graph whenFrom  Proposition [12, finite prefixes do not
convenient. Our analysis and notation in this section islaim contribute to the weighted average cost function, so



J(opre(osu)”) = J((osur)). Thus, one can optimize over theAlgorithm 1 Overview of solution approach
suffix ogy, Which corresponds to an accepting cycle in thiput: Weighted transition systerit and LTL formulay
product automaton. Given an optimal accepting cyelg, Output: Runc*, a solution to Problern]1

one then computes a walk from an initial states{;. Create Buchi automatod.,
We now define a weighted average cost function for finite Create product automatdd =7 x A,
walks in the product automaton that is analogoudto (1). Compute states if? reachable from an initial state

Calculate strongly connected components (sccp of
for scce P do }
Let o2y = arginf {J (o) | o is cycle inP}

Definition 8. The weighted average costdf a finite walk
op =(50,90)(81,q1) - - - (Sm, ¢m) In the product automaton is

N _ Yitocp(0i,0441) 3 if o3, is an accepting cycléhen
(op) = Yitowp(0i,0i41)’ ) tc)jr(_afak {finite-memory run achieves infimum
end i

with similar assumptions on andw as for equation[{1). Find best bounded-length accepting, over all sacc € SCC

Problem 2. Let acc(P) be the set of all accepting cycles in (SectionY)

the product automato® reachable from an initial state. Find end for

a suffix o2 where J (02y) = inf, pcacepy J (op) if it eXists. Take optimalo, over all sccs
Compute finite prefixoye from initial state too,

Proposition 3. Leto} = * )¢ be a solution to Problem . suf
P 7 = Tpre( T Project runcs = opre(0iy)* to T aso*

[@. The projection to the transition system of any optimal
accepting runoy, is a solution to Problerfil1.

Proof: From I._gmm 4P, there exists an accepting 1= Remark 2. In Section[¥, we treat the product automaton as
opre(osur)” that minimizes/. From Propositiofil2 and equation, graphGp = (Vis, Ep), with the natural bijections between
®). J(op) = J((o5u)*) = J (Teur). _ B statesSp and verticesV» and between edge&u,v) € Ep

We now pause o give a high-level overview of our approacly yransitions iny,. We further assume that a reachability
to solving Probleni]l, using its reformulation as Problem %omputation has been done, so tiis only includes states
The major steps are outlined in Algorithimh 1. First, a Bucmeachable from an initial Statep . We assume tha@p is

automatonA,, corresponding to the LTL formula is created. strongly connected. If not, the strongly connected comptne
Then, we create the product automaf@r- 7 x A,. Reacha- ¢ ihe D can be found inO(|Vip| + | Ep|) time with Tarjan’s

bility analysis onP determines, in linear time in the size Ofalgorithm [6]. To compute the optimal cycle for the entire

P, all states thgt can be reac_hc_ed from_ an initial state,_ a_md ﬂlﬂaph, one finds the optimal cycle in each strongly connected
guarantees existence of a finite prefige to all remaining component and then selects the optimal over all strongly
states. Next, we compute the strongly connected componeiffinected components. We denote each strongly connected

(scc) of P, since two states can be on the same cycle Orﬂ%mponent olGp by G = (V, E), wheren = [V| andm = | E|.
if they are in the same strongly connected component. This e

partitions the original product automaton into sub-graglagh V. SOLUTION APPROACH
of which can be searched independently for optimal cycles. ) ] ) ] ]

For each strongly connected componenifwe compute !N this section, we give algorithms for computing op-
the cycle ogy with the minimum weighted average cost,“mal f|n|te-mem9ry and infinite-memory runs. We assume
regardless of whether or not it is accepting (see Seffion.v-ghat G = (V, E) is a strongly connected component of the
This is the infimum of the minimum weighted average cog@foduct automatorP and has at least one accepting state.
over all accepting cycles. If this cycle is accepting, thee t The techniques we adapt were originally developed for the
infimum is achieved by a finite-memory run. If not, then th8iNimum cost-to-time ratio problem[7} 8,110,/ 13/ 14].
infimum is not achieved by a finite-memory run and thus
must further constrain the form of the suffix,s to make the
optimization well-posed. We present two related algorithms that find an optimal

A natural choice is finite-memory policies, which correaccepting cycles in increasing levels of generality. While
spond to bounding the length ofy;. We can solve for the the algorithm in Sectioh"V-A2 subsumes the first algorithm,
optimal acceptingrss subject to this additional constraint usthe first one is more intuitive and computationally efficient
ing dynamic programming techniques. The optimal acceptimghen the weight function is a constant function.
osuf Over all strongly connected components is.. Givenoy,, 1) Minimum mean cycle:We first investigate the case
we compute a finite walkrpre from an initial state to any statewherew(e) = 1 for all e € E, so the total weight of a walk
on o The finite walk ope is guaranteed to exist due tois equivalent to the number of transitions. This is similar t
the initial reachability computation. The optimal run ineth the problem investigated by Karp [13], with the additional
product automaton is them;, = ope(03,;)“. The projection of constraint that the cycle must be accepting. This additiona
o} to the transition system as* solves Probleri]1, given the constraint prevents a direct application of Karp’s theof&gj,
additional constraint thatg, has bounded length. but our approach is similar. The intuition is that, condigb

w L
K Computing finite-memory runs



on the weight of a walk, the minimum cost walk gives th&hereGy(v) = d(s,v).
minimum average cost walk. The optimal cycle cost and the corresponding cycle are
Let s € V be an accepting vertex (i.e., accepting state). Foecovered in a similar manner as described in Seéfion v-A1l,
everyv € V, let Fj,(v) be the minimum cost of a walk of and are accepting by construction. The recurrence[In (5)
length & € N from s to v. Thus, F;(s) is the minimum cost requiresO(n,T|V|?) operations, where,, is the number of
cycle of lengthk, which we note is accepting by constructionaccepting vertices. This algorithm runs in pseudo-polyiabm
We computeFy(v) for all v € V andk = 1,...,n by the time, asT is an integer, and so its binary description length
recurrence is O(log(T")). The recurrence fo€, can be computed more
. efficiently if the edge costs are assumed to be non-negative,
Fi(v) = (ﬂl)relE [Fia (u) + e(u,0)], “) as explained in_[10]. This improves the overall complexity o
where Fy(s) = 0 and Fy(v) = oo for v # s. the recurrence t®(n,T(|E| + |V]|log|V])) time [10].

It follows from equation[(#) that’, (v) can be computed for Remark 3. Consider the special case where weights are
all v e V in O(|V||E]|) operations. To find the minimum mearrestricted to be 0 or 1. Then, the total weigdhtis O(|V])
cycle cost with fewer thai/ transitions (i.e., bounded-lengthand the above algorithm has polynomial time complexity
suffix), we simply computenin Fj(s)/k forall k=1,..., M. O(ng|V?) or O(n.|V|(JE| + |V |log|V])) if edge costs are
If there are multiple cycles with the optimal cost, pick theissumed to be non-negative.

cycle corresponding to the minimuin - '
We repeat the above procedure for each accepting veriRgmark 4. Although finite prefixes do not affect the cost

s € V. The minimum mean cycle value is the minimun{Cf- Proposition[P), it may be desired to create a "good”
of these values. We record the optimal vertex and the 'nite prefix. The techniques described in Secfion V-A2 (and
corresponding integek*. To determine the optimal cycle Similarly SectiolV-Al) can be adapted to create these finite
corresponding tos* and k*, we simply determine the cor- prefixes. After computing the optimal accept_lng cycleg, one
responding transitions fronil(4) fafy- (s*) from vertexs*. €an compute the val'ugi'%k(v) and corresponding walk defined
The repeated application of recurrente (4) takés.,|V || E|) with respect to the initial state, for all statesv € C*.
operations, whereqy, is the number of accepting verticesg. Computing infinite-memory runs

which IS prlcally S|gn|f|9ar1tly smaller_ thajv']. Infinite-memory runs achieve the minimum weighted aver-
2) Minimum cycle ratio: We now discuss a more general

case, which subsumes the discussion in Sediion V-A1l. e COSL{ : H(.)wever,.thew Prf"‘.c“ca' use is limited, as they

; : achieveJ* by increasingly visiting states that do not affect

approach is based on that of Hartmann and Orlin [10], wh AR o - .

. : whether or not the specification is satisfied. This is unjikel
consider the unconstrained case.

Let the possible weights be in the integer set Val the designer’s intent, so we only l_)rlefly d_lS(_:u_ss these rans f
) L , completeness. A related discussion on infinite-memory,runs
{1,..., Wmax }, Wherew,,,, is a positive integer. LeE’ ¢ E, . ) . .
) . but in the adversarial environment context, appears!in [5].
and define weights as : ; .
Let oon be the (possibly non-accepting) cycle with the
zeVal if eecFE’ minimum weighted average cost(og,) over all cycles in
w(e) = 0 if cc E-E'. G. Clearly, the restriction that a cycle is accepting can only
) . ) ) increase the weighted average cost. kgic be a cycle that
The setup in Section V-Al is wheh” = E' and Val= {1}. contains both an accepting state and a staigj Let oac;
Let T, := max(y,)cp w(u, v) for each vertexu e V. Then, denote theith state inoace For symbolsa and 3, let (a8*)~

T':= Y yev T is the maximum weight of a path. for k=1,2,... denote the sequenee3aBBaBss. . ..
Let s € V be an accepting state. For each V, let G (v)

be the minimum cost walk from to v that has total weight Proposition 4. Letop = (accogp), Wherek = 1,2, Then,
equal tok. This definition is similar taF,(v) in SectioiV-A]1 07 IS accepting and achieves the minimum weighted average
except nowk is the total weightw of the edges, which is cost(D).

no longer simply the number of edges. L6 (v) be the Proof: Run op is accepting because it repeatsc
minimum cost walk froms to v that has total weight equal o jnfinjtely often. Let o, = SP o (Gacei, Oaccis1) and a,, =
c i= i ¥ w

and with the last edge of the walk i'. Finally, letd(u,v) be SP w(0acci, Taccir1 ), Where integep is the length ofoace
the minimum cost of a path from to v in G consisting solely pefine 8, and 3,, similarly for oopt. Then,

of edges ofF - E’. The costsi(u,v) are pre-computed using

an all-pairs shortest paths algorithm, which assumes tere J(o) := limsup Zper(ac+kBe)
no negative-cost cycles it — E’ [6]. n—oo Lp-1(Cw + kBuw)
The valuesG(v) can be computed for ath e V and k = - lims (n+1)ac+Bc Y k
1,...,T by the recurrence TP (nt Daw + Bu i K
G;C(U) = (unq}%?E’ [Gk—w(u,v)(u) + C(ua U)] (5) = hm sup g—c = J((O’opt)w).
Gr(v) = min [Gle(u) +d(u,v)] ™



A direct application of a minimum cost-to-time ratio algo- X ¢ . . 15
. . . L .
rithm, e.g., [10], can be used to computg; since there isno ST o] lﬁ: i ********J[._if**"' 403
constraint that it must include an accepting state. Alseeryi ‘:z: 6 ;g E
Topt Oacc AlwWays exists as there is an accepting state in t< 4 o 254
same strongly connected componenisgs by construction. 2 ' <1 T Hr ig o
The next proposition shows that finite-memory runs can |t ¢ 1 d - 10

. . . . 2 4 6 8 10 12 14 16 18 20 22 24 26 28
arbitrarily close to the optimal weighted average cést x (unit)

. . .. . Fig. 1. Driving task, with optimal run (black) and feasiblenr(green).
Proposition 5. Given anye > 0, a finite-memory ruwp exists

with J((op)?) < J((oop)”) +€=J* +€.

a X b|x
Proof: Construct a finite-memory run of the formp = 18 X = XXX .

opre(osuf)”, Whereos,t has fixed length. In particular, lety = 16 —T
oacoopt) ™ for a large (fixed) integed. By picking M large e e i e
enough, the error betweeh( (osyr)”) and J((oopr)”) can be = =5 15.0
made arbitrarily small. ] P G 1sE

Thus, finite-memory runs can approximate the performance 5 10 = L"L 2
of infinite-memory runs arbitrarily closely. This allows a ™ , = e B8
designer to tradeoff between runs with low weighted average F_} L*; SR ;} 75
cost and runs with short lengths. O = =1 ..

at ko - '

C. Complexity . - : 25

We now discuss the complexity of the entire procedure,

i.e., Algorithm[1. The number of states and transitions in L N N

the tranSition' .sys_tem . islf and mr, reSpe_Ctively- Thew- Fig. 2. Surveillance task, with optimal run (black) and feksirun (green).
regular specification is given by a Buchi automatgty,.

The product automaton hasp = ny x |A,| states andnp
edges. For finite-memory runs, the dynamic programmirggn transition between neighboring cells in the grid (Fegur
algorithms described in Sectidn VA take(n,npmp) and [D). The car's task is to repeatedly visit the states labeled
O(n,T(mp + nplognp)) operations, assuming non-negativé, and ¢ while always avoiding states labeled Formally,
edge weights for the latter bound. Here, is the number oy =0Ca A OOb A OO ¢ A O-z. Costs are defined over
of accepting states in the product automaton. Usually, states to reward driving in the proper lane (the outer bory)da
is significantly smaller thamp. For infinite-memory runs, and penalize leaving it. Weights are zero for all states gixce
there is no accepting state constraint for the cycles, so statates labeled, b, andc¢, which each have weight of one.
dard techniques [10, 13] can be used that takgrpmp) The second example, Figurk 2, is motivated by surveillance.
and O(T(mp + nplognp)) operations, again assuming nonThe robot’s task is to repeatedly visit states labeled eithe
negative edge weights for the latter bound. The algorithmsc or d, e, f. States labeled: should always be avoided.
in Section[Y are easily parallelizable, both between styongFormally, o = (DG a A OOCb A OCe) v (OOd A OO
connected components & and for each accepting state. e A O0<¢ f)) A O-z. Costs vary with the state as described
In practice, an LTL formulay is used to automatically in Figure[2, and might describe the time to navigate differen
generate a Buchi automatoh,. The length of an LTL formula terrain. The weight is zero at each state, except statasd
@ Is the number of symbols. A corresponding Buchi automatgfy where the weight is one.
A, has size2°0¢D in the worst-case, but this behavior is Numerical results are in Table I. Computation times for op-
rarely encountered in practice. timal and feasible runs are given Iy andiseas respectively.
All computations were done using Python on a Linux desktop
with a dual-core processor and 2 GB of memory. The feasible
The following examples demonstrate the techniques devshtisfying runs were generated with depth-first search. The
oped in SectiolV in the context of autonomous driving anoptimal satisfying runs were generated with the algorithonf
surveillance. Each cell in FigureE] (1) arid (2) corresponds $ectiol V-A2. Since it was possible to decrease the weighted
a state, and each state has transitions to its four neighb@ngerage cost by increasing the length of the cycle (i.e., the
We specify costs and weights over states, as discussednifimum was not achieved by a finite-memory satisfying run),
Sectiorl ). Tasks are formally specified by LTL formulas andie used the shortest cycle such thidop) < 0. Thus, the
informally in English. We use the following LTL symbolsoptimal valuesJ(oqp) are conservative. The improvement of
without definition: negation—), disjunction (v ), conjunction the optimal runs over a feasible run is evident from Figliies 1
(~), always @), and eventually ¢) [1]. and[2. In Figurd1l, the optimal run immediately heads back
The first example is motivated by autonomous driving. The its lane to reduce costs, while the feasible run does not. |
weighted transition system represents an abstracted aar figure[2, the optimal run avoids visiting high-cost regions

VI. EXAMPLES



TABLE |

NUMERICAL RESULTS

Example 7T (nodes/edges) A, P ‘P (reachable)| # SCC | # acc. states Jopt (UNitS) | Jreas (UNItS) | topt (SEC) | tfeas (SEC)

Driving 300/ 1120 4 /13 | 1200/ 3516 | 709 /2396 1 1 49.3 71.3 2.49 0.68

Surveillance | 400 / 1520 9/34 | 3600/ 14917| 2355/ 8835 2 2 340.9 566.3 21.9 1.94
VII. CONCLUSIONS [10] M. Hartmann and J. B. Orlin. Finding mimimum cost

We created optimal runs of a weighted transition system
that minimized a weighted average cost function subject to

w-regular language constraints. These constraints indiuele

11]

well-studied linear temporal logic as a subset. We showatl th
optimal system runs correspond to cycles in a lifted product
space, which includes behaviors that both are valid for the
system and satisfy the temporal logic specification. Dyicarnmt
programming techniques were used to solve for an optimal

cycle in this product space.

Future directions include investigating notions of opfiitya
with both non-deterministic transition systems and achnbab
environments. Additionally, better computational conxjile
may be achievable for fragments ©ofregular languages.

[13]

ACKNOWLEDGEMENTS [14]

The authors thank Pavithra Prabhakar for helpful discus-
sions. This work was supported in part by a NDSEG Fellow-
ship, the Boeing Corporation, and NSF Grant CNS-091104L5]

[1]
(2]

[3]

[4]

[5]

[6]
[7]

[8] A. Dasdan and R. K. Gupta.

[9]

REFERENCES

Christel Baier and Joost-Pieter KatoerPrinciples of
Model Checking MIT Press, 2008.

C. Belta and L.C.G.J.M. Habets. Control of a class of
non-linear systems on rectangld&EE Transaction on
Automatic Contrgl 51:1749-1759, 2006.

C. Belta, V. Isler, and G. Pappas. Discrete abstractiohs’]
for robot motion planning and control in polygonal
environments.|IEEE Transactions on Robotic21:864—
874, 2004.

D. P. Bertsekas. Dynamic Programming and Optimal
Control (Vol. 1 and I} Athena Scientific, 2001.

K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Meant19]
payoff parity games. IlAnnual Symposium on Logic in
Computer Science (LICS2005.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms: 2nd edMIT Press, 2001. [20]
G. B. Dantzig, W. O. Blattner, and M. R. Rao. Finding

a cycle in a graph with minimum cost to time ratio with
application to a ship routing problem. In P. Rosenstiehl,
editor, Theory of Graphspages 77-84. Dunod, Paris and21]
Gordon and Breach, New York, 1967.

Faster maximum ank®2]
minimum mean cycle algorithms for system performance
analysis.IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systenis7:889—899, 1998. [23]
L. Habets, P.J. Collins, and J.H. van Schuppen. Reach-
ability and control synthesis for piecewise-affine hybrid
systems on simpliceslEEE Transaction on Automatic
Control, 51:938-948, 2006.

[18]

to time ratio cycles with small integral transit times.
Networks 23:567-574, 1993.

Sertac Karaman and Emilio Frazzoli. Sampling-based
motion planning with deterministig-calculus specifica-
tions. In Proc. of IEEE Conference on Decision and
Control, 2009.

Sertac Karaman, Ricardo G. Sanfelice, and Emilio Fraz-
zoli. Optimal control of mixed logical dynamical systems
with linear temporal logic specifications. IRroc. of
IEEE Conference on Decision and Contrphges 2117—
2122, 2008. doi: 10.1109/CDC.2008.4739370.

R. M. Karp. A characterization of the minimum cycle
mean in a digraphDiscrete Mathemati¢s23:309-311,
1978.

R. M. Karp and J. B. Orlin. Parametric shortest path
algorithms with an application to cyclic staffinBiscrete
and Applied Mathemati¢cs3:37—-45, 1981.

L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spacetEEE Transac-
tions on Robotics and Automatioh2:566—-580, 1996.

] Marius Kloetzer and Calin Belta. A fully automated

framework for control of linear systems from temporal
logic specifications. IEEE Transaction on Automatic
Control, 53(1):287-297, 2008.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Tem-
poral logic-based reactive mission and motion planning.
IEEE Transactions on Roboticg5:1370-1381, 2009.

S. LaValle and J. J. Kuffner. Randomized kinodynamic
planning. International Journal of Robotics Research
20:378-400, 2001.

E. Plaku, L. E. Kavraki, and M. Y. Vardi. Motion
planning with dynamics by a synergistic combination of
layers of planning.lEEE Transactions on Robotic26:
469-482, 2010.

S. L. Smith, J. Tumova, C. Belta, and D. Rus. Optimal
path planning for surveillance with temporal-logic con-
straints.The International Journal of Robotics Research
30:1695-1708, 2011.

P. Toth and D. Vigo, editors. The Vehicle Routing
Problem Philadelphia, PA: SIAM, 2001.

M. Y. Vardi and P. Wolper. An automata-theoretic
approach to automatic program verification. Llogic

in Computer Sciencepages 322—-331, 1986.

Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M.
Murray. Receding horizon control for temporal logic
specifications. InProc. of the 13th International Con-
ference on Hybrid Systems: Computation and Control
2010.



	Introduction
	Preliminaries
	Modeling Language
	Specification Language
	Graph Theory

	Problem Statement
	Reformulation of the problem
	Product Automaton
	Prefix-Suffix Form

	Solution Approach
	Computing finite-memory runs
	Minimum mean cycle
	Minimum cycle ratio

	Computing infinite-memory runs
	Complexity

	Examples
	Conclusions

