
Optimal Control with Weighted Average Costs and
Temporal Logic Specifications

Eric M. Wolff
Control and Dynamical Systems

California Institute of Technology
Pasadena, California 91125
Email: ewolff@caltech.edu

Ufuk Topcu
Control and Dynamical Systems

California Institute of Technology
Pasadena, California 91125

Email: utopcu@cds.caltech.edu

Richard M. Murray
Control and Dynamical Systems

California Institute of Technology
Pasadena, California 91125

Email: murray@cds.caltech.edu

Abstract—We consider optimal control for a system subject
to temporal logic constraints. We minimize a weighted average
cost function that generalizes the commonly used average cost
function from discrete-time optimal control. Dynamic program-
ming algorithms are used to construct an optimal trajectory for
the system that minimizes the cost function while satisfying a
temporal logic specification. Constructing an optimal trajectory
takes only polynomially more time than constructing a feasible
trajectory. We demonstrate our methods on simulations of
autonomous driving and robotic surveillance tasks.

I. I NTRODUCTION

As the level of autonomy expected of robots, vehicles, and
other cyberphysical systems increases, there is a need for
expressive task-specification languages that can encode desired
behaviors. Temporal logics such as linear temporal logic (LTL)
are promising formal languages for robotics. LTL provides
a natural framework to specify desired properties such as
response (if A, then B), liveness (always eventually A), safety
(always not B), stability (eventually always A), and priority
(first A, then B, then C).

Temporal logics have been used in the robotics and control
communities to reason about system properties. A framework
for automatically generating controllers for linear systems
that satisfy a given LTL specification is presented in [16].
Sampling-based approaches for more general dynamical sys-
tems are given in [11, 19]. Controllers can be constructed
that satisfy a specification in the presence of an adversarial
environment [17], and receding horizon control can reduce the
resulting computational complexity of synthesizing such con-
trol policies [23]. While these approaches all generate feasible
control policies that satisfy a temporal logic specification, no
practical optimality notions can be imposed in their settings.

Often there are numerous control policies for a system
that satisfy a given temporal logic specification, so it is
desirable to select one that is optimal with respect to some
cost function, e.g., time or fuel consumption. Since temporal
logic specifications include properties that must be satisfied
over infinite state sequences, it is important that the form of
the cost function is also well-defined over infinite sequences.
We consider an average cost, which is bounded under certain
mild assumptions discussed in Section 1. Additionally, it may
be desired to give varying weights to different behaviors, i.e.,

repeatedly visit set of regions, but visit a high-weight region
more often than others. Thus, we minimize a weighted average
cost function over system trajectories subject to the constraint
that a given temporal logic specification is satisfied. This cost
function generalizes the average cost-per-stage cost function
commonly studied in discrete-time optimal control [4].

Optimality has been considered in the related area of
vehicle routing [21]. Vehicle routing problems generalizethe
traveling salesman problem, and are thus NP-complete. A
different approach to control with LTL specifications converts
the controller design problem into a mixed-integer linear pro-
gram [12]. However, this approach is restricted to properties
specified over a finite horizon. Chatterjee et al. [5] create
control policies that minimize an average cost function in the
presence of an adversary. The approach in [20] is the most
closely related to our work. Motivated by surveillance tasks,
they minimize the maximum cost between visiting specific
regions. Our work is complementary to [20] in that we instead
minimize a weighted average cost function.

The main contribution of this paper is a solution to the
problem of, given a transition system model, creating a system
trajectory that minimizes a weighted average cost function
subject to temporal logic constraints. We solve this problem
by searching for system trajectories in the product automaton,
a lifted space that contains only behaviors that are valid for the
transition system and also satisfy the temporal logic specifica-
tion. An optimal system trajectory corresponds to a cycle in
the product automaton, which is related to the well-studied
cost-to-time ratio problem in operations research. We give
computationally efficient dynamic programming algorithms
for finding the optimal system trajectory. In fact, it takes only
polynomially more effort to calculate an optimal solution than
a feasible solution, i.e., one that just satisfies the specification.

We present preliminaries on system models, task-
specification languages, and graph theory in Section II. The
main problem is formulated in Section III and reformulated
as an equivalent graph problem in Section IV. We solve
this equivalent problem for finite-memory and infinite-memory
policies in Sections V-A and V-B respectively. These tech-
niques are demonstrated on numerical examples motivated by
autonomous driving and surveillance tasks in Section VI. We
conclude with future directions in Section VII.

II. PRELIMINARIES

We now provide preliminaries on the modeling and spec-
ification languages, weighted transition systems and linear
temporal logic respectively, used throughout the paper.

An atomic propositionis a statement that has a unique truth
value (True or False).

A. Modeling Language

We use finite transition systems to model the system behav-
ior. In robotics, however, one is usually concerned with con-
tinuous systems that may have complex dynamic constraints.
This gap is partially bridged by constructive procedures for
exactly abstracting relevant classes of continuous systems,
including unicycle models, as finite transition systems [3,2,
9]. Additionally, sampling-based methods, such as rapidly-
exploring random trees [18] and probabilistic roadmaps [15],
gradually build a finite transition system that approximates
a continuous system, and have been studied in this context
[11, 19]. Examples of how one can abstract continuous dynam-
ics by discrete transition systems are given in [2, 3, 9, 11, 19].

Definition 1. A weighted (finite) transition systemis a tuple
T = (S,R, s0,AP,L, c,w) consisting of (i) a finite set of states
S, (ii) a transition relationR ⊆ S×S, (iii) an initial states0 ∈ S,
(iv) a set of atomic propositionsAP , (v) a labeling function
L ∶ S → 2AP , (vi) a cost functionc ∶ R → R, (vii) and a weight
functionw ∶ R → R≥0.

We assume that the transition system is non-blocking, so for
each states ∈ S, there exists a statet ∈ S such that(s, t) ∈ R.

A run of the transition system is an infinite sequence of
its states,σ = s0s1s2 . . . where si ∈ S is the state of the
system at indexi (also denotedσi) and (si, si+1) ∈ R for
i = 0,1, A word is an infinite sequence of labelsL(σ) =
L(s0)L(s1)L(s2) . . . whereσ = s0s1s2 . . . is a run.

Let S+k be the set of all runs up to indexk. An infinite-
memorycontrol policy is denoted byπ = (µ0, µ1, . . .) where
µk ∶ S+k → R maps a partial runs0s1 . . . sk ∈ S+k to a new
transition. A policyπ = (µ,µ, . . .) is finite-memoryif µ ∶ S ×
M→ R ×M, where the finite setM is called the memory.

For the deterministic transition system models we consider,
the run of a transition system implicitly encodes the control
policy. An infinite-memoryrun is a run that can be imple-
mented by an infinite-memory policy. Similarly for finite-
memory runs.

When possible, we will sometimes abuse notation and refer
to the costc(t) of a statet ∈ S, instead of a transition between
states. In this case, we enforce thatc(s, t) = c(t) for all
transitions(s, t) ∈ R, i.e., the cost of the state is mapped
to all incoming transitions. Similar notational simplification is
used for weights and should be clear from context.

The cost functionc can be viewed concretely as a physical
cost of a transition between states, such as time or fuel. This
cost can be negative for some transitions, which could, for
example, correspond to refueling if the cost is fuel consump-
tion. The weight functionw can be viewed as the importance
of each transition, which is a flexible design parameter. In the

sequel, we will create a run with the minimal weighted average
cost. Thus, the designer can give transitions that she thinks
are preferable a higher weight than the rest. As an example,
consider an autonomous car that is supposed to visit different
locations in a city while obeying the rules-of-the-road. In
this case, a task specification would encode the locations that
should be visited and the rules-of-the-road. Costs might bethe
time required to traverse different roads. Weights might encode
preferences such as visiting certain landmarks. An example
scenario is discussed in detail in Section VI.

B. Specification Language

We are interested in using linear temporal logic (LTL) to
concisely and unambiguously specify desired system behavior.
LTL is a powerful formal language that is relevant to robotics
because it allows system behaviors such as response, liveness,
safety, stability, priority, and guarantee to be specified.

However, the syntax and semantics of LTL are not relevant
for the theory developed in this paper, so we only mention
them as needed for the examples in Section VI. The interested
reader can find a comprehensive treatment of LTL in [1].
Instead, we follow the automata-based approach of Vardi and
Wolper [22], and consider non-deterministic Buchi automata
(hereafter called Buchi automata), which accept the class of
languages equivalent toω-regular languages. Thus, our results
hold for any property that can be specified as anω-regular
language, which is a regular language extended by infinite
repetition (denoted byω). In particular, LTL is a subset ofω-
regular languages, so an equivalent Buchi automaton can be
constructed for any LTL formulaϕ [1].

Definition 2. A Buchi automaton is a tuple
A = (Q,Σ, δ,Q0,Acc) consisting of (i) a finite set of
statesQ, (ii) a finite alphabetΣ, (iii) a transition relation
δ ⊆ Q × Σ ×Q, (iv) a set of initial statesQ0 ⊆ Q, (v) and a
set of accepting states Acc⊆ Q.

Let Σω be the set of infinite words overΣ. A run for σ =
A0A1A2 . . . ∈ Σω denotes an infinite sequenceq0q1q2 . . . of
states inA such thatq0 ∈ Q0 and (qi,Ai, qi+1) ∈ δ for i ≥ 0.
Runq0q1q2 . . . is accepting (accepted)if qi ∈ Acc for infinitely
many indicesi ∈ N appearing in the run.

Intuitively, a run is accepted by a Buchi automaton if a state
in Acc is visited infinitely often.

We use the definition of an accepting run in a Buchi
automaton and the fact that every LTL formulaϕ can be
represented by an equivalent Buchi automatonAϕ to define
satisfaction of an LTL formulaϕ.

Definition 3. Let Aϕ be a Buchi automaton corresponding to
the LTL formula ϕ. A run σ = s0s1s2 . . . in T satisfiesϕ,
denoted byσ ⊧ ϕ, if the wordL(σ) is accepted byAϕ.

C. Graph Theory

This section lists basic definitions for graphs that will be
necessary later. LetG = (V,E) be a directed graph (digraph)
with ∣V ∣ vertices and∣E∣ edges. Lete = (u, v) ∈ E denote
an edge from vertexu to vertex v. A walk is a finite edge

sequencee0, e1, . . . , ep, and acycle is a walk in which the
initial vertex is equal to the final vertex. Apath is a walk with
no repeated vertices, and asimple cycleis a path in which the
initial vertex is equal to the final vertex.

A digraphG = (V,E) is strongly connectedif there exists
a path between each pair of verticess, t ∈ V . A digraphG′ =
(V ′,E′) is a subgraphof G = (V,E) if V ′ ⊆ V andE′ ⊆ E.
A digraphG′ ⊆ G is a strongly connected componentif it is
a maximal strongly connected subgraph ofG.

III. PROBLEM STATEMENT

In this section, we formally state the main problem of the
paper and give an overview of our solution approach. Let
T = (S,R, s0,AP,L, c,w) be a weighted transition system
andϕ be an LTL specification defined overAP .

Definition 4. Let σ be a run ofT whereσi is the state at the
i-th index ofσ. The weighted average costof run σ is

J(σ) ∶= lim sup
n→∞

∑n
i=0 c(σi, σi+1)

∑n
i=0w(σi, σi+1)

, (1)

whereJ maps runs ofT to R ∪∞.

Since LTL specifications are typically defined over infinite
sequences of states, we consider the (weighted) average cost
function in (1) to ensure that the cost function is bounded. This
cost function is well-defined when (i)c(σi, σi+1) < ∞ for all
i ≥ 0, and (ii) there exists aj ∈ N such thatw(σi, σi+1) > 0 for
infinitely many i ≥ j, which we assume is true for the sequel.
Assumption (ii) enforces that a run does not eventually visit
only states with zero weights.

To better understand the weighted average cost function
J , consider the case wherew(s, t) = 1 for all transitions
(s, t) ∈ R. Let a costc(s, t) be arbitrarily fixed for each tran-
sition (s, t) ∈ R. Then,J(σ) is the average cost per transition
between states (or average cost per stage). Ifw(s, t) = 1 for
states ins, t ∈ S′ ⊂ S andw(s, t) = 0 for states inS −S′, then
J(σ) is the mean time per transition between states inS′.

As an example, considerσ = (s0s1)ω wheres0s1 repeats
indefinitely. Let c(s0, s1) = 1, c(s1, s0) = 2, w(s0, s1) = 1,
and w(s1, s0) = 1. Then, J(σ) = 1.5 is the average cost
per transition. Now, letw(s1, s0) = 0. Then,J(σ) = 3 is the
average cost per transition froms0 to s1.

The weighted average cost function is more natural than
the minimax cost function of Smith et al. [20] in some
application contexts. For example, consider an autonomous
vehicle repeatedly picking up people and delivering them
to a destination. It takes a certain amount of fuel to travel
between discrete states, and each discrete state has a fixed
number of people that need to be picked up. A natural problem
formulation is to minimize the fuel consumption per person
picked up, which is a weighted average cost where fuel is the
cost and the number of people is the weight. The cost function
in [20] cannot adequately capture this task.

Definition 5. An optimal satisfying finite-memory runof T is

a runσ∗ such that

J(σ∗) = inf {J(σ) ∣ σ is finite-memory run ofT , σ ⊧ ϕ} ,
(2)

i.e., runσ∗ achieves the infimum in (2).

An optimal satisfying infinite-memory runis defined simi-
larly for infinite-memory runs ofT .

Although we show in Section V-B that infinite-memory
runs are generally necessary to achieve the infimum in (2),
we focus on finite-memory runs, as these are more practical
than their infinite-memory counterparts. However, finding an
optimal satisfying finite-memory run is potentially ill-posed,
as the infimum might not be achieved due to the constraint
that the run must also satisfyϕ. This happens when it is
possible to reduce the cost of a satisfying run by including an
arbitrarily long, low weighted average cost subsequence. For
instance, consider the runσ = (s0s0s1)ω. Let c(s0, s0) = 1,
c(s1, s0) = c(s0, s1) = 2 and the weights equal 1 for each tran-
sition. Assume that a specification is satisfied ifs1 is visited
infinitely often. Then,J(σ) can be reduced by including an
arbitrarily large number of self transitions froms0 to s0 in σ,
even though these do not affect satisfaction of the specification.
Intuitively, one should restrict these repetitions to makefinding
an optimal satisfying finite-memory run well-posed. We will
show that one can always compute anǫ-suboptimal finite-
memory run by restricting the length of these repetitions. We
defer the details to Section IV, when we will have developed
the necessary technical machinery.

Problem 1. Given a weighted transition systemT and an LTL
specificationϕ, compute an optimal satisfying finite-memory
run σ∗ of T if one exists.

Remark 1. For completeness, we show how to compute
optimal satisfying infinite-memory runs in Section V-B. These
runs achieve the minimal weighted average cost, but do so
by adding arbitrarily long progressions of states that do not
change whether or not the specification is satisfied.

IV. REFORMULATION OF THE PROBLEM

We solve Problem 1 by first creating a product automaton
that represents runs that are allowed by the transition system
T and also satisfy the LTL specificationϕ. We can limit our
search for finite-memory runs, without loss of generality, to
runs in the product automaton that are of the formσP =
σpre(σsuf)ω. Hereσpre is a finite walk andσsuf is a finite cycle
that is repeated infinitely often. Runs with this structure are
said to be inprefix-suffixform. We observe that the weighted
average cost only depends onσsuf, which reduces the problem
to searching for a cycleσsuf in the product automaton. This
search can be done using dynamic programming techniques
for finite-memory runs. The optimal accepting runσ∗P is then
projected back onT asσ∗, which solves Problem 1.

A. Product Automaton

We use the standard product automaton construction, due to
Vardi and Wolper [22], to represent runs that are allowed by
the transition system and satisfy the LTL specification.

Definition 6. Let T = (S,R, s0,AP,L, c,w) be a weighted
transition system andA = (Q,2AP , δ,Q0,Acc) be a Buchi
automaton. Theproduct automatonP = T × A is the tuple
P ∶= (SP , δP ,AccP , sP,0,APP , LP , cP ,wP), consisting of

(i) a finite set of statesSP = S ×Q,
(ii) a transition relation δP ⊆ SP × SP , where

((s, q), (s′, q′)) ∈ δP if and only if (s, s′) ∈ R

and(q,L(s), q′) ∈ δ,
(iii) a set of accepting states AccP = S ×Acc,
(iv) a set of initial statesSP,0, with (s0, q0) ∈ SP,0 if q0 ∈ Q0,
(v) a set of atomic propositionsAPP = Q,
(vi) a labeling functionLP ∶ S ×Q→ 2Q,

(vii) a cost functioncP ∶ δP → R, wherecP((s, q), (s′, q′)) =
c(s, s′) for all ((s, q), (s′, q′)) ∈ δP , and

(viii) a weight function wP ∶ δP → R≥0, where
wP((s, q), (s′, q′)) = w(s, s′) for all ((s, q), (s′, q′)) ∈
δP .

A run σP = (s0, q0)(s1, q1) . . . is accepting if (si, qi) ∈
AccP for infinitely many indicesi ∈ N.

The projection of a run σP = (s0, q0)(s1, q1) . . . in the
product automatonP is the runσ = s0s1 . . . in the transition
system. The projection of a finite-memory run inP is a finite-
memory run inT [1].

The following proposition relates accepting runs inT and
P and is due to Vardi and Wolper [22].

Proposition 1. ([22]) Let Aϕ be a Buchi automaton cor-
responding to the LTL formulaϕ. For any accepting run
σP = (s0, q0)(s1, q1) . . . in the product automatonP = T ×Aϕ,
its projectionσ = s0s1 . . . in the transition systemT satisfies
ϕ. Conversely, for any runσ = s0s1 . . . in T that satisfiesϕ,
there exists an accepting runσP = (s0, q0)(s1, q1) . . . in the
product automaton.

Lemma 1. For any accepting runσP in P and its projectionσ
in T , J(σP) = J(σ). Conversely, for anyσ in T that satisfies
ϕ, there exists an accepting runσP in P with J(σP) = J(σ).

Proof: Consider a runσP = (s0, q0)(s1, q1) . . . in P . By
definition, for states(si, qi), (si+1, qi+1) ∈ SP and si, si+1 ∈
ST , the costcP((si, qi), (si+1, qi+1)) = c(si, si+1) and the
weightwP((si, qi), (si+1, qi+1)) = w(si, si+1) for all i ≥ 0, so
J(σP) = J(σ). Now consider a runσ = s0s1 . . . in T that
satisfiesϕ. Proposition 1 gives the existence of an accepting
run σP = (s0, q0)(s1, q1) . . . in P , and soJ(σP) = J(σ).

By Lemma 1, an accepting runσ∗P with minimal weighted
average cost in the product automaton has a projection in the
transition systemσ∗ that is a satisfying run with minimal
weighted average cost.

B. Prefix-Suffix Form

We show that Problem 1 is equivalent to finding a run
of the form σP = σpre(σsuf)ω, in the product automatonP
that minimizes the weighted average cost function (1). We
equivalently treat the product automaton as a graph when
convenient. Our analysis and notation in this section is similar

to that of [20]; we optimize a different cost function on the
Vardi and Wolper [22] product automaton construction.

Definition 7. Let σpre be a finite walk inP andσsuf be a finite
cycle inP . A run σP is in prefix-suffixform if it is of the form
σP = σpre(σsuf)ω.

It is well-known that if there exists an accepting run in
P for an LTL formulaϕ, then there exists an accepting run
in prefix-suffix form for ϕ [1]. This can be seen since the
product automatonP is finite, but an accepting run is infinite
and visits an accepting state infinitely often. Thus, at least
one accepting state must be visited infinitely often, and this
can correspond to a repeated cycle including the accepting
state. For an accepting runσP , the suffixσsuf is a cycle in the
product automatonP that satisfies the acceptance condition,
i.e., it includes an accepting state. The prefixσpre is a finite
run from an initial statesP,0 to a state on an accepting cycle.

The following lemma shows that a minimum weighted
average cost run can be found searching over finite-memory
runs of the formσP = σpre(σsuf)ω.

Lemma 2. There exists at least one accepting finite-memory
run σP of P that minimizesJ and is in prefix-suffix form, i.e.,
σP = σpre(σsuf)ω.

Proof: Let σgen be an accepting finite-memory run inP
that is not in prefix-suffix form and has weighted average cost
J(σgen). Sinceσgen is accepting, it must visit an accepting state
sacc ∈ SP infinitely often. Let the finite walkσpre be from an
initial statesP,0 to the first visit ofsacc. Now consider the set
of walks between successive visits tosacc. Each walk starts and
ends atsacc (so it is a cycle), is finite with bounded length,
and has a weighted average cost associated with it. For each
cycle τ , compute the weighted average costJ(τω). Let σsuf

be the finite cycle with the minimum weighted average cost
over all τ . Then,J(σP) = J(σpre(σsuf)ω) ≤ J(σgen). Since
σgen was arbitrary, the claim follows.

The next proposition shows that the weighted average cost
of a run does not depend on any finite prefix of the run.

Proposition 2. Let σ = s0s1 . . . be a run (inT or P) and
σk∶∞ = sksk+1 . . . be the runσ starting at indexk ∈ N. Then,
their weighted average costs are equal, i.e.,J(σ) = J(σk∶∞).

Proof: From Definition 1, costs and weights depend only
on the transition—not the index. Also, from the assumptions
that directly follow equation (1), transitions with positive
weight occur infinitely often. Thus,

J(σ) ∶= lim sup
n→∞

∑n
i=0 c(σi, σi+1)

∑n
i=0w(σi, σi+1)

= lim sup
n→∞

∑k−1
i=0 c(σi, σi+1) +∑n

i=k c(σi, σi+1)

∑k−1
i=0 w(σi, σi+1) +∑n

i=k w(σi, σi+1)

= lim sup
n→∞

∑n
i=k c(σi, σi+1)

∑n
i=k w(σi, σi+1)

= J(σk∶∞).

From Proposition 2, finite prefixes do not
contribute to the weighted average cost function, so

J(σpre(σsuf)ω) = J((σsuf)ω). Thus, one can optimize over the
suffix σsuf, which corresponds to an accepting cycle in the
product automaton. Given an optimal accepting cycleσ∗suf,
one then computes a walk from an initial state toσ∗suf.

We now define a weighted average cost function for finite
walks in the product automaton that is analogous to (1).

Definition 8. The weighted average costof a finite walk
σP = (s0, q0)(s1, q1) . . . (sm, qm) in the product automaton is

J̃(σP) ∶=
∑m

i=0 cP(σi, σi+1)
∑m

i=0wP(σi, σi+1)
, (3)

with similar assumptions onc andw as for equation (1).

Problem 2. Let acc(P) be the set of all accepting cycles in
the product automatonP reachable from an initial state. Find
a suffix σ∗suf whereJ̃(σ∗suf) = infσP∈acc(P) J̃(σP) if it exists.

Proposition 3. Let σ∗P = σpre(σ∗suf)
ω be a solution to Problem

2. The projection to the transition system of any optimal
accepting runσ∗P is a solution to Problem 1.

Proof: From Lemma 2, there exists an accepting runσP =
σpre(σsuf)ω that minimizesJ . From Proposition 2 and equation
(5), J(σP) = J((σsuf)ω) = J̃(σsuf).

We now pause to give a high-level overview of our approach
to solving Problem 1, using its reformulation as Problem 2.
The major steps are outlined in Algorithm 1. First, a Buchi
automatonAϕ corresponding to the LTL formulaϕ is created.
Then, we create the product automatonP = T ×Aϕ. Reacha-
bility analysis onP determines, in linear time in the size of
P , all states that can be reached from an initial state, and thus
guarantees existence of a finite prefixσpre to all remaining
states. Next, we compute the strongly connected components
(scc) ofP , since two states can be on the same cycle only
if they are in the same strongly connected component. This
partitions the original product automaton into sub-graphs, each
of which can be searched independently for optimal cycles.

For each strongly connected component ofP , we compute
the cycle σsuf with the minimum weighted average cost,
regardless of whether or not it is accepting (see Section V-B).
This is the infimum of the minimum weighted average cost
over all accepting cycles. If this cycle is accepting, then the
infimum is achieved by a finite-memory run. If not, then the
infimum is not achieved by a finite-memory run and thus we
must further constrain the form of the suffixσsuf to make the
optimization well-posed.

A natural choice is finite-memory policies, which corre-
spond to bounding the length ofσsuf. We can solve for the
optimal acceptingσsuf subject to this additional constraint us-
ing dynamic programming techniques. The optimal accepting
σsuf over all strongly connected components isσ∗suf. Givenσ∗suf,
we compute a finite walkσpre from an initial state to any state
on σ∗suf. The finite walk σpre is guaranteed to exist due to
the initial reachability computation. The optimal run in the
product automaton is thenσ∗P = σpre(σ∗suf)

ω. The projection of
σ∗P to the transition system asσ∗ solves Problem 1, given the
additional constraint thatσsuf has bounded length.

Algorithm 1 Overview of solution approach
Input: Weighted transition systemT and LTL formulaϕ
Output: Run σ∗, a solution to Problem 1

Create Buchi automatonAϕ

Create product automatonP = T ×Aϕ

Compute states inP reachable from an initial state
Calculate strongly connected components (scc) ofP

for scc∈ P do
Let σ∗suf = arg inf {J̃(σ) ∣ σ is cycle inP}
if σ∗suf is an accepting cyclethen

break {finite-memory run achieves infimum}
end if
Find best bounded-length acceptingσ∗suf over allsacc ∈ scc
(Section V)

end for
Take optimalσ∗suf over all sccs
Compute finite prefixσpre from initial state toσ∗suf
Project runσ∗P = σpre(σ∗suf)

ω to T asσ∗

Remark 2. In Section V, we treat the product automaton as
a graphGP = (VP ,EP), with the natural bijections between
statesSP and verticesVP and between edges(u, v) ∈ EP
and transitions inδP . We further assume that a reachability
computation has been done, so thatGP only includes states
reachable from an initial statesP,0. We assume thatGP is
strongly connected. If not, the strongly connected components
of the P can be found inO(∣VP ∣ + ∣EP ∣) time with Tarjan’s
algorithm [6]. To compute the optimal cycle for the entire
graph, one finds the optimal cycle in each strongly connected
component and then selects the optimal over all strongly
connected components. We denote each strongly connected
component ofGP by G = (V,E), wheren = ∣V ∣ andm = ∣E∣.

V. SOLUTION APPROACH

In this section, we give algorithms for computing op-
timal finite-memory and infinite-memory runs. We assume
that G = (V,E) is a strongly connected component of the
product automatonP and has at least one accepting state.
The techniques we adapt were originally developed for the
minimum cost-to-time ratio problem [7, 8, 10, 13, 14].

A. Computing finite-memory runs

We present two related algorithms that find an optimal
accepting cycleσ∗suf in increasing levels of generality. While
the algorithm in Section V-A2 subsumes the first algorithm,
the first one is more intuitive and computationally efficient
when the weight function is a constant function.

1) Minimum mean cycle:We first investigate the case
wherew(e) = 1 for all e ∈ E, so the total weight of a walk
is equivalent to the number of transitions. This is similar to
the problem investigated by Karp [13], with the additional
constraint that the cycle must be accepting. This additional
constraint prevents a direct application of Karp’s theorem[13],
but our approach is similar. The intuition is that, conditional

on the weight of a walk, the minimum cost walk gives the
minimum average cost walk.

Let s ∈ V be an accepting vertex (i.e., accepting state). For
every v ∈ V , let Fk(v) be the minimum cost of a walk of
length k ∈ N from s to v. Thus,Fk(s) is the minimum cost
cycle of lengthk, which we note is accepting by construction.
We computeFk(v) for all v ∈ V and k = 1, . . . , n by the
recurrence

Fk(v) = min
(u,v)∈E

[Fk−1(u) + c(u, v)] , (4)

whereF0(s) = 0 andF0(v) = ∞ for v ≠ s.
It follows from equation (4) thatFk(v) can be computed for

all v ∈ V in O(∣V ∣∣E∣) operations. To find the minimum mean
cycle cost with fewer thanM transitions (i.e., bounded-length
suffix), we simply computeminFk(s)/k for all k = 1, . . . ,M .
If there are multiple cycles with the optimal cost, pick the
cycle corresponding to the minimumk.

We repeat the above procedure for each accepting vertex
s ∈ V . The minimum mean cycle value is the minimum
of these values. We record the optimal vertexs∗ and the
corresponding integerk∗. To determine the optimal cycle
corresponding tos∗ and k∗, we simply determine the cor-
responding transitions from (4) forFk∗(s∗) from vertexs∗.
The repeated application of recurrence (4) takesO(na∣V ∣∣E∣)
operations, wherena is the number of accepting vertices,
which is typically significantly smaller than∣V ∣.

2) Minimum cycle ratio:We now discuss a more general
case, which subsumes the discussion in Section V-A1. Our
approach is based on that of Hartmann and Orlin [10], who
consider the unconstrained case.

Let the possible weights be in the integer set Val=
{1, . . . ,wmax}, wherewmax is a positive integer. LetE′ ⊆ E,
and define weights as

w(e) =
⎧⎪⎪
⎨
⎪⎪⎩

x ∈ Val if e ∈ E′

0 if e ∈ E −E′.

The setup in Section V-A1 is whenE′ = E and Val= {1}.
Let Tu ∶= max(u,v)∈E w(u, v) for each vertexu ∈ V . Then,

T ∶= ∑u∈V Tu is the maximum weight of a path.
Let s ∈ V be an accepting state. For eachv ∈ V , let Gk(v)

be the minimum cost walk froms to v that has total weight
equal tok. This definition is similar toFk(v) in Section V-A1
except nowk is the total weightw of the edges, which is
no longer simply the number of edges. LetG′k(v) be the
minimum cost walk froms to v that has total weight equal tok
and with the last edge of the walk inE′. Finally, letd(u, v) be
the minimum cost of a path fromu to v in G consisting solely
of edges ofE −E′. The costsd(u, v) are pre-computed using
an all-pairs shortest paths algorithm, which assumes thereare
no negative-cost cycles inE −E′ [6].

The valuesGk(v) can be computed for allv ∈ V and k =
1, . . . , T by the recurrence

G′k(v) = min
(u,v)∈E′

[Gk−w(u,v)(u) + c(u, v)] (5)

Gk(v) = min
u∈V
[G′k(u) + d(u, v)]

whereG0(v) = d(s, v).
The optimal cycle cost and the corresponding cycle are

recovered in a similar manner as described in Section V-A1,
and are accepting by construction. The recurrence in (5)
requiresO(naT ∣V ∣2) operations, wherena is the number of
accepting vertices. This algorithm runs in pseudo-polynomial
time, asT is an integer, and so its binary description length
is O(log(T)). The recurrence forGk can be computed more
efficiently if the edge costs are assumed to be non-negative,
as explained in [10]. This improves the overall complexity of
the recurrence toO(naT (∣E∣ + ∣V ∣log∣V ∣)) time [10].

Remark 3. Consider the special case where weights are
restricted to be 0 or 1. Then, the total weightT is O(∣V ∣)
and the above algorithm has polynomial time complexity
O(na∣V ∣3) or O(na∣V ∣(∣E∣ + ∣V ∣log∣V ∣)) if edge costs are
assumed to be non-negative.

Remark 4. Although finite prefixes do not affect the cost
(cf. Proposition 2), it may be desired to create a ”good”
finite prefix. The techniques described in Section V-A2 (and
similarly Section V-A1) can be adapted to create these finite
prefixes. After computing the optimal accepting cycleC∗, one
can compute the valuesGk(v) and corresponding walk defined
with respect to the initial states0 for all statesv ∈ C∗.

B. Computing infinite-memory runs

Infinite-memory runs achieve the minimum weighted aver-
age costJ∗. However, their practical use is limited, as they
achieveJ∗ by increasingly visiting states that do not affect
whether or not the specification is satisfied. This is unlikely
the designer’s intent, so we only briefly discuss these runs for
completeness. A related discussion on infinite-memory runs,
but in the adversarial environment context, appears in [5].

Let σopt be the (possibly non-accepting) cycle with the
minimum weighted average costJ(σω

opt) over all cycles in
G. Clearly, the restriction that a cycle is accepting can only
increase the weighted average cost. Letσacc be a cycle that
contains both an accepting state and a state inσopt. Let σacc,i

denote theith state inσacc. For symbolsα andβ, let (αβk)ω

for k = 1,2, . . . denote the sequenceαβαββαβββ

Proposition 4. LetσP = (σaccσ
k
opt)

ω, wherek = 1,2, Then,
σP is accepting and achieves the minimum weighted average
cost (1).

Proof: Run σP is accepting because it repeatsσacc

infinitely often. Let αc = ∑p
i=0 c(σacc,i, σacc,i+1) and αw =

∑p
i=0w(σacc,i, σacc,i+1), where integerp is the length ofσacc.

Defineβc andβw similarly for σopt. Then,

J(σ) ∶= lim sup
n→∞

∑n
k=1(αc + kβc)

∑n
k=1(αw + kβw)

= lim sup
n→∞

(n + 1)αc + βc∑n
k=1 k

(n + 1)αw + βw∑n
k=1 k

= lim sup
n→∞

βc

βw

= J((σopt)ω).

A direct application of a minimum cost-to-time ratio algo-
rithm, e.g., [10], can be used to computeσopt since there is no
constraint that it must include an accepting state. Also, given
σopt, σacc always exists as there is an accepting state in the
same strongly connected component asσopt by construction.

The next proposition shows that finite-memory runs can be
arbitrarily close to the optimal weighted average costJ∗.

Proposition 5. Given anyǫ > 0, a finite-memory runσP exists
with J((σP)ω) < J((σopt)ω) + ǫ = J∗ + ǫ.

Proof: Construct a finite-memory run of the formσP =
σpre(σsuf)ω, whereσsuf has fixed length. In particular, letσsuf =
σacc(σopt)M for a large (fixed) integerM . By pickingM large
enough, the error betweenJ((σsuf)ω) andJ((σopt)ω) can be
made arbitrarily small.

Thus, finite-memory runs can approximate the performance
of infinite-memory runs arbitrarily closely. This allows a
designer to tradeoff between runs with low weighted average
cost and runs with short lengths.

C. Complexity

We now discuss the complexity of the entire procedure,
i.e., Algorithm 1. The number of states and transitions in
the transition system isnT and mT , respectively. Theω-
regular specification is given by a Buchi automatonAϕ.
The product automaton hasnP = nT × ∣Aϕ∣ states andmP
edges. For finite-memory runs, the dynamic programming
algorithms described in Section V-A takeO(nanPmP) and
O(naT (mP + nP lognP)) operations, assuming non-negative
edge weights for the latter bound. Here,na is the number
of accepting states in the product automaton. Usually,na

is significantly smaller thannP . For infinite-memory runs,
there is no accepting state constraint for the cycles, so stan-
dard techniques [10, 13] can be used that takeO(nPmP)
andO(T (mP + nP lognP)) operations, again assuming non-
negative edge weights for the latter bound. The algorithms
in Section V are easily parallelizable, both between strongly
connected components ofP and for each accepting state.

In practice, an LTL formulaϕ is used to automatically
generate a Buchi automatonAϕ. The length of an LTL formula
ϕ is the number of symbols. A corresponding Buchi automaton
Aϕ has size2O(∣ϕ∣) in the worst-case, but this behavior is
rarely encountered in practice.

VI. EXAMPLES

The following examples demonstrate the techniques devel-
oped in Section V in the context of autonomous driving and
surveillance. Each cell in Figures (1) and (2) corresponds to
a state, and each state has transitions to its four neighbors.
We specify costs and weights over states, as discussed in
Section II. Tasks are formally specified by LTL formulas and
informally in English. We use the following LTL symbols
without definition: negation (¬), disjunction (∨), conjunction
(∧), always (◻), and eventually (◇) [1].

The first example is motivated by autonomous driving. The
weighted transition system represents an abstracted car that

Fig. 1. Driving task, with optimal run (black) and feasible run (green).

Fig. 2. Surveillance task, with optimal run (black) and feasible run (green).

can transition between neighboring cells in the grid (Figure
1). The car’s task is to repeatedly visit the states labeleda,
b, and c while always avoiding states labeledx. Formally,
ϕ = ◻◇ a ∧ ◻◇ b ∧ ◻◇ c ∧ ◻¬x. Costs are defined over
states to reward driving in the proper lane (the outer boundary)
and penalize leaving it. Weights are zero for all states except
states labeleda, b, andc, which each have weight of one.

The second example, Figure 2, is motivated by surveillance.
The robot’s task is to repeatedly visit states labeled either a,
b, c or d, e, f . States labeledx should always be avoided.
Formally,ϕ = ((◻◇ a ∧ ◻◇ b ∧ ◻◇ c) ∨ (◻◇ d ∧ ◻◇
e ∧ ◻◇ f)) ∧ ◻¬x. Costs vary with the state as described
in Figure 2, and might describe the time to navigate different
terrain. The weight is zero at each state, except statesa and
f , where the weight is one.

Numerical results are in Table I. Computation times for op-
timal and feasible runs are given bytopt andtfeas respectively.
All computations were done using Python on a Linux desktop
with a dual-core processor and 2 GB of memory. The feasible
satisfying runs were generated with depth-first search. The
optimal satisfying runs were generated with the algorithm from
Section V-A2. Since it was possible to decrease the weighted
average cost by increasing the length of the cycle (i.e., the
infimum was not achieved by a finite-memory satisfying run),
we used the shortest cycle such thatJ(σopt) < ∞. Thus, the
optimal valuesJ(σopt) are conservative. The improvement of
the optimal runs over a feasible run is evident from Figures 1
and 2. In Figure 1, the optimal run immediately heads back
to its lane to reduce costs, while the feasible run does not. In
Figure 2, the optimal run avoids visiting high-cost regions.

TABLE I
NUMERICAL RESULTS

Example T (nodes/edges) Aϕ P P (reachable) # SCC # acc. states Jopt (units) Jfeas (units) topt (sec) tfeas (sec)
Driving 300 / 1120 4 / 13 1200 / 3516 709 / 2396 1 1 49.3 71.3 2.49 0.68
Surveillance 400 / 1520 9 / 34 3600 / 14917 2355 / 8835 2 2 340.9 566.3 21.9 1.94

VII. C ONCLUSIONS

We created optimal runs of a weighted transition system
that minimized a weighted average cost function subject to
ω-regular language constraints. These constraints includethe
well-studied linear temporal logic as a subset. We showed that
optimal system runs correspond to cycles in a lifted product
space, which includes behaviors that both are valid for the
system and satisfy the temporal logic specification. Dynamic
programming techniques were used to solve for an optimal
cycle in this product space.

Future directions include investigating notions of optimality
with both non-deterministic transition systems and adversarial
environments. Additionally, better computational complexity
may be achievable for fragments ofω-regular languages.

ACKNOWLEDGEMENTS

The authors thank Pavithra Prabhakar for helpful discus-
sions. This work was supported in part by a NDSEG Fellow-
ship, the Boeing Corporation, and NSF Grant CNS-0911041.

REFERENCES

[1] Christel Baier and Joost-Pieter Katoen.Principles of
Model Checking. MIT Press, 2008.

[2] C. Belta and L.C.G.J.M. Habets. Control of a class of
non-linear systems on rectangles.IEEE Transaction on
Automatic Control, 51:1749–1759, 2006.

[3] C. Belta, V. Isler, and G. Pappas. Discrete abstractions
for robot motion planning and control in polygonal
environments.IEEE Transactions on Robotics, 21:864–
874, 2004.

[4] D. P. Bertsekas. Dynamic Programming and Optimal
Control (Vol. I and II). Athena Scientific, 2001.

[5] K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Mean-
payoff parity games. InAnnual Symposium on Logic in
Computer Science (LICS), 2005.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms: 2nd ed. MIT Press, 2001.

[7] G. B. Dantzig, W. O. Blattner, and M. R. Rao. Finding
a cycle in a graph with minimum cost to time ratio with
application to a ship routing problem. In P. Rosenstiehl,
editor,Theory of Graphs, pages 77–84. Dunod, Paris and
Gordon and Breach, New York, 1967.

[8] A. Dasdan and R. K. Gupta. Faster maximum and
minimum mean cycle algorithms for system performance
analysis.IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 17:889–899, 1998.

[9] L. Habets, P.J. Collins, and J.H. van Schuppen. Reach-
ability and control synthesis for piecewise-affine hybrid
systems on simplices.IEEE Transaction on Automatic
Control, 51:938–948, 2006.

[10] M. Hartmann and J. B. Orlin. Finding mimimum cost
to time ratio cycles with small integral transit times.
Networks, 23:567–574, 1993.

[11] Sertac Karaman and Emilio Frazzoli. Sampling-based
motion planning with deterministicµ-calculus specifica-
tions. In Proc. of IEEE Conference on Decision and
Control, 2009.

[12] Sertac Karaman, Ricardo G. Sanfelice, and Emilio Fraz-
zoli. Optimal control of mixed logical dynamical systems
with linear temporal logic specifications. InProc. of
IEEE Conference on Decision and Control, pages 2117–
2122, 2008. doi: 10.1109/CDC.2008.4739370.

[13] R. M. Karp. A characterization of the minimum cycle
mean in a digraph.Discrete Mathematics, 23:309–311,
1978.

[14] R. M. Karp and J. B. Orlin. Parametric shortest path
algorithms with an application to cyclic staffing.Discrete
and Applied Mathematics, 3:37–45, 1981.

[15] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces.IEEE Transac-
tions on Robotics and Automation, 12:566–580, 1996.

[16] Marius Kloetzer and Calin Belta. A fully automated
framework for control of linear systems from temporal
logic specifications. IEEE Transaction on Automatic
Control, 53(1):287–297, 2008.

[17] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Tem-
poral logic-based reactive mission and motion planning.
IEEE Transactions on Robotics, 25:1370–1381, 2009.

[18] S. LaValle and J. J. Kuffner. Randomized kinodynamic
planning. International Journal of Robotics Research,
20:378–400, 2001.

[19] E. Plaku, L. E. Kavraki, and M. Y. Vardi. Motion
planning with dynamics by a synergistic combination of
layers of planning.IEEE Transactions on Robotics, 26:
469–482, 2010.

[20] S. L. Smith, J. Tumova, C. Belta, and D. Rus. Optimal
path planning for surveillance with temporal-logic con-
straints.The International Journal of Robotics Research,
30:1695–1708, 2011.

[21] P. Toth and D. Vigo, editors. The Vehicle Routing
Problem. Philadelphia, PA: SIAM, 2001.

[22] M. Y. Vardi and P. Wolper. An automata-theoretic
approach to automatic program verification. InLogic
in Computer Science, pages 322–331, 1986.

[23] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M.
Murray. Receding horizon control for temporal logic
specifications. InProc. of the 13th International Con-
ference on Hybrid Systems: Computation and Control,
2010.

	Introduction
	Preliminaries
	Modeling Language
	Specification Language
	Graph Theory

	Problem Statement
	Reformulation of the problem
	Product Automaton
	Prefix-Suffix Form

	Solution Approach
	Computing finite-memory runs
	Minimum mean cycle
	Minimum cycle ratio

	Computing infinite-memory runs
	Complexity

	Examples
	Conclusions

