
High throughput asynchronous algorithms for
message authentication

Scott A Crosby and Dan S. Wallach
Rice University

December 14, 2010

Abstract

Public-key digital signatures are a mainstay of cryptographic protocols and are
widely used in practice. However, the performance gap between digital signatures
and conventional cryptographic operations is significant,particularly with Inter-
net messaging systems, chat systems, and the like, which would like to generate
and verify digital signatures at high speeds. Consequently, our research considers
hybrid schemes, derived from Merkle trees and newer hash-based data structures,
that can optimize signing and verification of messages in bulk, while still pre-
serving traditional single-message signature and verifications semantics. We show
that hash trees can increase the signing throughput ofanypublic key signature al-
gorithm to tens of thousands of messages per second. In addition, our system’s
throughput degrades gracefully when the requested messagesignature rate satu-
rates the CPU. Our techniques similarly create efficiencieswhen verifying groups
of messages from the same source. In particular, by delayingany given signature
verification until it’s absolutely necessary, we can often verify multiple messages
at the same time with minimal additional cost. We verify our system with de-
tailed microbenchmarks of our hybrid signature algorithmsas well as full-system
simulations driven from traces taken from Google Wave.

1 Introduction

Public key signatures are widely used in the design and engineering secure systems
and are built into a number of common cryptographic protocols including TLS [12].
Unfortunately, TLS only provides its authenticity, integrity, and privacy guarantees
between two end points, which isn’t a good fit for a variety of applications. When data
is broadcast to multiple recipients, we need digital signatures that can stand alone and
be independently verified. Many such systems, ranging from individual blogs to large
aggregators like Twitter and Facebook, require their usersto trust a central server to
speak for the authenticity of individual messages. However, if that central server is
compromised, by whatever means, all of its content becomes suspect.

A notable exception to this trend is Google’s Wave service. Google Wave is a col-
laborative communication system supporting a federation protocol [17], where each

1

document and user has ahome server, and users across many home servers may con-
currently edit the same document. To remain secure while enabling this functionality,
Google Wave’s federation protocol has a digital signature on every single message,
where individual user keystrokes might well require individual signed messages. This
has an obvious performance cost: over 75% of the runtime CPU time in the current
“FedOne” implementation is spent on RSA signature generation. (While Google has
announced it has no plan to continue developing Wave as a standalone product, the
underlying Wave technology is expected to continue both within Google, other compa-
nies [29, 35], and through open-source distribution and adoption [17].)

In this paper, we investigate high throughput and low latency cryptographic prim-
itives with semantics that are compatible with ordinary public key signatures, suitable
for Wave and other comparable message-passing applications. For the purposes of this
research, we are only interested in message integrity and authentication, not confiden-
tiality.

The signing performance of any public key signature algorithm can be optimized
by amortizing one public key signature over many messages bybundling multiple mes-
sages into a Merkle tree [24] and then computing a digital signature on the root. In
Sections 5 and 6, we will discuss the performance of this approach.

Optimizing signature performance is not enough. Verification is also a requirement,
as every message received must have its signature verified. If an attacker knew that a
signature would never be verified, then the attacker would know that it could get away
with forging a message. Consequently, in applications where messages fan out to a
large number of users, signature verification will occur more frequently than signature
generation.

While Merkle tree structures can easily enhance signature generation performance
by batching messages together with cheap hashing operations, verification throughput
is less likely to benefit from a simple approach like this because a given client may not
necessarily be interested in the verification of multiple messages that happen to have
been signed at the same time. In addition, batches will be generated frequently, keeping
them small, in order to minimize latency. (A multiuser server would, presumably,
queue up messages from all of its users and sign them in bulk. This minimizes the
number of messages from any given user that would be in any given Merkle tree.)

Consequently, we must design new systems that enable fast verification of batched
digital signatures. Toward this end, we present a new algorithm calledspliced signa-
tures: a hybrid containing both a cryptographic hash tree and a public key signature,
preserving the semantics of a standalone public key signature. With spliced signatures,
extra cryptographic hashes in the hash tree allow the cryptographic hash tree in one
bundle of messages to have hashes of earlier messagessplicedonto it. The newer pub-
lic key signature can then be used to validate both old and newmessages. Splicing is
transitive, so a single public key verification can authenticate many messages sent by
the same sender over time.

Splice signatures offer a latency-throughput tradeoff. Ifa message must be verified
quickly, this can be done immediately at the cost of a single public key verification
operation. However, increased verification latency can be acceptable, perhaps because
users can tolerate the latency, or perhaps as a consequence of CPU saturation on the
server, which simply cannot verify signatures at the message arrival rate.

2

We begin with a discussion of related work in Section 2 and background in Sec-
tion 3, including a consideration of the design space for howmultiple signatures may
share locality, how signature latency may be tolerated, andhow the programming se-
mantics of signatures might be changed to take advantage of this. Section 4 introduces
our spliced signature design. We evaluate our implementation with microbenchmarks
in Section 5 and with a trace of Google Wave traffic in Section 6. Finally, we consider
how our system might scale to large computing clusters in Section 7 and conclude in
Section 8.

2 Related work

There have been many approaches to improve the performance of authentication al-
gorithms. Merkle trees [24] were originally designed and are still used to aggregate
several messages into a single root hash which is then signed. Similarly, linked-list
style structures, as in Schneier and Kelsey [36, 37], allow asignature on a recent hash
to validate earlier messages, and also allow a verifier to ensure that every message
purported to be in a log is actually present. This has even been extended to allow net-
work services to entangle with one another [23]. Data structures such as these, built
from hash functions, have been designed for a wide variety ofapplications, including
persistent authenticated dictionaries (see, e.g., [1, 19,7]).

For this research, we only need semantics equivalent to standalone digital signa-
tures, but we want throughput that’s radically faster than traditional public key digital
signature algorithms. Others have also pursued similar goals.

Improving public key algorithm performance We tested our algorithms with RSA
and DSA implemented in software. We could have chosen other cryptographic primi-
tives with different verification time, signing time, and size tradeoffs, or improved the
performance of RSA and DSA by using external cryptographic hardware accelerators
or computational cluster resources [6].

Algorithms offering faster signature verification than RSAor DSA include Rabin
signatures [34], which require one modular multiplicationto verify or Bernstein’s RSA
variant [5], which appears to be even faster.

Batched public key algorithms Many researchers have attempted to make public
key algorithms that directly support batch signing and batch verification, which was
formalized by Bellare et. al. [4]. Many of these algorithms have been found to be
broken [8]. Camenisch et. al. [9] and Bellare et al. [4] have further discussion on this
topic.

With Batch RSA [14], several messages can be combined together and signed in
one exponentiation if they are to be verified with different public exponents. Optimiza-
tions for DSA signing have also been proposed [26]. Other approaches for increasing
the throughput of public key algorithms include algorithmsthat can do parallel ex-
ponentiations of a constantg to random exponents by cachinggx1 . . .gxn [25] for a
42%-85% improvement. Exponents can also be selected that offer efficient batch ex-
ponentiation [10].

3

Newer cryptographic primitives for batch verification havebeen proposed. Ca-
menisch et. al. [9] present a signature scheme based on elliptic curve cryptography
where a verifier can batch-verify signatures from many different signers. Several of
these algorithms were evaluated for their performance [13]. Although batching lowers
the per-message costs, the overall algorithm is still much slower than RSA or DSA.

While this class of algorithms has promise, they are primarily intended to allow
one party (e.g., a web server which must perform a large volume of public key oper-
ations [38]) to compute results that are, to the remote party, no different than if they
had been computed one-by-one. For our research, we are willing to make both parties
aware of the batching strategy in return for improved throughput. Furthermore, the
schemes we wish to consider are based around well-understood cryptographic primi-
tives. Even if any particular algorithm is found to be weak, the Merkle construction
and others like it are trivial to implement with any other algorithm having the common
semantics expected of cryptographic hash functions and digital signatures.

Stream authentication Stream authentication [15, 33] addresses the challenge of au-
thenticating a potentially infinite stream of messages, such as a stock ticker or multicast
video stream. Stream authentication algorithms must support high throughput signa-
ture generation and verification and must function correctly even if the receiver does
not receive every message (although there is an assumption that all receivers will get
mostmessages in a stream).

Techniques for stream authentication include erasure codes [30], amortizing a pub-
lic key signature over several packets using Merkle trees [40], and making signatures
cheaper by using one-time-use signatures [15]. One system designed with efficiency
in mind, TESLA [33, 32], releases successive pre-images of ahash function with each
broadcast message, allowing for efficient authentication only at the time messages are
seen rather than at any future time as with traditional digital signatures.

Our work differs from stream authentication schemes in thatwe do not require the
receiver to be online nor do we require the receiver to need tosee a substantial fraction
of a stream. Each message in our work can be authenticated entirely by itself, at any
future time, but we include optimizations to take advantageof stream-like locality in
the data, when it’s available.

3 Background

We first introduce some of the cryptographic data structuresthat we will use in this
work, then we discuss some of the semantics for how we will usethem.

3.1 Merkle trees

The structure of a Merkle tree is simple. A set of messages become the leaves of a
tree. Then we build a binary tree, using cryptographic hash functions. Each node
simply contains the hash of the concatenation of its two children. The root hash then
represents a hash over all of the leaves of the tree, with all the same security semantics
we would expect of a hash directly over the concatenation of the individual messages.

4

X0 X1 X2 X3 X4 X5 X6 X7

Figure 1: Graphical notation for a Merkle tree demonstrating the necessary hashes
(solid black circles) to verify a Merkle signature onX2. Open circles represent values
that can be recomputed from the values below them. Grey circle nodes are unnecessary
for the proof.

Applying a digital signature to this root hash is then equivalent to applying a digital
signature to all of the elements.

Merkle trees gain their value when we wish to verify the signature over a specific
leaf. Rather than needing every message to verify the signature, we only need a slice
through the structure, as demonstrated in Figure 1. AMerkle signature[31] on X2

would comprise the public-key digital signature on the root, X2 itself, and the three
internal hashes (the solid black circles). We call this apruned tree, because it only
contains a portion of the full hash tree. The verifier would then hashX2, merging this
result with the hash ofX3 and repeating two more times to yield the same value as
was originally signed. If the signature on this root is valid, then the leaf node,X2 is
authentic. With Merkle signatures, delaying verification doesn’t reduce the total work
needed to verify the messages, but it can allow ‘load averaging’ where messages are
queued up during an overload and verified when the overload ceases.

3.2 Locality

Locality is a measure of how often a verifier receives messages from the same signer.
In some systems, the verifier is unlikely to receive messagesfrom the same sender
over time. In other systems, there is high locality. For instance, in Google Wave, an
active user doing collaborative editing will be sending update messages several times
per second. When there is locality, there is the prospect that a spliced signature can
exploit it to amortize one public key verification across several messages.

3.3 Latency

We can examine the latency of a system using queuing theory. When a message arrives,
there is both the time to sign or verify and the time that the message must wait before
being processed. As the load increases, queuing delay will increase as the CPU gets
behind. At 90% load, queuing delay will be 4.5 times the signing time or verification
time. When overload occurs, the buffer of unprocessed messages grows faster than

5

computation can drain it and the latency diverges to infinity.
To minimize latency, it is critical to prevent a system from entering overload. With

discrete orsimple signatures, where each message is individually signed with a public
key algorithm such as DSA or RSA, the maximum throughput is that of the underlying
public key algorithm. If we batch messages using a Merkle tree or other such structure
before signing, we can amortize the costs of a public key signature over many mes-
sages. The peak throughput becomes the rate at which we can build and serialize the
hash trees, not the rate at which the public key algorithm cansign messages. Further
investigation of latency tradeoffs of batch signing is described in Korkmaz [20].

3.4 Asynchronous semantics

We follow the same general semantics of digital signatures,offering a signing oper-
ation and a verifying operation. Traditional digital signature APIs are synchronous,
in that the signature bytes or validity of a signature comes back immediately when
the signature of verification is requested. In order to use Merkle signature or other
such structures, we need an asynchronous API, where messages can be submitted to be
signed but the actual digital signature operation is delayed. In the case of Merkle trees,
this is necessary to accumulate enough messages to fill out the leaves of the Merkle
tree. Figure 2 shows a simple Java-like API for this, where outgoing messages are sub-
mitted as objects with callbacks that will be later invoked when the signature has been
computed. Of course, this could be implemented in a variety of different lazy styles
in other programming languages, but the result is the same. At some later point, the
pending queue of messages is processed as a batch, and all thesignatures for the batch
are available at once.

In our corresponding asynchronous verification API, seen inFigure 3, the appli-
cation submits messages to be verified at a later time. Messages can beforcedat any
time when the application requires that it must be verified, such as when a user logs
in or opens a document. At that time, the verification module verifies the signature
and invokes the callback with the result. The verification module may also invoke the
callback on its own if it happens to verify messages that werenot explicitly forced.

Asynchronous implementations, both when signing and when verifying messages,
may also be more robust when the CPU is saturated. If the per-batch overhead is larger
than the per-message overhead, a batch algorithm can compensate for higher arrival
rates by using larger batches.

Asynchronous semantics have clear potential to improve signature throughput rel-
ative to discrete digital signatures, however, they are notbeneficial for systems that
require absolutely minimal verification latency when thereis plenty of available com-
putation relative to the desired message rate, or systems with poor locality.

3.5 Implementation details

Our verifier uses a single thread for all cryptography. That thread is responsible for
readingforcerequests and incoming messages from mailboxes and sending them to an
underlying cryptographic module that implements the asynchronous signature verifi-
cation API.

6

class OutgoingMessage {
byte []getMessageBytes();
void sigBytesCallback(byte sigbytes[])

}

class SignQueue {
void submit(OutgoingMessage msg);
void process();

}

Figure 2: Asynchronous signature API.

class IncomingMessage {
byte []getMessageBytes();
byte []getSigBytes();
void validityCallback(bool valid);

}

class VerifyQueue {
void submit(IncomingMessage msg);
void force(IncomingMessage msg);
void forceAll();

}

Figure 3: Asynchronous verification API.

7

It first examines the incoming message mailbox. If there is anunprocessed mes-
sage, it adds it to an internal buffer of unverified messages.If there are no incoming
messages, but there is a force request, then we immediately verify that message and
find other messages which may also be verified with the same digital signature, and
notify all of them of the outcome. If there are no outstandingforce requests or incom-
ing messages, and thus the thread is idle, it forces the oldest unverified message. If
there is nothing to do, it waits. In the case of batch-verification algorithms, handling
all incoming messages before force requests can prevent overloads by allowing one
batched verification to verify multiple forced messages.

Consequently, there will be two different conditions underwhich the verification
system operates. If the message arrival rate is below what the CPU can natively handle,
the verifier will simply verify every message eagerly, reducing the degree to which one
message verification will benefit another; however, since there’s excess CPU capac-
ity, we should end up with lower latency verification. In the alternative case, where
messages are arriving faster than the CPU can process them, the system will prioritize
important messages to maintain the desired message throughput rate. Less important
messages will be queued and opportunistically verified. If important messages arrive
faster than they can be verified, batching can prevent overload, but latency will increase
compared to the unloaded case. At some point, the message throughput will exceed the
available CPU’s ability to process it, regardless of the benefits of batch processing.
At this limit, throughput cannot grow, so latency will necessarily suffer, and clustering
algorithms of some sort must be used to preserve scalability. (See Section 7 for details.)

4 Spliced signatures

The idea of spliced signatures is simple. Say that Alice sends Bob three individually
signed messagesM1,M2,M3. Bob’s computer could authenticate each of them imme-
diately at the cost of three public key verifications, but doesn’t need to because Bob
isn’t logged in, or can’t, because Bob’s computer is overloaded. We would prefer for
Bob’s computer to do a public key verification of just one message,M3, and then be
able to authenticate all three messages.

4.1 History trees

Crosby and Wallach [11] introduced an improvement to Merkletrees that they called
history trees. Where a Merkle tree is computed and then fixed for all time, a history
tree allows for multipleversionsof the tree, where later versions incrementally add to
the hash trees of earlier versions.

Crosby and Wallach’s history trees have semantics comparable to hash chains [37],
where a recent hash is sufficient to verify older messages. Unlike hash chains, however,
a linear scan over the chain is unnecessary. Instead, the creator of a history tree can
produce a proof that a new root hash is consistent with an older root hash inO(logn)
space. Likewise, the creator can be challenged to prove thatany given leaf is in the
history tree. As with the Merkle tree example in Section 3.1,the creator need only
generate a logarithmic slice through the tree to the root node, when then can serve as a

8

standalone proof that the message held by the verifier is the same as the one signed by
the creator.

The core difference between our use of the history tree and its use as a tamper
evident log is that when used by a tamper evident log is that with spliced signatures,
we trust the signer. With a tamper evident log, we do not trustthe signer.

We now present an overview of how history trees work. A filled history tree of
depthd is simply a binary Merkle hash tree, storing 2d events on the leaves. Successive
leaf nodes store the hashes of successive messages. When a tree is not full, subtrees
containing no messages are represented as� and have a hash value of/0. This can
be seen starting in Figure 4, a version-2 tree having three events. Figure 5 shows a
version-6 tree, adding four additional events. Although the trees in our figures have a
depth of 3 and can store up to 8 leaves, our design clearly extends to trees with greater
depth and more leaves. When the tree is full, a new root, one level up, can be created
with the old tree as its left child and an empty right child where new events can be
added.

An interesting property of the history tree is the ability toefficiently reconstruct
old versions orviewsof the tree. Consider the history tree given in Figure 5. The
logger could reconstruct the root valueC2 analogous to the version-2 tree in Figure 4
by pretending that later nodes (marked with asterisks in Figure 5) were� and then
recomputing the hashes for the interior nodes and the root. If the reconstructedC2 had
the same hash as a previously received hash ofC2, then both trees must have the same
contents and commit the same events.

A proof that a messageX3 is committed is thepruned tree P, shown in Figure 6. It
includes just enough of the full history tree from in Figure 5to be able to validateX3,
validateX2, reconstructC2, reconstructC3 and computeC6. Unnecessary subtrees are
elided out and replaced with stubs.

4.2 Implementing spliced signatures

The history tree is built in a batch fashion. Whenever the application requests that
the set of outstanding messages be signed, the spliced signature module adds the new
messages to the history tree. This requiresO(1) amortized hash operations per mes-
sage. Then the root commitmentCn is generated, requiring logn hash operations, and
signed. The spliced signature module then generates a pruned tree to authenticate each
message, with each message’s pruned tree being unique to that message.

Each batch of messages is appended to the same history tree, which could ostensi-
bly grow indefinitely. To reduce RAM consumption in our implementation, we restart
with an empty history tree every 100k messages. Signatures cannot be spliced across
these epochs.

4.2.1 AuthenticatingX3 in a batch

Consider the case where a signer adds 7 messages as a single batch into an empty
history tree. The result is the history tree seen in Figure 5.

The minimum pruned tree that can reconstruct the root hash commitmentC6 is
presented in Figure 7, containing a path to leafX6, the last leaf inserted. The pruned

9

tree in the spliced signature that authenticatesX3 is seen in Figure 6. It takes the
minimum pruned tree in Figure 7 and adds a path to leafX3, allowing that message
to be authenticated. This tree, the public key signature onC6, and the messageX3 is
sufficient to authenticateX3. To verify this spliced signature, the verifier hashesX3,
places the hash into the pruned tree, and recomputes the hashof the root of the tree,
which should be equal to the one already signed. The verifier will also validate the
public key signature on the root hash.

4.2.2 Splicing two history trees

In this example, we will assume that the signer runs two batches and generates two
signatures. The first batch contains 3 messages and the second batch contains an ad-
ditional 4 messages. The verifier receives two spliced signatures; the first contains the
pruned tree seen in Figure 4, authenticatingX1, and having a signed root hash commit-
mentC2. For the second spliced signature, instead of sending the pruned tree seen in
Figure 7, which authenticates messageX6 with a signed commitment ofC6

1 the signer
instead sends the pruned tree in Figure 6. This tree includesan extra path to leafX2.
The second signature thus connects to the first one.

The verifier could verify these two message independently atthe cost of two public
key signatures. What if we first verifiedC6’s public key signature on the tree in Fig-
ure 6? We validate messageX6 from this tree. Observe that the pruned tree in Figure 6
also includes a path toX2. Then, if we pretended that the asterisk-marked children in
this tree were�, we could reconstructC2, using hash operations. If the reconstructed
hashC2 was the same as theC2 computed from Figure 4, then we have a valid splice.
We have authenticatedC2 from the pruned tree in Figure 6 and the signature onC6.
Now that we have authenticatedC2, we can use the pruned tree in Figure 4 to authenti-
cateX1. In the end, we have validated two messages using 5· logn hash operations and
one public signature verification.

We call this a spliced signature because if the reconstructed C2 is the same as the
originalC2, the contents of the left children on the path toX2 in Figure 4 are the same
as the left children on the path toX2 in Figure 6, and we could thus safely graft the tree
in Figure 4 onto the tree in Figure 6.

In this example, the two messages being verified were in sequential batches. That is
not necessary. What matters is that the verifier was able to use the latter pruned history
tree in Figure 7 to reconstruct a commitment of the earlier history treeC2 by virtue of
Figure 7 including a path to leafX2.

Also note that for the recipient to be able to splice the two trees together, the signer
had to send Figure 6, not Figure 7. It had to predict that the verifier would have pre-
viously received the spliced signature authenticatingX1. When this prediction is not
possible, spliced signatures are no better than Merkle signatures because the signer will
not know what prior messages to splice to.

1Figure 7 already includes a path to messageX6, and can authenticate that message without adding any
additional nodes.

10

b

b

X0 X1

b

X2

Figure 4: A version 2 history with commitmentC2.

b

X0 X1 X2 X3

∗

b
∗

X4 X5

b

X6

Figure 5: A version 6 history with commitmentC6.

b

X0 X1 X2 X3

∗

b
∗

X4 X5

b

X6

Figure 6: A pruned tree indicating a batch ending in versionX6 with commitmentC6

and including a path to leafX2. If that path is considered a splicepoint toC2, this tree
can be merged with the tree given in Figure 4. Solid black circles are included in the
output. Open black circles need not be included as they can becomputed from their
children. Grey circles need not be included because they arenot relevant to the proof
being constructed. Small dots, like open circles, can be recomputed from their children,
but can be expected to be different in future versions as moremessages are inserted.

11

b

X0 X1 X2 X3

b

X4 X5

b

X6

Figure 7: A pruned tree that authenticates messageX6 that was generated during the
batch ending in versionX6. Solid black circles are included in the proof. Grey circles
need not be included because they are not relevant to the proof being constructed. Small
dots can be recomputed from their children, so they need not be included.

4.3 General splicing

In general, the pruned tree for a spliced signatureP for a messageXi will contain at least
two paths; it will contain a path from the root toXj , whereCj is the commitment at the
end of the batch, and a path toXi , which is the particular message being authenticated.
As the depth of the tree is logn, the number of hashes in the two paths to the two leaves
in the pruned tree is 2· logn.

Lets say the signing application later requests a spliced signature on messageXk.
The minimum pruned treeQ in the spliced signature onXk includes a path to the leaf
Xk and a path to the leafXl , whereXl is the last message added in the batch.

Now lets say the signing application predicts that the verifier could take advantage
of a splice from messageXi to Xk. The signer takes the pruned treeQ and adds in
one additional path, to leafXj , the end of the batch for messageXi . Thatsplice to Cj

increases the size ofQ by logn hashes.
A spliced signature is not limited to splicing to one prior commitment. It can splice

to many prior commitments. Each splice requires logn hashes. For simplicity, we
will assume that a spliced signature includes a list of the index numbers of all prior
commitments to which it splices.

We could have included a path directly to messageXi . We spliced instead toCj ,
the commitment that ends the batch containingXi to simplify the design of the spliced
signature verifier and reduce the number of distinct splicepoints, which increases the
opportunities of opportunistic splicing, splicing that was not planned by the signing
application.

Verifying spliced signatures is transitive. Lets say that the verifier receivesP and
Q and Q has splice toCj . If the commitmentCl authenticatingQ is authenticated,
whether by having its public key signature verified directly, or being authenticated
because it spliced into a later authenticated message, thenQ is authenticated. IfQ is
authenticated, any prior commitments which splice into it are authenticated, as well
as any messages authenticated by those commitments. This includes messageXk and
commitmentCj , which authenticatesP, and transitively, through earlier commitments
which splice intoP. With only a single public key verification, many messages can be

12

authenticated through hash operations.

4.4 Implementing the asynchronous verification interface

There are two ways to authenticate a message. We can always ignore the splices
entirely and validate a spliced signature by following the procedure outlined in Sec-
tion 4.2.1, by using the pruned tree and the message being authenticated to generate
the root commitment for that batch and then checking the public key signature on that
commitment. This requires doing one public key verificationfor each verified message,
the same as we would do with a standard Merkle tree.

To improve our efficiency we must leverage the asynchronous API and delay the
verification in order to exploit any splicepoints between the spliced signatures. In Sec-
tion 4.3 we described how to verify a splice between two messages. In this section, we
describe the bookkeeping required in order to find and efficiently exploit splicepoints.
In particular, we must track messages which may splice othermessages, and we must
remember when digital signatures, hashes, or splices have been verified. Because we
must delay public key signature verification as long as possible—the whole point is to
minimize public key signature verification—our bookkeeping stores unauthenticated
messages and must properly reject forged messages.

It is not possible to splice two spliced signatures that weregenerated from different
history trees. We can only splice signatures generated fromdifferent versions of the
same history tree. To identify if two messages were generated in the same history tree,
a spliced signature includes a tree-id, created randomly for each distinct history tree.
For simplicity, in the rest of this section, we will assume that all messages are from the
same history tree. Otherwise, the verifier could demultiplex the messages by using the
tree-id and replicate this algorithm once for each distincthistory tree.

If two messages have a verified splice between them, then validating the newer
message will also validate the older one. To accomplish this, we must track these de-
pendency relationships. Repeating this across all messages forms a logical dependency
graph which we explicitly maintain for all messages. We place a node in this graph for
each message, marking it as depending on the node representing the commitment for
its batch. We also place a node in this graph for each end-of-batch commitment. We
will add edges between nodes that represent end-of-batch commitments only if there is
a verified splice between them.

For each pruned tree, we cache its root hash in a hash table Roots= {i1 →Ci1 i2 →
Ci2 . . .} of already seen commitments.

Whenever a new spliced signatureM arrives with commitmentCn, we determine
if any existing messages splice into it. The incoming message contains a list of prior
commitmentsi1, i2, . . . that splice into it. We use the pruned tree inM to reconstruct
those prior hashes,Ci1,Ci2, If they are the same as the hashes cached in Roots then
we have validated the splice fromCn toCik and add this edge into the dependency graph.
If M contains a splice to a prior commitment that the verifier has not encountered, we
record the potential splice in a separate table of prospective splices. We next determine
if M splices into any existing messages. This is possible if messages arrive out of order.
To do this, we see ifM’s commitment is in the table of prospective splices. If it is, we

13

validate the splice and add the edge between the commitmentsinto the dependency
graph.

This algorithm verifies splices eagerly, as soon as messagesarrive, and adds de-
pendencies to the dependency graph. Determining parenthood—verifying a splice—
requiresO(logn) hash operations. For a spliced signature withr splices, the total time
is O(r logn) hash operations.

When validating a messageM with commitmentCn that has been forced, we could
verify M’s spliced signature, by using the pruned tree and the publickey signature on
that commitment. If the signature validates, instead of invoking the callback to mark
just M as valid, we traverse the dependency graph for all descendants of Cn, which
includesM, and invoke the callback on them.

However, we can further improve efficiency by finding a later messageRwhich has
M as a descendant, and verifyR’s commitment’s public key signature. The best node
R to use is a root of the dependency graph that hasM as a descendant, which can be
found with a depth-first-search (DFS).

Consider the error case where a public key signature on a rootfails to verify. This
could occur because the root signature (and its accompanying messages) are forgeries,
or it could occur due to a transient failure of the signer. In either case, we must disregard
the root signature and consider the messages that came with it to be unverified (as with
any other new message). Rather than terminating or restarting the DFS, the DFS need
only cache its search path and resume where it left off. By doing this, verification can
be done in constant time per validated or rejected message.

5 Microbenchmark evaluation

We implemented all of our algorithms in Java OpenJDK 1.6.018 running a quad-core
Intel Core i7-860 at 2.8GHz running Linux in 64-bit mode. Ourimplementation used
Google Protocol Buffers [16] for serialization. We use BouncyCastle [22] for 2048-bit
RSA signatures and 1024-bit DSA signatures. We used SHA2-256 for cryptographic
hashing. We would have used 2048-bit DSA signatures except that they are not sup-
ported by our Java libraries. (Based on OpenSSL benchmarks,we would expect them
to be about 3.5 times slower to sign and verify than 1024-bit DSA.) Except for DSA,
our ciphers all operate at the 256-bit level of security [27].

Our benchmark harness tracks message latencies. We record when a message is
generated, processed, forced, and ultimately verified. To minimize performance arti-
facts induced by our benchmarking harness, it runs in a separate thread on its own CPU
core.

The Merkle and history trees used in our cryptographic primitives have a very spe-
cific structure, that of a complete binary tree where empty right leaves store nothing
(i.e., a pointer to null). Just as a heap can be stored in an array to avoid object allocation
overheads, we store our hash trees in an array, where a node’soffset is assigned based
on an in-order traversal.

In Tables 1 and 2 we present our Java and OpenSSL public key microbenchmarks.
Except for DSA verification where OpenSSL is 6.5 times fasterthan Java, OpenSSL

14

Sign Verify
RSA-2048 10 .276
DSA-1024 .868 1.720
SHA2-256 on 64 bytes .00125

Table 1: CPU time for public key operations in Java in milliseconds.

Sign Verify
RSA-2048 2.72 .080
DSA-1024 .231 .267
ECDSA-256 .138 .606
SHA2-256 on 64 bytes .0008

Table 2: CPU time in OpenSSL 0.9.8o in milliseconds.

is 3.4-3.7 times faster than native Java. Clearly, Java systems that depend on crypto
should consider using native methods to improve crypto performance.

Regardless, these performance numbers show an interestingtrend. RSA, while
being very expensive to compute a digital signature, is veryefficient to verify. As we
will discuss later, verification performance is essential to our system, while signature
generation is less sensitive, so these benchmarks tend to lead us to prefer RSA over
DSA signatures.

5.1 Hash tree microbenchmarks

We now focus on microbenchmarking the costs of Merkle trees and history trees. These
are the foundation of the two asynchronous signature schemes that we present.

The critical serialized path in our hybrid signature algorithms for signing is gen-
erating the Merkle or history tree. Our current implementation does this in a single
thread. In Figure 8 we summarize the costs of building these trees across different tree
sizes, which tracks linearly at roughly 2ns per message.

In Figure 9 we plot overallper-messagecosts, including the cost of serializing
a message’s pruned tree for authenticating that message andthe cost of building the
tree over all messages in the batch. We find that history treesare more expensive
than Merkle trees to generate because the membership proofsare approximately 2 logn
nodes while Merkle tree signatures have logn nodes. This can also be seen in Figure 10,
where we plot the serialized size of the generated pruned history or Merkle trees.

A realistic batch size for a Merkle tree is at most a few hundred nodes, with an
amortized per-message costs of 15µs to generate or verify. History trees contain mes-
sages from several batches, growing until they hit a maximumsize. At a 100k maxi-
mum size, the amortized per-message cost is 55µs.

The cost of either Merkle trees or history trees is much less than the digital signa-
tures reported in Table 1. DSA is the fastest signing algorithm we benchmark, at .86ms
per signature. This is the same time it takes to batch 90 messages into a Merkle tree
and serialize 90 hybrid message signatures. Thus, in about 1.7ms, we can generate hy-

15

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000

T
im

e
(m

ic
ro

se
co

nd
s)

Tree size

Linear growth of 2ns per message
History
Merkle

Figure 8: Time required, in microseconds, to build a Merkle or history tree, required
before any signatures can be generated.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 100 1000 10000 100000

T
im

e
(m

ic
ro

se
co

nd
s)

Tree size

History tree verify
History tree creation
Merkle tree verify
Merkle tree creation

Figure 9: Amortized time, in microseconds, to generate and verify a membership proof
in a Merkle or history tree as a function of the number of elements in the tree.

brid signatures over 90 messages, for an estimated throughput of 53000 messages per
second. (In Table 3, we benchmark this algorithm as overloading at 52000 messages
per second with a batch size of 108 messages.)

5.2 Peak throughput

Our previous microbenchmark examined the generation performance of Merkle trees
and hash trees in isolation. In this microbenchmark, we analyze the performance of our
asynchronous signing and verifying API by empirically determining the peak through-
put before overload for signing and verifying messages in three styles: simply stan-
dalone signatures, Merkle tree signatures, and history-tree spliced signatures. We take
each algorithm and progressively generate messages at a faster rate until the queue
length (and latency) diverges to infinity.

16

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 10 100 1000 10000 100000

S
iz

e
(b

yt
es

)

Tree size

History
Merkle

Figure 10: The number of bytes in the serialized SHA2-256 Merkle or history tree
proof, as a function of the number of nodes in the tree, not including the signature on
the root.

RSA DSA
Rate Latency Batch Rate Latency Batch

(/sec) (ms) Size (/sec) (ms) Size
Simple 80 65 1 800 < 1 1
Merkle 35000 38 1107 41000 3.0 108
Spliced 21500 47 846 23000 4.4 88

Table 3: Peak signature generation rate in messages/sec, average latency and batch
size. Data reported is at 80% of the overload rate.

Our implementation has two threads, a signing thread and a message generating
thread. The message generator thread generates messages ata given rate for 60 sec-
onds, recording the latency from generation to processing of the message. When the
queue exceeds more than one second of unprocessed work, we assume that the system
has overloaded and terminate the experiment.

Java’s garbage collection causes some artifacts in these results. When the system
is very close to overload, a GC pause causes a sudden spike of unprocessed messages
in the queue that instantly drives the system into overload.A production system faced
with the same GC latency would similarly find itself overloaded, but production sys-
tems should hopefully address such performance concerns byspreading the workload
across many separate machines (see Section 7). For our benchmarks, these results are
still perfectly valid as we wish to measure the throughput ofeach signature technique
at 80% of the fastest rate we were able to process messages without overloading (see
Table 3), which we believe represents a more typical peak latency as might be seen in
a production system. As the system gets closer to overload, latency rapidly increases
to the point that it would be unacceptable. Our measurementsshow, for example, that
at half of the overload rate, latency is about 20% less than at80% of the overload rate.

In Table 4 we report the peak rate at which we could verify messages. Simple signa-

17

RSA DSA
Rate Latency Rate Latency

(/sec) (ms) (/sec) (ms)
Simple 2800 2.8 500 8.9
Merkle 2800 2.4 500 8.8
History 12700 7.5 11200 11.2

Table 4: Peak input for message verification. Data reported is at 80% of the overload
rate.

tures and Merkle signatures are bottlenecked by the cost of apublic key cryptographic
operation, limiting their maximum throughput and setting their peak latencies.

History tree spliced signatures are a bit trickier to benchmark for verification. If
the messages had no locality at all, the throughput and latency of spliced signatures
would follow that of Merkle signatures. However, we expect real-world data to have
better locality. For this experiment, we decided to measuresomething of a best-case
scenario; we captured the peak throughput of spliced signatures with messages arriving
as fast as possible, verified as fast as possible, and with maximum locality. In this
scenario, the latest message’s public key signature, combined with the history tree
hashes accompanying prior messages, is sufficient to authenticateall prior unverified
messages only using hash operations. The results are clear:under ideal situations,
history tree spliced signatures are running 4.5-20 times faster than simple standalone
digital signatures or Merkle trees. By tolerating a longer latency, significant gains
can be found in verifying messages. Also, the faster verification performance of RSA
signatures is now clear relative to DSA signatures.

6 Evaluation on Google Wave

In our previous sections, we benchmarked spliced signatures and Merkle signatures
in an application-independent way to determine their peak throughput. We showed
that spliced signatures and Merkle signatures have similarthroughputs for signing.
However, the verification performance of spliced signatures can be significantly higher
if enough locality is present and the additional latency canbe tolerated. In order to
better characterize the performance of our designs, we nextcompare spliced signatures
to Merkle signatures using traces from Google Wave to demonstrate the advantages of
spliced signatures.

6.1 Google Wave

Google Wave is a realtime, concurrent, distributed system that allows users to concur-
rently edit shared documents (called “waves”). Waves can take several related forms:
documents as in a wiki, discussion threads as in many web discussion forums, or status
updates as in Twitter and other such systems. To support concurrent editing, Wave uses
operational transforms[28], allowing for concurrent editing operations to be resolved
to a consistent state, regardless of the order in which the operations are applied.

18

A wave is expressed as a sequence of delta operations that insert or remove char-
acters, move a virtual cursor, and so forth. To support low latency concurrent editing,
deltas are transmitted as fast as possible. Consequently, afast-typing user can generate
many deltas per second.

Wave resembles traditional email in that users have a homewave serverwhich
operates on their behalf, serializing concurrent updates to documents that it manages.
Wave supports a federated protocol [21] [3], allowing one wave document to be edited
and observed from users across many hosts in different trustdomains. Unlike tradi-
tional email, a Wave server digitally signs every delta on behalf its users, allowing for
third-party sharing of deltas, which can then still be authenticated. (For purposes of
this research, we omit discussion of how Wave authenticatesusers, manages access
control lists, and so forth. Some discussion appears in Tirsen [39].)

Google originally designed a Merkle tree-based bundling and signing mechanism
for Wave [18], but this has not actually been implemented. Elements of the design
were implemented in [2] but have not yet been integrated intoany actual wave server.
The present Google “FedOne” Wave server instead implementsa linear hash chain
within each wave. The design here is intended to improve the efficiency of the digital
signatures used within this scheme.

In many circumstances, a wave server can tolerate long latencies between when
a delta is received and when it’s verified. For example, if no user on that server is
presently viewing the wave, then delta validation can be delayed until one of them
logs in. Also, for read-only observers of a wave, latencies of a few seconds could be
perfectly tolerable.

6.2 Google Wave implementation details

With spliced signatures, the signer has to choose which splicepoints to include in the
spliced signatures. One simple solution for which messagesto splice would be to
include a splice to the immediate prior batch, creating something analogous to a hash
chain. In the case of Google Wave, however, the stream of messages being signed by a
given server will contain a mix of messages for a variety of different waves on different
home servers. Consequently, we can optimize the verification process by including
splices, on a per-message basis, to the commitment of the previous batch containing a
message destined for the same wave. This allows the subset ofmessages relevant to
any given home server to be self-contained with respect to that server’s ability to verify
earlier messages from later ones.

6.3 Statistics on the Google Wave dataset

We received a trace of all updates on a subset of the individual waves running on
Google’s servers over the course of a day. Each update contains a millisecond-accurate
timestamp, an anonymized userid, and an anonymized waveid.Our trace contains 50k
users, 94k waves and 14M total deltas2. Half of the users in our trace only sent deltas

2Google has asked us not to disclose statistics that allow thereader to infer the total volume of Wave
traffic handled by Google’s servers.

19

Fraction of messages Time since prior message (s)
12 % .2
45 % .5
55 % 1
91 % 2
95 % 5
96.8 % 10
97.8 % 20

Table 5: Cumulative distribution function time differencebetween updates sent by a
user on a particular wave.

on one wave. 75% of waves only have a single user, 20% have two users, and only
5% have three or more. Despite this, the single-user waves only account for 4M of the
14M total deltas. Clearly, the multiuser waves are where theaction is happening.

Table 5 describes how frequently deltas arrive from the sameuser. Our analysis
shows that over half of the updates a user sends on a wave are within less than a second
of the prior update the user sent on the same wave. This implies that spliced signatures
would see some performance benefits from the message locality.

Simulation traces From our dataset of wave deltas, we need to construct a trace of
messages to drive our algorithms. This means we must track both when a delta is
generated and when it is verified. The former is already in theGoogle dataset, but
the latter is one of the areas where we have some flexibility. Also, if a message has
multiple recipients, we must generate events for every recipient. This process expands
our original 14M message trace to 34M messages.

We simulated spliced signatures and Merkle signatures on a trace of Wave mes-
sages. Our simulations operate in a realtime fashion. Each message includes a times-
tamp. We inject messages into the asynchronous signing or verifying queue at the
timestamp given in that message. It takes one hour to simulate a one-hour trace. The
original dataset, if we were to run it in realtime following the timestamps, would not
come anywhere near saturating the CPU of our test platform. Since our research wishes
to consider what happens when a server reaches CPU saturation, we needed to artifi-
cially increase the message rate.

To create our final simulation traces, for each wave and each user, we determined
in which hour we first saw a message for that wave or from that user, then extracted
subsequent messages from that user. We then shifted this per-user trace by an integral
number of hours, creating a new “virtual” user, distinct from the original user, doing
the same things but effectively operating in a different timezone. This processing has
the effect of generating a higher peak load and more concurrent editing. We use the
first hour of this data as ourpeak load trace. It contains 3.8M messages from 47k users.

20

8x 16x 32x
Signing trace 4.43M 8.45M 18.46M
Verification trace 2.16M 4.18M 9.01M

Table 6: Number of messages in the signing and verification traces for different repli-
cation factors.

6.4 Generating traffic

In our simulation, we want to model scenarios where users canlog in and log off.
While a user is logged-in, we immediately verify their messages. When a user logs in
after an absence, we force any of their buffered, unverified messages to be immediately
verified. Unfortunately, our trace does not include user login and logoff times. We
inferred these times by assuming that a user was logged in forone minute before and
after every message they authored and otherwise logged off.In our peak dataset, 5k
users only send a single message and are treated as if they logged in for exactly 2
minutes and half of the users are logged in for 5 minutes or less.

Next, to model a group of Wave servers exchanging message traffic with one an-
other, we must assign our simulated users and our simulated waves to distinct Wave
servers acting as their homes. We randomly assign users to one of 8 servers,S0 . . .S7.
To compensate for the reduced load of dividing the users among 8 servers, we replicate
the peak load trace making 8, 16, or 32 copies, assigning new user and wave IDs in the
replicated data. We displace the copies by adding or subtracting up to one hour. These
master traces are then used to derive our simulation traces.

We derived two sets of simulation traces. Oursigning traceincludes only messages
sent from serverS0. Our verification traceincludes messages received by serverS0

from all other servers. This trace is much smaller because itexcludes updates by only
one user, where the sender and recipient are the same and do not need any signature
verification. Table 6 gives the sizes of the different traces.

While we would have preferred to stretch our simulation to anInternet scale, with
tens of thousands of servers talking to one another, we lack the computational resources
to run such a simulation. Instead, by creating a trace that emulates the load on one
server from many of its peers, we can still capture the behavior of servers in these
larger environments, albeit at a smaller scale.

6.5 Benchmark: Signature generation

To model a signature generation benchmark, we take the messages from our signing
trace and play them into the simulated Wave server’s processing queue in real-time
based on the message timestamps. The server’s cryptographythread continuously
loops, fetching all unprocessed messages from the queue, building the hash tree data
structures, signing the root cryptographic hash, and then serializing signatures. This is
done for both Merkle tree signatures and history tree spliced signatures.

Our results mirror what we saw with our microbenchmarks. Ourtrace data have an
average throughput of 1k-5k messages/second, which is notably less than the peak rate
we benchmarked in Section 5.2. The CPU time to perform the underlying RSA or DSA

21

public key signature dominated the runtime and the signing latency. For RSA with
spliced signatures, the average signing latency was 18.7–21.2ms. Merkle signatures
were a millisecond faster. DSA signature latency was 1.9ms–2.4ms for both Merkle
signatures and spliced signatures. (We did not test standalone digital signatures because
even our lightest 8x signing trace exceeded the DSA and RSA signing rate of a single
CPU core running flat out.)

6.6 Benchmark: Signature verification

Creating a signature verification benchmark is more complicated than doing it for sig-
nature generation. To simulate a server verifying messagesrequires having a signed
message trace that contains actual signed messages.

The only way to create realistic patterns of message signature generation and ver-
ification is to emulate our users running across a number of different servers. Our
original verification trace assigned the users authoring a message to one of 8 servers.
Spliced signatures would have been very effective with so few signers, so we needed to
divide users among more servers. We only had enough memory toemulate 65 different
signers, so we assigned users to that many signers at random.Each signing server is
assumed to generate a new batch every simulated 60ms if the signing algorithm was
RSA and 5ms if the signing algorithm was DSA. These epoch lengths were chosen to
correspond to the latencies we measured in the peak throughput reported in Table 3.
If any messages targeted serverS0 in that epoch, we added that message and 16 junk
messages to that server in that epoch, simulating messages targeting servers other than
S0. This procedure simulates a signer with a signing rate from 1k-12k messages/sec.
Each signing system then generates Merkle or spliced signatures as described earlier.

The resulting signed messages and their simulated timestamps became our signed
message trace, which we then ran through our verification benchmark. Our trace re-
play thread used those message timestamps and user login andlogoff times to force
verification of messages when needed. We note that the event rate and the times at
which messages are forced to be verified are the same, regardless of which signature
algorithm is being simulated.

In Table 7 we report the results of verifying our signed message traces. Merkle sig-
natures exhibit the lowest scalability. Because they lack sufficient locality to amortize
public key operations over many messages, they become overloaded when used with
DSA for all three of our traces, and with RSA for our 16x and 32xtraces.

In contrast, with spliced signatures, we see more forced messages than we see
public key signature verifications. This means that, in our simulation traces, forced
messages arrived faster than they could be processed. Each public key verification had
to be amortized across several forced messages to avoid overload.

If we compare the 16x and 32x traces, the number of messages inthe trace and
the corresponding number of forced messages doubles, but the number of public-key
signatures verified only increased by 20–60%. Our spliced signatures compensated for
the increased verification load by amortizing each public key verification over more
forced messages. This increased message throughput comes at the cost of an increase
in verification latency, which grows 60-130%.

22

PK alg Tree alg Trace size Avg. latency Total Forced Total PK
(ms) msgs msgs verifs

RSA History 16x 10.1 4.18M 2.26M 1.66M
RSA History 32x 16.0 9.01M 4.73M 2.66M
DSA History 8x 17.2 2.16M 1.11M 0.93M
DSA History 16x 30.1 4.18M 2.26M 1.59M
DSA History 32x 71.7 9.01M 4.73M 1.82M
RSA Merkle 8x 13.7 2.16M 1.11M 2.16M
RSA Merkle 16x overloaded
DSA Merkle 8x overloaded

Table 7: For our Wave trace-driven verification benchmark, we report the average ver-
ification latency, the number of messages verified, the number of messages in the trace
where verification was forced, and the number of public key signatures performed for
a variety of different signature algorithm configurations.

The performance we observe of spliced signatures is made possible by the degree
of locality that we observe in our Wave dataset, as seen in Table 5, where half of the
messages a user sends to a wave are within less than a second ofthe prior message
and 95% are within 5 seconds. Our spliced signatures can exploit this locality to adapt
to increasing load. While message latency does increase, the increased time is still
quite reasonable and far better than having the server fail due to overloading. In a
production implementation, we would expect a larger numberof servers to participate
(see Section 7), keeping the load on any individual server ata more reasonable level.
when a server or server cluster’s resources are more heavilytaxed, spliced signatures
gracefully degrade latency while still scaling throughput. This property makes them
attractive for a variety of real-world tasks.

7 Scaling

In this paper, we presented benchmarks that only used one CPUcore for all signing
and verification. Many applications will clearly require more throughput than one CPU
core can provide. Large services, like Google Wave, may implement a single logical
service used concurrently by millions of users, require a clustered architecture to ob-
tain the necessary scalability for running the applicationand supporting its associated
cryptographic costs.

7.1 Improving the throughput of a single server

There are several ways to improve the throughput of a single server by using more
than one CPU core, exploiting the immutability of Merkle trees and the append-only
property of history trees.

Merkle trees are amenable to parallel computation throughout their construction.
The hashes for each subtree are completely independent of one another, making it triv-
ial to delegate their computation to a pool of threads on the same CPU. Furthermore,

23

once the root hash has been computed, the task of computing a public-key signature
on it can be handled independently. Furthermore, the hash tree is immutable and each
pruned tree can be derived independently from it, allowing for high concurrency. The
only inherently serial process in computing a Merkle tree isassigning each message to
its location in the leaves of the Merkle tree, and even that could potentially be paral-
lelized by having concurrent queues which feed into different subtrees.

Similarly, when verifying Merkle signatures, each messagecan be treated indepen-
dently. A naı̈ve implementation would verify the public keysignature on each message
and then verify the hashes. This process would be completelyindependent from one
message to the next, allowing exceptional speedups throughparallel computation. To
reuse the expensive public key verifications across messages that share the same pub-
lic key signature, a concurrent hash table or comparable structure would track which
signatures have been verified. Lock contention on this structure would seem unlikely
to be a significant issue, and the worst case is merely that twoor more threads will
concurrently verify the same public key signature.

Like Merkle signatures, history trees and spliced signatures can also be generated
in parallel. Spliced signatures on each message can be verified independently from
each other for exceptional speedup. The potential concurrency of verifying spliced
signatures is reduced, however, if we increase CPU efficiency by exploiting the splices
between the spliced signatures and improve the number of messages verified per public
key signature verification. To do this, spliced signatures are partitioned into sets based
on which history tree they were built from. Each set is independent and can be verified
concurrently with other sets. Within each set, the bookkeeping and dependency graph
management would happen serially.

7.2 Scaling to large computational clusters

Industrial deployments of scalable web services inevitably run on large clusters of
servers in order to support large numbers of users and store vast quantities of data.
We now consider how Merkle and history tree techniques mightscale to work in such
environments.

7.2.1 Scaling Merkle signatures

If an application is distributed across several servers, each node can compute its own
Merkle trees, independently, allowing for exceptional scaling without requiring any
changes to how an external observer would verify messages. However, if no one appli-
cation server generates messages at the peak signing rates in Table 3, each node would
still preferably dedicate a CPU core to signing outgoing messages in order to minimize
latency. A clustered deployment could reduce the number of signing CPUs needed by
running them closer to the peak Merkle signature signing rate, directing the traffic from
many application nodes toward a single signing server.

Similarly, when verifying Merkle signatures, each messagecan be treated indepen-
dently. A naı̈ve implementation would verify the public keysignature on each message
and then verify the hashes. This process would be completelyindependent from one
message to the next, allowing for exceptional speedups.

24

Unlike a smaller scale system, which is unlikely to encounter two messages that
happened to be in the same batch, a large scale system will more often encounter mes-
sages that were signed in the same batch. To reuse the expensive public key verifica-
tions across messages that share the same public key signature, the verification hosts
could run a distributed cache to track previously verified signatures.

7.2.2 Scaling spliced signatures

With spliced signatures, if a signing cluster is distributed across several servers, each
of the cluster nodes can compute its own history tree, independently, allowing for ex-
ceptional scaling. However, such a design would yield a series of disjoint histories,
making it impossible to splice signatures computed on one node to signatures com-
puted on another. (Such a design might also reveal the size ofthe cluster on which the
service is running, which could be undesirable.) Just like Merkle signatures, a clustered
deployment could reduce the number of signing CPUs needed byrunning them closer
to the peak spliced signature signing rate, directing the traffic from many application
nodes toward a single signing server.

The highest efficiency comes when the signer generates spliced signatures with
useful splices. For instance, in Google Wave, if all of a user’s messages are signed by
the same server, at least over the space of a few minutes, thenall of the messages from
that user would at least appear in the same history tree, allowing verifiers to benefit
from the message locality if they were verifying multiple messages from that user.

Achieving high levels of concurrency for spliced signatureverification is also fea-
sible. As with Merkle trees, a naı̈ve solution would allow spliced signatures to be
verified scalably just like Merkle signatures by ignoring the splices and treating each
message independently. A more sophisticated implementation would take advantage
of the splices. Each spliced signature is a member of a history tree. A system can di-
rect signatures with the same tree-id to the same host and different systems can verify
different trees concurrently.

8 Conclusion

This research has shown that a variation on Merkle trees, called history trees, can be
used to create a system allowing for efficient batch signature generation and verifi-
cation. We leverage this hash-based data structure to allowindividual messages to be
verified, all by themselves if desired, and to include splices to other messages, allowing
for significant throughput gains. Our implementation trades off latency for throughput;
by waiting for larger batches to arrive, we can compute or verify expensive digital
signatures over larger numbers of messages, ensuring that message throughput stays
strong, even when the CPU is saturated. We experimentally verified our design against
synthetic microbenchmarks as well as traces taken from Google’s Wave service. Wave
needs to generate signed events at the granularity of individual users’ keystrokes, mak-
ing efficiency essential, and our techniques maintain high verification throughput (over
12K message per second on a single CPU core, versus a fifth of that using standalone
digital signatures) with acceptable latency (10-16 milliseconds).

25

References

[1] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia. Persistent authenticated
dictionaries and their applications. InInternational Conference on Information
Security (ISC), pages 379–393, Seoul, Korea, Dec. 2001.

[2] D. Balfanz. Streamauth library for signing message streams, July 2009. http:
//code.google.com/p/streamauth/.

[3] A. Baxter, J. Bekmann, D. Berlin, J. Gregorio, S. Lassen,and S. Thoro-
good. Google Wave Federation Protocol Over XMPP, July 2009. http://www.
waveprotocol.org/protocol/draft-protocol-specs/draft-protocol-spec.

[4] M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular expo-
nentiation and digital signatures. InEuroCrypt ’98, pages 236–250, 1998.

[5] D. J. Bernstein. RSA signatures and Rabin-Williams signatures: The state of the
art. http://cr.yp.to/sigs.html, Jan. 2008.

[6] T. Berson, D. Dean, M. Franklin, D. Smetters, and M. Spreitzer. Cryptography as
a network service. InProceedings of the 2001 Network and Distributed System
Security Symposium (NDSS ’01), San Diego, CA, Feb. 2001.

[7] K. Blibech and A. Gabillon. CHRONOS: An authenticated dictionary based on
skip lists for timestamping systems. InWorkshop on Secure Web Services, pages
84–90, Fairfax, VA, Nov. 2005.

[8] C. Boyd and C. Pavlovski. Attacking and repairing batch verification schemes. In
Proceedings of the 6th International Conference on the Theory and Application
of Cryptology and Information Security: Advances in Cryptology, ASIACRYPT
’00, pages 58–71, London, UK, 2000.

[9] J. Camenisch, S. Hohenberger, and M. O. Pedersen. Batch verification of short
signatures. InProceedings of the 26th annual international conference onAd-
vances in Cryptology, EuroCrypt ’07, pages 246–263, Barcelona, Spain, 2007.

[10] J. H. Cheon and J. H. Yi. Fast batch verification of multiple signatures. InPro-
ceedings of the 10th International Conference on Practice and Theory in Public-
key Cryptography (PKC’07), pages 442–457, Beijing, China, 2007.

[11] S. A. Crosby and D. S. Wallach. Efficient data structuresfor tamper-evident
logging. In Proceedings of the 18th USENIX Security Symposium, Montreal,
Canada, Aug. 2009.

[12] T. Dierks and E. Rescorla.The Transport Layer Security (TLS) Protocol, Version
1.2. IETF, RFC 5246, Aug. 2008.http://tools.ietf.org/search/rfc5246.

[13] A. L. Ferrara, M. Green, S. Hohenberger, and M. O. Pedersen. Practical short
signature batch verification. InCryptographers’ Track at the RSA Conference
(CT-RSA ’09), pages 309–324, San Francisco, CA, 2009.

26

[14] A. Fiat. Batch RSA. InCRYPTO ’89, pages 175–185, Santa Barbara, CA, 1989.

[15] R. Gennaro and P. Rohatgi. How to sign digital streams. In CRYPTO ’97, pages
180–197, Santa Barbara, CA, Aug. 1997.

[16] Google.Protocol Buffers, 2010.http://code.google.com/p/protobuf/.

[17] Google.Wave Protocol, 2010.http://www.waveprotocol.org/.

[18] L. Kissner and B. Laurie.General Verifiable Federation. Google, May 2009.
http://www.waveprotocol.org/protocol/whitepapers/wave-protocol-verification.

[19] P. C. Kocher. On certificate revocation and validation.In International Confer-
ence on Financial Cryptography (FC ’98), pages 172–177, Anguilla, British West
Indies, Feb. 1998.

[20] T. Korkmaz. Analyzing response time of batch signing. In International Con-
ference on Computer Communications and Networks, pages 1–6, San Francisco,
CA, Aug. 2009.

[21] S. Lassen and S. Thorogood.Google Wave Federation Architecture, May 2009.
http://www.waveprotocol.org/whitepapers/google-wave-architecture.

[22] Legion of the Bouncy Castle.Bouncy Castle Crypto API, 2010. http://www.
bouncycastle.org/.

[23] P. Maniatis and M. Baker. Secure history preservation through timeline entangle-
ment. InUSENIX Security Symposium, San Francisco, CA, Aug. 2002.

[24] R. C. Merkle. A certified digital signature. InCRYPTO ’89, pages 218–238,
Santa Barbara, CA, 1989.

[25] D. M’Raı̈hi and D. Naccache. Batch exponentiation: a fast DLP-based signature
generation strategy. InProceedings of the 3rd ACM Conference on Computer and
Communications Security (CCS ’96), pages 58–61, New Delhi, India, 1996.

[26] D. Naccache, D. M’Raı̈hi, S. Vaudenay, and D. Raphaeli.Can DSA be improved?
Complexity trade-offs with the digital signature standard. In EuroCrypt ’94, pages
77–85, Perugia, Italy, May 1994.

[27] National Institute for Standards and Technology.NIST Special Publication 800-
57: Recommendation for Key Management — Part 1: General, Mar. 2007.

[28] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping. High-latency, low-bandwidth
windowing in the Jupiter collaboration system. InACM Symposium on User
Interface and Software Technology (UIST ’95), pages 111–120, Pittsburgh, PA,
1995.

[29] Novell. Vibe, 2010.https://vibe.novell.com/.

27

[30] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient multicast stream authenti-
cation using erasure codes.ACM Transactions on Information Systems Security,
6:258–285, May 2003.

[31] C. Pavlovski and C. Boyd. Efficient batch signature generation using tree struc-
tures. InInternational Workshop on Cryptographic Techniques and E-Commerce,
Hong Kong, July 1999.

[32] A. Perrig, R. Canetti, D. Song, and J. Tygar. Efficient and secure source authen-
tication for multicast. InNetwork and Distributed System Security Symposium
(NDSS’01), pages 35–46, San Diego, CA, Feb. 2001.

[33] A. Perrig, J. D. Tygar, D. Song, and R. Canetti. Efficientauthentication and
signing of multicast streams over lossy channels. InIEEE Symposium on Security
and Privacy, pages 56–73, Berkeley, CA, May 2000.

[34] M. O. Rabin. Digitalized signatures and public-key functions as intractable as
factorization. Massachusetts Institute of Technology, Cambridge, MA, 1979.

[35] SAP. StreamWork, 2010.http://www.sapstreamwork.com/.

[36] B. Schneier and J. Kelsey. Automatic event-stream notarization using digital sig-
natures. InSecurity Protocols Workshop, pages 155–169, Cambridge, UK, Apr.
1996.

[37] B. Schneier and J. Kelsey. Secure audit logs to support computer forensics.ACM
Transactions on Information and System Security, 1(3), 1999.

[38] H. Shacham and D. Boneh. Improving SSL handshake performance via batching.
In Cryptographers’ Track at the RSA Conference (CT-RSA ’01), pages 28–43,
Apr. 2001.

[39] J. Tirsen. Access Control in Google Wave. Google, May 2009. http://www.
waveprotocol.org/whitepapers/access-control.

[40] C. K. Wong and S. S. Lam. Digital signatures for flows and multicasts.
IEEE/ACM Trans. Netw., 7:502–513, Aug. 1999.

28

