High throughput asynchronous algorithms for
message authentication

Scott A Crosby and Dan S. Wallach
Rice University

December 14, 2010

Abstract

Public-key digital signatures are a mainstay of cryptogimaprotocols and are
widely used in practice. However, the performance gap batvaigital signatures
and conventional cryptographic operations is significaatticularly with Inter-
net messaging systems, chat systems, and the like, whichl Wkei to generate
and verify digital signatures at high speeds. Consequentlyresearch considers
hybrid schemes, derived from Merkle trees and newer hasbebdata structures,
that can optimize signing and verification of messages ik,bwhile still pre-
serving traditional single-message signature and vetibica semantics. We show
that hash trees can increase the signing throughpamypublic key signature al-
gorithm to tens of thousands of messages per second. Iricagdiur system’s
throughput degrades gracefully when the requested messgugture rate satu-
rates the CPU. Our techniques similarly create efficienwigsn verifying groups
of messages from the same source. In particular, by delaniggyiven signature
verification until it's absolutely necessary, we can oftenify multiple messages
at the same time with minimal additional cost. We verify oystem with de-
tailed microbenchmarks of our hybrid signature algorittaasvell as full-system
simulations driven from traces taken from Google Wave.

1 Introduction

Public key signatures are widely used in the design and emging secure systems
and are built into a number of common cryptographic prot®aatiuding TLS [12].
Unfortunately, TLS only provides its authenticity, intégr and privacy guarantees
between two end points, which isn’t a good fit for a variety pplications. When data
is broadcast to multiple recipients, we need digital sigred that can stand alone and
be independently verified. Many such systems, ranging fratividual blogs to large
aggregators like Twitter and Facebook, require their ugetsust a central server to
speak for the authenticity of individual messages. Howelfehat central server is
compromised, by whatever means, all of its content beconosgsest.

A notable exception to this trend is Google's Wave serviceo@e Wave is a col-
laborative communication system supporting a federatimtogol [17], where each

document and user hashame serverand users across many home servers may con-
currently edit the same document. To remain secure whilblemggthis functionality,
Google Wave’s federation protocol has a digital signatureegery single message,
where individual user keystrokes might well require indiv&l signed messages. This
has an obvious performance cost: over 75% of the runtime @R¥ in the current
“FedOne” implementation is spent on RSA signature gerarat{While Google has
announced it has no plan to continue developing Wave as dajtare product, the
underlying Wave technology is expected to continue bothiwiGoogle, other compa-
nies [29, 35], and through open-source distribution angbtido [17].)

In this paper, we investigate high throughput and low layezrgptographic prim-
itives with semantics that are compatible with ordinary [pukey signatures, suitable
for Wave and other comparable message-passing applisafonthe purposes of this
research, we are only interested in message integrity ahématication, not confiden-
tiality.

The signing performance of any public key signature alparitan be optimized
by amortizing one public key signature over many messagésbgling multiple mes-
sages into a Merkle tree [24] and then computing a digitalaigre on the root. In
Sections 5 and 6, we will discuss the performance of thisaaar.

Optimizing signature performance is not enough. Verifaais also a requirement,
as every message received must have its signature verifiad.alttacker knew that a
signature would never be verified, then the attacker woutghkitnat it could get away
with forging a message. Consequently, in applications wimeessages fan out to a
large number of users, signature verification will occur enbequently than signature
generation.

While Merkle tree structures can easily enhance signatemergtion performance
by batching messages together with cheap hashing opesatierification throughput
is less likely to benefit from a simple approach like this hesgsa given client may not
necessarily be interested in the verification of multiplessagjes that happen to have
been signed at the same time. In addition, batches will bergéed frequently, keeping
them small, in order to minimize latency. (A multiuser serweuld, presumably,
queue up messages from all of its users and sign them in bulis Minimizes the
number of messages from any given user that would be in aepdilerkle tree.)

Consequently, we must design new systems that enable fifstation of batched
digital signatures. Toward this end, we present a new dlgarcalledspliced signa-
tures a hybrid containing both a cryptographic hash tree and dipley signature,
preserving the semantics of a standalone public key sigaaidith spliced signatures,
extra cryptographic hashes in the hash tree allow the cgyaphic hash tree in one
bundle of messages to have hashes of earlier messpligsdonto it. The newer pub-
lic key signature can then be used to validate both old andmessages. Splicing is
transitive, so a single public key verification can autheateé many messages sent by
the same sender over time.

Splice signatures offer a latency-throughput tradeof tiessage must be verified
quickly, this can be done immediately at the cost of a singiblip key verification
operation. However, increased verification latency candeeptable, perhaps because
users can tolerate the latency, or perhaps as a consequeGB&Josaturation on the
server, which simply cannot verify signatures at the messaigval rate.

We begin with a discussion of related work in Section 2 andkgemund in Sec-
tion 3, including a consideration of the design space for huvitiple signatures may
share locality, how signature latency may be tolerated,rawvd the programming se-
mantics of signatures might be changed to take advanta@gsofSection 4 introduces
our spliced signature design. We evaluate our implememtatith microbenchmarks
in Section 5 and with a trace of Google Wave traffic in SectioRi6ally, we consider
how our system might scale to large computing clusters ini@e@ and conclude in
Section 8.

2 Related work

There have been many approaches to improve the performérmeghentication al-
gorithms. Merkle trees [24] were originally designed ane still used to aggregate
several messages into a single root hash which is then sigBiedilarly, linked-list
style structures, as in Schneier and Kelsey [36, 37], all@igaature on a recent hash
to validate earlier messages, and also allow a verifier torenthat every message
purported to be in a log is actually present. This has even briended to allow net-
work services to entangle with one another [23]. Data stinest such as these, built
from hash functions, have been designed for a wide varieappfications, including
persistent authenticated dictionaries (see, e.g., [17])9,

For this research, we only need semantics equivalent talakame digital signa-
tures, but we want throughput that's radically faster thaditional public key digital
signature algorithms. Others have also pursued simildsgoa

Improving public key algorithm performance We tested our algorithms with RSA
and DSA implemented in software. We could have chosen otlyptagraphic primi-
tives with different verification time, signing time, anasitradeoffs, or improved the
performance of RSA and DSA by using external cryptographicivare accelerators
or computational cluster resources [6].

Algorithms offering faster signature verification than RSADSA include Rabin
signatures [34], which require one modular multiplicatiowerify or Bernstein’s RSA
variant [5], which appears to be even faster.

Batched public key algorithms Many researchers have attempted to make public
key algorithms that directly support batch signing and baterification, which was
formalized by Bellare et. al. [4]. Many of these algorithmevé been found to be
broken [8]. Camenisch et. al. [9] and Bellare et al. [4] hawdHer discussion on this
topic.

With Batch RSA [14], several messages can be combined tegeatid signed in
one exponentiation if they are to be verified with differeablic exponents. Optimiza-
tions for DSA signing have also been proposed [26]. Otheragughes for increasing
the throughput of public key algorithms include algoriththat can do parallel ex-
ponentiations of a constagtto random exponents by cachiggt ... g [25] for a
42%-85% improvement. Exponents can also be selected tieatedficient batch ex-
ponentiation [10].

Newer cryptographic primitives for batch verification hdween proposed. Ca-
menisch et. al. [9] present a signature scheme based oticetlijrve cryptography
where a verifier can batch-verify signatures from many diffi signers. Several of
these algorithms were evaluated for their performance [ABhough batching lowers
the per-message costs, the overall algorithm is still mimhies than RSA or DSA.

While this class of algorithms has promise, they are pritpantended to allow
one party (e.g., a web server which must perform a large velafpublic key oper-
ations [38]) to compute results that are, to the remote padyifferent than if they
had been computed one-by-one. For our research, we aragiilimake both parties
aware of the batching strategy in return for improved thigqug. Furthermore, the
schemes we wish to consider are based around well-unddrstgptographic primi-
tives. Even if any particular algorithm is found to be wedle Merkle construction
and others like it are trivial to implement with any otheraighm having the common
semantics expected of cryptographic hash functions arithbigignatures.

Stream authentication Stream authentication [15, 33] addresses the challenge of a
thenticating a potentially infinite stream of messagesh st stock ticker or multicast
video stream. Stream authentication algorithms must stiyigh throughput signa-
ture generation and verification and must function coryestien if the receiver does
not receive every message (although there is an assumptoalt receivers will get
mostmessages in a stream).

Techniques for stream authentication include erasuresd@@, amortizing a pub-
lic key signature over several packets using Merkle tre8} ghd making signatures
cheaper by using one-time-use signatures [15]. One sysésigreed with efficiency
in mind, TESLA [33, 32], releases successive pre-imagedafsh function with each
broadcast message, allowing for efficient authenticatidy at the time messages are
seen rather than at any future time as with traditional digignatures.

Our work differs from stream authentication schemes inweto not require the
receiver to be online nor do we require the receiver to nesdém substantial fraction
of a stream. Each message in our work can be authenticateelebly itself, at any
future time, but we include optimizations to take advantafjstream-like locality in
the data, when it's available.

3 Background

We first introduce some of the cryptographic data structtlras we will use in this
work, then we discuss some of the semantics for how we wiltlsm.

3.1 Merkle trees

The structure of a Merkle tree is simple. A set of messagesrhedhe leaves of a
tree. Then we build a binary tree, using cryptographic hasittfons. Each node
simply contains the hash of the concatenation of its twodchil. The root hash then
represents a hash over all of the leaves of the tree, with@bame security semantics
we would expect of a hash directly over the concatenatioh®fridividual messages.

X X3

Figure 1: Graphical notation for a Merkle tree demonstatime necessary hashes
(solid black circles) to verify a Merkle signature &. Open circles represent values
that can be recomputed from the values below them. Greeaimties are unnecessary
for the proof.

Applying a digital signature to this root hash is then eqlgmato applying a digital
signature to all of the elements.

Merkle trees gain their value when we wish to verify the stgnaover a specific
leaf. Rather than needing every message to verify the sigmate only need a slice
through the structure, as demonstrated in Figure IMekkle signaturg31] on X;
would comprise the public-key digital signature on the ro6titself, and the three
internal hashes (the solid black circles). We call thigraned tree because it only
contains a portion of the full hash tree. The verifier woulertthashX,, merging this
result with the hash oKz and repeating two more times to yield the same value as
was originally signed. If the signature on this root is vatiten the leaf nodex, is
authentic. With Merkle signatures, delaying verificatiaedn’t reduce the total work
needed to verify the messages, but it can allow ‘load avegagihere messages are
queued up during an overload and verified when the overloasbse

3.2 Locality

Locality is a measure of how often a verifier receives messfgen the same signer.
In some systems, the verifier is unlikely to receive messémges the same sender
over time. In other systems, there is high locality. Foranse, in Google Wave, an
active user doing collaborative editing will be sending afgdmessages several times
per second. When there is locality, there is the prospettalspliced signature can
exploit it to amortize one public key verification acrossesa messages.

3.3 Latency

We can examine the latency of a system using queuing thedrgn\d message arrives,
there is both the time to sign or verify and the time that thesage must wait before
being processed. As the load increases, queuing delayneikase as the CPU gets
behind. At 90% load, queuing delay will be 4.5 times the sigrtime or verification
time. When overload occurs, the buffer of unprocessed rgessgrows faster than

computation can drain it and the latency diverges to infinity

To minimize latency, it is critical to prevent a system fromexing overload. With
discrete osimple signaturesvhere each message is individually signed with a public
key algorithm such as DSA or RSA, the maximum throughputas ¢t the underlying
public key algorithm. If we batch messages using a Merkle dreother such structure
before signing, we can amortize the costs of a public keyadige over many mes-
sages. The peak throughput becomes the rate at which we ddrabd serialize the
hash trees, not the rate at which the public key algorithmsigmm messages. Further
investigation of latency tradeoffs of batch signing is d#xsed in Korkmaz [20].

3.4 Asynchronous semantics

We follow the same general semantics of digital signatunéfering a signing oper-
ation and a verifying operation. Traditional digital siguna@ APIls are synchronous,
in that the signature bytes or validity of a signature comaskbimmediately when
the signature of verification is requested. In order to usekMesignature or other
such structures, we need an asynchronous API, where messagbe submitted to be
signed but the actual digital signature operation is delajrethe case of Merkle trees,
this is necessary to accumulate enough messages to fill @l¢dlies of the Merkle
tree. Figure 2 shows a simple Java-like API for this, whetgoing messages are sub-
mitted as objects with callbacks that will be later invokedkln the signature has been
computed. Of course, this could be implemented in a variétjifterent lazy styles
in other programming languages, but the result is the saniesore later point, the
pending queue of messages is processed as a batch, andsagirthrires for the batch
are available at once.

In our corresponding asynchronous verification API, seeRigure 3, the appli-
cation submits messages to be verified at a later time. Messam bdorcedat any
time when the application requires that it must be verifiethsas when a user logs
in or opens a document. At that time, the verification modwdsfies the signature
and invokes the callback with the result. The verificatiordoile may also invoke the
callback on its own if it happens to verify messages that wetexplicitly forced.

Asynchronous implementations, both when signing and wiegifyihg messages,
may also be more robust when the CPU is saturated. If thegtehloverhead is larger
than the per-message overhead, a batch algorithm can csatpdor higher arrival
rates by using larger batches.

Asynchronous semantics have clear potential to improweasige throughput rel-
ative to discrete digital signatures, however, they arebaoteficial for systems that
require absolutely minimal verification latency when thisrplenty of available com-
putation relative to the desired message rate, or systethgpaor locality.

3.5 Implementation details

Our verifier uses a single thread for all cryptography. Thatad is responsible for
readingforcerequests and incoming messages from mailboxes and seheimgtd an
underlying cryptographic module that implements the akymous signature verifi-
cation API.

cl ass CQut goi ngMessage {
byte []get MessageBytes();
voi d sigBytesCal | back(byte sigbytes[])

}

class SignQueue {
voi d submit (Qut goi ngMessage nsg);
voi d process();

}

Figure 2: Asynchronous signature API.

cl ass I ncom ngMessage {

byte []get MessageBytes();

byte []getSi gBytes();

voi d validityCallback(bool valid);
}

class VerifyQueue {
voi d submit (I nconi ngMessage nsg);
voi d force(lncom ngMessage nsQ);
void forceAl();

}

Figure 3: Asynchronous verification API.

It first examines the incoming message mailbox. If there isigprocessed mes-
sage, it adds it to an internal buffer of unverified messadfethere are no incoming
messages, but there is a force request, then we immediagfy that message and
find other messages which may also be verified with the sani@ldsignature, and
notify all of them of the outcome. If there are no outstandiorge requests or incom-
ing messages, and thus the thread is idle, it forces thetaltwsrified message. If
there is nothing to do, it waits. In the case of batch-veriificaalgorithms, handling
all incoming messages before force requests can preveribads by allowing one
batched verification to verify multiple forced messages.

Consequently, there will be two different conditions undgich the verification
system operates. If the message arrival rate is below wha@BU can natively handle,
the verifier will simply verify every message eagerly, reidgche degree to which one
message verification will benefit another; however, sinegelk excess CPU capac-
ity, we should end up with lower latency verification. In tHeemative case, where
messages are arriving faster than the CPU can process tiesydtem will prioritize
important messages to maintain the desired message thpougtie. Less important
messages will be queued and opportunistically verifiedmfartant messages arrive
faster than they can be verified, batching can prevent ca@rlaout latency will increase
compared to the unloaded case. At some point, the messaggtput will exceed the
available CPU’s ability to process it, regardless of thedbiés of batch processing.
At this limit, throughput cannot grow, so latency will nesasly suffer, and clustering
algorithms of some sort must be used to preserve scalalffiee Section 7 for details.)

4 Spliced signatures

The idea of spliced signatures is simple. Say that Alice s&ub three individually
signed messagédi;, Mo, M3. Bob’s computer could authenticate each of them imme-
diately at the cost of three public key verifications, but gtdoeneed to because Bob
isn't logged in, or can't, because Bob’s computer is ovatémh We would prefer for
Bob’s computer to do a public key verification of just one naggsMs, and then be
able to authenticate all three messages.

4.1 History trees

Crosby and Wallach [11] introduced an improvement to Metides that they called
history trees Where a Merkle tree is computed and then fixed for all timeistoty
tree allows for multiplesersionsof the tree, where later versions incrementally add to
the hash trees of earlier versions.

Crosby and Wallach'’s history trees have semantics comfgat@hash chains [37],
where arecent hash is sufficient to verify older messagekkédmash chains, however,
a linear scan over the chain is unnecessary. Instead, ta®ci& a history tree can
produce a proof that a new root hash is consistent with arr otae hash inO(logn)
space. Likewise, the creator can be challenged to proveathagiven leaf is in the
history tree. As with the Merkle tree example in Section 3hk creator need only
generate a logarithmic slice through the tree to the rooenathien then can serve as a

standalone proof that the message held by the verifier isaiine sis the one signed by
the creator.

The core difference between our use of the history tree andsié as a tamper
evident log is that when used by a tamper evident log is thtit spliced signatures,
we trust the signer. With a tamper evident log, we do not thessigner.

We now present an overview of how history trees work. A fillastdry tree of
depthd is simply a binary Merkle hash tree, storin§@ents on the leaves. Successive
leaf nodes store the hashes of successive messages. Wieenianot full, subtrees
containing no messages are represented and have a hash value 6f This can
be seen starting in Figure 4, a version-2 tree having threatsv Figure 5 shows a
version-6 tree, adding four additional events. Althoughtitees in our figures have a
depth of 3 and can store up to 8 leaves, our design clearlpést® trees with greater
depth and more leaves. When the tree is full, a new root, ore U, can be created
with the old tree as its left child and an empty right child wh@ew events can be
added.

An interesting property of the history tree is the abilityefficiently reconstruct
old versions owiewsof the tree. Consider the history tree given in Figure 5. The
logger could reconstruct the root valGg analogous to the version-2 tree in Figure 4
by pretending that later nodes (marked with asterisks imr€icp) were[] and then
recomputing the hashes for the interior nodes and the rbibte reconstructe@, had
the same hash as a previously received ha€ly ahen both trees must have the same
contents and commit the same events.

A proof that a messagé; is committed is theruned tree Pshown in Figure 6. It
includes just enough of the full history tree from in FigureoSe able to validatXs,
validateXy, reconstruc€,, reconstruc€Cz and comput€&gs. Unnecessary subtrees are
elided out and replaced with stubs.

4.2 Implementing spliced signatures

The history tree is built in a batch fashion. Whenever théliegiion requests that
the set of outstanding messages be signed, the splicedwsigmaodule adds the new
messages to the history tree. This requité$) amortized hash operations per mes-
sage. Then the root commitme®y is generated, requiring loghash operations, and
signed. The spliced signature module then generates agtiageto authenticate each
message, with each message’s pruned tree being uniqué togbaage.

Each batch of messages is appended to the same history bieb,sould ostensi-
bly grow indefinitely. To reduce RAM consumption in our impientation, we restart
with an empty history tree every 100k messages. Signatarasot be spliced across
these epochs.

4.2.1 AuthenticatingXs in a batch

Consider the case where a signer adds 7 messages as a sioglénba an empty
history tree. The result is the history tree seen in Figure 5.

The minimum pruned tree that can reconstruct the root hasimitmentCg is
presented in Figure 7, containing a path to [¥gfthe last leaf inserted. The pruned

tree in the spliced signature that authenticatgss seen in Figure 6. It takes the
minimum pruned tree in Figure 7 and adds a path to ¥gafallowing that message
to be authenticated. This tree, the public key signatur€grand the message; is
sufficient to authenticat¥z. To verify this spliced signature, the verifier hashés
places the hash into the pruned tree, and recomputes theoh#dshroot of the tree,
which should be equal to the one already signed. The verifiéaigo validate the
public key signature on the root hash.

4.2.2 Splicing two history trees

In this example, we will assume that the signer runs two lesand generates two
signatures. The first batch contains 3 messages and thedskatah contains an ad-
ditional 4 messages. The verifier receives two spliced sigias; the first contains the
pruned tree seen in Figure 4, authenticalagand having a signed root hash commit-
mentC,. For the second spliced signature, instead of sending tieegrtree seen in
Figure 7, which authenticates mess3gevith a signed commitment &g * the signer
instead sends the pruned tree in Figure 6. This tree incladextra path to leaXs.
The second signature thus connects to the first one.

The verifier could verify these two message independentlyeatost of two public
key signatures. What if we first verifi€gs's public key signature on the tree in Fig-
ure 6? We validate messaife from this tree. Observe that the pruned tree in Figure 6
also includes a path t&. Then, if we pretended that the asterisk-marked children in
this tree werél, we could reconstruc,, using hash operations. If the reconstructed
hashC, was the same as tl@@ computed from Figure 4, then we have a valid splice.
We have authenticatedh from the pruned tree in Figure 6 and the signatureCgn
Now that we have authenticat€d, we can use the pruned tree in Figure 4 to authenti-
cateX;. In the end, we have validated two messages usitggh hash operations and
one public signature verification.

We call this a spliced signature because if the reconsuletes the same as the
original C,, the contents of the left children on the path4pin Figure 4 are the same
as the left children on the path ¥ in Figure 6, and we could thus safely graft the tree
in Figure 4 onto the tree in Figure 6.

In this example, the two messages being verified were in sgiglibatches. Thatis
not necessary. What matters is that the verifier was ablestthedatter pruned history
tree in Figure 7 to reconstruct a commitment of the earlistany treeC, by virtue of
Figure 7 including a path to lea®.

Also note that for the recipient to be able to splice the tveesrtogether, the signer
had to send Figure 6, not Figure 7. It had to predict that thiisewould have pre-
viously received the spliced signature authenticang When this prediction is not
possible, spliced signatures are no better than Merklasiges because the signer will
not know what prior messages to splice to.

IFigure 7 already includes a path to mess¥geand can authenticate that message without adding any
additional nodes.

10

<

Xo X1 X

Figure 4: A version 2 history with commitmeGs.

/*
o o ® O
Xo X1 X2 X3 X2 X5 X

Figure 5: A version 6 history with commitme@g.
/\ N
*

X X3 Xs

Figure 6: A pruned tree indicating a batch ending in vers{gnvith commitmeniCg

and including a path to leaf,. If that path is considered a splicepoint@g, this tree

can be merged with the tree given in Figure 4. Solid blackesrare included in the
output. Open black circles need not be included as they camivguted from their
children. Grey circles need not be included because thegareelevant to the proof
being constructed. Small dots, like open circles, can bemgeaited from their children,
but can be expected to be different in future versions as messages are inserted.

Xe

Figure 7: A pruned tree that authenticates mess@ghat was generated during the
batch ending in versioXs. Solid black circles are included in the proof. Grey circles
need not be included because they are not relevant to thél@img constructed. Small
dots can be recomputed from their children, so they needaotduded.

4.3 General splicing

In general, the pruned tree for a spliced signaRiier a messag; will contain at least
two paths; it will contain a path from the root¥q, whereC; is the commitment at the
end of the batch, and a pathXg which is the particular message being authenticated.
As the depth of the tree is lag the number of hashes in the two paths to the two leaves
in the pruned tree is -2ogn.

Lets say the signing application later requests a splicgaisiire on messagé&.
The minimum pruned tre® in the spliced signature o¥ includes a path to the leaf
Xy and a path to the leaf, whereX is the last message added in the batch.

Now lets say the signing application predicts that the \erifbuld take advantage
of a splice from messagg to Xx. The signer takes the pruned tr@eand adds in
one additional path, to lea{;, the end of the batch for messa¥e Thatsplice to G
increases the size @f by logn hashes.

A spliced signature is not limited to splicing to one prionmmitment. It can splice
to many prior commitments. Each splice requiresridiashes. For simplicity, we
will assume that a spliced signature includes a list of tliEinnumbers of all prior
commitments to which it splices.

We could have included a path directly to mess&geWe spliced instead tG;,
the commitment that ends the batch containiitp simplify the design of the spliced
signature verifier and reduce the number of distinct spbagp, which increases the
opportunities of opportunistic splicing, splicing thatswaot planned by the signing
application.

Verifying spliced signatures is transitive. Lets say th verifier receive® and
Q andQ has splice taCj. If the commitmentC; authenticatingQ is authenticated,
whether by having its public key signature verified directly being authenticated
because it spliced into a later authenticated message Qhem@uthenticated. 16 is
authenticated, any prior commitments which splice intor@ authenticated, as well
as any messages authenticated by those commitments. Thidés messagé and
commitmen(C;, which authenticateB, and transitively, through earlier commitments
which splice intoP. With only a single public key verification, many messagesioa

12

authenticated through hash operations.

4.4 Implementing the asynchronous verification interface

There are two ways to authenticate a message. We can alwageeithe splices

entirely and validate a spliced signature by following tegedure outlined in Sec-
tion 4.2.1, by using the pruned tree and the message beihgraiidated to generate
the root commitment for that batch and then checking theiplily signature on that
commitment. This requires doing one public key verificafimmeach verified message,
the same as we would do with a standard Merkle tree.

To improve our efficiency we must leverage the asynchrondeisahd delay the
verification in order to exploit any splicepoints betweea $ipliced signatures. In Sec-
tion 4.3 we described how to verify a splice between two ngssaln this section, we
describe the bookkeeping required in order to find and effilyieexploit splicepoints.
In particular, we must track messages which may splice otfemsages, and we must
remember when digital signatures, hashes, or splices e \erified. Because we
must delay public key signature verification as long as fbssithe whole point is to
minimize public key signature verification—our bookkeapstores unauthenticated
messages and must properly reject forged messages.

Itis not possible to splice two spliced signatures that vgereerated from different
history trees. We can only splice signatures generated fiffierent versions of the
same history tree. To identify if two messages were gengiatde same history tree,
a spliced signature includes a tree-id, created randonlgdoh distinct history tree.
For simplicity, in the rest of this section, we will assumatthll messages are from the
same history tree. Otherwise, the verifier could demultifthe messages by using the
tree-id and replicate this algorithm once for each distivistory tree.

If two messages have a verified splice between them, thedatalg the newer
message will also validate the older one. To accomplish tiesmust track these de-
pendency relationships. Repeating this across all mes$ages a logical dependency
graph which we explicitly maintain for all messages. We placode in this graph for
each message, marking it as depending on the node represtdi commitment for
its batch. We also place a node in this graph for each endahbcommitment. We
will add edges between nodes that represent end-of-bateindments only if there is
a verified splice between them.

For each pruned tree, we cache its root hash in a hash tabtsR¢o, — G, i> —
Ci, ...} of already seen commitments.

Whenever a new spliced signatuvkearrives with commitmenE,, we determine
if any existing messages splice into it. The incoming messatains a list of prior
commitmentdy,ip, ... that splice into it. We use the pruned treeMnto reconstruct
those prior hashes;, ,C,,,.... If they are the same as the hashes cached in Roots then
we have validated the splice frath to G, and add this edge into the dependency graph.
If M contains a splice to a prior commitment that the verifier litsencountered, we
record the potential splice in a separate table of prosgesfilices. We next determine
if M splices into any existing messages. This is possible if agessarrive out of order.
To do this, we see iM’s commitment s in the table of prospective splices. If jtig

13

validate the splice and add the edge between the commitrmegntthe dependency
graph.

This algorithm verifies splices eagerly, as soon as messages, and adds de-
pendencies to the dependency graph. Determining pareamhtheerifying a splice—
requiresO(logn) hash operations. For a spliced signature wigiplices, the total time
is O(r logn) hash operations.

When validating a messad# with commitmentC, that has been forced, we could
verify M’s spliced signature, by using the pruned tree and the publicsignature on
that commitment. If the signature validates, instead obking the callback to mark
just M as valid, we traverse the dependency graph for all descéndé@,, which
includesM, and invoke the callback on them.

However, we can further improve efficiency by finding a latessag& which has
M as a descendant, and ver®s commitment’s public key signature. The best node
R to use is a root of the dependency graph thatMaas a descendant, which can be
found with a depth-first-searcBFES).

Consider the error case where a public key signature on dait®to verify. This
could occur because the root signature (and its accompgny@ssages) are forgeries,
oritcould occur due to a transient failure of the signer.ither case, we must disregard
the root signature and consider the messages that came teitha unverified (as with
any other new message). Rather than terminating or regjdhe DFS, the DFS need
only cache its search path and resume where it left off. Bpglthis, verification can
be done in constant time per validated or rejected message.

5 Microbenchmark evaluation

We implemented all of our algorithms in Java OpenJDK 11B0unning a quad-core
Intel Core i7-860 at 2.8GHz running Linux in 64-bit mode. Gmplementation used
Google Protocol Buffers [16] for serialization. We use Boy@astle [22] for 2048-bit
RSA signatures and 1024-bit DSA signatures. We used SHA&X@5cryptographic
hashing. We would have used 2048-bit DSA signatures exbepttiey are not sup-
ported by our Java libraries. (Based on OpenSSL benchmaeksould expect them
to be about 3.5 times slower to sign and verify than 1024-8iAD Except for DSA,
our ciphers all operate at the 256-bit level of security [27]

Our benchmark harness tracks message latencies. We reberdavmessage is
generated, processed, forced, and ultimately verified. ifonmze performance arti-
facts induced by our benchmarking harness, it runs in a atptread on its own CPU
core.

The Merkle and history trees used in our cryptographic pgives have a very spe-
cific structure, that of a complete binary tree where empitrieaves store nothing
(i.e., a pointer to null). Just as a heap can be stored in ag Briavoid object allocation
overheads, we store our hash trees in an array, where a roff$&is assigned based
on an in-order traversal.

In Tables 1 and 2 we present our Java and OpenSSL public keplmeischmarks.
Except for DSA verification where OpenSSL is 6.5 times fagtan Java, OpenSSL

14

Sign Verify
RSA-2048 10 276
DSA-1024 .868 1720
SHA2-256 on 64 bytes .00125

Table 1: CPU time for public key operations in Java in milligeds.

Sign Verify
RSA-2048 272 .080
DSA-1024 231 .267
ECDSA-256 138 .606

SHA2-256 on 64 bytes .0008

Table 2: CPU time in OpenSSL 0.9.80 in milliseconds.

is 3.4-3.7 times faster than native Java. Clearly, Javaesysthat depend on crypto
should consider using native methods to improve cryptogperance.

Regardless, these performance numbers show an interéstimdy RSA, while
being very expensive to compute a digital signature, is effigient to verify. As we
will discuss later, verification performance is essentiabtir system, while signature
generation is less sensitive, so these benchmarks tenddauketo prefer RSA over
DSA signatures.

5.1 Hash tree microbenchmarks

We now focus on microbenchmarking the costs of Merkle treedstory trees. These
are the foundation of the two asynchronous signature schéméwe present.

The critical serialized path in our hybrid signature algforis for signing is gen-
erating the Merkle or history tree. Our current implemdntatioes this in a single
thread. In Figure 8 we summarize the costs of building thesestacross different tree
sizes, which tracks linearly at roughly 2ns per message.

In Figure 9 we plot overalper-messageosts, including the cost of serializing
a message’s pruned tree for authenticating that messagthamast of building the
tree over all messages in the batch. We find that history @meesnore expensive
than Merkle trees to generate because the membership jarecdpproximately 2 log
nodes while Merkle tree signatures haveramdes. This can also be seen in Figure 10,
where we plot the serialized size of the generated prunédriisr Merkle trees.

A realistic batch size for a Merkle tree is at most a few huddredes, with an
amortized per-message costs ofi4 5o generate or verify. History trees contain mes-
sages from several batches, growing until they hit a maximize. At a 100k maxi-
mum size, the amortized per-message cost 5§55

The cost of either Merkle trees or history trees is much leas the digital signa-
tures reported in Table 1. DSA is the fastest signing algoritve benchmark, at .86ms
per signature. This is the same time it takes to batch 90 messato a Merkle tree
and serialize 90 hybrid message signatures. Thus, in abbuis] we can generate hy-

15

1000

— Lir;ear growth olf 2ns per meslsage
History
. 100 F O - Merkle o
0 e
£ 9
g 10F -]
3
5 -2
E 1 7 9
(]
£
F ooz g
0.01 1 1 1
10 100 1000 10000 100000
Tree size

Figure 8: Time required, in microseconds, to build a Merkidigtory tree, required
before any signatures can be generated.

50
—— Hisltory tree verif;/
45 - History tree creation b
-+~ Merkle tree verify
’%‘ 40 [..3- Merkle tree creation T
g g
o
(5} % -
® 30} o -
(=] o
g 25 L - i
£
o 20 —
£
= 15 | 4
10 + -
5 [G I I L
10 100 1000 10000 100000

Tree size

Figure 9: Amortized time, in microseconds, to generate amifya membership proof
in a Merkle or history tree as a function of the number of eletaén the tree.

brid signatures over 90 messages, for an estimated throtighp3000 messages per
second. (In Table 3, we benchmark this algorithm as oveithggat 52000 messages
per second with a batch size of 108 messages.)

5.2 Peak throughput

Our previous microbenchmark examined the generation padoce of Merkle trees

and hash trees in isolation. In this microbenchmark, weyaegahe performance of our

asynchronous signing and verifying API by empirically detaming the peak through-

put before overload for signing and verifying messages fadfstyles: simply stan-

dalone signatures, Merkle tree signatures, and histesydpliced signatures. We take
each algorithm and progressively generate messages atea ffate until the queue

length (and latency) diverges to infinity.

16

1100 T
—+— History
1000 - Merkle

900

800
700
600
500
400
300
200 5F

100 1 1 1
10 100 1000 10000 100000

Tree size

Size (bytes)

Figure 10: The number of bytes in the serialized SHA2-256Kléeor history tree
proof, as a function of the number of nodes in the tree, nduidicg the signature on
the root.

RSA DSA
Rate Latency Batch Rate Latency Batch
(/sec) (ms) Size (/sec) (ms) Size
Simple 80 65 1 800 <1 1
Merkle 35000 38 1107 41000 3.0 108
Spliced 21500 47 846 23000 4.4 88

Table 3: Peak signature generation rate in messages/sragaviatency and batch
size. Data reported is at 80% of the overload rate.

Our implementation has two threads, a signing thread andssage generating
thread. The message generator thread generates messaggseat rate for 60 sec-
onds, recording the latency from generation to processinggomessage. When the
queue exceeds more than one second of unprocessed worksuveeathat the system
has overloaded and terminate the experiment.

Java’s garbage collection causes some artifacts in thestigeWhen the system
is very close to overload, a GC pause causes a sudden spik@afogssed messages
in the queue that instantly drives the system into overl@aptoduction system faced
with the same GC latency would similarly find itself overleald but production sys-
tems should hopefully address such performance concersgrepading the workload
across many separate machines (see Section 7). For oumbarksh these results are
still perfectly valid as we wish to measure the throughpwtath signature technique
at 80% of the fastest rate we were able to process messadenitvitverloading (see
Table 3), which we believe represents a more typical peaktgtas might be seen in
a production system. As the system gets closer to overlagghdy rapidly increases
to the point that it would be unacceptable. Our measurenstos, for example, that
at half of the overload rate, latency is about 20% less th&0#t of the overload rate.

In Table 4 we report the peak rate at which we could verify ragss. Simple signa-

17

RSA DSA
Rate Latency Rate Latency

(/sec) (ms) (/sec) (ms)
Simple 2800 2.8 500 8.9
Merkle 2800 2.4 500 8.8
History 12700 7.5 11200 11.2

Table 4: Peak input for message verification. Data repoged 80% of the overload
rate.

tures and Merkle signatures are bottlenecked by the cospoblc key cryptographic
operation, limiting their maximum throughput and settihgit peak latencies.

History tree spliced signatures are a bit trickier to benahnfor verification. If
the messages had no locality at all, the throughput anddatefspliced signatures
would follow that of Merkle signatures. However, we expeslrworld data to have
better locality. For this experiment, we decided to measoraething of a best-case
scenario; we captured the peak throughput of spliced sigesitvith messages arriving
as fast as possible, verified as fast as possible, and witlinmax locality. In this
scenario, the latest message’s public key signature, cwmdbwith the history tree
hashes accompanying prior messages, is sufficient to aidghtrall prior unverified
messages only using hash operations. The results are cieder ideal situations,
history tree spliced signatures are running 4.5-20 timstefahan simple standalone
digital signatures or Merkle trees. By tolerating a longaehcy, significant gains
can be found in verifying messages. Also, the faster vetifingperformance of RSA
signatures is now clear relative to DSA signatures.

6 Evaluation on Google Wave

In our previous sections, we benchmarked spliced signatame Merkle signatures
in an application-independent way to determine their péagughput. We showed
that spliced signatures and Merkle signatures have sirfilmughputs for signing.
However, the verification performance of spliced signawamn be significantly higher
if enough locality is present and the additional latency bartolerated. In order to
better characterize the performance of our designs, wecoexpare spliced signatures
to Merkle signatures using traces from Google Wave to detrateshe advantages of
spliced signatures.

6.1 Google Wave

Google Wave is a realtime, concurrent, distributed systeanhallows users to concur-
rently edit shared documents (called “waves”). Waves cke sgveral related forms:
documents as in a wiki, discussion threads as in many websigm forums, or status
updates as in Twitter and other such systems. To supportioc@mt editing, Wave uses
operational transform§28], allowing for concurrent editing operations to be fesd
to a consistent state, regardless of the order in which teeatipns are applied.

18

A wave is expressed as a sequence of delta operations tkat ingemove char-
acters, move a virtual cursor, and so forth. To support Ideniay concurrent editing,
deltas are transmitted as fast as possible. Consequefabt;typing user can generate
many deltas per second.

Wave resembles traditional email in that users have a homes servemwhich
operates on their behalf, serializing concurrent update®tuments that it manages.
Wave supports a federated protocol [21] [3], allowing ongevdocument to be edited
and observed from users across many hosts in differentdarstins. Unlike tradi-
tional email, a Wave server digitally signs every delta ohdiiits users, allowing for
third-party sharing of deltas, which can then still be antlwated. (For purposes of
this research, we omit discussion of how Wave authentiaadess, manages access
control lists, and so forth. Some discussion appears iriif39].)

Google originally designed a Merkle tree-based bundlingd) signing mechanism
for Wave [18], but this has not actually been implementedentéints of the design
were implemented in [2] but have not yet been integratedanipactual wave server.
The present Google “FedOne” Wave server instead impleneetiteear hash chain
within each wave. The design here is intended to improve ffi@ency of the digital
signatures used within this scheme.

In many circumstances, a wave server can tolerate longdigeetween when
a delta is received and when it's verified. For example, if serwon that server is
presently viewing the wave, then delta validation can beys until one of them
logs in. Also, for read-only observers of a wave, latenciies few seconds could be
perfectly tolerable.

6.2 Google Wave implementation details

With spliced signatures, the signer has to choose whickegpdints to include in the
spliced signatures. One simple solution for which messagesplice would be to
include a splice to the immediate prior batch, creating gbmg analogous to a hash
chain. In the case of Google Wave, however, the stream ofagesseing signed by a
given server will contain a mix of messages for a variety &edént waves on different
home servers. Consequently, we can optimize the verifitgtiocess by including
splices, on a per-message basis, to the commitment of th@pshatch containing a
message destined for the same wave. This allows the subsetssages relevant to
any given home server to be self-contained with respecttiosérver’s ability to verify
earlier messages from later ones.

6.3 Statistics on the Google Wave dataset

We received a trace of all updates on a subset of the individages running on
Google’s servers over the course of a day. Each update osrganillisecond-accurate
timestamp, an anonymized userid, and an anonymized waleidtrace contains 50k
users, 94k waves and 14M total defaBlalf of the users in our trace only sent deltas

2Google has asked us not to disclose statistics that allowethger to infer the total volume of Wave
traffic handled by Google’s servers.

19

Fraction of messages Time since prior message (s)

12 % 2
45 % 5
5 % 1
91 % 2
95 % 5
96.8 % 10
97.8 % 20

Table 5: Cumulative distribution function time differenibetween updates sent by a
user on a particular wave.

on one wave. 75% of waves only have a single user, 20% have sexs,uand only
5% have three or more. Despite this, the single-user wavgsacoount for 4M of the
14M total deltas. Clearly, the multiuser waves are whereatii®n is happening.

Table 5 describes how frequently deltas arrive from the sasee. Our analysis
shows that over half of the updates a user sends on a wavetare lss than a second
of the prior update the user sent on the same wave. This ishlée spliced signatures
would see some performance benefits from the message yocalit

Simulation traces From our dataset of wave deltas, we need to construct a tface o
messages to drive our algorithms. This means we must traitkvbloen a delta is
generated and when it is verified. The former is already inGlbegle dataset, but
the latter is one of the areas where we have some flexibilitgo Af a message has
multiple recipients, we must generate events for everyreat. This process expands
our original 14M message trace to 34M messages.

We simulated spliced signatures and Merkle signatures oaca bf Wave mes-
sages. Our simulations operate in a realtime fashion. Eadsage includes a times-
tamp. We inject messages into the asynchronous signingrdying queue at the
timestamp given in that message. It takes one hour to simalane-hour trace. The
original dataset, if we were to run it in realtime followinget timestamps, would not
come anywhere near saturating the CPU of our test platfoimee®ur research wishes
to consider what happens when a server reaches CPU saturaganeeded to artifi-
cially increase the message rate.

To create our final simulation traces, for each wave and eaeh we determined
in which hour we first saw a message for that wave or from that, usen extracted
subsequent messages from that user. We then shifted thispetrace by an integral
number of hours, creating a new “virtual” user, distinctnfrthe original user, doing
the same things but effectively operating in a differentetamne. This processing has
the effect of generating a higher peak load and more conuuediting. We use the
first hour of this data as oyeak load tracelt contains 3.8M messages from 47k users.

20

8x 16x 32x
Signing trace 4.43M 8.45M 18.46M
\erificationtrace 2.16M 4.18M 9.01M

Table 6: Number of messages in the signing and verificataes for different repli-
cation factors.

6.4 Generating traffic

In our simulation, we want to model scenarios where userslagnn and log off.
While a user is logged-in, we immediately verify their megsa When a user logs in
after an absence, we force any of their buffered, unverifiessages to be immediately
verified. Unfortunately, our trace does not include useinand logoff times. We
inferred these times by assuming that a user was logged mn®minute before and
after every message they authored and otherwise loggednoffur peak dataset, 5k
users only send a single message and are treated as if thggdidg for exactly 2
minutes and half of the users are logged in for 5 minutes ar les

Next, to model a group of Wave servers exchanging messaifie téth one an-
other, we must assign our simulated users and our simulagedsato distinct Wave
servers acting as their homes. We randomly assign userstofd@hserversy... S;.
To compensate for the reduced load of dividing the users graaervers, we replicate
the peak load trace making 8, 16, or 32 copies, assigning seneund wave IDs in the
replicated data. We displace the copies by adding or sultgagp to one hour. These
master traces are then used to derive our simulation traces.

We derived two sets of simulation traces. @igning tracancludes only messages
sent from servef. Our verification traceincludes messages received by sersger
from all other servers. This trace is much smaller becausecitides updates by only
one user, where the sender and recipient are the same and deewbany signature
verification. Table 6 gives the sizes of the different traces

While we would have preferred to stretch our simulation tdraarnet scale, with
tens of thousands of servers talking to one another, we teckdmputational resources
to run such a simulation. Instead, by creating a trace thalaes the load on one
server from many of its peers, we can still capture the bemadi servers in these
larger environments, albeit at a smaller scale.

6.5 Benchmark: Signature generation

To model a signature generation benchmark, we take the ges$a@m our signing
trace and play them into the simulated Wave server’s pratgsgieue in real-time
based on the message timestamps. The server's cryptogtaf@ad continuously
loops, fetching all unprocessed messages from the quel@iniguthe hash tree data
structures, signing the root cryptographic hash, and teaalizing signatures. This is
done for both Merkle tree signatures and history tree splgignatures.

Our results mirror what we saw with our microbenchmarks. {tage data have an
average throughput of 1k-5k messages/second, which iblgd¢ess than the peak rate
we benchmarked in Section 5.2. The CPU time to perform thetyidg RSA or DSA

21

public key signature dominated the runtime and the sigrétgnicy. For RSA with
spliced signatures, the average signing latency was 18.Zr%. Merkle signatures
were a millisecond faster. DSA signature latency was 1.2wsns for both Merkle
signatures and spliced signatures. (We did not test standdigital signatures because
even our lightest 8x signing trace exceeded the DSA and R@#rg] rate of a single
CPU core running flat out.)

6.6 Benchmark: Signature verification

Creating a signature verification benchmark is more corafgit than doing it for sig-
nature generation. To simulate a server verifying messespgsres having a signed
message trace that contains actual signed messages.

The only way to create realistic patterns of message sigageneration and ver-
ification is to emulate our users running across a numberftdrdnt servers. Our
original verification trace assigned the users authoringeasage to one of 8 servers.
Spliced signatures would have been very effective with sosigners, so we needed to
divide users among more servers. We only had enough mememutate 65 different
signers, so we assigned users to that many signers at rariech. signing server is
assumed to generate a new batch every simulated 60ms ifghiegialgorithm was
RSA and 5ms if the signing algorithm was DSA. These epochtlergere chosen to
correspond to the latencies we measured in the peak thratigiyported in Table 3.
If any messages targeted ser@fin that epoch, we added that message and 16 junk
messages to that server in that epoch, simulating messagesing servers other than
S. This procedure simulates a signer with a signing rate freml2k messages/sec.
Each signing system then generates Merkle or spliced siggmas described earlier.

The resulting signed messages and their simulated timgsthectame our signed
message trace, which we then ran through our verificatiostraark. Our trace re-
play thread used those message timestamps and user logloganffitimes to force
verification of messages when needed. We note that the exenand the times at
which messages are forced to be verified are the same, regsuafl which signature
algorithm is being simulated.

In Table 7 we report the results of verifying our signed mgedeaces. Merkle sig-
natures exhibit the lowest scalability. Because they ladkcsent locality to amortize
public key operations over many messages, they becomeoadexd when used with
DSA for all three of our traces, and with RSA for our 16x and 82xes.

In contrast, with spliced signatures, we see more forcedsayes than we see
public key signature verifications. This means that, in oonugation traces, forced
messages arrived faster than they could be processed. Eblit ey verification had
to be amortized across several forced messages to avoidader

If we compare the 16x and 32x traces, the number of messaghs tnace and
the corresponding number of forced messages doubles, dulttinber of public-key
signatures verified only increased by 20—60%. Our splicgaigures compensated for
the increased verification load by amortizing each publig kerification over more
forced messages. This increased message throughput cothesast of an increase
in verification latency, which grows 60-130%.

22

PKalg Treealg Tracesize Avg. latency Total Forced Total PK
(ms) msgs msgs verifs
RSA History 16x 10.1 4.18M 2.26M 1.66M
RSA History 32x 16.0 9.01M 4.73M 2.66M
DSA History 8x 17.2 2.16M 1.11M 0.93M
DSA History 16x 30.1 4.18M 2.26M 1.59M
DSA History 32x 71.7 9.01M 4.73M 1.82M
RSA Merkle 8x 13.7 2.16M 1.11M 2.16M
RSA Merkle 16x overloaded
DSA Merkle 8x overloaded

Table 7: For our Wave trace-driven verification benchmaskyeport the average ver-
ification latency, the number of messages verified, the noofaessages in the trace
where verification was forced, and the number of public kgpaiures performed for
a variety of different signature algorithm configurations.

The performance we observe of spliced signatures is madehp@by the degree
of locality that we observe in our Wave dataset, as seen ifeTabwhere half of the
messages a user sends to a wave are within less than a sechredpofor message
and 95% are within 5 seconds. Our spliced signatures caniepubk locality to adapt
to increasing load. While message latency does increasdntineased time is still
quite reasonable and far better than having the server 6a<d overloading. In a
production implementation, we would expect a larger nunabservers to participate
(see Section 7), keeping the load on any individual servarrabre reasonable level.
when a server or server cluster’s resources are more haaxiy, spliced signatures
gracefully degrade latency while still scaling throughptihis property makes them
attractive for a variety of real-world tasks.

7 Scaling

In this paper, we presented benchmarks that only used oned@Rdfor all signing
and verification. Many applications will clearly require reedhroughput than one CPU
core can provide. Large services, like Google Wave, mayempht a single logical
service used concurrently by millions of users, requireustelred architecture to ob-
tain the necessary scalability for running the applicatiod supporting its associated
cryptographic costs.

7.1 Improving the throughput of a single server

There are several ways to improve the throughput of a sirgjees by using more
than one CPU core, exploiting the immutability of Merklegseand the append-only
property of history trees.

Merkle trees are amenable to parallel computation througtieir construction.
The hashes for each subtree are completely independen¢ @ranther, making it triv-
ial to delegate their computation to a pool of threads on #mesCPU. Furthermore,

23

once the root hash has been computed, the task of computinglie-gey signature
on it can be handled independently. Furthermore, the hashigimmutable and each
pruned tree can be derived independently from it, allowirghigh concurrency. The
only inherently serial process in computing a Merkle treasisigning each message to
its location in the leaves of the Merkle tree, and even thatdpotentially be paral-
lelized by having concurrent queues which feed into difiéseibtrees.

Similarly, when verifying Merkle signatures, each messzayebe treated indepen-
dently. A naive implementation would verify the public k&gnature on each message
and then verify the hashes. This process would be completégpendent from one
message to the next, allowing exceptional speedups thrpagtiel computation. To
reuse the expensive public key verifications across messhgeshare the same pub-
lic key signature, a concurrent hash table or comparahletstre would track which
signatures have been verified. Lock contention on this straavould seem unlikely
to be a significant issue, and the worst case is merely thabtwoore threads will
concurrently verify the same public key signature.

Like Merkle signatures, history trees and spliced sigrestwan also be generated
in parallel. Spliced signatures on each message can beedenifilependently from
each other for exceptional speedup. The potential conaeyref verifying spliced
signatures is reduced, however, if we increase CPU effigibpexploiting the splices
between the spliced signatures and improve the number cfages verified per public
key signature verification. To do this, spliced signaturespartitioned into sets based
on which history tree they were built from. Each set is indefsnt and can be verified
concurrently with other sets. Within each set, the bookkegand dependency graph
management would happen serially.

7.2 Scaling to large computational clusters

Industrial deployments of scalable web services inewtabh on large clusters of
servers in order to support large numbers of users and ststequantities of data.
We now consider how Merkle and history tree techniques nsghte to work in such
environments.

7.2.1 Scaling Merkle signatures

If an application is distributed across several serversh e@de can compute its own
Merkle trees, independently, allowing for exceptionallisgawithout requiring any
changes to how an external observer would verify messagmgevér, if no one appli-
cation server generates messages at the peak signingrdsasé 3, each node would
still preferably dedicate a CPU core to signing outgoingsagss in order to minimize
latency. A clustered deployment could reduce the numbegafrey CPUs needed by
running them closer to the peak Merkle signature signing ditecting the traffic from
many application nodes toward a single signing server.

Similarly, when verifying Merkle signatures, each messzgyebe treated indepen-
dently. A naive implementation would verify the public k@gnature on each message
and then verify the hashes. This process would be completégpendent from one
message to the next, allowing for exceptional speedups.

24

Unlike a smaller scale system, which is unlikely to encouhi® messages that
happened to be in the same batch, a large scale system wél often encounter mes-
sages that were signed in the same batch. To reuse the ex@pnoblic key verifica-
tions across messages that share the same public key sigrtatl verification hosts
could run a distributed cache to track previously verifigphaiures.

7.2.2 Scaling spliced signatures

With spliced signatures, if a signing cluster is distriltliteross several servers, each
of the cluster nodes can compute its own history tree, inadpetly, allowing for ex-
ceptional scaling. However, such a design would yield aeseof disjoint histories,
making it impossible to splice signatures computed on orderto signatures com-
puted on another. (Such a design might also reveal the sike aluster on which the
service is running, which could be undesirable.) Just likelie signatures, a clustered
deployment could reduce the number of signing CPUs neededrinyng them closer
to the peak spliced signature signing rate, directing tafficrfrom many application
nodes toward a single signing server.

The highest efficiency comes when the signer generatesdpsignatures with
useful splices. For instance, in Google Wave, if all of a Bsmessages are signed by
the same server, at least over the space of a few minutesalihefrthe messages from
that user would at least appear in the same history treeyialipverifiers to benefit
from the message locality if they were verifying multiple seages from that user.

Achieving high levels of concurrency for spliced signatueeification is also fea-
sible. As with Merkle trees, a naive solution would allowispd signatures to be
verified scalably just like Merkle signatures by ignoring tplices and treating each
message independently. A more sophisticated implementatould take advantage
of the splices. Each spliced signature is a member of a kistee. A system can di-
rect signatures with the same tree-id to the same host afedadif systems can verify
different trees concurrently.

8 Conclusion

This research has shown that a variation on Merkle treekedchlstory trees, can be
used to create a system allowing for efficient batch sigeatiegmeration and verifi-
cation. We leverage this hash-based data structure to alldiwidual messages to be
verified, all by themselves if desired, and to include sglimeother messages, allowing
for significant throughput gains. Our implementation tiadff latency for throughput;
by waiting for larger batches to arrive, we can compute oifyerxpensive digital
signatures over larger numbers of messages, ensuring #ssage throughput stays
strong, even when the CPU is saturated. We experimentaifjaceour design against
synthetic microbenchmarks as well as traces taken from [@@dfyave service. Wave
needs to generate signed events at the granularity of thdiVusers’ keystrokes, mak-
ing efficiency essential, and our techniques maintain hagffication throughput (over
12K message per second on a single CPU core, versus a fifthtaigng standalone
digital signatures) with acceptable latency (10-16 nellisnds).

25

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia.sB&nt authenticated
dictionaries and their applications. International Conference on Information
Security (ISC)pages 379-393, Seoul, Korea, Dec. 2001.

D. Balfanz. Streamauth library for signing message streaddy 2009. http:
//lcode.google.com/p/streamauth/.

A. Baxter, J. Bekmann, D. Berlin, J. Gregorio, S. Lassend S. Thoro-
good. Google Wave Federation Protocol Over XMPRily 2009. http://www.
waveprotocol.org/protocol/draft-protocol-specs/draft-protocol-spec.

M. Bellare, J. A. Garay, and T. Rabin. Fast batch verifamafor modular expo-
nentiation and digital signatures. EuroCrypt '98 pages 236—250, 1998.

D. J. Bernstein. RSA signatures and Rabin-Williams atgnes: The state of the
art. http://cr.yp.to/sigs.html, Jan. 2008.

T. Berson, D. Dean, M. Franklin, D. Smetters, and M. Szezi Cryptography as
a network service. IfProceedings of the 2001 Network and Distributed System
Security Symposium (NDSS '08an Diego, CA, Feb. 2001.

K. Blibech and A. Gabillon. CHRONOS: An authenticatedtébnary based on
skip lists for timestamping systems. Workshop on Secure Web Servigesges
84-90, Fairfax, VA, Nov. 2005.

C. Boyd and C. Pavlovski. Attacking and repairing batehification schemes. In
Proceedings of the 6th International Conference on the Mhaod Application
of Cryptology and Information Security: Advances in Crypay, ASIACRYPT
'00, pages 58-71, London, UK, 2000.

[9] J. Camenisch, S. Hohenberger, and M. O. Pedersen. Batification of short

(10]

(11]

(12]

(13]

signatures. IrProceedings of the 26th annual international conferenceAdn
vances in CryptologyEuroCrypt'07, pages 246—263, Barcelona, Spain, 2007.

J. H. Cheon and J. H. Yi. Fast batch verification of mudigignatures. liPro-
ceedings of the 10th International Conference on Practiwe &heory in Public-
key Cryptography (PKC'07pages 442—-457, Beijing, China, 2007.

S. A. Crosby and D. S. Wallach. Efficient data structui@stamper-evident
logging. InProceedings of the 18th USENIX Security SymposiMiontreal,
Canada, Aug. 2009.

T. Dierks and E. Rescorlahe Transport Layer Security (TLS) Protocol, Version
1.2 IETF, RFC 5246, Aug. 200&ttp://tools.ietf.org/search/rfc5246.

A. L. Ferrara, M. Green, S. Hohenberger, and M. O. Paederdractical short
signature batch verification. IGryptographers’ Track at the RSA Conference
(CT-RSA '09)pages 309-324, San Francisco, CA, 2009.

26

[14] A. Fiat. Batch RSA. ICRYPTO '89pages 175-185, Santa Barbara, CA, 1989.

[15] R. Gennaro and P. Rohatgi. How to sign digital streamsCRYPTO '97 pages
180-197, Santa Barbara, CA, Aug. 1997.

[16] Google.Protocol Buffers2010.http://code.google.com/p/protobuf/.
[17] Google.Wave Protocql2010. http://www.waveprotocol.org/.

[18] L. Kissner and B. Laurie.General Verifiable FederationGoogle, May 2009.
http://www.waveprotocol.org/protocol/whitepapers/wave- protocol-verification.

[19] P. C. Kocher. On certificate revocation and validatitmInternational Confer-
ence on Financial Cryptography (FC '98)ages 172—-177, Anguilla, British West
Indies, Feb. 1998.

[20] T. Korkmaz. Analyzing response time of batch signing.Iriternational Con-
ference on Computer Communications and Netwqgrkges 1-6, San Francisco,
CA, Aug. 2009.

[21] S. Lassen and S. Thorogoo@oogle Wave Federation Architectufday 2009.
http://www.waveprotocol.org/whitepapers/google-wave-architecture.

[22] Legion of the Bouncy Castle.Bouncy Castle Crypto APRO010. http://www.
bouncycastle.org/.

[23] P. Maniatis and M. Baker. Secure history preservatimough timeline entangle-
ment. INUSENIX Security Symposiy®an Francisco, CA, Aug. 2002.

[24] R. C. Merkle. A certified digital signature. IBRYPTO '89 pages 218-238,
Santa Barbara, CA, 1989.

[25] D. M'Raihi and D. Naccache. Batch exponentiation: & falL P-based signature
generation strategy. IRroceedings of the 3rd ACM Conference on Computer and
Communications Security (CCS '9@pnges 5861, New Delhi, India, 1996.

[26] D. Naccache, D. M'Raihi, S. Vaudenay, and D. Raph&in DSA be improved?
Complexity trade-offs with the digital signature standandEuroCrypt '94 pages
77-85, Perugia, Italy, May 1994.

[27] National Institute for Standards and TechnolobyST Special Publication 800-
57: Recommendation for Key Management — Part 1: Genbtat. 2007.

[28] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping. Hidditency, low-bandwidth
windowing in the Jupiter collaboration system. ACM Symposium on User
Interface and Software Technology (UIST '9pages 111-120, Pittsburgh, PA,
1995.

[29] Novell. Vibe 2010.https://vibe.novell.com/.

27

[30] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient necakt stream authenti-
cation using erasure codeSCM Transactions on Information Systems Security
6:258-285, May 2003.

[31] C. Pavlovski and C. Boyd. Efficient batch signature gatien using tree struc-
tures. Ininternational Workshop on Cryptographic Techniques anddgamerce
Hong Kong, July 1999.

[32] A. Perrig, R. Canetti, D. Song, and J. Tygar. Efficiend @ecure source authen-
tication for multicast. InNetwork and Distributed System Security Symposium
(NDSS'01) pages 35-46, San Diego, CA, Feb. 2001.

[33] A. Perrig, J. D. Tygar, D. Song, and R. Canetti. Efficiaothentication and
signing of multicast streams over lossy channel$EEBE Symposium on Security
and Privacy pages 56—73, Berkeley, CA, May 2000.

[34] M. O. Rabin. Digitalized signatures and public-key functions as intedate as
factorization Massachusetts Institute of Technology, Cambridge, MA919

[35] SAP. StreamWork2010. http://www.sapstreamwork.com/.

[36] B. Schneier and J. Kelsey. Automatic event-streamrmizzttion using digital sig-
natures. InSecurity Protocols Workshopages 155-169, Cambridge, UK, Apr.
1996.

[37] B. Schneier and J. Kelsey. Secure audit logs to supponpaiter forensicSsACM
Transactions on Information and System Secutif@), 1999.

[38] H. Shacham and D. Boneh. Improving SSL handshake pagoce via batching.
In Cryptographers’ Track at the RSA Conference (CT-RSA, 'payjes 28-43,
Apr. 2001.

[39] J. Tirsen. Access Control in Google WaveGoogle, May 2009. http://www.
waveprotocol.org/whitepapers/access-control.

[40] C. K. Wong and S. S. Lam. Digital signatures for flows andltinasts.
IEEE/ACM Trans. Netw7:502-513, Aug. 1999.

28

