
Formalizing the LLVM Intermediate Representation
for Verified Program Transformations ∗

Jianzhou Zhao Santosh Nagarakatte Milo M. K. Martin Steve Zdancewic
Computer and Information Science Department, University of Pennsylvania

jianzhou@cis.upenn.edu santoshn@cis.upenn.edu milom@cis.upenn.edu stevez@cis.upenn.edu

Abstract
This paper presents Vellvm (verified LLVM), a framework for rea-
soning about programs expressed in LLVM’s intermediate repre-
sentation and transformations that operate on it. Vellvm provides a
mechanized formal semantics of LLVM’s intermediate representa-
tion, its type system, and properties of its SSA form. The frame-
work is built using the Coq interactive theorem prover. It includes
multiple operational semantics and proves relations among them to
facilitate different reasoning styles and proof techniques.

To validate Vellvm’s design, we extract an interpreter from the
Coq formal semantics that can execute programs from LLVM test
suite and thus be compared against LLVM reference implementa-
tions. To demonstrate Vellvm’s practicality, we formalize and ver-
ify a previously proposed transformation that hardens C programs
against spatial memory safety violations. Vellvm’s tools allow us to
extract a new, verified implementation of the transformation pass
that plugs into the real LLVM infrastructure; its performance is
competitive with the non-verified, ad-hoc original.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification - Correctness Proofs; F.3.1
[Logics and Meanings of Programs]: Speficying and Verifying and
Reasoning about Programs - Mechanical verification; F.3.2 [Log-
ics and Meanings of Programs]: Semantics of Programming Lan-
guages - Operational semantics

General Terms Languages, Verification, Reliability

Keywords LLVM, Coq, memory safety

1. Introduction
Compilers perform their optimizations and transformations over an
intermediate representation (IR) that hides details about the tar-
get execution platform. Rigorously proving properties about these
IR transformations requires that the IR itself have a well-defined
formal semantics. Unfortunately, the IRs used in main-stream pro-
duction compilers generally do not. To address this deficiency, this

∗ This research was funded in part by the U.S. Government. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

C, C++, Haskell,
ObjC, ObjC++,
Scheme, Scala...

Alpha, ARM,
PowerPC, Sparc,

X86, Mips, …

Code
Generator/

JIT
LLVM IR

Optimizations/
Transformations

Program analysis

Figure 1. The LLVM compiler infrastructure

paper formalizes both the static and dynamic semantics of the IR
that forms the heart of the LLVM compiler infrastructure.

LLVM [19] (Low-Level Virtual Machine) uses a platform-
independent SSA-based IR originally developed as a research
tool for studying optimizations and modern compilation tech-
niques [16]. The LLVM project has since blossomed into a ro-
bust, industrial-strength, and open-source compilation platform
that competes with GCC in terms of compilation speed and per-
formance of the generated code [16]. As a consequence, it has been
widely used in both academia and industry.

An LLVM-based compiler is structured as a translation from a
high-level source language to the LLVM IR (see Figure 1). The
LLVM tools provide a suite of IR to IR translations, which pro-
vide optimizations, program transformations, and static analyses.
The resulting LLVM IR code can then be lowered to a variety of
target architectures, including x86, PowerPC, and ARM (either by
static compilation or dynamic JIT-compilation). The LLVM project
focuses on C and C++ front-ends, but many source languages, in-
cluding Haskell, Scheme, Scala, Objective C and others have been
ported to target the LLVM IR.

This paper introduces Vellvm—for verified LLVM—a frame-
work that includes a formal semantics and associated tools for
mechanized verification of LLVM IR code, IR to IR transforma-
tions, and analyses. The description of this framework in this paper
is organized into two parts.

The first part formalizes the LLVM IR. It presents the LLVM
syntax and static properties (Section 2), including a variety of
well-formedness and structural properties about LLVM’s static
single assignment (SSA) representation that are useful in proofs
about LLVM code and transformation passes. Vellvm’s memory
model (Section 3) is based on CompCert’s [18], extended to han-
dle LLVM’s arbitrary bit-width integers, padding, and alignment
issues. In developing the operational semantics (Section 4), a sig-
nificant challenge is adequately capturing the nondeterminism that
arises due to LLVM’s explicit undef value and its intentional
underspecification of certain erroneous behaviors such as reading
from uninitialized memory; this underspecification is needed to
justify the correctness of aggressive optimizations. Vellvm there-
fore implements several related operational semantics, including a
nondeterministic semantics and several deterministic refinements
to facilitate different proof techniques and reasoning styles.

1

The second part of the paper focuses on the utility of for-
malizing the LLVM IR. We describe Vellvm’s implementation in
Coq [10] and validate its LLVM IR semantics by extracting an exe-
cutable interpreter and comparing its behavior to that of the LLVM
reference interpreter and compiled code (Section 5). The Vellvm
framework provides support for moving code between LLVM’s IR
representation and its Coq representation. This infrastructure, along
with Coq’s facility for extracting executable code from constructive
proofs, enables Vellvm users to manipulate LLVM IR code with
high confidence in the results. For example, using this framework,
we can extract verified LLVM transformations that plug directly
into the LLVM compiler. We demonstrate the effectiveness of this
technique by using Vellvm to implement a verified instance of Soft-
Bound [21], an LLVM-pass that hardens C programs against buffer
overflows and other memory safety violations (Section 6).

To summarize, this paper and the Vellvm framework provide:

• A formalization of the LLVM IR, its static semantics, memory
model, and several operational semantics;

• Metatheoretic results (preservation and progress theorems) re-
lating the static and dynamic semantics;

• Coq infrastructure implementing the above, along with tools for
interacting with the LLVM compiler;

• Validation of the semantics in the form of an extracted LLVM
interpreter; and

• Demonstration of applying this framework to extract a verified
transformation pass for enforcing spatial memory-safety.

2. Static Properties of the LLVM IR
The LLVM IR is a typed, static single assignment (SSA) [13] lan-
guage that is a suitable representation for expressing many com-
piler transformations and optimizations. This section describes the
syntax and basic static properties, emphasizing those features that
are either unique to the LLVM or have non-trivial implications for
the formalization. Vellvm’s formalization is based on the LLVM
release version 2.6, and the syntax and semantics are intended to
model the behavior as described in the LLVM Language Refer-
ence,1 although we also used the LLVM IR reference interpreter
and the x86 backend to inform our design.

2.1 Language syntax
Figure 3 shows (a fragment of) the abstract syntax for the subset
of the LLVM IR formalized in Vellvm. The metavariable id ranges
over LLVM identifiers, written %X, %T, %a, %b, etc., which are used
to name local types and temporary variables, and @a, @b, @main,
etc., which name global values and functions.

Each source file is a module mod that includes data layout
information layout (which defines sizes and alignments for types;
see below), named types, and a list of prods that can be function
declarations, function definitions, and global variables. Figure 2
shows a small example of LLVM syntax (its meaning is described
in more detail in Section 3).

Every LLVM expression has a type, which can easily be deter-
mined from type annotations that provide sufficient information to
check an LLVM program for type compatibility. The LLVM IR is
not a type-safe language, however, because its type system allows
arbitrary casts, calling functions with incorrect signatures, access-
ing invalid memory, etc. The LLVM type system ensures only that
the size of a runtime value in a well-formed program is compati-
ble with the type of the value—a well-formed program can still be
stuck (see Section 4.3).

1 See http://llvm.org/releases/2.6/docs/LangRef.html

%ST = type { i10 , [10 x i8*] }

define %ST* @foo(i8* %ptr) {
entry:
%p = malloc %ST, i32 1
%r = getelementptr %ST* %p, i32 0, i32 0
store i10 648, %r ; decomposes as 136, 2
%s = getelementptr %ST* %p, i32 0, i32 1, i32 0
store i8* %ptr, %s
ret %ST* %p

}

Figure 2. An example use of LLVM’s memory operations. Here,
%p is a pointer to a single-element array of structures of type %ST.
Pointer %r indexes into the first component of the first element in
the array, and has type i10*, as used by the subsequent store,
which writes the 10-bit value 648. Pointer %s has type i8** and
points to the first element of the nested array in the same structure.

Types typ include arbitrary bit-width integers i8, i16, i32, etc.,
or, more generally, isz where sz is a natural number. Types also
include float, void, pointers typ∗, arrays [sz × typ] that have
a statically-known size sz . Anonymous structure types { typj

j }
contain a list of types. Functions typ typj

j have a return type,
and a list of argument types. Here, typj

j denotes a list of typ
components; we use similar notation for other lists throughout the
paper. Finally, types can be named by identifiers id which is useful
to define recursive types.

The sizes and alignments for types, and endianness are defined
in layout . For example. int sz align0 align1 dictates that values
with type isz are align0-byte aligned when they are within an
aggregate and when used as an argument, and align1-byte aligned
when emitted as a global.

Operations in the LLVM IR compute with values val, which are
either identifiers id naming temporaries, or constants cnst com-
puted from statically-known data, using the compile-time analogs
of the commands described below. Constants include base values
(i.e., integers or floats of a given bit width), and zero-values of a
given type, as well as structures and arrays built from other con-
stants.

To account for uninitialized variables and to allow for various
program optimizations, the LLVM IR also supports a type-indexed
undef constant. Semantically, undef stands for a set of possible
bit patterns, and LLVM compilers are free to pick convenient values
for each occurrence of undef to enable aggressive optimizations
or program transformations. As described in Section 4, the pres-
ence of undef makes the LLVM operational semantics inherently
nondeterministic.

All code in the LLVM IR resides in top-level functions, whose
bodies are composed of block bs. As in classic compiler represen-
tations, a basic block consists of a labeled entry point l , a series
of φ nodes, a list of commands, and a terminator instruction. As
is usual in SSA representations, the φ nodes join together values
from a list of predecessor blocks of the control-flow graph—each
φ node takes a list of (value, label) pairs that indicates the value
chosen when control transfers from a predecessor block with the
associated label. Block terminators (br and ret) branch to another
block or return (possibly with a value) from the current function.
Terminators also include the unreachable marker, indicating that
control should never reach that point in the program.

The core of the LLVM instruction set is its commands (c), which
include the usual suite of binary arithmetic operations (bop—e.g.,
add, lshr, etc.), memory accessors (load, store), heap opera-
tions (malloc and free), stack allocation (alloca), conversion
operations among integers, floats and pointers (eop, trop, and cop),
comparison over integers (icmp and select), and calls (call).

2

Modules mod, P : : = layout namedt prod
Layouts layout : : = bigendian | littleendian | ptr sz align0 align1 | int sz align0 align1

| float sz align0 align1 | aggr sz align0 align1 | stack sz align0 align1

Products prod : : = id = global typ const align | define typ id(arg){b} | declare typ id(arg)
Floats fp : : = float | double

Types typ : : = isz | fp | void | typ∗ | [sz × typ] | { typj
j } | typ typj

j | id
Values val : : = id | cnst
Binops bop : : = add | sub | mul | udiv | sdiv | urem | srem | shl | lshr | ashr | and | or | xor
Float ops fbop : : = fadd | fsub | fmul | fdiv | frem
Extension eop : : = zext | sext | fpext
Cast op cop : : = fptoui | ptrtoint | inttoptr | bitcast
Trunc op trop : : = truncint | truncfp

Constants cnst : : = isz Int | fp Float | typ ∗ id | (typ∗) null | typ zeroinitializer | typ[cnst j
j
] | { cnst j

j }
| typ undef | bop cnst1 cnst2 | fbop cnst1 cnst2 | trop cnst to typ | eop cnst to typ

| cop cnst to typ | getelementptr cnst cstj
j | select cnst0 cnst1 cnst2 | icmp cond cnst1 cnst2

| fcmp fcond cnst1 cnst2

Blocks b : : = l φ c tmn

φ nodes φ : : = id = phi typ [valj , lj]
j

Tmns tmn : : = br val l1 l2 | br l | ret typ val | ret void | unreachable
Commands c : : = id = bop(int sz)val1 val2 | id = fbop fp val1 val2 | id = load (typ∗)val1 align

| store typ val1 val2 align | id = malloc typ val align | free (typ ∗) val
| id = alloca typ val align | id = trop typ1 val to typ2 | id = eop typ1 val to typ2

| id = cop typ1 val to typ2 | id = icmp cond typ val1 val2 | id = select val0 typ val1 val2
| id = fcmp fcond fp val1 val2 | option id = call typ0 val0 param

| id = getelementptr (typ ∗) val valj
j

Figure 3. Syntax for LLVM. Note that this figure omits some syntax definitions (e.g., cond—the comparison operators) for the sake of space;
they are, of course, present in Vellvm’s implementation. Some other parts of the LLVM have been omitted from the Vellvm development;
these are discussed in Section 5.

Note that a call site is allowed to ignore the return value of a func-
tion call. Finally, getelementptr computes pointer offsets into
structured datatypes based on their types; it provides a platform-
and layout-independent way of performing array indexing, struct
field access, and pointer arithmetic.

2.2 Static semantics
Following the LLVM IR specification, Vellvm requires that every
LLVM program satisfy certain invariants to be considered well
formed: every variable in a function is well-typed, well-scoped,
and assigned exactly once. At a minimum, any reasonable LLVM
transformation must preserve these invariants; together they imply
that the program is in SSA form [13].

All the components in the LLVM IR are annotated with types,
so the typechecking algorithm is straightforward and determined
only by local information.The only subtlety is that types themselves
must be well formed. All typs except void and function types
are considered to be first class, meaning that values of these types
can be passed as arguments to functions. A set of first-class type
definitions is well formed if there are no degenerate cycles in their
definitions (i.e., every cycle through the definitions is broken by a
pointer type). This ensures that the physical sizes of such typs are
positive, finite, and known statically.

The LLVM IR has two syntactic scopes—a global scope and
a function scope—and does not have nested local scopes. In the
global scope, all named types, global variables and functions have
different names, and are defined mutually. In the scope of a function
fid in module mod, all the global identifiers in mod, the names
of arguments, locally defined variables and block labels in the
function fid must be unique, which enforces the single-assignment
part of the SSA property.

The set of blocks making up a function constitute a control-
flow graph with a well-defined entry point. All instructions in the
function must satisfy the SSA scoping invariant with respect to

the control-flow graph: the instruction defining an identifier must
dominate all the instructions that use it. Within a block insn1

dominates insn2 if insn1 appears before insn2 in a program order.
A block labeled l1 dominates a block labeled l2 if every execution
path from the program entry to l2 must go through l1.

The Vellvm formalization provides an implementation of this
dominator analysis using a standard dataflow fixpoint computa-
tion [14]. It also proves that the implementation is correct, as stated
in the following lemma, which is needed to establish preservation
of the well-formedness invariants by the operational semantics (see
Section 4).

LEMMA 1 (Dominator Analysis Correctness).

• The entry block of a function dominates itself.
• Given a block b2 that is an immediate successor of b1, all the

strict dominators of b2 also dominate b1

These well-formedness constraints must hold only of blocks
that are reachable from a function’s entry point—unreachable code
may contain ill-typed and ill-scoped instructions.

3. A Memory Model for Vellvm
3.1 Rationale
Understanding the semantics of LLVM’s memory operations is
crucial for reasoning about LLVM programs. LLVM developers
make many assumptions about the “legal” behaviors of such LLVM
code, and they informally use those assumptions to justify the
correctness of program transformations.

There are many properties expected of a reasonable implemen-
tation of the LLVM memory operations (especially in the absence
of errors). For example, we can reasonably assume that the load
instruction does not affect which memory addresses are allocated,
or that different calls to malloc do not inappropriately reuse mem-

3

ory locations. Unfortunately, the LLVM Language Reference Man-
ual does not enumerate all such properties, which should hold of
any “reasonable” memory implementation.

On the other hand, details about the particular memory man-
agement implementation can be observed in the behavior of LLVM
programs (e.g., you can print a pointer after casting it to an integer).
For this reason, and also to address error conditions, the LLVM
specification intentionally leaves some behaviors undefined. Exam-
ples include: loading from an unallocated address; loading with im-
proper alignment; loading from properly allocated but uninitialized
memory; and loading from properly initialized memory but with an
incompatible type.

Because of the dependence on a concrete implementation of
memory operations, which can be platform specific, there are many
possible memory models for the LLVM. One of the challenges
we encountered in formalizing the LLVM was finding a point in
the design space that accurately reflects the intent of the LLVM
documentation while still providing a useful basis for reasoning
about LLVM programs.

In this paper we adopt a memory model that is based on the one
implemented for CompCert [18]. This model allows Vellvm to ac-
curately implement the LLVM IR and, in particular, detect the kind
of errors mentioned above while simultaneously justifying many of
the “reasonable” assumptions that LLVM programmers make. The
nondeterministic operational semantics presented in Section 4 takes
advantage of this precision to account for much of the LLVM’s
under-specification.

Although Vellvm’s design is intended to faithfully capture the
LLVM specification, it is also partly motivated by pragmatism:
building on CompCert’s existing memory model allowed us to re-
use a significant amount of their Coq infrastructure. A benefit of
this choice is that our memory model is compatible with Com-
pCert’s memory model (i.e., our memory model implements the
CompCert Memory signature).

This Vellvm memory model inherits some features from the
CompCert implementation: it is single threaded (in this paper we
consider only single-threaded programs); it assumes that point-
ers are 32-bits wide, and 4-byte aligned; and it assumes that the
memory is infinite. Unlike CompCert, Vellvm’s model must also
deal with arbitrary bit-width integers, padding, and alignment con-
straints that are given by layout annotations in the LLVM program,
as described next.

3.2 LLVM memory commands
The LLVM supports several commands for working with heap-
allocated data structures:

• malloc and alloca allocate array-structured regions of mem-
ory. They take a type parameter, which determines layout and
padding of the elements of the region, and an integral size that
specifies the number of elements; they return a pointer to the
newly allocated region.

• free deallocates the memory region associated with a given
pointer (which should have been created by malloc). Memory
allocated by alloca is implicitly freed upon return from the
function in which alloca was invoked.

• load and store respectively read and write LLVM values to
memory. They take type parameters that govern the expected
layout of the data being read/written.

• getelementptr indexes into a structured data type by com-
puting an offset pointer from another given pointer based on its
type and a list of indices that describe a path into the datatype.

Figure 2 gives a small example program that uses these oper-
ations. Importantly, the type annotations on these operations can

Blk ... Blk 39Blk 11

mb(10,2)

muninit

mptr(b39,24,0)

mptr(b39,24,1)

mptr(b39,24,2)

mptr(b39,24,3)

muninit

mb(10,136)
i10

muninit

mptr(b11,32,0)

mptr(b11,32,1)

mptr(b11,32,2)

mptr(b11,32,3)

muninit

i32

i16*

muninit

muninit
{i10, i8*}

32

33

34

35

36

37

38

39

offset

20

21

22

23

24

25

26

27

offset

...

...

...

...

...

Blk 40

Allocated

Blk 5Blk ...

valid valid validinvalid invalidvalid

Next block

i8*

[10 x i8*]

Figure 4. Vellvm’s byte-oriented memory model. This figure
shows (part of) a memory state that might be reached by calling the
function foo from Figure 2. Blocks less than 40 were allocated;
the next fresh block to allocate is 40. Block 5 is deallocated, and
thus marked invalid to access; fresh blocks (≥ 40) are also invalid.
Invalid memory blocks are gray, and valid memory blocks that
are accessible are white. Block 11 contains data with structure
type {i10, [10 x i8*]} but it might be read (due to physical
subtyping) at the type {i10, i8*}. This type is flattened into two
byte-sized memory cells for the i10 field, two uninitialized padding
cells to adjust alignment, and four pointer memory cells for the
first element of the array of 32-bit i8* pointers. Here, that pointer
points to the 24th memory cell of block 39. Block 39 contains an
uninitialized i32 integer represented by four muninit cells followed
by a pointer that points to the 32nd memory cell of block 11.

be any first-class type, which includes arbitrary bit-width integers,
floating point values, pointers, and aggregated types—arrays and
structures. The LLVM IR semantics treats memory as though it is
dynamically typed: the sizes, layout, and alignment, of a value read
via a load instruction must be consistent with that of the data that
was stored at that address, otherwise the result is undefined.

This approach leads to a memory model structured in two parts:
(1) a low-level byte-oriented representation that stores values of
basic (non-aggregated) types along with enough information to in-
dicate physical size, alignment, and whether or not the data is a
pointer, and (2) an encoding that flattens LLVM-level structured
data with first-class types into a sequence of basic values, comput-
ing appropriate padding and alignment from the type. The next two
subsections describe these two parts in turn.

3.3 The byte-oriented representation
The byte-oriented representation is composed of blocks of memory
cells. Each cell is a byte-sized quantity that describes the smallest
chunk of contents that a memory operation can access. Cells come
in several flavors:

Memory cells mc : : = mb(sz , byte) | mptr(blk , ofs, idx)
| muninit

The memory cell mb(sz , byte) represents a byte-sized chunk of
numeric data, where the LLVM-level bit-width of the integer is
given by sz and whose contents is byte . For example, an integer
with bit-width 32 is represented by four mb cells, each with size
parameter 32. An integer with bit-width that is not divisible by 8 is
encoded by the minimal number of bytes that can store the integer,
i.e., an integer with bit-width 10 is encoded by two bytes, each with
size parameter 10 (see Figure 4). Floating point values are encoded
similarly.

Memory addresses are represented as a block identifier blk
and an offset ofs within that block; the cell mptr(blk , ofs, idx)

4

is a byte-sized chunk of such a pointer where idx is an index
identifying which byte the chunk corresponds to. Because Vellvm’s
implementation assumes 32-bit pointers, four such cells are needed
to encode one LLVM-pointer, as shown in Figure 4. Loading a
pointer succeeds only if the 4 bytes loaded are sequentially indexed
from 0 to 3.

The last kind of cell is muninit, which represents uninitialized
memory, layout padding, and bogus values that result from unde-
fined computations (such as might arise from an arithmetic over-
flow).

Given this definition of memory cells, a memory state M =
(N,B,C) includes the following components: N is the next fresh
block to allocate, B maps a valid block identifier to the size of the
block; C maps a block identifier and an offset within the block to a
memory cell (if the location is valid). Initially, N is 1; B and C are
empty. Figure 4 gives a concrete example of such a memory state
for the program in Figure 2.

There are four basic operations over this byte-oriented memory
state: alloc, mfree, mload, and mstore. alloc allocates a fresh
memory block N with a given size, increments N , fills the newly
allocated memory cells with muninit. mfree simply removes the
deallocated block from B, and its contents from C. Note that the
memory model does not recycle block identifiers deallocated by a
mfree operation, because this model assumes that a memory is of
infinite size.

The mstore operation is responsible for breaking non-byte
sized basic values into chunks and updating the appropriate mem-
ory locations. Basic values are integers (with their bit-widths),
floats, addresses, and padding.

Basic values bv : : = Int sz | Float | blk .ofs | pad sz
Basic types btyp : : = isz | fp | typ∗

mload is a partial function that attempts to read a value from
a memory location. It is annotated by a basic type, and ensures
compatibility between memory cells at the address it reads from
and the given type. For example, memory cells for an integer with
bit-width sz cannot be accessed as an integer type with a different
bit-width; a sequence of bytes can be accessed as floating point
values if they can be decoded as a floating point value; pointers
stored in memory can only be accessed by pointer types. If an
access is type incompatible, mload returns pad sz , which is an
“error” value representing an arbitrary bit pattern with the bitwidth
sz of the type being loaded. mload is undefined in the case that
the memory address is not part of a valid allocation block.

3.4 The LLVM flattened values and memory accesses
LLVM’s structured data is flattened to lists of basic values that
indicate its physical representation:

Flattened Values v : : = bv | bv , v

A constant cnst is flattened into a list of basic values according
to it annotated type. If the cnst is already of basic type, it flattens
into the singleton list. Values of array type [sz × typ] are first
flattened element-wise according to the representation given by typ
and then padded by uninitialized values to match typ’s alignment
requirements as determined by the module’s layout descriptor. The
resulting list is then concatenated to obtain the appropriate flattened
value. The case when a cnst is a structure type is similar.

The LLVM load instruction works by first flattening its type
annotation typ into a list of basic types, and mapping mload
across the list; it then merges the returned basic values into the
final LLVM value. Storing an LLVM value to memory works by
first flattening to a list of basic values and mapping mstore over
the result.

LLVMND

∈

LLVMInterp ≈ LLVMD & LLVM∗DFn & LLVM∗DB

Figure 5. Relations between different operational semantics. Each
equivalence or inclusion is justified by a proof in Vellvm.

This scheme induces a notion of dynamically-checked physical
subtyping: it is permitted to read a structured value at a different
type from the one at which it was written, so long as the basic
types they flatten into agree. For non-structured data types such as
integers, Vellvm’s implementation is conservative—for example,
reading an integer with bit width two from the second byte of a 10-
bit wide integer yields undef because the results are, in general,
platform specific. Because of this dynamically-checked, physical
subtyping, pointer-to-pointer casts can be treated as the identity.
Similar ideas arise in other formalizations of low-level language
semantics [24, 25].

The LLVM malloc and free operations are defined by alloc
and mfree in a straightforward manner. As the LLVM IR does
not explicitly distinguish the heap and stack and function calls are
implementation-specific, the memory model defines the same se-
mantics for stack allocation (alloca) and heap allocation (malloc)
— both of them allocate memory blocks in memory. However, the
operational semantics (described next) maintains a list of blocks
allocated by alloca for each function, and it deallocates them on
return.

4. Operational Semantics
Vellvm provides several related operational semantics for the
LLVM IR, as summarized in Figure 5. The most general is
LLVMND , a small-step, nondeterministic evaluation relation given
by rules of the form config ` S � S ′ (see Figure 6). This sec-
tion first motivates the need for nondeterminism in understanding
the LLVM semantics and then illustrates LLVMND by explain-
ing some of its rules. Next, we introduce several equivalent de-
terministic refinements of LLVMND—LLVMD , LLVM∗DB , and
LLVM∗DFn—each of which has different uses, as described in Sec-
tion 4.4. All of these operational semantics must handle various
error conditions, which manifest as partiality in the rules. Sec-
tion 4.3 describes these error conditions, and relates them to the
static semantics of Section 2.

Vellvm’s operational rules are specified as transitions between
machine states S of the form M ,Σ , where M is the memory and
Σ is a stack of frames. A frame keeps track of the current function
fid and block label l , as well as the “continuation” sequence of
commands c to execute next ending with the block terminator tmn.
The map ∆ tracks bindings for the local variables (which are not
stored in M), and the list α keeps track of which memory blocks
were created by the alloca instruction so that they can be marked
as invalid when the function call returns.

4.1 Nondeterminism in the LLVM operational semantics
There are several sources of nondeterminism in the LLVM se-
mantics: the undef value, which stands for an arbitrary (and
ephemeral) bit pattern of a given type, various memory errors, such
as reading from an uninitialized location. Unlike the “fatal” errors,
which are modeled by stuck states (see Section 4.3), we choose
to model these behaviors nondeterministically because they corre-
spond to choices that would be resolved by running the program
with a concrete memory implementation. Moreover, the LLVM op-
timization passes use the flexibility granted by this underspecificity
to justify aggressive optimizations.

5

Configurations:

Fun tables θ : : = v 7→ id Globals g : : = id 7→ v Configurations config : : = mod, g, θ

Nondeterministic Machine States:
Value sets V : : = {v | Φ(v)} Locals ∆ :: = id 7→ V Allocas α : : = [] | blk , α
Frames Σ :: = fid , l , c, tmn,∆, α Call stacks Σ : : = [] | Σ,Σ Program states S : : = M ,Σ

config ` S � S ′

evalND(g,∆, val) = bV c findfdef (mod, θ, v) = bdefine typ fid ′ (arg){(l ′[]c′tmn′), b}c
v ∈ V initlocals (g,∆, arg , param) = b∆′c c0 = (option id = call typ val param)

mod, g, θ ` M , ((fid , l , (c0, c), tmn,∆, α),Σ)� M , ((fid ′, l ′, c′, tmn′,∆′, []), (fid , l , (c0, c), tmn,∆, α),Σ)
NDS CALL

evalND(g,∆, val) = bV c c0 = (option id = call typ val param) freeallocas (M , α′) = bM ′c
mod, g, θ ` M , ((fid ′, l ′, [], ret typ val,∆′, α′), (fid , l , (c0, c), tmn,∆, α),Σ)� M ′, ((fid , l , c, tmn,∆{id ← V }, α),Σ)

NDS RET

evalND(g,∆, val) = bV c true ∈ V
findblock (mod,fid , l1) = (l1φ1c1tmn1) computephinodesND(g,∆, l , l1, φ1) = b∆′c

mod, g, θ ` M , ((fid , l , [],br val l1 l2,∆, α),Σ)� M , ((fid , l1, c1, tmn1,∆′, α),Σ)
NDS BR TRUE

evalND(g,∆, val) = bV c v ∈ V c0 = (id = malloc typ val align) malloc (M , typ, v , align) = bM ′, blkc
mod, g, θ ` M , ((fid , l , (c0, c), tmn,∆, α),Σ)� M ′, ((fid , l , c, tmn,∆{id ← {blk.0}}, α),Σ)

NDS MALLOC

evalND(g,∆, val) = bV c v ∈ V c0 = (id = alloca typ val align) malloc (M , typ, v , align) = bM , blkc
mod, g, θ ` M , ((fid , l , (c0, c), tmn,∆, α),Σ)� M ′, ((fid , l , c, tmn,∆{id ← {blk.0}}, (blk , α)),Σ)

NDS ALLOCA

evalND(g,∆, val1) = bV1c evalND(g,∆, val2) = bV2c evalbopND(bop, sz ,V1,V2) = V3

mod, g, θ ` M , ((fid , l , (id = bop(int sz)val1 val2, c), tmn,∆, α),Σ)� M , ((fid , l , c, tmn,∆{id ← V3}, α),Σ)
NDS BOP

Figure 6. LLVMND : Small-step, nondeterministic semantics of the LLVM IR (selected rules).

Nondeterminism shows up in two ways in the LLVMND seman-
tics. First, stack frames bind local variables to sets of values V ;
second, the� relation itself may relate one state to many possible
successors. The semantics teases apart these two kinds of nonde-
terminism because of the way that the undef value interacts with
memory operations, as illustrated by the examples below.

From the LLVM Language Reference Manual: “Undefined val-
ues indicate to the compiler that the program is well defined no
matter what value is used, giving the compiler more freedom to
optimize.” Semantically, LLVMND treats undef as the set of all
values of a given type. For some motivating examples, consider the
following code fragments:

(a) %z = xor i8 undef undef

(b) %x = add i8 0 undef
%z = xor i8 %x %x

(c) %z = or i8 undef 1

(d) br undef %l1 %l2

The value computed for %z in example (a) is the set of all 8-bit
integers: because each occurrence of undef could take on any bit
pattern, the set of possible results obtained by xoring them still
includes all 8-bit integers. Perhaps surprisingly, example (b) com-
putes the same set of values for %z: one might reason that no mat-
ter which value is chosen for undef , the result of xoring %x with
itself would always be 0, and therefore %z should always be 0.
However, while that answer is compatible with the LLVM language
reference (and hence allowed by the nondeterministic semantics),
it is also safe to replace code fragment (b) with %z = undef.

The reason is that the LLVM IR adopts a liberal substitution prin-
ciple: because %x = undef would be a legitimate replacement
for first assignment in (b), it is allowed to substitute undef for %x
throughout, which reduces the assignment to %z to the same code
as in (a).

Example (c) shows why the semantics needs arbitrary sets of
values. Here, %z evaluates to the set of odd 8-bit integers, which
is the result of oring 1 with each element of the set {0, . . . , 255}.
This code snippet could therefore not safely be replaced by
%z = undef; however it could be optimized to %z = 1 (or any
other odd 8-bit integer).

Example (d) illustrates the interaction between the set-semantics
for local values and the nondeterminism of the � relation. The
control state of the machine holds definite information, so when a
branch occurs, there may be multiple successor states. Similarly,
we choose to model memory cells as holding definite values, so
when writing a set to memory, there is one successor state for each
possible value that could be written. As an example of that interac-
tion, consider the following example program, which was posted to
the LLVMdev mailing list, that reads from an uninitialized memory
location:

%buf = alloca i32
%val = load i32* %buf
store i32 10, i32* %buf
ret %val

The LLVM mem2reg pass optimizes this program to program
(a) below; though according to the LLVM semantics, it would also
be admissible to replace this program with option (b) (perhaps to
expose yet more optimizations):

(a) ret i32 10 (b) ret i32 undef

6

4.2 Nondeterministic operational semantics of the SSA form
The LLVMND semantics we have developed for Vellvm (and the
others described below) is parameterized by a configuration, which
is a triple of a module containing the code, a (partial) map g that
gives the values of global constants, and a function pointer table θ
that is a (partial) map from values to function identifiers (see the top
of Figure 6). The globals and function pointer maps are initialized
from the module definition when the machine is started.

The LLVMND rules relate machine states to machine states,
where a machine state takes the form of a memory M (from
Section 3) and a stack of evaluation frames. The frames keep track
of the (sets of) values bound to locally-allocated temporaries and
which instructions are currently being evaluated. Figure 6 shows a
selection of evaluation rules from the development.

Most of the commands of the LLVM have straight-forward in-
terpretation: the arithmetic, logic, and data manipulation instruc-
tions are all unsurprising—the evalND function computes a set
of flattened values from the global state, the local state, and an
LLVM val, looking up the meanings of variables in the local state
as needed; similarly, evalbopND implements binary operations,
computing the result set by combining all possible pairs drawn
from its input sets. LLVMND ’s malloc behaves as described in
Section 3, while load uses the memory model’s ability to detect
ill-typed and uninitialized reads and, in the case of such errors,
yields undef as the result. Function calls push a new stack frame
whose initial local bindings are computed from the function param-
eters. The α component of the stack frame keeps track of which
blocks of memory are created by the alloca instruction (see rule
NDS ALLOCA); these are freed when the function returns (rule
NDS RET).

There is one other wrinkle in specifying the operational se-
mantics when compared to a standard environment-passing call-
by-value language. All of the φ instructions for a block must be
executed atomically and with respect to the “old” local value map-
ping due to possibility of self loops and dependencies among the
φ nodes. For example the well-formed code fragment below has a
circular dependency between %x and %z

blk:
%x = phi i32 [%z, %blk], [0, %pred]
%z = phi i32 [%x, %blk], [1, %pred]
%b = icmp leq %x %z
br %b %blk %succ

If control enters this block from %pred, %x will map to 0 and
%z to 1, which causes the conditional branch to succeed, jumping
back to the label %blk. The new values of %x and %z should be
1 and 0, and not, 1 and 1 as might be computed if they were
handled sequentially. This update of the local state is handled by the
computephinodesND function in the operational semantics, as
shown, for example, in rule NDS BR TRUE.

4.3 Partiality, preservation, and progress
Throughout the rules the “lift” notation f(x) = bvc indicates that
a partial function f is defined on x with value v . As seen by the
frequent uses of lifting, both the nondeterministic and deterministic
semantics are partial—the program may get stuck.

Some of this partiality is related to well-formedness of the SSA
program. For example, evalND(g,∆,%x) is undefined if %x is not
bound in ∆. These kinds of errors are ruled out by the static well-
formedness constraints imposed by the LLVM IR (Section 2).

In other cases, we have chosen to use partiality in the oper-
ational semantics to model certain failure modes for which the
LLVM specification says that the behavior of the program is unde-
fined. These include: (1) attempting to free memory via a pointer
not returned from malloc or that has already been deallocated,
(2) allocating a negative amount of memory, (3) calling load or

store on a pointer with bad alignment or a deallocated address,
(4) trying to call a non-function pointer, or (5) trying to execute the
unreachable command. We model these events by stuck states
because they correspond to fatal errors that will occur in any rea-
sonable realization of the LLVM IR by translation to a target plat-
form. Each of these errors is precisely characterized by a predi-
cate over the machine state (e.g., BadFree(config , S)), and the
“allowed” stuck states are defined to be the disjunction of these
predicates:

Stuck(config , S) = BadFree(config , S)
∨ BadLoad(config , S)
∨ . . .
∨ Unreachable(config , S)

To see that the well-formedness properties of the static seman-
tics rule out all but these known error configurations, we prove the
usual preservation and progress theorems for the LLVMND seman-
tics.

THEOREM 2 (Preservation for LLVMND). If (config , S) is well
formed and config ` S � S ′, then (config , S′) is well formed.

Here, well-formedness includes the static scoping, typing prop-
erties, and SSA invariants from Section 2 for the LLVM code, but
also requires that the local mappings ∆ present in all frames of the
call stack must be inhabited—each binding contains at least one
value v—and that each defined variable that dominates the current
continuation is in ∆’s domain.

To show that the ∆ bindings are inhabited after the step, we
prove that (1) non-undef values V are singletons; (2) undefined
values from constants typ undef contain all possible values of first
class types typ; (3) undefined values from loading uninitialized
memory or incompatible physical data contain at least paddings
indicating errors; (4) evaluation of non-deterministic values by
evalbopND returns non-empty sets of values given non-empty
inputs.

The difficult part of showing that defined variables dominate
their uses in the current continuation is proving that control-
transfers maintain the dominance property [20]. If a program
branches from a block b1 to b2, the first command in b2 can use
either the falling-through variables from b1, which must be defined
in ∆ by Lemma 1, or the variables updated by the φs at the be-
ginning of b2. This latter property requires a lemma showing that
computephinodeND behaves as expected.

THEOREM 3 (Progress for LLVMND). If the pair (config , S)
is well formed, then either S has terminated successfully or
Stuck(config , S) or there exists S’ such that config ` S � S ′.

This theorem holds because in a well-formed machine state,
evalND always returns a non-empty value set V ; moreover jump
targets and internal functions are always present.

4.4 Deterministic refinements
Although the LLVMND semantics is useful for reasoning about
the validity of LLVM program transformations, Vellvm provides
a LLVMD , a deterministic, small-step refinement, along with two
large-step operational semantics LLVM∗DFn and LLVM∗DB .

These different deterministic semantics are useful for several
reasons: (1) they provide the basis for testing LLVM programs with
a concrete implementation of memory (see the discussion about
Vellvm’s extracted interpreter in the next Section), (2) proving that
LLVMD is an instance of the LLVMND and relating the small-
step rules to the large-step ones provides validation of all of the
semantics (i.e., we found bugs in Vellvm by formalizing multiple
semantics and trying to prove that they are related), and (3) the

7

small- and large-step semantics have different applications when
reasoning about LLVM program transformations.

Unlike LLVMND , the frames for these semantics map identi-
fiers to single values, not sets, and the operational rules call deter-
ministic variants of the nondeterministic counterparts (e.g., eval
instead of evalND). To resolve the nondeterminism from undef
and faulty memory operations, these semantics fix a concrete inter-
pretation as follows:

• undef is treated as a zeroinitializer

• Reading uninitialized memory returns zeroinitializer

These choices yield unrealistic behaviors compared to what one
might expect from running a LLVM program against a C-style run-
time system, but the cases where this semantics differs correspond
to unsafe programs. There are still many programs, namely those
compiled to LLVM from type-safe languages, whose behaviors un-
der this semantics should agree with their realizations on target
platforms. Despite these differences from LLVMND , LLVMD also
has the preservation and progress properties.

Big-step semantics Vellvm also provides big-step operational se-
mantics LLVM∗DFn , which evaluates a function call as one large
step, and LLVM∗DB , which evaluates each sub-block—i.e., the
code between two function calls—as one large step. Big-step se-
mantics are useful because compiler optimizations often transform
multiple instructions or blocks within a function in one pass. Such
transformations do not preserve the small-step semantics, making
it hard to create simulations that establish correctness properties.

As a simple application of the large-step semantics, consider
trying to prove the correctness of a transformation that re-orders
program statements that do not depend on one another. For exam-
ple, the following two programs result in the same states if we con-
sider their execution as one big-step, although their intermediate
states do not match in terms of the small-step semantics.

(a) %x = add i32 %a, %b (b) %y = load i32* %p
%y = load i32* %p %x = add i32 %a, %b

The proof of this claim in Vellvm uses the LLVM∗DB rules
to hide the details about the intermediate states. To handle mem-
ory effects, we use a simulation relation that uses symbolic eval-
uation [22] to define the equivalence of two memory states. The
memory contents are defined abstractly in terms of the program
operations by recording the sequence of writes. Using this tech-
nique, we defined a simple translation validator to check whether
the semantics of two programs are equivalent with respect to such
re-orderings execution. For each pair of functions, the validator en-
sures that their control-flow graphs match, and that all correspond-
ing sub-blocks are equivalent in terms of their symbolic evaluation.
This approach is similar to the translation validation used in prior
work for verifying instruction scheduling optimizations [32].

Although this is a simple application of Vellvm’s large-step
semantics, proving correctness of other program transformations
such as dead expression elimination and constant propagation fol-
low a similar pattern—the difference is that, rather than checking
that two memories are syntactically equivalent according to the
symbolic evaluation, we must check them with respect to a more
semantic notion of equivalence [22].

Relationships among the semantics Figure 5 illustrates how
these various operational semantics relate to one another. Vel-
lvm provides proofs that LLVM∗DB simulates LLVM∗DFn and that
LLVM∗DFn simulates LLVMD . In these proofs, simulation is taken
to mean that the machine states are syntactically identical at cor-
responding points during evaluation. For example, the state at a
function call of a program running on the LLVM∗DFn semantics
matches the corresponding state at the function call reached in

LLVMD . Note that in the deterministic setting, one-direction sim-
ulation implies bisimulation [18]. Moreover, LLVMD is a refine-
ment instance of the nondeterministic LLVMND semantics.

These relations are useful because the large-step semantics in-
duce different proof styles than the small-step semantics: in partic-
ular, the induction principles obtained from the large step seman-
tics allow one to gloss over insignificant details of the small step
semantics.

5. Vellvm Infrastructure and Validation
This section briefly describes the Coq implementation of Vellvm
and its related tools for interacting with the LLVM infrastructure. It
also describes how we validate the Vellvm semantics by extracting
an executable interpreter and comparing its behavior to the LLVM
reference interpreter.

5.1 The Coq development
Vellvm encodes the abstract syntax from Section 2 in an entirely
straightforward way using Coq’s inductive datatypes (generated in
a preprocessing step via the Ott [27] tool). The implementation uses
Penn’s Metatheory library [4], which was originally designed for
the locally nameless representation, to represent identifiers of the
LLVM, and to reason about their freshness.

The Coq representation deviates from the full LLVM language
in only a few (mostly minor) ways. In particular, the Coq represen-
tation requires that some type annotations be in normal form (e.g.,
the type annotation on load must be a pointer), which simplifies
type checking at the IR level. The Vellvm tool that imports LLVM
bitcode into Coq provides such normalization, which simply ex-
pands definitions to reach the normal form. In total, the syntax and
static semantics constitute about 2500 lines of Coq definitions and
proof scripts.

Vellvm’s memory model implementation extends CompCert’s
with approximately 5000 lines of code to support integers with ar-
bitrary precision, padding, and an experimental treatment of casts
that has not yet been needed for any of our proofs. On top of this
extended memory model, all of the operational semantics and their
metatheory have been proved in Coq. In total, the development rep-
resents approximately 32,000 lines of Coq code. Checking the en-
tire Vellvm implementation using coqc takes about 13.5 minutes
on a 1.73 GHz Intel Core i7 processor with 8 GB RAM. We expect
that this codebase could be significantly reduced in size by refac-
toring the proof structure and making it more modular.

The LLVM distribution includes primitive OCaml bindings that
are sufficient to generate LLVM IR code (‘bitcode” in LLVM jar-
gon) from OCaml. To convert between the LLVM bitcode repre-
sentation and the extracted OCaml representation, we implemented
a library consisting of about 5200 lines of OCaml-LLVM bindings.
This library also supports pretty-printing of the AST’s; this code
was also useful in the extracted the interpreter.

Omitted details This paper does not discuss all of the LLVM IR
features that the Vellvm Coq development supports. Most of these
features are uninteresting technically but necessary to support real
LLVM code: (1) The LLVM IR provides aggregate data operations
(extractvalue and insertvalue) for projecting and updating
the elements of structures and arrays; (2) the operational semantics
supports external function calls by assuming that their behavior is
specified by axioms; the implementation applies these axioms to
transition program states upon calling external functions; (3) the
LLVM switch instruction, which is used to compile jump tables,
is lowered to the normal branch instructions that Vellvm supports
by a LLVM-supported pre-processing step.

Unsupported features Some features of LLVM are not supported
by Vellvm. First, the LLVM provides intrinsic functions for extend-

8

ing LLVM or to represent functions that have well known names
and semantics and are required to follow certain restrictions—for
example, functions from standard C libraries, handling variable ar-
gument functions, etc. Second, the LLVM functions, global vari-
ables, and parameters can be decorated with attributes that denote
linkage type, calling conventions, data representation, etc. which
provide more information to compiler transformations than what
the LLVM type system provides. Vellvm does not statically check
the well-formedness of these attributes, though they should be
obeyed by any valid program transformation. Third, Vellvm does
not support the invoke and unwind instructions, which are used to
implement exception handling, nor does it support variable argu-
ment functions. Forth, Vellvm does not support vector types, which
allow for multiple primitive data values to be computed in parallel
using a single instruction.

5.2 Extracting an interpreter
To test Vellvm’s operational semantics for the LLVM IR, we used
Coq’s code extraction facilities to obtain an interpreter for execut-
ing the LLVM distribution’s regression test suite. Extracting such
an interpreter is one of the main motivations for developing a deter-
ministic semantics, because the evaluation under the nondetermin-
istic semantics cannot be directly compared against actual runs of
LLVM IR programs.

Unfortunately, the small-step deterministic semantics LLVMD

is defined relationally in the logical fragment of Coq, which is con-
venient for proofs, but can not be used to extract code. Therefore,
Vellvm provides yet another operational semantics, LLVMInterp ,
which is a deterministic functional interpreter implemented in the
computational fragment of Coq. LLVMInterp is proved to be bisim-
ilar to LLVMD , so we can port results between the two semantics.

Although one could run this extracted interpreter directly, doing
so is not efficient. First, integers with arbitrary bit-width are induc-
tively defined in Coq. This yields easy proof principles, but does not
give an efficient runtime representation; floating point operations
are defined axiomatically. To remedy these problems, at extraction,
we realize Vellvm’s integer and floating point values by efficient
C++ libraries that are a standard part of the LLVM distribution.
Second, the memory model implementation of Vellvm maintains
memory blocks and their associated metadata as functional lists,
and it converts between byte-list and value representations at each
memory access. Using the extracted data-structures directly incurs
tremendous performance overhead, so we replaced the memory op-
erations of the memory model with native implementations from
the C standard library. A value v in local mappings δ is boxed, and
it is represented by a reference to memory that stores its content.

Our implementation faithfully runs 134 out of the 145 tests from
the LLVM regression suite that lli, the LLVM distribution inter-
preter, can run. The missing tests cover instructions (like variable
arguments) that are not yet implemented in Vellvm.

Although replacing the Coq data-structures by native ones inval-
idates the absolute correctness guarantees one would expect from
an extracted interpreter, this exercise is still valuable. In the course
of carrying out this experiment, we found one severe bug in the
semantics: the br instruction inadvertently swapped the true and
false branches.

6. Verified SoftBound
SoftBound [21] is a previously proposed program transformation
that hardens C programs against spatial memory safety violations
(e.g., buffer overflows, array indexing errors, and pointer arithmetic
errors). SoftBound works by first compiling C programs into the
LLVM IR, and then instrumenting the program with instructions
that propagate and check per-pointer metadata. SoftBound main-
tains base and bound metadata with each pointer, shadowing loads

and stores of pointer with parallel loads and stores of their associ-
ated metadata. This instrumentation ensures that each pointer deref-
erenced is within bounds and aborts the program otherwise.

The original SoftBound paper includes a mechanized proof that
validates the correctness of this idea, but it is not complete. In par-
ticular, the proof is based on a subset of a C-like language with only
straight-line commands and non-aggregate types, while a real Soft-
Bound implementation needs to consider all of the LLVM IR shown
in Figure 3, the memory model, and the operational semantics of
the LLVM. Also the original proof ensures the correctness only
with respect to a specification that the SoftBound instrumentation
must implement, but does not prove the correctness of the instru-
mentation pass itself. Moreover, the specification requires that ev-
ery temporary must contain metadata, not just pointer temporaries.

Using Vellvm to verify SoftBound This section describes how
we use Vellvm to formally verify the correctness of the Soft-
Bound instrumentation pass with respect to the LLVM semantics,
demonstrating that the promised spatial memory safety property is
achieved. Moreover, Vellvm allows us to extract a verified OCaml
implementation of the transformation from Coq. The end result is
a compiler pass that is formally verified to transform a program in
the LLVM IR into a program augmented with sufficient checking
code such that it will dynamically detect and prevent all spatial
memory safety violations.

SoftBound is a good test case for the Vellvm framework. It is
a non-trivial translation pass that nevertheless only inserts code,
thereby making it easier to prove correct. SoftBound’s intended use
is to prevent security vulnerabilities, so bugs in its implementation
can potentially have severe consequences. Also, the existing Soft-
Bound implementation already uses the LLVM.

Modifications to SoftBound since the original paper As de-
scribed in the original paper, SoftBound modifies function signa-
tures to pass metadata associated with the pointer parameters or
returned pointers. To improve the robustness of the tool, we transi-
tioned to an implementation that instead passes all pointer metadata
on a shadow stack. This has two primary advantages. The first is
that this design simplifies the implementation while simultaneously
better supporting indirect function calls (via function pointers) and
more robustly handling improperly declared function prototypes.
The second is that it also simplifies the proofs.

6.1 Formalizing SoftBound for the LLVM IR
The SoftBound correctness proof has the following high-level
structure:

1. We define a nonstandard operational semantics SBspec for the
LLVM IR. This semantics “builds in” the safety properties that
should be enforced by a correct implementation of SoftBound.
It uses meta-level datastructures to implement the metadata
and meta-level functions to define the semantics of the bounds
checks.

2. We prove that an LLVM program P, when run on the SBspec
semantics, has no spatial safety violations.

3. We define a translation pass SBtrans(−) that instruments the
LLVM code to propagate metadata.

4. We prove that a program if SBtrans(P) = bP ′c then P’, when
run on the LLVMD , simulates P running on SBspec.

The SoftBound specification Figure 7 gives the program config-
urations and representative rules for the SBspec semantics. SBspec
behaves the same as the standard semantics except that it creates,
propagates, and checks metadata of pointers in the appropriate in-
structions.

9

Nondeterministic rules:

Metadata md : : = [v1, v2) Memory metadata MM : : = blk.ofs 7→ md Frames Σ̂ : : = fid , l , c, tmn,∆, µ, α

Call stacks Σ̂ : : = [] | Σ̂, Σ̂ Local metadata µ : : = id 7→ md Program states Ŝ : : = M ,MM , Σ̂

evalND(g,∆, val) = bV c v ∈ V c0 = (id = malloc typ val align)
malloc (M , typ, v , align) = bM ′, blkc µ′ = µ{id ← [blk.0, blk.(sizeof typ × v))}

mod, g, θ ` M ,MM , ((fid , l , (c0, c), tmn,∆, µ, α), Σ̂)� M ′,MM , ((fid , l , c, tmn,∆{id ← {blk.0}}, µ′, α), Σ̂)
SB MALLOC

evalND(g,∆, val) = bV c v ∈ V c0 = (id = load (typ∗)val align)
findbounds(g, µ, val) = bmdc checkbounds(typ, v ,md) load (M , typ, v , align) = bv ′c
if isPtrTyp typ thenµ′ = µ{id ← findbounds (MM , v)} elseµ′ = µ

mod, g, θ ` M ,MM , ((fid , l , (c0, c), tmn,∆, µ, α), Σ̂)� M ,MM , ((fid , l , c, tmn,∆{id ← {|v ′|}}, µ′, α), Σ̂)
SB LOAD

evalND(g,∆, val1) = bV1c v1 ∈ V1 evalND(g,∆, val2) = bV2c v2 ∈ V2

c0 = (store typ val1 val2 align) findbounds(g, µ, val2) = bmdc checkbounds(typ, v2,md)
store (M , typ, v1, v2, align) = bM ′c if isPtrTyp typ then MM ′ = MM {v2 ← md} else MM ′ = MM

mod, g, θ ` M ,MM , ((fid , l , (c0, c), tmn,∆, µ, α), Σ̂)� M ′,MM ′, ((fid , l , c, tmn,∆, µ, α), Σ̂)
SB STORE

Deterministic configurations:
Frames σ̂ : : = fid , l , c, tmn, δ, µ, α Call stacks σ̂ : : = [] | σ̂, σ̂ Program states ŝ : : = M ,MM , σ̂

Figure 7. SBspec: The specification semantics for SoftBound. Differences from the LLVMND rules are highlighted.

A program state Ŝ is an extension of the standard program state
S for maintaining metadata md, which is a pair defining the start
and end address for a pointers: µ in each function frame Σ̂ maps
temporaries of pointer type to their metadata; MM is the shadow
heap that stores metadata for pointers in memory. Note that al-
though the specification is nondeterministic, the metadata is de-
terministic. Therefore, a pointer loaded from uninitialized memory
space can be undef , but it cannot have arbitrary md (which might
not be valid).

SBspec is correct if a program P must either abort on detecting
a spatial memory violation with respect to the SBspec, or preserve
the LLVM semantics of the original program P ; and, moreover, P
is not stuck by any spatial memory violation in the SBspec (i.e.,
SBspec must catch all spatial violations).

DEFINITION 1 (Spatial safety). Accessing a memory location at
the offset ofs of a block blk is spatially safe if blk is less than the
next fresh block N , and ofs is within the bounds of blk :

blk < N ∧ (B(blk) = bsizec → 0 ≤ ofs < size)

The legal stuck states of SoftBound—StuckSB (config , Ŝ) in-
clude all legal stuck states of LLVMND (recall Section 4.3) except
the states that violate spatial safety. The case whenB does not map
blk to some size indicates that blk is not valid, and pointers into the
blk are dangling—this indicates a temporal safety error that is not
prevented by SoftBound and therefore it is included in the set of
legal stuck states.

Because the program states of a program in the LLVMND se-
mantics are identical to the corresponding parts in the SBspec, it
is easy to relate them: let Ŝ ⊇◦ S mean that common parts of the
SoftBound state Ŝ and S are identical. Because memory instruc-
tions in the SBspec may abort without accessing memory, the first
part of correctness is by a straightforward simulation relation be-
tween states of the two semantics.

THEOREM 4 (SBspec simulates LLVMND). If the state Ŝ ⊇◦ S ,
and config ` Ŝ � Ŝ′, then there exists a state S ′, such that
config ` S � S ′, and Ŝ′ ⊇◦ S ′.

The second part of the correctness is proved by the following
preservation and progress theorems.

THEOREM 5 (Preservation for SBspec).
If (config , Ŝ) is well formed, and config ` Ŝ � Ŝ′, then (config ,
Ŝ′) is well formed.

Here, SBspec well-formedness strengthens the invariants for
LLVMND by requiring that if any id defined in ∆ is of pointer
type, then µ contains its metadata and a spatial safety invariant: all
bounds in µs of function frames and MM must be memory ranges
within which all memory addresses are spatially safe.

The interesting part is proving that the spatial safety invariant is
preserved. It holds initially, because a program’s initial frame stack
is empty, and we assume that MM is also empty. The other cases
depend on the rules in Figure 7.

The rule SB MALLOC, which allocates the number v of ele-
ments with typ at a memory block blk , updates the metadata of
id with the start address that is the beginning of blk , and the end
address that is at the offset blk.(sizeof typ × v) in the same block.
LLVM’s memory model ensures that the range of memory is valid.

The rule SB LOAD reads from a pointer val with runtime data
v , finds the md of the pointer, and ensures that v is within the
md via checkbounds. If the val is an identifier, findbounds
simply returns the identifier’s metadata from µ, which must be a
spatial safe memory range. If val is a constant of pointer type,
findbounds returns bounds as the following. For global point-
ers, findbounds returns bounds derived from their types because
globals must be allocated before a program starts. For pointers con-
verted from some constant integers by inttoptr, it conservatively
returns the bounds [null,null) to indicate a potentially invalid
memory range. For a pointer cnst1 derived from an other constant
pointer cnst2 by bitcase or getelementptr, findbounds re-
turns the same bound of cnst2 for cnst1. Note that {|v ′|} denotes
conversion from a deterministic value to a nondeterministic value.

If the load reads a pointer-typed value v from memory, the
rule finds its metadata in MM and updates the local metadata
mapping µ. If MM does not contain any metadata indexed by

10

Globals Allocated

M’

p1

v2

p3
v4

b1 e1

b3 e3

p1’

v2’
p3’

v4’

b1’
e1’

b3’
e3’

(Δ, μ) Δ’≈○

≈○

(MM,
M)

Memory simulation Frame simulation

mi

Where Vi ≈○ Vi’

Figure 8. Simulation relations of the SoftBound pass

v , that means the pointer being loaded was not stored with valid
bounds, so findbounds returns [null,null) to ensure the spatial
safety invariant. Similarly, the rule SB STORE checks whether the
address to be stored to is in bounds and, if storing a pointer, updates
MM accordingly. SoftBound disallows dereferencing a pointer that
was converted from an interger, even if that integer was originally
obtained from a valid pointer. Following the same design choice,
findbounds returns [null,null) for pointers cast from integers.
checkbounds fails when a program accesses such pointers.

THEOREM 6 (Progress for SBspec). If Ŝ1 is well-formed, then ei-
ther Ŝ1 is a final state, or Ŝ1 is a legal stuck state, or there exists a
Ŝ2 such that config ` Ŝ1 � Ŝ2.

This theorem holds because all the bounds in a well-formed SBspec
state give memory ranges that are spatially safe, if checkbounds
succeeds, the memory access must be spatially safe.

The correctness of the SoftBound instrumentation Given SB-
spec, we designed an instrumentation pass in Coq. For each func-
tion of an original program, the pass implements µ by generating
two fresh temporaries for every temporary of pointer type to record
its bounds. For manipulating metadata stored in MM , the pass ax-
iomatizes a set of interfaces that manage a disjoint metadata space
with specifications for their behaviors.

Figure 8 pictorially shows the simulation relations '◦ between
an original program P in the semantics of SBspec and its trans-
formed program P ′ in the LLVM semantics. First, because P ′

needs additional memory space to store metadata, we need a map-
ping mi that maps each allocated memory block in M to a mem-
ory block in M ′ without overlap, but allows M ′ to have additional
blocks for metadata, as shown in dashed boxes. Note that we as-
sume the two programs initialize globals identically. Second, basic
values are related in terms of the mapping between blocks: pointers
are related if they refer to corresponding memory locations; other
basic values are related if they are same. Two values are related if
they are of the same length and the corresponding basic values are
related.

Using the value simulations, '◦ defines a simulation for mem-
ory and stack frames. Given two related memory locations blk .ofs
and blk ′.ofs ′, their contents in M and M ′ must be related; if MM
maps blk .ofs to the bound [v1, v2), then the additional metadata
space in M ′ must store v ′1 and v ′2 that relate to v1 and v2 for the
location blk ′.ofs ′. For each pair of corresponding frames in the two
stacks, ∆ and ∆′ must store related values for the same temporary;
if µ maps a temporary id to the bound [v1, v2), then ∆′ must store
the related bound in the fresh temporaries for the id .

THEOREM 7. Given a state ŝ1 of P with configuration config
and a state s ′1 of P ′ with configuration config ′, if ŝ1 '◦ s ′1,
and config ` ŝ1 −→ ŝ2, then there exists a state s ′2, such that
config ′ ` s ′1 −→∗ s ′2, ŝ2 '◦ s ′2.

0%

50%

100%

150%

200%

250%

ru
n

ti
m

e
o

v
er

h
ea

d

Extracted

C++ SOFTBOUND

bh
biso

rt mst tsp go
comp art

equake
ammp

gzip lbm
lib

q.
mean

Figure 9. Execution time overhead of the extracted and the C++
version of SoftBound

Here, config ` ŝ1 −→ ŝ2 is a deterministic SBspec that, as in
Section 4, is an instance of the non-deterministic SBspec.

The correctness of SoftBound

THEOREM 8 (SoftBound is correct). Let SBtrans(P) = bP ′c
denote that the SoftBound pass instruments a well-formed program
P to be P ′. A SoftBound instrumented program P ′ either aborts
on detecting spatial memory violations or preserves the LLVM se-
mantics of the original program P . P ′ is not stuck by any spatial
memory violation.

6.2 Extracted verified implemention of SoftBound
The above formalism not only shows that the SoftBound trans-
formation enforces the promised safety properties, but the Vellvm
framework allows us to extract a translator directly from the Coq
code, resulting in a verified implementation of the SoftBound trans-
formation. The extracted implementation uses the same underlying
shadowspace implementation and wrapped external functions as
the non-extracted SoftBound transformation written in C++. The
only aspect not handled by the extracted transformation is initial-
izing the metadata for pointers in the global segment that are non-
NULL initialized (i.e., they point to another variable in the global
segment). Without initialization, valid programs can be incorrectly
rejected as erroneous. Thus, we reuse the code from the C++ imple-
mentation of the SoftBound to properly initialize these variables.

Effectiveness To measure the effectiveness of the extracted im-
plementation of SoftBound versus the C++ implementation, we
tested both implementations on the same programs. To test whether
the implementations detect spatial memory safety violations, we
used 1809 test cases from the NIST Juliet test suite of C/C++
codes [23]. We chose the test cases which exercised the buffer over-
flows on both the heap and stack. Both implementations of Soft-
Bound correctly detected all the buffer overflows without any false
violations. We also confirmed that both implementations properly
detected the buffer overflow in the go SPEC95 benchmark. Fi-
nally, the extracted implementation is robust enough to success-
fully transform and execute (without false violations) several ap-
plications selected from the SPEC95, SPEC2000, and SPEC2006
suites (around 110K lines of C code in total).

Performance overheads Unlike the C++ implementation of Soft-
Bound that removes some obviously redundant checks, the ex-
tracted implementation of SoftBound performs no SoftBound-
specific optimizations. In both cases, the same suite of standard
LLVM optimizations are applied post-transformation to optimize
the code to reduce the overhead of the instrumentation. To deter-
mine the performance impact on the resulting program, Figure 9
reports the execution time overheads (lower is better) of extracted
SoftBound (leftmost bar of each benchmark) and the C++ imple-

11

mentation (rightmost bar of each benchmark) for various bench-
marks from SPEC95, SPEC2000 and SPEC2006. Because of the
check elimination optimization performed by the C++ implemen-
tation, the code is slightly faster, but overall the extracted imple-
mentation provides similar performance.

Bugs found in the original SoftBound implementation In the
course of formalizing the SoftBound transformation, we discov-
ered two implementation bugs in the original C++ implementation
of SoftBound. First, when one of the incoming values of a φ node
with pointer type is an undef , undef was propagated as its base
and bound. Subsequent compiler transformations may instantiate
the undefined base and bound with defined values that allow the
checkbounds to succeed, which would lead to memory viola-
tion. Second, the base and bound of constant pointer (typ∗) null
was set to be (typ∗) null and (typ∗) null+sizeof (typ), allowing
dereferences of null or pointers pointing to an offset from null. Ei-
ther of these bugs could have resulted in faulty checking and thus
expose the program to the spatial violations that SoftBound was
designed to prevent. These bugs underscore the importance of a
formally verified and extracted implementation to avoid such bugs.

7. Related Work
Mechanized language semantics There is a large literature on
formalizing language semantics and reasoning about the correct-
ness of language implementations. Prominent examples include:
Foundational Proof Carrying Code [2], Foundational Typed As-
sembly Language [11], Standard ML [12, 30], and (a substantial
subset of) Java [15].

Verified compilers Compiler verification has a considerable his-
tory; see the bibliography [18] for a comprehensive overview. Other
research has also used Coq for compiler verification tasks, includ-
ing much recent work on compiling functional source languages to
assembly [5, 8, 9].

Vellvm is closer in spirit to CompCert [18], which was the first
fully-verified compiler to generate compact and efficient assembly
code for a large fragment of the C language. CompCert also uses
Coq. It formalizes the operational semantics of CompCert C, sev-
eral intermediate languages used in the compilation, and assembly
languages including PowerPC, ARM and x86. The latest version
of CompCert also provides an executable reference interpreter for
the semantics of CompCert C. Based on the formalized seman-
tics, the CompCert project fully proves that all compiler phases
produce programs that preserve the semantics of the original pro-
gram. Optimization passes include local value numbering, constant
propagation, coalescing graph coloring register allocation [6], and
other back-end transformations. CompCert has also certified some
advanced compiler optimizations [32–34] using translation valida-
tion [22, 26]. The XCERT project [29, 31] extends the CompCert
compiler by a generic translation validator based on SMT solvers.

Other mechanization efforts The verified software tool-chain
project [3] assures that the machine-checked proofs claimed at the
top of the tool-chain hold in the machine language program. Typed
assembly languages [7] provide a platform for proving back-end
optimizations. Similarly, The Verisoft project [1] also attempts to
mathematically prove the correct functionality of systems in auto-
motive engineering and security technology. ARMor [37] guaran-
tees control flow integrity for application code running on embed-
ded processors. The Rhodium project [17] uses a domain specific
language to express optimizations via local rewrite rules and pro-
vides a soundness checker for optimizations

Validating LLVM optimizations The CoVac project [36] devel-
ops a methodology that adapts existing program analysis tech-
niques to the setting of translation validation, and reports on a

prototype tool that applies their methodology to verification of the
LLVM compiler. The LLVM-MD project [35] validates LLVM op-
timizations by symbolic evaluation. The Peggy tool performs trans-
lation validation for the LLVM compiler using a technique called
equality saturation [28]. These applications are not fully certified.

8. Conclusion
Although we do not consider it in this paper, our intention is that
the Vellvm framework will serve as a first step toward a fully-
verified LLVM compiler, similar to that of Leroy et al.’s Comp-
Cert [18]. Our Coq development extends some of CompCert’s
libraries and our LLVM memory model is based on CompCert’s
memory model. The focus of this paper is the LLVM IR semantics
itself, the formalization of which is a necessary step toward a fully-
verified LLVM compiler. Because much of the complexity of an
LLVM-based compiler lies in the IR to IR transformation passes,
formalizing correctness properties at this level stands to yield a
significant payoff, as demonstrated by our SoftBound case study,
even without fully verifying a compiler.

Acknowledgments
This research was funded in part by the U.S. Government. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Government. This
research was funded in part by DARPA contract HR0011-10-9-
0008 and ONR award N000141110596.

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. CNS-1116682, CCF-1065166,
and CCF-0810947. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

References
[1] E. Alkassar and M. A. Hillebrand. Formal functional verification of

device drivers. In VSTTE ’08: Proceedings of the 2nd International
Conference on Verified Software: Theories, Tools, Experiments, 2008.

[2] A. W. Appel. Foundational proof-carrying code. In LICS ’01: Pro-
ceedings of the 16th Annual IEEE Symposium on Logic in Computer
Science, 2001.

[3] A. W. Appel. Verified software toolchain. In ESOP ’11: Proceedings
of the 20th European Conference on Programming Languages and
Systems, 2011.

[4] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich.
Engineering formal metatheory. In POPL ’08: Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2008.

[5] N. Benton and N. Tabareau. Compiling functional types to relational
specifications for low level imperative code. In TLDI ’09: Proceedings
of the 4th International Workshop on Types in Language design and
Implementation, 2009.

[6] S. Blazy, B. Robillard, and A. W. Appel. Formal verification of co-
alescing graph-coloring register allocation. In ESOP ’10: Proceed-
ings of the 19th European Conference on Programming Languages
and Systems, 2010.

[7] J. Chen, D. Wu, A. W. Appel, and H. Fang. A provably sound TAL
for back-end optimization. In PLDI ’03: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and
Implementation, 2003.

[8] A. Chlipala. A verified compiler for an impure functional language. In
POPL ’10: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2010.

12

[9] A. Chlipala. A certified type-preserving compiler from lambda cal-
culus to assembly language. In PLDI ’07: Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and
Implementation, 2007.

[10] The Coq Proof Assistant Reference Manual (Version 8.3pl1). The Coq
Development Team, 2011.

[11] K. Crary. Toward a foundational typed assembly language. In POPL
’03: Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2003.

[12] K. Crary and R. Harper. Mechanized def-
inition of standard ml (alpha release), 2009.
http://www.cs.cmu.edu/˜crary/papers/2009/
mldef-alpha.tar.gz.

[13] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13:451–490,
1991.

[14] G. A. Kildall. A unified approach to global program optimization.
In POPL ’73: Proceedings of the 1st Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, 1973.

[15] G. Klein, T. Nipkow, and T. U. München. A machine-checked model
for a Java-like language, virtual machine and compiler. ACM Trans.
Program. Lang. Syst., 28:619–695, 2006.

[16] C. Lattner and V. Adve. LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. In CGO ’04: Proceedings
of the International Symposium on Code Generation and Optimiza-
tion: Feedback-directed and Runtime Optimization, 2004.

[17] S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated sound-
ness proofs for dataflow analyses and transformations via local rules.
In POPL ’05: Proceedings of the 32th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 2005.

[18] X. Leroy. A formally verified compiler back-end. Journal of Auto-
mated Reasoning, 43(4):363–446, 2009.

[19] The LLVM Reference Manual (Version 2.6). The LLVM Development
Team, 2010. http://llvm.org/releases/2.6/docs/LangRef.html.

[20] V. S. Menon, N. Glew, B. R. Murphy, A. McCreight, T. Shpeisman,
A.-R. Adl-Tabatabai, and L. Petersen. A verifiable SSA program rep-
resentation for aggressive compiler optimization. In POPL ’06: Pro-
ceedings of the 33th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, 2006.

[21] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. Soft-
Bound: Highly compatible and complete spatial memory safety for C.
In PLDI ’09: Proceedings of the ACM SIGPLAN 2009 Conference on
Programming Language Design and Implementation, 2009.

[22] G. C. Necula. Translation validation for an optimizing compiler. In
PLDI ’00: Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation, 2000.

[23] NIST Juliet Test Suite for C/C++. NIST, 2010.
http://samate.nist.gov/SRD/testCases/suites/Juliet-2010-12.c.cpp.zip.

[24] M. Nita and D. Grossman. Automatic transformation of bit-level C
code to support multiple equivalent data layouts. In CC’08: Proceed-
ings of the 17th International Conference on Compiler Construction,
2008.

[25] M. Nita, D. Grossman, and C. Chambers. A theory of platform-
dependent low-level software. In POPL ’08: Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2008.

[26] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In
TACAS ’98: Proceedings of the 4th International Conference on Tools
and Algorithms for Construction and Analysis of Systems, 1998.

[27] P. Sewell, F. Zappa Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar,
and R. Strniša. Ott: Effective tool support for the working semanticist.
In ICFP ’07: Proceedings of the 9th ACM SIGPLAN International
Conference on Functional Programming, 2007.

[28] M. Stepp, R. Tate, and S. Lerner. Equality-Based translation validator
for LLVM. In CAV ’11: Proceedings of the 23rd International Con-
ference on Computer Aided Verification, 2011.

[29] Z. T. Sudipta Kundu and S. Lerner. Proving optimizations correct
using parameterized program equivalence. In PLDI ’09: Proceedings
of the ACM SIGPLAN 2009 Conference on Programming Language
Design and Implementation, 2009.

[30] D. Syme. Reasoning with the formal definition of Standard ML
in HOL. In Sixth International Workshop on Higher Order Logic
Theorem Proving and its Applications, 1993.

[31] Z. Tatlock and S. Lerner. Bringing extensibility to verified compilers.
In PLDI ’10: Proceedings of the ACM SIGPLAN 2010 Conference on
Programming Language Design and Implementation, 2010.

[32] J.-B. Tristan and X. Leroy. Formal verification of translation valida-
tors: a case study on instruction scheduling optimizations. In POPL
’08: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, 2008.

[33] J.-B. Tristan and X. Leroy. Verified validation of lazy code motion.
In PLDI ’09: Proceedings of the ACM SIGPLAN 2009 Conference on
Programming Language Design and Implementation, 2009.

[34] J. B. Tristan and X. Leroy. A simple, verified validator for soft-
ware pipelining. In POPL ’10: Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 2010.

[35] J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating value-graph
translation validation for llvm. In PLDI ’11: Proceedings of the ACM
SIGPLAN 2011 Conference on Programming Language Design and
Implementation, 2011.

[36] A. Zaks and A. Pnueli. Program analysis for compiler validation. In
PASTE ’08: Proceedings of the 8th ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering, 2008.

[37] L. Zhao, G. Li, B. De Sutter, and J. Regehr. ARMor: Fully verified
software fault isolation. In EMSOFT ’11: Proceedings of the 9th ACM
International Conference on Embedded Software, 2011.

13

