
Copyright

by

Nicholas Kenneth Jong

2010

The Dissertation Committee for Nicholas Kenneth Jong
certifies that this is the approved version of the following dissertation:

Structured Exploration for Reinforcement Learning

Committee:

Peter Stone, Supervisor

Benjamin Kuipers

Risto Miikkulainen

Raymond Mooney

Satinder Singh

Structured Exploration for Reinforcement Learning

by

Nicholas Kenneth Jong, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2010

For Sarah

Acknowledgments

Several times during the course of writing this thesis, I did not think

I would finish. Nevertheless, I resolved to make every effort to complete this

work, not just for my sake but also for all those who supported me in so many

ways. Without their help, I never would have had a chance, so to them I owe

my sincere gratitude.

First and foremost, Peter Stone has been all I could have wanted in

an advisor. He believed in me from the very beginning. In my first year, he

brought me in as an additional author to augment an existing paper submission

with new experiments. That summer he convinced our coauthors to allow me

to give the oral presentation, at my very first conference. The lessons I learned

then and in the years following were essential in my growth as a researcher.

Throughout my career, Peter has been unfailingly positive and always ready

to provide necessary guidance and constructive feedback.

Looking back, I owe much to that first conference paper, which in-

troduced me to coauthors Satinder Singh and Michael Littman, and through

them Rich Sutton. They welcomed me warmly into the community of Re-

inforcement Learning researchers, and their encouragement and constructive

criticism were invaluable.

Along with Peter and Satinder, the other members of my committee,

v

Ben Kuipers, Risto Miikkulainen, and Ray Mooney, have also been immensely

influential in my graduate education. From Ben’s groundbreaking work on

agents that bootstrap hierarchical knowledge from raw sensory experience to

Ray’s exhortations to conduct rigorous experimental validations, their teach-

ings shaped my development as a practitioner of Artificial Intelligence.

I would also like to thank all those friends I made along the way, whose

camaraderie during my journey through graduate school made all the dif-

ference. Although I cannot thank everyone in this community individually, I

want to call out the other inaugural members of the AIBO soccer team and the

Learning Agents Research Group, including Kurt Dresner, Greg Kuhlmann,

and Dan Stronger. I do wish I could thank everyone, from Misha Bilenko,

who took my under his wing at that first conference in 2003, to Todd Hester,

whose direct collaboration was instrumental for parts of my thesis research.

Finally, I would not be where I am today without the loving support

of my family, from my parents, who provided me with every opportunity for

success, to my wife, Sarah Paetsch, who inspires me always to grow as a person.

Sarah in particular has borne the brunt of my obsession with my work, and

for her patience and understanding I will be forever grateful.

vi

Structured Exploration for Reinforcement Learning

Publication No.

Nicholas Kenneth Jong, Ph.D.

The University of Texas at Austin, 2010

Supervisor: Peter Stone

Reinforcement Learning (RL) offers a promising approach towards achiev-

ing the dream of autonomous agents that can behave intelligently in the real

world. Instead of requiring humans to determine the correct behaviors or suf-

ficient knowledge in advance, RL algorithms allow an agent to acquire the

necessary knowledge through direct experience with its environment. Early

algorithms guaranteed convergence to optimal behaviors in limited domains,

giving hope that simple, universal mechanisms would allow learning agents to

succeed at solving a wide variety of complex problems. In practice, the field

of RL has struggled to apply these techniques successfully to the full breadth

and depth of real-world domains.

This thesis extends the reach of RL techniques by demonstrating the

synergies among certain key developments in the literature. The first of these

developments is model-based exploration, which facilitates theoretical conver-

gence guarantees in finite problems by explicitly reasoning about an agent’s

vii

certainty in its understanding of its environment. A second branch of research

studies function approximation, which generalizes RL to infinite problems by

artificially limiting the degrees of freedom in an agent’s representation of its

environment. The final major advance that this thesis incorporates is hier-

archical decomposition, which seeks to improve the efficiency of learning by

endowing an agent’s knowledge and behavior with the gross structure of its

environment.

Each of these ideas has intuitive appeal and sustains substantial inde-

pendent research efforts, but this thesis defines the first RL agent that com-

bines all their benefits in the general case. In showing how to combine these

techniques effectively, this thesis investigates the twin issues of generalization

and exploration, which lie at the heart of efficient learning. This thesis thus

lays the groundwork for the next generation of RL algorithms, which will allow

scientific agents to know when it suffices to estimate a plan from current data

and when to accept the potential cost of running an experiment to gather new

data.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

List of Algorithms xix

Chapter 1. Introduction 1

1.1 Motivation . 3

1.2 Objectives . 6

1.3 Contributions . 8

1.4 Overview . 9

Chapter 2. Foundations 12

2.1 The Reinforcement Learning Problem 12

2.2 Exploitation . 17

2.2.1 Planning Algorithms . 18

2.2.2 The Q-Learning Algorithm 22

2.3 Exploration . 24

2.3.1 Optimal Exploration . 25

2.3.2 The R-MAX Algorithm 29

Chapter 3. Generalization 34

3.1 Approximating the Value Function 35

3.2 Approximating Models . 40

3.2.1 Kernel-Based Reinforcement Learning 41

ix

3.2.2 The Fitted R-MAX Algorithm 45

3.3 Experimental Results . 49

3.3.1 Implementation Details 50

3.3.2 Benchmark Performance 53

3.3.2.1 Mountain Car 54

3.3.2.2 Puddle World 54

3.3.2.3 Benchmark Results 56

3.3.3 Ablation Study . 58

3.4 Discussion . 60

Chapter 4. The Role of Hierarchy 64

4.1 Hierarchical Reinforcement Learning 67

4.1.1 The Options Formalism 71

4.1.2 Option Discovery . 73

4.2 Experiments with Option Policies 76

4.2.1 An SMDP Learning Algorithm 76

4.2.2 The Four-Room Gridworld 79

4.2.3 Options and Experience Replay 80

4.2.4 Dynamic Option Policies 83

4.3 Experiments with Options and Exploration 86

4.3.1 The Initiation Set . 86

4.3.2 Optimistic Initialization 90

4.3.3 Augmentation versus Abstraction 92

4.4 Discussion . 96

Chapter 5. Model-Based Hierarchies 99

5.1 The MAXQ Framework . 100

5.2 Hierarchical Models for Reinforcement Learning 111

5.2.1 The R-MAXQ Algorithm 115

5.2.2 Analysis of R-MAXQ 118

5.3 Experimental Results . 122

5.3.1 R-MAXQ versus R-MAX 123

5.3.2 R-MAXQ versus MAXQ-Q 125

5.4 Discussion . 129

x

Chapter 6. Compositional Model-Based Algorithms 131

6.1 Model Components . 133

6.1.1 Function Approximation 139

6.1.2 Hierarchy . 141

6.2 Model Operators and Exploration 149

6.2.1 Models and Completion Sets 150

6.2.2 Abstraction and Factored MDPs 155

6.2.3 State Abstraction and Temporal Abstraction 161

6.3 Fitted R-MAXQ . 165

6.3.1 Experiments . 167

6.3.2 Algorithm Configurations 169

6.3.3 Results . 172

6.4 Discussion . 175

Chapter 7. Software Architecture 178

7.1 State and Action Representations 179

7.1.1 Observer Pattern . 182

7.1.2 Action Effects . 183

7.2 Hierarchical Dynamic Programming 185

7.2.1 Primitive Tasks . 187

7.2.2 Composite Tasks . 189

7.3 Using Fitted R-MAXQ . 194

7.3.1 R-MAX . 197

7.3.2 Fitted R-MAX . 199

7.3.3 R-MAXQ and Fitted R-MAXQ 200

7.4 Discussion . 201

Chapter 8. Discovery 203

8.1 Policy Irrelevance . 204

8.1.1 Defining Irrelevance . 205

8.1.2 Testing Irrelevance . 207

8.1.2.1 Statistical Hypothesis Testing 208

8.1.2.2 Monte Carlo Simulation 210

xi

8.2 Abstraction Discovery . 213

8.2.1 Discovering Irrelevance 213

8.2.2 Exploiting Irrelevance 214

8.3 Experimental Results . 217

8.3.1 The Wilcoxon signed ranks test 218

8.3.2 Monte Carlo Simulation 219

8.3.3 Generalization of Discovered Abstractions 223

8.4 Discussion . 226

Chapter 9. Related Work 231

9.1 Exploration . 231

9.2 Generalization . 234

9.3 Structure . 237

Chapter 10. Conclusion 242

10.1 Thesis Contributions . 242

10.2 Future Work . 244

Bibliography 250

Vita 261

xii

List of Tables

6.1 State representations in the Taxi task hierarchy 162

xiii

List of Figures

2.1 The agent-environment system. 13

2.2 Decomposition of an agent into a learning algorithm comprising
an Update subroutine and a Choose subroutine. 15

3.1 (a) The arrow in this diagram shows the deterministic transition
from x to s′ predicted by the state transition function P . The
circles represent other elements of X. The dashed lines and
accompanying probabilities represent the nonzero elements of
Φ[s′, x], indicating how to approximate s′ as a weighted average
of elements of X. (b) The possible transitions predicted by the

resulting fitted model, P̂ , along with their transition probabili-
ties. If the original state transitions function P were stochastic,
P̂ would be a summation or integration over possible values of s′. 38

3.2 (a) Three instances i1, i2, and i3 used to approximate some
action at state s. The dashed lines indicate the kernel values
K(sa, siai). (The action a is not represented in the diagram.)
(b) The possible transitions predicted by the resulting fitted

model, P̂ , along with their transition probabilities. 43

3.3 (a) The arrows indicate the three transitions predicted by the

KBRL approximation P̂ for a given state x. The open circles
represent other states in X. The dashed lines indicate which
states in X have nonzero weight in the value averager Φ for
each predicted successor state s′. (b) The possible transitions
predicted by the resulting fitted model, P̃ , along with their
transition probabilities. Each predicted successor x′ receives a
portion of the transition probabilities assigned to each s′ by P̂ ,
weighted by Φ. 47

3.4 (a) The approximation of some action at state s given three in-
stances and the vector effect function Evec. For each instance,
the predicted successor is obtained by adding the vector dis-
placement observed at the instance to s. (b) The possible tran-

sitions predicted by the resulting fitted model, P̂ , along with
the transition probabilities revised from Figure 3.3. 50

3.5 The Mountain Car environment. 55

xiv

3.6 The Puddle World environment. 55

3.7 Benchmark results for the Mountain Car environment. 57

3.8 Benchmark results for the Puddle World environment. 57

3.9 Learning curves for Mountain Car. Each curve is the average
of 50 independent trials. The policy learned by Fitted R-max
using relative effects is significantly better than that learned
used absolute effects (p < 0.001). 60

3.10 Policy for the Mountain Car environment learned using Fitted
R-max with absolute action effects. The solid region of the
state space indicates where the policy selects the forward ac-
tion; the hatched region indicates where it selects the reverse
action. 61

3.11 Policy for the Mountain Car environment learned using Fitted
R-max with vector action effects. The solid region of the state
space indicates where the policy selects the forward action; the
hatched region indicates where it selects the reverse action. . 62

4.1 The four-room gridworld . 80

4.2 Learning performance of three agents that use standard Q-
learning until episode 20, when one agent defines options using
Experience Replay and another just uses Experience Replay to
update its value function. Each line shows the number of steps
required to reach the goal state, averaged over 50 independent
runs. 82

4.3 Performance of Q-learning and an algorithm that learns subtask
policies in parallel with the overall task policy. Each learning
curve is the average of 50 independent runs. 85

4.4 Comparison of learning agents with varying access to correct
temporal abstractions. The “Q-learning” agent never uses op-
tions. The “options” agent gains immediate access to the cor-
rect options everywhere. The “delayed options” agent gains
access to these options after 20 episodes. The “limited options”
agent gains immediate access to these options except in the
lower-right room. Each learning curve is the average of 50 in-
dependent runs. 88

4.5 Performance of three learning agents that use optimistic ini-
tialization. The agents have identical performance, regardless
of whether they use temporal abstraction. Learning curves are
the average of 50 independent runs. 93

4.6 Performance of learning agents that remove primitive actions. 95

xv

5.1 (a) Taxi domain, and (b) a task hierarchy for Taxi 102

5.2 Cumulative performance of R-maxq, R-max, and maxq-q on
the Taxi domain, averaged over 100 independent trials. The dif-
ferences among these total costs of learning over 1600 episodes
are significant (p < 0.001). 124

5.3 Asymptotic performance of R-maxq, R-max, and maxq-q on
the Taxi domain, averaged over 100 independent trials. R-
maxq and R-max each learn significantly better policies than
maxq-q after 1600 episodes (p < 0.001). 124

5.4 Cumulative performance of R-maxq, R-max, and maxq-q on
the Taxi domain, using state abstraction. (The asymptotic per-
formance is qualitatively similar to that shown in Figure 5.3,
although with faster convergence.) The differences among these
total costs of learning over 1600 episodes are statistically signif-
icant (p < 0.001) . 128

6.1 (a) Taxi domain, and (b) a task hierarchy for Taxi 163

6.2 A trajectory in the original Puddle World environment. 168

6.3 A trajectory in the Flag & Puddle World environment. The
agent collects flags D, B, A, then C, but any order is permissible.168

6.4 Reward per episode for variations of R-max with and without
function approximation and hierarchical decomposition. After
40 episodes, the differences among the quality in learned policies
is not statistically significant. 173

6.5 Cumulative reward for variations of R-max with and without
function approximation and hierarchical decomposition. After
100 episodes, the differences among learning costs are all statis-
tically significant (p < 0.0001). 173

8.1 A domain with four nonterminal states and two actions. When
X = 1 both actions transition to an absorbing state, not shown. 206

8.2 The domain of Figure 8.1 with some learned Q values. 208

8.3 The value of p for each of the two abstract states when testing
the policy irrelevance of (a) Y and (b) X. 210

8.4 The Taxi domain. 218

8.5 The results of the Wilcoxon signed-ranks test for determining
the policy irrelevance of the passenger’s destination in the Taxi
domain. We show the result of the test for each possible taxi
location for (a) a case when the passenger is not yet in the taxi
and (b) the case when the passenger is inside the taxi. 220

xvi

8.6 The results of Monte Carlo for determining the policy irrele-
vance of the passenger’s destination in the Taxi domain. We
show the result of the test for each possible taxi location for (a)
a case when the passenger is not yet in the taxi and (b) the case
when the passenger is inside the taxi. 222

8.7 The average reward per episode earned by agents with learned
abstractions encapsulated as options and only primitive actions,
respectively, on a 10 × 10 version of the Taxi domain. The
reward is averaged over 10000-step intervals. The results are
the average of 25 independent trials. 227

xvii

List of Algorithms

2.1 PolicyIteration(R,P, π0) 20

2.2 ValueIteration(R,P, ǫ, V0,) 21

2.3 ValueIterationChoose(s) 22

2.4 NoUpdate(s, a, r, s′) . 22

2.5 QLearningUpdate(s, a, r, s′) 23

2.6 EpsilonGreedyChoose(s) 24

2.7 OptimalUpdate(σ, r, s′) . 26

2.8 OptimalChoose(s) . 28

2.9 MaximumLikelihoodUpdate(s, a, r, s′) 30

2.10 RMaxChoose(s) . 31

3.1 FittedValueIteration(R,P, ǫ, V0) 36

3.2 FittedValueIterationChoose(s) 39

3.3 KernelBasedReinforcementLearningUpdate(s, a, r, s′) 43

3.4 FittedRMaxUpdate(s, a, r, s′) 48

4.1 SMDPQLearningUpdate(s, a, r, s′, k) 69

4.2 OptionQLearningUpdate(s, a, r, s′) 73

4.3 OptionEpsilonGreedyChoose(s) 73

4.4 IntraOptionModelLearningUpdate(σ, r, s′) 78

4.5 InterruptingOptionEpsilonGreedyChoose(s) 79

5.1 EvaluateMaxNode(σ, o, s) 108

xviii

5.2 MAXQChoose(s) . 109

5.3 MAXQUpdate(s, ar, s′) . 110

5.4 RmaxqChoose(s) . 116

5.5 RmaxqPlan(o) . 117

5.6 RmaxqEvaluate(o) . 118

6.1 GeneratedModelChoose(s, σ) 136

6.2 GeneratedModelUpdate(σ, s, a, r, s′) 136

6.3 GeneratedHierarchicalModelExecute(σ, c) 146

6.4 Plan(σ, o) . 147

6.5 Model(σ, c) . 148

6.6 GeneratedHierarchicalModelChoose(s, σ) 149

6.7 Fitted-R-maxq(ROOT) . 166

xix

Chapter 1

Introduction

As technology grows in capability and complexity, society will increas-

ingly rely on computers to make decisions and to take actions on our behalf.

Next-generation computer systems, too intricate for humans to administer,

will need to configure, optimize, and repair themselves. Smart cars will re-

lieve humans from the monotony of driving during rush hour. Robots will

accept tasks too dangerous for humans, from fighting fires to exploring disas-

ter areas. In all these examples, autonomous agents choose actions without

human intervention to achieve some task. A key research question is how to

endow these agents’ behaviors with the robustness that characterizes human

decision-making.

Detemining fixed behaviors ahead of time yields agents that fail to

adapt to the inevitable unforeseen situations and uncertainty that characterize

real-world tasks. Attempts to endow agents directly with general knowledge

and reasoning capabilities inevitably encounter the knowledge-engineering bot-

tleneck: the difficulty of formally encoding the broad range of knowledge that

humans apply in the real world. To replicate human expertise, agents must

replicate the human ability to learn and to adapt. Such learning agents choose

1

future behaviors in response to data from past behaviors.

Reinforcement learning (RL) provides an appealing framework for re-

search into learning agents. It grew out of promising early algorithms that

guarantee convergence to optimal behavior in arbitrary finite agent-environment

systems. These algorithms achieve these theoretical guarantees by estimating

the long-term value of every state in the system. However, convergence to the

correct values requires unbounded amounts of data from each state, and in

practice these methods are rarely feasible in realistic applications. RL research

has focused on scaling these methods to harder problems, working towards the

goal of a relatively simple learning algorithm that allows an agent to cope with

the complexity of the real world.

This thesis continues in this tradition of scaling RL algorithms to harder

tasks, but it argues that prior efforts largely focused on only half the problem.

Over the past two decades, researchers have developed much more sophisti-

cated and efficient algorithms for what this thesis will call exploitation: the

estimation of optimal behavior (by way of optimal state values) given exist-

ing data. In contrast, most deployed RL algorithms still rely on the same

mechanisms for exploration: the generation of behaviors intended to gather

data that will improve future attempts at exploitation. In particular, most

RL algorithms estimate optimal behavior from existing data while assuming

that no new data will become available. They then modify this behavior after

the fact to encourage the acquisition of new data, often just by adding random

actions.

2

This thesis advocates the development of scientific agents, which ex-

plicitly choose future behaviors in order to improve the utility of future data.

By gathering more data, the agent improves its future ability to exploit the

environment. This approach draws inspiration from human learning, which is

most effective in the context of active experimentation, not passive observa-

tion. In the ideal case, a scientific agent conducts experiments that directly

help it to efficiently disambiguate among competing hypotheses, especially

when those hypotheses imply different exploitation behaviors.

This focus on exploration will lead naturally to an investigation of the

a priori assumptions that an agent makes about its environment, which govern

how the agent can generalize from available data. From this perspective, the

thesis illuminates synergies among some important threads of RL research,

described in detail in the next section: model-based exploration, function ap-

proximation, and hierarchical decomposition. This examination culminates in

the synthesis of all three of these ideas for the first time into a single general-

purpose algorithm, extending the space of environments that RL agents can

feasibly learn.

1.1 Motivation

One primary inspiration for this thesis is the observation that three of

the most promising ideas in RL have been studied almost entirely in isolation

from one another. Can they be productively combined, or are their benefits

redundant?

3

The first of these ideas is model-based RL, an approach that led to the

first polynomial bounds on the sample complexity of learning, established by

the E3 algorithm (Kearns & Singh, 1998), which can probabilistically find

a near-optimal policy for any finite environment in a finite number of time

steps. This algorithm achieves its guaranteed performance by reasoning ex-

plicitly about exploration and exploitation. It also differs from the typical RL

algorithm by constructing an explicit model of the environment, which it uses

to compute behaviors that reach unexplored regions. Despite these results, the

majority of RL research continues to focus on algorithms that neither reason

about exploration nor construct models. One notable exception is the R-max

algorithm (Brafman & Tennenholtz, 2002), which simplifies E3 and yields one

of the currently best known bounds on the sample complexity of RL1 (Kakade,

2003), but even R-max has not seen much use in practical applications. This

thesis investigates the practical limitations of R-max and develops algorithms

that address them. One obvious limitation is the incompatibility between

the finite model representation of R-max and the continuous nature of most

real-world environments.

The second idea, function approximation, tackles such environments by

changing RL algorithms’ representation of the estimated values of states. This

technique employs a small number of parameters to approximate the enormous

space of possible mappings from states to values. However, most research

1The Delayed Q-learning algorithm (Strehl et al., 2006) exhibits a tighter bound with
respect to the size of the state space but a looser bound with respect to the degree of
optimality and the discount factor.

4

into function approximation focuses on how to find the parameters that best

approximate the optimal values given the available data (exploitation), almost

always in a model-free context where these values comprise the only learned

knowledge of the environment. Comparatively little work has addressed how

to explore continuous environments effectively, an issue closely tied to the

question of what assumptions about the environment a given approximation

scheme encodes, as well as to the paucity in representations for continuous

models.

The third idea, hierarchical decomposition, directly addresses the fact

that in practice, environments have structure that agents should exploit. Hi-

erarchical RL algorithms reason with high-level, abstract actions that com-

prise sequences of lower-level actions (Barto & Mahadevan, 2003), reflecting

the human ability to plan at different levels of abstraction. Hierarchical RL

frameworks such as options (Sutton et al., 1999) and maxq (Dietterich, 2000a)

have demonstrated the benefit of this approach for model-free algorithms and

largely in finite environments. However, despite the intuitive appeal of hierar-

chy, most work in this direction doesn’t consider the precise mechanism behind

this benefit.

Another primary inspiration is the key question of how to generate

these hierarchical decompositions automatically. The discovery of hierarchies,

like the discovery of function approximations, remains a critical challenge for

the RL community. A solution to the discovery problem is also the ultimate

goal of the line of work that this thesis begins. A fully developed scientific

5

agent will conduct experiments exactly to differentiate among competing hy-

potheses about the structure of its environment, each of which suggest distinct

hierarchies of behavior. This thesis presents the first step towards that goal:

an understanding of how hierarchy contributes to efficient learning, as well as

an agent that combines explicit reasoning about exploration with hierarchical

reasoning, in infinite environments.

1.2 Objectives

This thesis focuses on the following question:

How can a reinforcement learning agent efficiently and

pragmatically balance exploration and exploitation, to max-

imize its expected rewards in an unknown, infinite envi-

ronment with realistic structure?

This thesis adopts the assumptions of the standard RL framework. The

agent knows a priori the set of possible states and the set of possible actions.

Each action has unknown effects and may be stochastic, but it induces a

stationary distribution over successor states and immediate rewards given the

previous state and action. The objective of the agent is to maximize the

expected sum of future rewards.

The weakness of these assumptions, and therefore the generality of the

framework, is the appeal of RL. Almost any problem can be cast in these terms,

and these assumptions suffice to guarantee optimal behavior in the limit and

6

probably near-optimal behavior in polynomial time. Nevertheless, this thesis

deviates from the bulk of RL research by explicitly reasoning about additional

assumptions and biases that may be introduced to a learning agent, for two

pragmatic reasons. First, the baseline assumptions so far have not sufficed

to produce algorithms that learn sufficiently quickly in practice. Second, in

infinite environments, the finite-time convergence guarantees do not apply.

The existing sample complexity bounds for RL consider a worst-case analysis

across environments. For any algorithm in this setting, it is possible to define

an environment in which that algorithm’s behavior is arbitrarily poor.

With this perspective, the research challenge becomes the identification

of reasonable assumptions and biases that permit efficient learning in practice

but that do not severely restrict the scope of RL. This thesis investigates

two of the most appealing techniques for scaling typical model-free RL algo-

rithms: function approximation and hierarchical decomposition, as described

in Section 1.1. It determines precisely in what way these techniques modify

the standard assumptions of RL and how these biases might be applied to

R-max. The resulting understanding makes possible a unified algorithm that

combines all three techniques into a single algorithm. The goal of this effort is

to develop an algorithm that accepts some forms of intuitive knowledge from

a human user, such as the gross hierarchical structure of the environment

and which actions and state variables are independent of one another. By

combining model-based reasoning, function approximation, and hierarchical

decomposition, this thesis provides a language of inductive bias that allows

7

users to instruct a scientific agent how to generalize from data.

1.3 Contributions

This thesis makes the following contributions to RL:

Model-Based Reinforcement Learning in Continuous Environments.

The combination of the model-based R-max algorithm and the function

approximation of the Fitted Value Iteration planning algorithm (Gor-

don, 1995) yields Fitted R-max, the first algorithm to apply model-

based exploration methods to continuous-state environments in the gen-

eral stochastic case. A key advantage of this algorithm is its ability to

generalize in the relatively simple space of predicted action effects, not

just in the space of estimated state values.

Investigation into the Utility of Hierarchical Decomposition. Although

hierarchy has intuitive appeal and has improved the performance of pop-

ular model-free algorithms, the precise manner in which it helps RL was

not well understood. Careful experimentation reveals confounding fac-

tors in prior demonstrations on the utility of hierarchy, as well as evidence

revealing the connection between hierarchy and exploration. In particu-

lar, hierarchy’s value lies in determining and constraining the states and

actions that an agent must explore, not merely in encouraging agents to

visit critical subgoal states.

Hierarchical Model-Based Reinforcement Learning. The combination

8

of the model-based R-max algorithm and the maxq framework for hier-

archical task decomposition yields R-maxq, the first algorithm to learn

hierarchies of action models in the standard discounted-reward RL set-

ting. Prior algorithms relied on model-free stochastic approximation

techniques that required slower learning at high levels of the hierarchy

so that lower levels would converge first. A fully model-based approach

permits simultaneous learning across levels, with exploration needs prop-

agating in a structured manner up the hierarchy.

Compositional Models for Reinforcement Learning. This framework casts

function approximation, hierarchical decomposition, and the R-max ap-

proach to exploration in a simple, unified representation as model opera-

tors that may be easily composed in a general model-learning algorithm.

This framework facilitates the definition of Fitted R-maxq, the first RL

algorithm to combine these three techniques in the general case.

1.4 Overview

The remainder of the thesis is organized as follows:

Chapter 2 defines the reinforcement learning problem and describes the stan-

dard Markov decision process formalism. It also recaps the R-max al-

gorithm, which serves as the basis for the novel algorithms presented in

later chapters.

Chapter 3 considers the connection between generalization and exploration.

9

It combines the function approximation of fitted value iteration and the

model-based exploration of the R-max algorithm to produce the fitted

R-max algorithm.

Chapter 4 examines the role of hierarchy in RL, as a natural mechanism for

instilling domain knowledge into an agent and constraining its explo-

ration.

Chapter 5 draws upon the conclusions of the preceding chapter to motivate

a learning algorithm that benefits from both aggressive exploration and

hierarchical prior knowledge. It combines the hierarchical decomposition

of maxq with the model-based exploration of the R-max algorithm to

produce the R-maxq algorithm.

Chapter 6 proposes a compositional model framework that facilitates the de-

velopment of a single algorithm that combines model-based exploration,

function approximation, and hierarchical decomposition.

Chapter 7 describes the practical implementation of the Fitted R-maxq al-

gorithm. The computationally intense nature of the algorithm requires

careful software engineering to achieve reasonable running times.

Chapter 8 addresses the discovery problem and discusses its connection to

the idea of active exploration. It includes some preliminary results to-

wards the automatic discovery of abstractions.

10

Chapter 9 covers related work, both in the area of intelligent exploration

and in the combination of model-based, hierarchical, and approximate

learning techniques.

Chapter 10 considers future work and offers concluding remarks.

11

Chapter 2

Foundations

This chapter recapitulates the existing results in the RL literature that

form the basis of this thesis. Section 2.1 defines the learning problem using

the standard formalism of Markov decision processes, and it establishes the

notation adopted throughout the thesis. Section 2.2 reviews the standard

approach to the RL problem, in which an agent estimates the optimal value

function for its environment. Section 2.3 discusses the exploration problem

and reviews the R-max algorithm, which serves as the foundation for the

algorithmic contributions of the thesis.

2.1 The Reinforcement Learning Problem

Robustness to uncertainty is one important motivation for learning,

so the RL framework minimizes the assumptions it makes about the learning

problem. Each problem comprises an agent and an environment. The learning

algorithm fully determines the behavior of the agent, which executes a sequence

of actions chosen from some action space A. In contrast, the algorithm may

have no prior knowledge of the environment, which generates a sequence of

states from some state space S, as well as a sequence of real-valued rewards.

12

The agent and the environment interact on a discrete time scale: at time step

t, the agent observes the current state st ∈ S and chooses an action at ∈ A. In

response to at, the environment generates an immediate reward rt+1 ∈ R and

a successor state st+1 ∈ S. Figure 2.1 illustrates this interaction. For now, the

state space S and action space A are assumed to be finite.

Roughly speaking, the goal of the agent at a given time step is to

maximize the expected sum of future rewards,
∑∞

k=1 rt+k. In the general case,

this sum may be unbounded, but the objective can be made well-defined either

by specifying a finite horizon or using a discount factor γ to reduce the weight

of future rewards. This thesis adopts the latter approach, which has the benefit

that the agent’s goal remains the same after each time step. Given a discount

factor with 0 ≤ γ ≤ 1, the agent attempts to maximize the expected return,
∑∞

k=1 γ
krt+k.

States, actions, and rewards define the interface between agent and

environment, and the return defines the objective of the agent. However, ad-

ditional assumptions about the agent-environment system are necessary to

give the agent any possibility of achieving its objective. Otherwise, the be-

t+1 Environment

Agent at

st

rt+1

s

Figure 2.1: The agent-environment system.

13

havior of the environment at the current time step may be complete unrelated

to its behavior at other time steps, foiling any attempt at learning. Modern

RL algorithms rely on a critical assumption, known as the Markov assump-

tion. It states that the output of the environment, the successor state st+1

and immediate reward rt+1, depends only on the preceding state st and action

at. In particular, given the state and action at time t, the behavior of the

environment at time t + 1 is conditionally independent of all other variables.

The joint state-action space S × A therefore plays a vital role in reasoning

about the agent-environment system.

For each environment, there exists a state-action transition function

P : S × A × S → [0, 1] that gives the probability P (s, a, s′) of transitioning

from the state-action sa to the successor state s′. It will prove useful to

represent this function as a |S||A| × |S| matrix, so the rows are indexed by

state-actions sa ∈ S × A and the columns are indexed by successor states

s′ ∈ S. The notation P [sa, s′] denotes the entry in row sa and column s′, so

that

P [sa, s′] = Pr(st+1 = s′ | st = s, at = a). (2.1)

Therefore, P is a stochastic matrix : each row sums to 1 and contains only non-

negative numbers. Similarly, there exists a reward function R : S × A → R,

represented as a |S||A|-dimensional column vector, which gives the determin-

istic reward for the state-action sa, so that rt+1 = R[stat]. The combination

〈S,A,R, P 〉 of a state space S, action space A, reward function R, and state

transition function P completely defines the behavior of the environment and

14

is known as a Markov decision process (MDP).

RL researchers almost universally accept the MDP formalism for envi-

ronments, but the space of possible agents is less well defined. To facilitate

comparisons among agents, this thesis introduces a formalism for agents. A

learning algorithm 〈Σ,Choose,Update〉 comprises a set Σ of agent states,

a subroutine Choose that determines the agent’s action at each time step,

and a subroutine Update that determines the agent’s internal state after it

perceives the result of each action, as shown in Figure 2.2. Formally, Choose

may be considered a function S × Σ × A × Σ → [0, 1] that gives the prob-

ability Choose(st, σt, at, σ
′
t) that given environment state st and agent state

σt ∈ Σ, Choose will output action at and change the agent state to σ′
t. Note

that Choose may modify the agent state because some algorithms require the

agent to modify its internal state in the process of choosing an action, for exam-

ple when setting goals that will inform action selection over multiple time steps.

Similarly, Update may be considered a function S×A×Σ×R×S×Σ→ [0, 1]

that gives the probability Update(st, at, σ
′
t, rt+1, st+1, σt+1) that Update will

t

Update Chooseσt

st

rt
σt

σt−1

,
a

Figure 2.2: Decomposition of an agent into a learning algorithm comprising
an Update subroutine and a Choose subroutine.

15

change the agent state to σt+1 given previous environment state st, the agent

action at and agent state σ′
t output by Choose, and the resulting reward rt+1

and environment state st+1.

Together, an MDP and a learning algorithm completely specify how

the agent-environment system evolves. For a given environment state st and

agent state σt, the Choose subroutine determines the agent’s action at and

updates the agent’s state to σ′
t. The MDP reward function R determines the

one-step reward rt+1, and the MDP state transition function P determines the

successor state st+1. Finally, the Update subroutine changes the agent state

to σt+1. Specifying an initial environment state s0 and agent state σ0 (or a

fixed distribution over initial states) therefore completely defines a stochastic

process. Given a duration t ∈ N, this stochastic process in turn determines

the distribution over the history ht = s0σ0a0σ
′
0r1s1σ1a1σ

′
1r2s2σ2 . . . stσt. This

joint agent-environment system also determines the distribution over possible

returns,
∑∞

k=1 γ
krt+k.

For clarity, this thesis will give individual values of Choose and Up-

date in pseudocode. This pseudocode will priortize readability over efficiency,

but Chapter 7 will discuss the software architecture of a practical implemen-

tation. In general, the agent state σ includes all of the data structures that

the agent modifies during the course of its interactions with the environment.

Within pseudocode, the variables that comprise the agent state will have the

superscript σ. Whenever possible, superscripts in this thesis will denote a com-

ponent relationship, so that xσ suggests that x is a component of σ. In fact,

16

σ may be thought of as a C-style data structure with a member x, with xσ

serving as a compact substitute for σ.x. The variables within pseudocode will

fall into three categories:

1. Algorithm parameters, treated as global constants

2. Transient state, treated as local variables either passed as an argument

or assigned within the scope of the pseudocode

3. Agent state, contained within σ, which is both an implicit argument and

an implicit component of the return value for each block of pseudocode

2.2 Exploitation

Given a particular MDP, there exists an agent that maximizes the ex-

pected return at t = 0. Of course, what agent maximizes the return depends

on the reward and state transition functions, which are unknown in the RL

setting. While the goal of learning is to adapt to uncertainty about the environ-

ment, modern RL algorithms emerged from research into planning algorithms

that assumed complete knowledge of the MDP. Therefore it is useful to begin

by considering the case where the agent already knows the rewards and dy-

namics of the environment, and all that remains is to exploit this knowledge

to choose the optimal behavior.

17

2.2.1 Planning Algorithms

To choose an action at an agent may use the entire history ht, but

the Markov assumption implies that knowledge of the current state st (along

with knowledge of R and P) suffices to choose at optimally. A policy π :

S × A → [0, 1] specifies the probability π(st, at) of choosing action at given

state st. Although a policy may thus be represented as a |S| × |A| matrix, it

will prove convenient to define a policy π as a |S| × |S||A| stochastic matrix,

so that the rows are indexed by states s ∈ S and the columns are indexed

by state-actions sa ∈ S × A, which also index the rows of R and P . In a

sense, a policy “transitions” from the state st to the joint state-action stat at

a given time step, subject to the usual constraints on stochastic matrices and

the additional restriction that π[s, xa] > 0 =⇒ s = x for all s, x ∈ S and

a ∈ A. This restriction formalizes the fact that an agent at time t cannot

affect the value of st. This construction yields a concise notation for many of

the important quantities to be defined later. As a simple example, the |S|-

dimensional vector πR, obtained simply by multiplying a policy π with the

reward function R, gives the expected value of rt+1 for each st ∈ S, assuming

the agent chooses at according to π.

If an agent always chooses at according to a fixed policy π, then the

value function V π : S → R, represented as a |S|-dimensional vector, specifies

the expected return V π[s] for each state s ∈ S. For a given MDP 〈S,A,R, P 〉,

policy π, and discount factor γ, V π can be computed by solving what is known

18

as the Bellman equation:

V π = π(R + γPV π). (2.2)

The value function therefore evaluates the quality of a given policy. In partic-

ular, there exists an optimal policy π∗ that maximizes the value of every state

simultaneously: for all s ∈ S, V π∗

[s] = maxπ V
π[s].

Planning algorithms compute optimal policies for an agent given full

knowledge of the MDP describing the environment. Standard algorithms take

advantage of the relationship between a policy and its induced state-action

value function Qπ, a |S||A|-dimensional vector defined as follows:

Qπ = R + γPV π. (2.3)

From this definition follow some other useful equations:

V π = πQπ (2.4)

Qπ = R + γPπQπ. (2.5)

Intuitively, Qπ[stat] estimates the return after the current time t assuming the

system is in state st, the agent first executes at, and that the agent chooses

future actions according to π. Given the state-action value function Qπ for a

policy π, an improved policy π′ can be obtained by choosing for each state s

those actions that maximize Qπ. In particular, π′ should satisfy

π′[s, sa] > 0 =⇒ Qπ[sa] ≥ Qπ[sb] (2.6)

19

for all s ∈ S and a, b ∈ A. In this case, V π′

will dominate V π, with equality

only if π was already optimal.

Policy iteration is one simple algorithm that applies this idea. Start-

ing with an arbitrary intial policy π, it alternates between policy evaluation,

which computes Qπ by solving Equation (2.5), and policy improvement, as

described in the preceding paragraph. Regardless of the initial policy, this

process converges to an optimal policy (Littman et al., 1995). Algorithm 2.1

presents this algorithm in pseudocode.

Algorithm 2.1 PolicyIteration(R,P, π0)

Q0 ← solution to Q0 = R + γPQ0 {Policy evaluation}
i← 0
repeat

i← i+ 1
πi ← chosen so that πi[s, sa] > 0⇒ a ∈ argmaxaQi−1[sa] {Policy
improvement}
Qi ← solution to Qi = R + γPQi {Policy evaluation}
Qi ← PolicyEvaluation(R,P, πi) {solve (2.5)}

until Qi = Qi−1

return πi

Note that the termination condition of the main loop in policy iteration

tests the last two value functions for equality instead of the last two policies,

since optimal value functions are unique while an agent-environment system

may have several optimal policies that give rise to that value function. For

this reason, it is not surprising that many methods attempt to compute the

optimal value function directly. The value iteration algorithm, specified in

Algorithm 2.2, iteratively improves an estimate of the optimal value function

20

and only implicitly improves the current policy, by setting the state value

function as the maximum over actions of the state-action value function. This

algorithm only converges to the optimal value function asymptotically, but the

iteration typically ends once no estimated value changes by more than some

small quantity ǫ > 0. Note that the notation [s] 7→ maxa Qi[sa] refers to a

vector where the entry indexed by s has the value maxaQi[sa].

Algorithm 2.2 ValueIteration(R,P, ǫ, V0,)

i← 0
repeat

i← i+ 1
Qi ← R + γPVi−1 {Some policy evaluation}
V ← [s] 7→ maxa Qi[sa] {implicit policy improvement}

until ‖Vi − Vi−1‖∞ < ǫ

return Vi

Given the converged value function, the optimal policy may be recov-

ered by computing the state-action value function using Equation (2.3) and

applying policy improvement. Algorithms 2.3 and 2.4 make this point explicit

by together defining a complete agent that simply employs value iteration to

choose each action. To clarify the algorithm’s inputs, it begins by reading the

expected components of the agent state σ into local variables. Note that this

agent requires the state transition matrix and reward vector as prior knowledge

in the initial agent state σ. When choosing actions, it needs only to compute

the optimal policy given this model, using value iteration. Since it assumes

its prior model is correct, it does not perform any learning in its Update

subroutine, Algorithm 2.4.

21

Algorithm 2.3 ValueIterationChoose(s)

V σ ← ValueIteration(R,P, ǫ, V σ)
Q← R + γPV σ

π ← chosen so that π[s, sa] > 0⇒ a ∈ argmaxaQ[sa] {Policy
improvement}
a← chosen with probability π[s, sa]
return a

Algorithm 2.4 NoUpdate(s, a, r, s′)

{No change to σ is necessary}

2.2.2 The Q-Learning Algorithm

The planning algorithms just described require knowledge of the state

transition and reward functions to compute optimal policies. Without this

knowledge, an agent must rely on data from interaction with the environ-

ment. The Q-learning algorithm gave rise to the field of modern RL because

it demonstrated that despite the noise in this data, an agent can still converge

to the optimal value function. The basic algorithm incrementally improves

the state-action value function Q once for each piece of data 〈st, at, rt+1, st+1〉,

known as an instance. Aside from revealing the reward for a state-action,

each instance serves as a sample from the unknown state transition function.

Q-learning uses stochastic approximation techniques to shift its value function

towards Q∗, taking a weighted average of the current value and a value com-

puted using the sampled reward and transition. The learning rate α specifies

the relative weights of this average.

Algorithm 2.5 implements this idea, with the notation x
α← y serving

22

as a shorthand for x ← (1 − α)x + α(y − x) and describing the incremental

stochastic approximation of x given a sample y. Algorithm 2.5 only specifies

the Update half of a complete learning agent: it outputs a value function

and not an action. Since the output value function is an estimate of the

optimal value function, it seems reasonable to apply the policy obtained via

policy improvement given this value function. However, this value function

has only been shown to converge to the optimal value function under certain

conditions. The most important of these conditions is that the agent must

visit every reachable state-action infinitely often.1

Algorithm 2.5 QLearningUpdate(s, a, r, s′)

Qσ[sa]
α← r + γmaxa′ Q[s′a′]

To achieve this condition, a common approach is to add random noise

to the policy induced by the current value function. For example, the popular

ǫ-greedy method only chooses an action from the estimated optimal policy with

probability 1 − ǫ (Algorithm 2.6). Otherwise, it chooses an action uniformly

at random. This method maintains a nonzero probability of long sequences

of random actions, which in turn imply a nonzero probability of visiting any

given state-action. This condition compensates for the fact that the greedy

policy might never visit certain state-action pairs, whose values may be under-

estimated due to random noise or lack of data. In practice, this approach is

highly inefficient. Many of the random actions do not lead to the acquisition

1The learning rate α must also decrease at an appropriate rate in QLearningUpdate,
although most practical implementations don’t satisfy this condition.

23

of useful data, since several consecutive non-greedy actions may be necessary

to reach states with underestimated values.

Algorithm 2.6 EpsilonGreedyChoose(s)

p← drawn uniformly at random from (0, 1)
if p < ǫ then

a← drawn uniformly at random from A

else

a← chosen such that a ∈ argmaxaQ[sa]
end if

return a

2.3 Exploration

The elegance and simplicity of Q-learning comes at a significant cost:

the algorithm only directly addresses the issue of exploitation. Given the

available data, it estimates the fixed optimal policy, but nothing about its

design acknowledges the availability of future data. In particular, one of the

assumptions required to ensure convergence to optimal behavior is exactly a

solution to the exploration problem: sufficient data from all reachable state-

actions. The random methods used in practice to achieve this condition are

too inefficient for most realistic applications.

Despite these limitations, the vast majority of RL algorithms still focus

exclusively on the problem of how best to estimate the optimal value function

given past data, instead of considering what future data would help improve

future estimates of this value function. The problem of how to explore an envi-

ronment properly may seem hopelessly ill-defined, but Section 2.3.1 discusses

24

a theoretically optimal but intractable solution. Section 2.3.2 then describes

the more feasible R-max algorithm and its appealing theoretical results, along

with a discussion of the practical limitations that this thesis will address in

seeking to apply this algorithm to problems with more realistic qualities.

2.3.1 Optimal Exploration

For any given environment, an optimal policy exists, and the optimal

action or actions depend only on the current environment state. Of course, a

learning agent does not know a priori what environment it faces, so it must

explore its environment. During the course of exploration, the agent’s policy

may change as it learns: its behavior at a given state depends on its current

knowledge. Although the agent’s policy is in this sense nonstationary, the

Update and Choose subroutines depend only on the current environment

state and current agent state. Therefore, another way to formalize a learning

algorithm is as a stationary policy in a “meta state space” comprising both

environment states and agent states.

A reasonable question then is whether a planning algorithm could com-

pute the optimal policy for this meta-problem, and thereby determine an op-

timal learning algorithm. This feat is theoretically possible, by adopting a

Bayesian approach and assuming the existence of some prior belief about the

possible values of the reward and state transition functions. In particular,

let B be the belief space over possible MDPs: the set of joint probability

distributions over reward functions R and state transition functions P . The

25

optimal agent’s state σ includes its belief state b ∈ B, which specifies the joint

probabity density Pr(R,P | b).

The optimal agent must be able to update its belief state each time step,

as it gathers data. It can compute the posterior distrubution Pr(R,P | b′),

given its prior distribution b and an instance 〈s, a, r, s′〉, using Bayesian condi-

tioning. This process updates any joint distribution over models by increasing

the density given to models consistent with the data:

Pr(R,P | b′) = Pr(R,P | b, s, a, r, s′) (2.7)

∝ Pr(r, s′ | R,P, b, s, a) Pr(R,P | b, s, a) (2.8)

∝ Pr(r | R, s, a) Pr(s′ | P, s, a) Pr(R,P | b, s, a) (2.9)

∝ δ(r, R[sa])P [sa, s′] Pr(R,P | b). (2.10)

Algorithm 2.7 details the corresponding Update subroutine.

Algorithm 2.7 OptimalUpdate(σ, r, s′)

b′ ← chosen to satisfy (2.10)
b← b′

In the Choose subroutine, the optimal agent must execute the optimal

policy for the belief-state MDP 〈S,A,R,P〉. This continuous-state MDP shares

the same action spaceA = A as the original MDP, but its state space S = B×S

includes both the actual environment state and the agent’s belief about the

environment. The belief-state reward function R predicts immediate rewards

26

using the expectation taken across possible reward functions:

R(bs, a) =

∫

rPr(r | b, s, a) dr (2.11)

=

∫

r

∫

δ(r, R[sa]) dR dr (2.12)

=

∫∫

rδ(r, R[sa]) dR dr. (2.13)

Finally, the state transition function P must predict both the transitions

among the actual states s ∈ S as well as the belief states b ∈ B. For any

given joint state bs ∈ B×S and action a ∈ A, the belief-state MDP first tran-

sitions the environment state by again taking an expectation across possible

models. Since the OptimalUpdate subroutine is deterministic, the successor

(posterior) belief state depends only on the previous state and the predicted

successor state (and reward). Therefore, P(bs, a, b′s′) = 0 for all b′ that does

not satisfy Equation (2.10)2. For b′ consistent with the predicted data, the

belief-state MDP transition function is given by:

P(bs, a, b′s′) = Pr(r, s′ | b, s, a) (2.14)

=

∫∫

δ(r, R[sa])P [sa, s′] Pr(R,P | b) dR dP. (2.15)

With a well-defined state space, action space, reward function, and

state transition function, the belief-state MDP has an optimal value function

and therefore an optimal policy. This policy is optimal in the sense that

the agent maximizes its expected future discounted rewards, subject to the

2This equation must further be averaged across predicted rewards.

27

uncertainty about the rewards and transitions encoded by its prior beliefs.

The value of a given belief-state will depend on the actual state, the most

likely rewards and transitions, and the amount of variance in the estimated

dynamics. The policy will therefore balance exploiting the estimated dynamics

with the value of gathering information about the dynamics. If this policy

could be computed, it could be used to complete the definition of an optimal

agent, as shown in Algorithm 2.8.

Algorithm 2.8 OptimalChoose(s)

S← B × S

A← A

R← chosen to satisfy (2.13)
P← chosen to satisfy (2.15)
π ← optimal policy for 〈S,A,R,P〉
a← chosen with probability π(bs)
return a

Unfortunately, this optimal value function and policy is infeasible to

compute. Each action at a given state will reveal that state-action’s deter-

ministic reward and transition to one of finitely many successor environment

states. For a fixed underlying MDP, each state of the belief-state MDP only

has a finite number of immediate successors (since the belief-state transitions

are deterministic given the environment transitions), but the number of reach-

able belief states is infinite: the variance of the belief state decreases as more

data accumulates. Despite the infeasibility of this formulation, the existence

of a theoretically optimal learning algorithm can inform practical approxima-

tions. Considering the belief-state MDP approach leads to the following ideas

28

concerning the problem of efficient exploration and exploitation.

Beliefs as well as states have value. A given state-action may have value

beyond the immediate reward it earns and the capacity of the successor

state for future rewards. It can lead to data that refines the agent’s

beliefs and improves the future ability of the agent to exploit.

Prior beliefs determine optimal exploration behavior. The belief-state

MDP formulation does not distinguish between initial agent states, in-

termediate agent states, and “converged” agent states. There is no sense

in which the agent can start with a truly blank slate. Instead, it must

begin with some assumptions about the environment, in the sense that

even before interacting with the environment, the agent has a probability

distribution weighting the possible state transition and reward functions.

Furthermore, this prior belief plays a critical role in the agent’s strategy.

Learning can be solved with planning. Coherent beliefs about the possi-

ble environments allow an agent to reason about the exploration-exploitation

tradeoff as a planning problem.

2.3.2 The R-MAX Algorithm

Researchers first established the ability to converge to near-optimal be-

havior in any MDP in polynomial time by proposing an algorithm, E3, that

explicitly reasons about exploration (Kearns & Singh, 1998). The R-max al-

gorithm improved upon these bounds by using a simpler algorithm that implic-

29

itly balances between exploration and exploitation (Brafman & Tennenholtz,

2002). R-max serves as the foundation of the algorithmic contributions of this

thesis, so this section first defines the algorithm precisely and then discusses

its capabilities and shortcomings.

The R-max algorithm, defined in Algorithms 2.9 and 2.10, applies a

policy obtained by planning with a special MDP derived from the available

data. Intuitively, this MDP is defined on a row-by-row basis, depending on

the amount of data available for the state-action corresponding to each row,

measured as the number of times N [sa] that the history includes state s and

action a at the same time step. If N [sa] reaches a given threshold m, then the

standard maximum-likelihood estimate is used for row sa of R and P . Oth-

erise, R-max assumes an optimistic model of the state-action: an immediate

reward equal to some given upper bound rmax and a deterministic transition

back to s, which would allow the agent to obtain this optimistic reward every

time step.

Algorithm 2.9 MaximumLikelihoodUpdate(s, a, r, s′)

Rσ[sa]← r {Update reward model}
Dσ

P [sa, s
′]← Dσ

P [sa, s
′] + 1 {Update transition data}

Nσ[sa]← Nσ[sa] + 1 {Update sample sizes}
for all x′ ∈ S do

P σ[sa, x′]← Dσ

P
[sa,x′]

Nσ [sa]

end for

The optimistic rows of R and P lead R-max to explore state-actions

for which it has insufficient data. This effect applies not just when the current

30

Algorithm 2.10 RMaxChoose(s)

R← Rσ {MLE reward vector}
P ← P σ {MLE transition matrix}
for all sa ∈ S × A do {Modify MLE model}
if N [sa] < m then {Sample size smaller than threshold}
R[sa]← rmax {Optimistic reward}
for all s′ ∈ S do

P [sa, s′]← 0
end for

P [sa, s]← 1 {Optimistic transition}
end if

end for

V σ ← ValueIteration(R,P, ǫ, V σ) {Planning}
Q← R + γPV σ

π ← chosen so that π[s, sa] > 0⇒ a ∈ argmaxaQ[sa]
a← chosen with probability π[s, sa]
return a

state st has an unexplored action but also whenever planning can find a tra-

jectory from the current state to an unexplored state-action. Although a given

plan might not guarantee that the agent will attain data from an unexplored

state, planning will automatically balance the rewards from exploitation with

the optimistic reward for exploration.

It is instructive to compare R-max with the optimal Bayesian approach

to exploration described in Section 2.3.1. Both approaches reduce the problems

of learning and exploration to a planning problem. The first major difference

is representational: R-max maintains a single estimate of R and P instead of

a probability distribution over possible MDPs. For the known state-actions,

planning with the single maximum-likelihood model can be seen as an approxi-

31

mation of planning with a distribution of models that will become increasingly

peaked around the maximum-likelihood model as the amount of data increases.

For the unknown state-actions, the optimistic model can be seen ironically as

a worst-case assumption about the space of MDPs consistent with the known

state-actions. From the perspective of exploiting the known state-actions, the

worst-case scenario is that the unknown state-actions are actually optimal. In

this sense, the optimistic model chooses the one estimate for each unknown

state-action that guarantees that the planned policy will not overlook a pos-

sibly optimal state-action. However, R-max does not distinguish between

state-actions with no data and those with almost enough data to be known.

In the latter case, if the state-action in question is suboptimal enough, the

Bayesian approach can conclude that the state-action is suboptimal given just

the available data. Some more recent RL algorithms adopt a more complex

and computationally intensive approach using confidence intervals, instead of

choosing the purely best-case model (Strehl & Littman, 2005).

The second major difference is that R-max generates a plan that does

not explicitly acknowledge the fact that the agent will gather more data in

the future. In contrast, the Bayesian approach outputs a policy for a belief-

state MDP, where the state incorporates future data by way of its effects on

the belief-state. R-max partially compensates for this myopic perspective on

data by recomputing the policy after each acquisition of useful data.

A final major difference is that R-max does not explicitly incorpo-

rate a prior distribution over possible MDPs. In a sense, R-max again takes a

32

worst-case perspective: that each state-action cannot be known until the agent

collects some (large) amount of data for that state-action. This assumption

corresponds to a prior distribution in which each state-action is statistically in-

dependent: even full knowledge of one state-action does not affect the marginal

distribution of any other state-action.

Clearly, this class of prior distributions is not the only one compatible

with the optimal Bayesian approach to learning, and its adoption by R-max

leads to a common complaint about attempts to use R-max in practice. By

seeking to explore every state-action several times, R-max incurs an enormous

cost of exploration (Hester & Stone, 2009).

In concrete terms, this thesis introduces the possibility of stronger prior

beliefs to the R-max algorithm, allowing it to apply in practice to larger

and more complex environments than in the largely theoretical research that

developed the original algorithm. In one sense, it seeks classes of assumptions

that approximate more structured prior distributions over MDPs, without

incurring the full cost of reasoning about arbitrary distributions over reward

and state transition functions.

33

Chapter 3

Generalization

From the perspective of applying RL to realistic problems, the most

glaring shortcoming of standard algorithms is their assumption of finite state

spaces and tabular representations of knowledge. Q-learning maintains a single

primary data structure, the |S||A|-dimensional vector Q, and its known con-

vergence guarantees assume that the agent updates and therefore visits each

state-action infinitely often. However, when S includes uncountably many

states, such as is often the case in applications when state variables are real-

valued, then not even an infinite history can hope to visit each state even once,

let alone infinitely often. A more immediate problem is the data structure used

to store Q. A table or array with one entry for each entry of Q is infeasible

for even a very large finite state space, as well as any infinite state space.

The large number of states in real-world problems underscores the need

for generalization: agents cannot afford to treat every nominal state as unique

and independent. Section 3.1 describes standard approximation techniques

that reduce the number of degrees of freedom in the learned value function to

make learning feasible in infinite state spaces. Section 3.2 describes one of this

thesis’s primary contributions, an extension of this form of approximation to

34

learned models of the environment. This extension permits the extension of

model-based RL algorithms such as R-max to infinite state spaces, yielding

the Fitted R-max algorithm (Jong & Stone, 2007b; Jong & Stone, 2007a)

described in Section 3.2.2. Finally, Section 3.3 presents experimental results

with Fitted R-max.

3.1 Approximating the Value Function

Feasible algorithms that compute value functions for infinite state spaces

necessarily employ some form of function approximation, since no finite data

structure can represent all possible functions over an infinite domain, even

granted the finite floating-point representation of real numbers. It follows

that RL algorithms adopt a hard bias, whether explicitly on implicitly. They

assume that value functions lie in the space of functions spanned by their

representation. The key challenges in research on function approximation are

what the representation (and thus the space of value functions) should be, and

how to compute the value function efficiently given a particular representation.

These challenges remain even when the reward and state transition

functions are known, so function approximation remains an open problem in

planning research, as well. This thesis builds off of the fitted value itera-

tion (FVI) algorithm, which provides a particularly clean framework for rea-

soning about value approximation. FVI differs from standard value iteration,

which was described in Section 2.2.1, in that it interleaves an additional fitting

step with the standard value backup step. In particular, after computing an

35

improved value function Vi+1 by backing up the fitted value function V̂i, it ap-

proximates Vi+1 with a fitted value function V̂i+1 from some restricted space of

value functions. Algorithm 3.1 details this modification to the standard value

iteration algorithm (Algorithm 2.2).

Algorithm 3.1 FittedValueIteration(R,P, ǫ, V0)

i← 0
V̂i ← Approximate(Vi)
repeat

i← i+ 1
Qi ← R + γP V̂i−1 {Some policy evaluation}
Vi ← [s] 7→ maxaQi[sa] {Implicit policy improvement}
V̂i ← Approximate(Vi)

until ‖V̂i − V̂i−1‖∞ < ǫ

return V̂i

For some choices of approximation, even this straightforward planning

algorithm may diverge, but prior work showed that the sequence of value func-

tions {V̂i} converges to a stable fixed point if Approximate is implemented

using an averager (Gordon, 1995). An averager approximates the value of a

state in S as a weighted average of the values of a finite subset X ⊂ S. In par-

ticular, let Φ be a |S|×|S| stochastic matrix such that s′ 6∈ X =⇒ Φ[s, s′] = 0

for all s, s′ ∈ S, and Φ[x, x] = 1 for all x ∈ X. The row of Φ indexed by s gives

the weights over X that specify how to compute V̂i[s] =
∑

x∈X Φ[s, x]Vi[x] as

a weighted average of the values of states in X. FVI using an averager Φ thus

implements Approximate(Vi) = ΦVi.

To understand how averagers allow FVI to converge to a fixed point,

first consider one of the chief benefits to the practical implementation of the

36

algorithm. Since V̂i only depends on the entries of Vi that correspond to X, it

suffices only to compute the values of each x ∈ X. While iterating through the

main loop, FVI never uses those rows of R, P , or Vi that correspond to states

outside of the finite set X. FVI with an averager can therefore be thought

of as conducting exact planning with a finite MDP, whose state space is X,

derived from the combination of Φ and the original infinite MDP.

This finite derived MDP, specified by the state space X, the action

space A, a |X||A|-dimensional reward vector R̃, and a |X||A| × |X| state

transition matrix P̃ , can be constructed as follows. Define

R̃[xa] = R[xa] (3.1)

for all x ∈ X and a ∈ A. Define

P̃ [xa, x′] =
∑

s′∈S

P [xa, s′]Φ[s′, x′] , (3.2)

so that the row of P̃ indexed by xa is equal to the row of PΦ indexed by xa.

(Note that P̃ is therefore a submatrix of the |S| × |S| matrix PΦ.) Figure 3.1

illustrates the construction of P̃ for one particular state-action sa. Let Ṽ be the

value function obtained by running value iteration on R̃ and P̃ . Then Ṽ assigns

the same values to states in X as the final value function in Algorithm 3.1.

Since value iteration converges to a fixed point for any MDP, it follows that

fitted value iteration converges to a fixed point for any combination of an MDP

and an averager.

The complete FVI agent given in Algorithm 3.2 (combined withNoUp-

date, Algorithm 2.4) makes this construction explicit. Instead of invoking

37

s’

x

0.10

0.20 0.31

0.39

x’
x’

0.10
0.39

0.31
0.20x

(a) (b)

Figure 3.1: (a) The arrow in this diagram shows the deterministic transition
from x to s′ predicted by the state transition function P . The circles represent
other elements of X. The dashed lines and accompanying probabilities rep-
resent the nonzero elements of Φ[s′, x], indicating how to approximate s′ as a
weighted average of elements of X. (b) The possible transitions predicted by
the resulting fitted model, P̂ , along with their transition probabilities. If the
original state transitions function P were stochastic, P̂ would be a summation
or integration over possible values of s′.

FVI (Algorithm 3.1), it constructs the fitted MDP and then directly invokes

standard value iteration (Algorithm 2.2). The value function computed on the

fitted MDP is then used to compute the action values for the current state in

the trajectory. By computing a converged Ṽ , FVI essentially reduces planning

in the full state-space S to a one-step lookahead, assuming that after one step

the system will transition to (and remain in) a state in X.

Note that Algorithm 3.2 still calls for enumeration of S in two spots.

First, the computation of P̃ calls for a summation over the possible successors

s′ ∈ S for each state-action xa. Similarly, to compute the action values in the

current state st, it also sums over the possible successor states in S for each

action. Practical implementations of FVI either rely on deterministic domains,

38

Algorithm 3.2 FittedValueIterationChoose(s)

{Construct model defined on X from model defined on S}
for all x ∈ X do

for all a ∈ A do

R̃[xa]← R[xa]
for all x′ ∈ X do

P̃ [xa, x′]←∑

s′∈S P [xa, s′]Φ[s′, x′]
end for

end for

end for

Ṽ σ ← ValueIteration(R̃, P̃ , ǫ, Ṽ σ) {Compute values over X}
for all a ∈ A do {Compute value at s}
Q̂[sa]← R[sa] + γ

∑

x∈X

∑

s′∈S P [sa, s′]Φ[s′, x]Ṽ [x]
end for

a← chosen from argmaxaQ̂[sa]
return a

where only one s′ has non-zero probability, or on Monte Carlo integration,

which essentially replaces the summation (or integral, in continuous domains)

over S with a summation over an independent sample from S. In Section 3.2.2,

this thesis will apply FVI to an approximate model with only a finite number

of possible successors in S, sidestepping this problem.

FVI using averaging approximation provides a clear framework for esti-

mating value functions for large MDPs, but it leaves many details open. These

details include the precise choice of averager and the choice of the finite sample

X. Section 3.2.2 will address these design considerations, but first Section 3.2

will address the primary obstacle to applying FVI in the RL setting: the ab-

sence of direct knowledge of the reward and state transition functions R and

P .

39

3.2 Approximating Models

Almost all of the research into RL algorithms for large and infinite

systems rely on model-free methods. These methods only require a compact

representation of the value function for the system, and function approxi-

mation techniques provide such representations. This thesis seeks to extend

the benefits of the model-based R-max algorithm to large state spaces as well.

Just as the original R-max applies standard value iteration to a learned model

of a finite MDP, this thesis will apply FVI to a learned model of a potentially

infinite MDP. The key missing ingredient is a compact representation of this

learned model.

Learning a model is properly a supervised learning problem: given a

state and action, predict the immediate reward and next state. Several re-

searchers have applied various regression algorithms to specific instances of

this problem with success. However, in the general case, planning algorithms

need the complete distribution over successor states, not just the expected

successor state. In some applications, the average successor may be a reason-

able approximation to the true probability distribution over successor states,

but environments with a large degree of stochasticity may require more ac-

curate modeling of the variance in an action’s effects. Chapter 4 will also

discuss contexts in which an action represents a long sequence of lower-level

actions, further increasing the potential stochasticity of the high-level action’s

transition behavior.

In the general case, model learning is therefore a density estimation

40

problem, with the added wrinkle that the probability density function be-

ing estimated (the transition function) is parameterized by the previous state

and action. To avoid unwarranted assumptions about the transition dynam-

ics, this thesis adopts a non-parametric, instance-based approach to learning

models. This approach is inspired in part by the Kernel-Based Reinforcement

Learning (KBRL) algorithm (Ormoneit & Sen, 2002), which converges to the

optimal value function in the limit, when the state space is a bounded metric

space, and given unbounded amounts of uniformly sampled transition data.

3.2.1 Kernel-Based Reinforcement Learning

Whereas FVI approximates the value of a given state as the weighted

average of the values of a finite set of states X, KBRL approximates the

dynamics of a given state-action as the weighted average of the observed dy-

namics in state-action data sampled from the environment. Although the

original KBRL algorithm assumed data sampled uniformly from the state-

action space to achieve its convergence results, this thesis presents a ver-

sion of the algorithm that interacts with the environment, as defined in Sec-

tion 2.1. For a given state-action, KBRL estimates the immediate reward as a

weighted average of all the rewards in the data, weighted by a kernel function

K : (S×A)×(S×A)→ [0, 1], which defines the similarity K(sa, siai) between

a given state-action sa and a historical state-action siai:

R̂[sa] =

∑

i K(sa, siai)ri+1
∑

i K(sa, siai)
. (3.3)

41

Similarly, the predicted distribution of successor states is equal to the empirical

distribution of successor states observed, weighted by the kernel function:

P̂ [sa, s′] =

∑

i K(sa, siai)δ(si+1, s
′)

∑

i K(sa, siai)
. (3.4)

Note that typically, almost all of the terms in the summation in the numerator

of Equation (3.4) will be 0. If the agent never visits the same state twice, so

that i 6= j =⇒ si 6= sj, then at most one term will be nonzero, corresponding

to the instance when the agent previously transitioned into s′. Equation (3.4)

also implies that P̂ assigns nonzero probability to a number of successors

bounded by the amount of data. Figure 3.2 illustrates the approximation of

P̂ for a state-action xa given three instances that have nonzero kernel weight.

Although the approximate reward function R̂ and transition function

P̂ are defined over the full state-action space S×A, the optimal value function

V̂ ∗ for the approximate MDP
〈

S,A, R̂, P̂
〉

can be computed efficiently. Let

X = {s ∈ S | ∃i(s = si+1)} be the set of observed successor states. Then

P̂ only predicts successor states in X, similar to the derived state transition

matrix used by FVI. It thus suffices to compute the value function only over

X, effectively solving the MDP
〈

X,A, R̃, P̃
〉

, where R̃ and P̃ are simply R̂

and P̂ restricted to the domain X × A.

Algorithm 3.3 illustrates the resulting algorithm in detail. Since the

last visited state st is in X, since it is an observed successor state, the action

value function Q̃ defined over X × A suffices to guide the selection of at.

Therefore, Algorithm 3.3 may be combined with ValueIterationChoose

42

0.18

s

i1

i2

i3

0.44

0.38

0.38

s

0.18

0.44

(a) (b)

Figure 3.2: (a) Three instances i1, i2, and i3 used to approximate some action
at state s. The dashed lines indicate the kernel values K(sa, siai). (The action
a is not represented in the diagram.) (b) The possible transitions predicted
by the resulting fitted model, P̂ , along with their transition probabilities.

(Algorithm 2.3) to obtain a complete agent.

Algorithm 3.3KernelBasedReinforcementLearningUpdate(s, a, r, s′)

X ← X ∪ {s′} {Add s′ to state sample}
for all xa′ ∈ X × A do {Define model over X × A}
w ← K(sa, xa′) {Weight of current instance for approximating xa′}
α← w

Nσ [xa′]+w
{Fraction of cumulative weight}

N [xa′]← N [xa′] + w {Update cumulative weight}
R[xa′]← (1− α)R[xa′] + αr

for all x′ ∈ X do

P [xa, x′]← (1− α)P [xa, x′]
end for

P [xa, s′]← P [xa, s′] + α

end for

Although in this case, value iteration effectively only computes the

value function Q̃ overX×A, the approximate model defined by Equations (3.3)

and (3.4) would permit the computation of the full value function Q̂, defined

43

over S × A, as a one-step lookahead:

Q̂ = R̂ + γP̂ Ṽ . (3.5)

As the amount of data increases without bound, Q̂ converges in the limit to the

true optimal value function Q∗ of the underlying MDP, if the data is sampled

uniformly at random from S×A (instead of sampling a single trajectory) and

if the kernel K satisfies the following conditions:

1. K(sa, s′a′) > 0 if a = a′,

2. K(sa, s′a′) = 0 if a 6= a′,

3. K(sa, s′a) is a Lipschitz continuous function of d(s,s′)
bt

,

where d is a metric over the state space and {bt} is a sequence of kernel

bandwidths that control the degree of generalization, with bdim(S)+1
√
t → ∞

and b→ 0 as t→∞.

KBRL carries many of the properties of Q-learning into the context

of continuous state spaces. It guarantees convergence to the optimal value

function in the limit, subject to an assumption of sufficient data for each state-

action that sidesteps the problem of exploration. The key difference is that

instead of requiring infinite data for every state-action, it assumes the reward

function is Lipschitz continuous and requires infinite data for increasingly small

neighborhoods around every state-action. The requirement that the size of this

neighborhood decrease at an appropriate rate mirrors the requirement for the

44

convergence of Q-learning that the learning rate decrease at an appropriate

rate.

Although KBRL computes a finite model that approximates a poten-

tially infinite environment, the only guarantees about the quality of this model

rely on unbounded amounts of data. Furthermore, the data is assumed to be

generated uniformly at random, which is not typically possible in practical

applications. To adapt KBRL to the online setting, some exploration policy

must be applied to the learned value function, just as in Q-learning. The

experiments in Section 3.3.3 demonstrate that given limited amounts of data

generated from actual trajectories through the state space, KBRL generates

flawed policies.

3.2.2 The Fitted R-MAX Algorithm

Section 3.2.1 described the KBRL algorithm, which predicts the im-

mediate reward and the distribution over successor states for any given state-

action using data from similar state-actions. Despite its intuitive appeal, this

algorithm remains impractical for two main reasons. First, the set of states

X, for which KBRL computes values, grows with the amount of data. This

growth increases the burden both on the approximation of the model (which

computes a kernel function between every pair of states in X) and on planning

(which iterates over every state in X). Second, the algorithm does not address

the issue of efficient exploration. This section presents a main contribution

of this thesis: an algorithm that combines the model generalization of KBRL,

45

the efficient planning in large state spaces of FVI, and the directed exploration

of R-max.

Adding the fitted planning of FVI improves the efficiency of KBRL.

Fitting the approximate model to a fixed sample X, instead of the set of all

experienced states, ameliorates the computationally intensive nature of com-

puting the approximate model. This combination is relatively straightforward:

it suffices to substitute R̂ and P̂ , defined in Equations (3.3) and (3.4), for R

and P when computing R̃ and P̃ in Equations (3.1) and (3.2). Figure 3.3

illustrates the composition of the approximate model P̂ with a value averager

Φ to obtain a fitted model P̃ .

To incorporate the exploration mechanism of R-max, consider the form

of the KBRL approximation for an “exact” kernel function K that does not

generalize, so that K(sa, s′a′) = δ(s, s′)δ(a, a′). In this case, the approxima-

tions R̂ and P̂ reduce to the maximum-likelihood estimates of R and P :

R̂[sa] =

∑

i K(sa, siai)ri+1
∑

i K(sa, siai)

=

∑

i δ(si, s)δ(ai, a)ri+1
∑

i δ(si, s)δ(ai, a)

=

∑

i N [sa]R[sa]

N [sa]

= R[sa]

P̂ [sa, s′] =

∑

i K(sa, siai)δ(si+1, s
′)

∑

i K(sa, siai)

=

∑

i δ(si, s)δ(ai, a)δ(si+1, s
′)

∑

i δ(si, s)δ(ai, a)

=
DP [sa, s

′]

N [sa]
,

46

s’
0.38

0.44

0.18

x

x’
0.10

0.39

0.31
0.20x

(a) (b)

Figure 3.3: (a) The arrows indicate the three transitions predicted by the
KBRL approximation P̂ for a given state x. The open circles represent other
states in X. The dashed lines indicate which states in X have nonzero weight
in the value averager Φ for each predicted successor state s′. (b) The pos-
sible transitions predicted by the resulting fitted model, P̃ , along with their
transition probabilities. Each predicted successor x′ receives a portion of the
transition probabilities assigned to each s′ by P̂ , weighted by Φ.

where N [sa] counts how much data exists for sa ∈ S×A and DP [sa, s
′] counts

the transitions from sa to s′. (Note that R̂[sa] = R[sa] due to the assumption

of deterministic rewards.)

The kernel function K can therefore be interpreted as weighting the

degree K(si, s) to which data at some state si may be used to approximate

data for some query state s. In Algorithm 3.3, the variable N [xa′] counts

for the current state-action xa′ how much data is available to estimate the

dynamics of xa′, including data generalized from nearby state-actions. The

Fitted R-max algorithm compares this count to the threshold m to determine

whether to use the KBRL approximation (fitted to a fixed state sample X, as

described earlier in this section) or to an optimistic model.

47

Algorithm 3.4 specifies the FittedRMaxUpdate subroutine, which

may be combined with RMaxChoose (Algorithm 2.10 to obtain Fitted R-

max.

Algorithm 3.4 FittedRMaxUpdate(s, a, r, s′)

for all xa′ ∈ S × A do

w ← K(sa, xa′) {Weight of current instance for approximating xa′}
α← w

Nσ [xa′]+w
{Fraction of cumulative weight}

N [xa′]← N [xa′] + w {Update cumulative weight}
R[xa′]← (1− α)R[xa′] + αr

s′′ ← E(s, s′, x)
for all x′ ∈ X do {Define transitions into X only}
P [xa, x′]← (1− α)P [xa, x′] + αΦ[s′′, x′]

end for

end for

Formally, FittedR-max employs the following approximate, fitted model:

N̂ [sa] =
∑

i

K(sa, siai) (3.6)

R̂[sa] =

{

rmax if N̂ [sa] < m
1

N̂ [sa]

∑

i K(sa, siai)ri+1 if N̂ [sa] ≥ m
(3.7)

P̂ [sa, x′] =

{

δ(s, x′) if N̂ [sa] < m
1

N̂ [sa]

∑

s′

∑

i K(sa, siai)δ(E(si, si+1, s), s
′)Φ[s′, x′] if N̂ [sa] ≥ m,

(3.8)

where E : S×S×S → S is an action effect function that predicts the successor

state E(si, si+1, s) ∈ S that results when translating to s the transition from

si to si+1. The original KBRL algorithm predicts absolute transitions:

Eabs(si, si+1, s) = si+1, (3.9)

which assume that the successor state Eabs(si, si+1, s) is conditionally indepen-

dent of the current state s given the instance i used to approximate the action’s

48

effect. The instance effect function generalizes the model approximation by

allowing alternative predictions for the successor state.

The inclusion of the action effect function is motivated by the poor

performance of the KBRL approximation when data is limited. This scenario

requires the model approximation to generalize broadly, using a large kernel

bandwidth. In this case, the displacement between a given state s and the

instance at si used to approximate s may be very large, dominating the pre-

dicted effect on the state transition. KBRL sidesteps this problem by waiting

until the kernel bandwidth shrinks sufficiently, but to address this issue in

a more pragmatic algorithm, this thesis proposes an alternative action effect

function. For a given state s and instance 〈si, ai, ri+1, si+1〉, the vector effect

function predicts the successor state

Evec(si, si+1, s) = s+ (si+1 − si). (3.10)

In other words, Evec predicts that action ai will cause the same vector displace-

ment si+1 − si observed in instance i instead of the same absolute successor

state si+1. The vector effect function assumes that the state space is a vector

space, but the Euclidean spaces common to practical applications satisfy this

assumption. Figure 3.4 illustrates the vector effect function.

3.3 Experimental Results

Fitted R-max learns with good data efficiency by using a combina-

tion of model-based exploration and stable function approximation. This sec-

49

s+(s − s)

s

i1

i2

i3 i+1 i
0.44

s

0.38

0.18

(a) (b)

Figure 3.4: (a) The approximation of some action at state s given three in-
stances and the vector effect function Evec. For each instance, the predicted
successor is obtained by adding the vector displacement observed at the in-
stance to s. (b) The possible transitions predicted by the resulting fitted
model, P̂ , along with the transition probabilities revised from Figure 3.3.

tion describes experiments demonstrating that Fitted R-max converges more

rapidly to near-optimal policies than several other recent RL algorithms evalu-

ated on some benchmark problems with continuous state spaces. It then exam-

ines the importance of the vector effect function introduced in Equation (3.10)

compared to the original KBRL approximation, which uses Equation (3.9).

Finally, it investigates the importance of the kernel bandwidth parameter, b,

which controls the breadth of generalization.

3.3.1 Implementation Details

A primary practical concern for any instance-based algorithm is com-

putational complexity. The computationally intensive step of Fitted R-max is

the construction of the derived finite model
〈

X,A, R̃, P̃
〉

. In general, this con-

struction requires O(|X|2|A||T |) for each invocation of Algorithm 3.4, which

50

occurs at each time step. A naive implementation would repeat much of the

same computation at each time step, and Chapter 7 discusses the architec-

ture of an implementation that aggressively caches the intermediary results

of this computation. Another concern is that the computational complexity

of the model construction depends on the amount of data |T | in the history.

The longer the agent runs, the slower the model approximation will become,

but judicious choices for the model and value approximations can drastically

reduce the computational complexity of Fitted R-max.

Many function approximation schemes are possible for choosing X and

defining the value averager Φ. In the experiments described in this section, X

is a uniform grid spanning the state space, and Φ[s′, x] gives the coefficients for

multilinear interpolation of s′ from the 2d corners of the hypercube containing

s′, where d is the dimensionality of the state space. This approximation bounds

the number of values of x′ for a given s′ (and therefore the number of iterations

for the loop in Algorithm 3.4) by 2d, instead of |X| = rd, where r is the

resolution of the grid, specifying the number of points used to approximate

each dimension of the state space.

Preliminary experiments showed that this simple function approxi-

mation scheme performed better than a number of alternatives, including

instance-based approaches that added either visited states st to X or pre-

dicted successors s′ to X as necessary. Nevertheless, this grid-based approach

may be less appropriate in high-dimensional state spaces, since the number of

hypercube corners grows exponentially with the dimensionality. Additionally,

51

some care must be taken for relatively large grid spacings. If one of the grid

points enclosing the agent’s current state is on the other side of a wall or other

obstacle, an action with no effect can seem to bypass the obstacle.

The model approximation depends on the kernel K. Inspired by stan-

dard techniques in nonparamtric density estimation, a Gaussian kernel seems

an obvious choice:

K(sa, s′a′) = δ(a, a′)e−(d(s,s′)/b)2 , (3.11)

where d is the Euclidean distance between s and s′. In practice, this kernel

requires Fitted R-max to iterate over every instance i in h (with a matching

action ai) to approximate the dynamics of a given state-action xa, even though

the instances near xa dominate the approximation. (If all the instances with

nonzero weight are far from xa, then the total amount of data is unlikely to

exceed the R-max threshold m, and xa will be considered unknown anyway.)

The experimental implementation of Fitted R-max therefore uses a kernel in

which the minimum nonzero value is 0.01; any smaller value is truncated to 0.

It follows that the approximated dynamics for state x depends only on data

within distance b
√− log 0.01 = 2.146b from x. For a given x, the applicable

instances can be found efficiently by storing each si in a cover tree (Beygelzimer

et al., 2006).

The pruning described above still allows the implementation to use an

unbounded number of instances to approximate a given state-action, causing

the model approximation and the planning given the model to become slower

52

as the history grows. Therefore, for a given state-action xa, the implementa-

tion begins adding the instances closest to x first, but it stops adding instances

to the approximation if adding the kernel weight would fail to increase the cu-

mulative kernel weight by 1%. This additional pruning process bounds to

100 the number of instances used to approximate x. Note that this pruning

does not bias the approximation, which essentially becomes k-nearest neigh-

bors with k = 100 and Gaussian weighting whenever sufficient data exists to

override optimism. The precise thresholds used to prune did not significantly

affect the performance of the algorithm.

3.3.2 Benchmark Performance

This section compares the performance of Fitted R-max to algorithms

submitted to the RL benchmarking workshop held at NIPS 2005 (Dutech

et al., 2005). This event invited researchers to implement algorithms in a

common interface for online RL. Participants computed their results locally,

but direct comparisons are possible due to the standardized environment code,

which presents the same sequence of initial states to each algorithm. This

section examines two of the benchmark domains and gives the Fitted R-max

parameters used to solve them. It then evaluates the performance of Fitted

R-max against selected algorithms.

53

3.3.2.1 Mountain Car

In the Mountain Car simulation (Sutton & Barto, 1998), an underpow-

ered car must escape a valley (Figure 3.5) by backing up the left slope to build

sufficient energy to reach the top of the right slope. The agent has two state

variables, horizontal position x and horizontal velocity v. The three available

actions are reverse, neutral, and forward, which add −0.001, 0, and 0.001

to v, respectively. In addition, gravity adds −0.0025 cos(3x) to v at each time

step. The agent receives a reward of −1 for each time step before reaching the

goal state. Episodes begin in a uniformly random initial position x and with

v = 0, and they last for at most 300 time steps. The only domain knowledge

available is the upper bound rmax = 0 on the rewards and the minimum and

maximum values of each state variable: −1.2 and 0.5 for x and −0.07 and 0.07

for v.

Fitted R-max scaled both state variables to [0, 1]. The generalization

breadth b was 0.08. X consisted of uniform 64 × 64 grid overlaying the state

space. Since Mountain Car is deterministic, the exploration threshold was

m = 1. To compute the value function, Fitted R-max applied value iteration

with ǫ = 0.01.

3.3.2.2 Puddle World

The Puddle World (Sutton, 1996) is a continuous grid world with the

goal in the upper-right corner and two oval puddles (Figure 3.6). The two

state variables are the x and y coordinates, and the four actions correspond to

54

Figure 3.5: The Mountain Car environment.

Figure 3.6: The Puddle World environment.

55

the four cardinal directions. Each action moves the agent 0.05 in the indicated

direction, with Gaussian noise added to each dimension with σ = 0.01. The

agent receives a −1 reward for each action outside of the two puddles, which

have radius 0.1 from two line segments, one from (0.1, 0.75) to (0.45, 0.75) and

the other from (0.45, 0.4) to (0.45, 0.8). Being in a puddle incurs a negative

reward equal to 400 times the distance inside the puddle. The goal region

satisfies x+ y ≥ 0.95 + 0.95.

For this domain, Fitted R-max used generalization breadth b = 0.08.

A 64 × 64 grid was again used for X. Although Puddle World is stochastic,

thresholds m = 1 continued to suffice. To compute the value function, Fitted

R-max applied value iteration with ǫ = 0.01.

3.3.2.3 Benchmark Results

Figures 3.7 and 3.8 compare the performance of Fitted R-max to three

selected algorithms. (Each point is the average of fifty sequential episodes,

as reported to the NIPS workshop.) These three algorithms, implemented

and parameterized by other researchers, were among the most competitive

submitted. One is the standard R-max algorithm applied to a fixed dis-

cretization of the state space. This algorithm employed the same exploration

mechanism at Fitted R-max, but it lacked the model generalization of Fitted

R-max. Least Squares Policy Iteration (Lagoudakis & Parr, 2003) is similar

to Fitted R-max in that it uses a given sample of transitions to compute the

parameters of a function approximator that best approximates the true value

56

-300

-250

-200

-150

-100

-50

 0

 0 200 400 600 800 1000

R
ew

ar
d

pe
r

ep
is

od
e

Episodes

Fitted R-max
XAI

Least Squares Policy Iteration
discretized models

Figure 3.7: Benchmark results for the Mountain Car environment.

-500

-400

-300

-200

-100

 0

 0 200 400 600 800 1000

R
ew

ar
d

pe
r

ep
is

od
e

Episodes

Fitted R-max
XAI

discretized models
Least Squares Policy Iteration

Figure 3.8: Benchmark results for the Puddle World environment.

57

function. However, LSPI relies on random exploration and a fixed set of ker-

nels to represent the state space. XAI (eXplore and Allocate, Incrementally)

is a method that represents the value function with a network of radial basis

functions, allocated online as the agent reaches unexplored regions of the state

space (Dutech et al., 2005). It thus resembles Fitted R-max in its instance-

based use of Gaussian weighting for approximation, but XAI is a model-free

method that uses gradient descent and Sarsa(λ) to update the value function.

None of these algorithms achieves the same level of performance as Fitted

R-max, which combines instance-based model approximation, stable function

approximation, and model-based exploration.

3.3.3 Ablation Study

This section illustrates the benefit of Fitted R-max’s approach to

model-based RL in large environments. It compares three algorithms. The

first is Fitted R-max, employing the vector effect function Evec given in Equa-

tion (3.10). The second is a version of Fitted R-max that uses the absolute

effect function Eabs given in Equation (3.9) and used by KBRL, to measure the

importance of action effect component of the transition function. The third

algorithm is the original discrete R-max algorithm (Brafman & Tennenholtz,

2002), to measure the importance of the novel decomposition of the transition

function.

Figure 3.9 shows the performance of each algorithm, averaged over 50

independent trials in the Mountain Car domain. This implementation of R-

58

max uses the same parameters as the implementation submitted to the NIPS

workshop: it discretizes each state dimension into 100 intervals and usesm = 1.

Fitted R-max used the same parameters described in Section 3.3.2.1.

Fitted R-max with absolute effects converges much more quickly than

discrete R-max, but at the expense of converging to suboptimal policies. Fur-

ther experimentation has shown that decreasing b improves the average quality

of the final policy but quickly decreases the learning speed of the algorithm.

The standard version of Fitted R-max uses the more accurate vector effect

generalization to preserve fast convergence while achieving near-optimal poli-

cies in this domain. For comparison, Figures 3.10 and 3.11 illustrate typical

learned policies for both versions of Fitted R-max.

An optimal policy would execute forward roughly when the velocity

is positive, in the upper half of the state-space diagram, and it would exe-

cute reverse roughly when the velocity is negative, in the lower half of the

state-space diagram. This run of Fitted R-max with absolute effects incor-

rectly selects reverse in a large region with positive velocity. Inspection of

the relevant states revealed that the local neighborhood of the sample Sreverse

happened to contain more high-value states. The absolute effect model incor-

rectly concluded that the reverse action would transition to this higher-value

region; the vector effect model correctly concluded that this action decreases

the value of any state in the neighborhood.

59

-300

-250

-200

-150

-100

-50

 0

 0 100 200 300 400 500

R
ew

ar
d

pe
r

ep
is

od
e

Episodes

Fitted R-max, relative effects

Fitted R-max, absolute effects

Discrete R-max

Figure 3.9: Learning curves for Mountain Car. Each curve is the average of 50
independent trials. The policy learned by Fitted R-max using relative effects
is significantly better than that learned used absolute effects (p < 0.001).

3.4 Discussion

The primary contribution of this chapter is its integration of model-

based exploration with stable function approximation. Fitted R-max ex-

tends the data efficiency of model-based methods to continuous systems, which

previously presented a difficulty in representing continuous models. Locally

weighted regression (Atkeson et al., 1997) addressed this problem in the de-

terministic case, also using local weighting from instances. Locally weighted

regression estimates the average successor state for each state-action pair; Fit-

ted R-max approximates the distribution over successor states and thus copes

with forms of stochasticity beyond simple noise. Locally weighted regression

also does not address the issue of exploration. Fitted R-max permits the

60

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

V
el

oc
ity

Position

Reverse
Neutral

Forward

Figure 3.10: Policy for the Mountain Car environment learned using Fitted R-

max with absolute action effects. The solid region of the state space indicates
where the policy selects the forward action; the hatched region indicates where
it selects the reverse action.

61

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

V
el

oc
ity

Position

Reverse
Neutral

Forward

Figure 3.11: Policy for the Mountain Car environment learned using Fitted
R-max with vector action effects. The solid region of the state space indicates
where the policy selects the forward action; the hatched region indicates where
it selects the reverse action.

62

application of intelligent exploration mechanisms originally designed for finite

systems. It employs the same mechanism as Prioritized Sweeping (Moore &

Atkeson, 1993) and R-max (Brafman & Tennenholtz, 2002), perhaps opening

the door for generalizing the latter algorithm’s polynomial-time PAC conver-

gence guarantees to certain continuous systems.

Introducing model-based reasoning to function approximation also pro-

vides novel insight into the problem of generalizing from finite data to knowl-

edge of an infinite system. Most approaches to function approximation rely

on a static scheme for generalizing the value function directly, despite the

difficulty in intuiting the structure of value functions. Fitted R-max explic-

itly generalizes first in a model of the system, where intuitions may be easier

to represent. For example, a high degree of generalization is possible in the

model for Mountain Car, since the effect of an action changes smoothly with

the current state. In contrast, the optimal value function for this system in-

cludes large discontinuities in locations that are impossible to predict without

first knowing the optimal policy: the discontinuity separates those regions of

the state space where the agent has sufficient energy to escape the valley from

those regions where it must first build energy. Approaches that only generalize

the value function must use little enough generalization to represent this dis-

continuity accurately; Fitted R-max uses a learned model to generalize both

broadly and accurately.

63

Chapter 4

The Role of Hierarchy

Chapter 3 demonstrated the ability of directed exploration to improve

the robustness of RL. The R-max algorithm directs exploration by computing

policies that guide the agent to states where insufficient data exists. Fitted

R-max applies this idea to large state spaces by generalizing from nearby

states to a given state. However, this generalization does not avoid the curse

of dimensionality: a combinatorial explosion in the number of nominal states

merely becomes a combinatorial explosion in the number of state neighbor-

hoods.

In general, no algorithm can do better than exploring every reachable

state or every neighborhood, since in the worst case an unexplored state or

neighborhood might be essential to optimal behavior. Only additional prior

knowledge can avoid exhaustive exploration. This knowledge constitutes an

assumption about the range of possible environments. RL practitioners most

commonly impart knowledge to learning agents in large state spaces by choos-

ing function approximators that generalize beyond local neighborhoods: these

approximations extrapolate instead of interpolate or average. In practice, these

approximations are chosen largely for reasons of convenience, not due to any

64

strict correspondence to any actual domain knowledge.

This chapter investigates the potential of hierarchical decomposition to

serve as a more intuitive way for practitioners to convey domain knowledge to

a learning agent.1 The concept of hierarchy has strong intuitive appeal to arti-

ficial intelligence researchers. Humans cope with the extraordinary complexity

of the real world in part by thinking hierarchically, so this faculty would be a

valuable one for autonomous agents to possess. In the RL literature, this idea

has taken shape in work on temporal abstraction, in which abstract actions

represent sequences of lower-level actions (Barto & Mahadevan, 2003). Early

work demonstrated the potential of handcrafted temporal abstractions for im-

proving the performance of RL agents in particular problems, but it raised the

question of how to discover this hierarchical structure automatically (Barto &

Mahadevan, 2003). This open question remains at the forefront of research

into hierarchical RL.

The discovery algorithms proposed so far attempt to capture intuitions

about what constitutes a useful abstract action. Most of these algorithms look

for subgoal states and then define abstract actions that attempt to reach the

discovered subgoals (Mannor et al., 2004; McGovern & Barto, 2001; Şimşek &

Barto, 2004). In principle, the creation of a subgoal decomposes the learning

problem into at least two smaller problems: learning to attain the subgoal and

learning optimal behavior from a subgoal state. In practice, prior work has

1This chapter describes research done in collaboration with Todd Hester (Jong et al.,
2008).

65

not made clear how these approaches improve learning performance.

Despite the agreement about the importance of hierarchy and of the

discovery problem, the two most widely studied frameworks for hierarchical

RL exhibit remarkable differences, both in their motivations and their usage.

For example, the idea behind the popular options framework (Sutton et al.,

1999) is “to permit one to add temporally extended activities to the repertoire

of choices available to an RL agent, while at the same time not precluding

planning and learning at the finer grain of the core MDP. The emphasis is

therefore on augmentation rather than simplification of the core MDP” (Barto

& Mahadevan, 2003). In contrast, the maxq framework employs temporal

abstraction to constrain the choices available to an RL agent: “There are

many reasons to introduce hierarchical reinforcement learning, but perhaps

the most important reason is to create opportunities for state abstraction,”

so that “individual MDPs within the hierarchy can ignore large parts of the

state space” (Dietterich, 2000a). These differences underscore a general lack

of insight into how precisely hierarchy improves RL performance.

Although the discovery of hierarchy served as a primary motivation for

this thesis, research into discovery algorithms seems premature given the un-

certainty surrounding the exact function of the hierarchies to be discovered.

This chapter investigates precisely how hierarchical decomposition benefits

RL (Jong et al., 2008). Section 4.1 describes the prevailing formalisms for

hierarchical RL: the semi-Markov decision process and options. Section 4.2

conducts detailed experiments to determine the conditions in which options

66

help or even hinder learning performance. Section 4.3 continues the investi-

gation with experiments that focus on the interaction between options and

exploration. Finally, Section 4.4 concludes with some discussion, which moti-

vates the definition in the next chapter of a model-based, hierarchical learning

algorithm.

4.1 Hierarchical Reinforcement Learning

The two dominant approaches to hierarchical RL share the same formal

underpinnings, despite their philosophical differences. They allow an agent

to apply temporal abstraction, so it can represent entire sequence of actions

as a single abstract action. For example, consider an MDP formalizing the

interaction between a mobile robot and its environment. The action space may

include several actions that allow the agent to turn or to move forward. One

abstract action might be the sequence of these movement actions that navigate

the robot to a particular landmark or that follow a corridor until reaching

an intersection. With an appropriate set of abstract navigational actions,

the agent can reason at the level of landmarks and intersections instead of

arbitrary poses in the environment. An abstract action decomposes the overall

learning problem into the low-level problem of how to execute the abstract

action efficiently and the high-level problem of planning when to execute each

abstract action.

Note that this abstraction takes place within the agent. The state

and action spaces that define the interface between agent and environment

67

still depend only on the given learning problem. These actions are primitive

actions, and they always take exactly one unit of time to execute. Any abstract

actions used to reason at a higher level depend on the agent and the learning

algorithm. These composite actions comprise one or more primitive actions

executed sequentially, so they take some positive integer number of time steps

to execute.

The states and the primitive actions of a learning problem define an

MDP (which is not known to the agent), but a key advantage of temporal

abstraction is the ability to reason at the level of the composite actions, not

the primitive actions. However, these composite actions do not exactly induce

an MDP, since they may have different durations, which impact the discounting

of future rewards. The hierarchical RL literature instead draws upon the semi-

Markov Decision Process (SMDP) formalism (Sutton et al., 1999).

Formally, an SMDP 〈S,A,R, P 〉 is an MDP in which the action space

A contains composite actions, which may take more than one time step to

execute. The state transition function P : S × A × S × N → [0, 1] must

account for the duration of actions by giving a joint distribution over successor

states and durations for each state-action. For a given state s and action a,

P (s, a, s′, k) gives the probability that a will transition from s to s′ in exactly

k > 0 time steps.

When the reward and state transition functions R and P are not avail-

able, RL methods designed for the MDP case can be easily adapted to the

SMDP case. The necessary modification corresponds to incorporating the

68

additional discounting when an action takes more than one time step. Al-

gorithm 4.1 illustrates this change, which simply incorporates the duration k

into the discounting in the update rule. (An additional parameter is required

to communicate the duration k.) This update rule can be combined with the

action-selection mechanism in Algorithm 2.6 to obtain a complete learning

agent for SMDPs.

Algorithm 4.1 SMDPQLearningUpdate(s, a, r, s′, k)

Qσ[sa]
α← r + γk maxa′ Q

σ[s′a′]

Similar adjustments to incorporate duration could apply to planning

algorithms, which would also have to cope with the modified representation

of the state transition function P . However, it is possible to plan for MDPs

without explicitly reasoning about k. Note that the duration of a composite

action only influences planning insofar as it affects how much to discount the

value of the successor state, as demonstrated in the resulting Bellman equation

for evaluating a policy π:

Qπ(s, a) = R(s, a) +
∑

s′

∞
∑

k=1

P (s, a, s′, k)γkV π(s′). (4.1)

This thesis adopts a multi-time model (Sutton et al., 1999) of P , which

avoids the explicit representation of the duration k by folding the discount

factor into the transition probabilities. This approach represents P as a

|S||A|×|S| matrix, preserving consistency with the representation of the state

transition function for standard MDPs. The similar forms of Equations (2.3)

69

and (4.1) suggest the appropriate matrix entries:

P [sa, s′] =
∞
∑

k=1

P (s, a, s′, k)γk, (4.2)

so that P [sa, s′] gives the marginal probability that state-action sa will even-

tually transition to s′, appropriately discounted. Since multi-time represen-

tations of the state transition function incorporate the discount factor, the

matrix form of the Bellman equation (4.1) becomes:

Qπ = R + PV π. (4.3)

Note that in this formalism P is no longer a stochastic matrix, since

its rows do not sum to 1. If all the actions are primitive, then the multi-time

representation would cause each row to sum to γ, since this multi-time model

incorporates the discount factor. In the general case, the sum of each row is

in [0, γ].2

Another way to understand the matrix P is to interpret the discount

factor as a 1 − γ probability of each primitive action transitioning to a zero-

value (terminal) state. After the agent chooses an action, the system essen-

tially generates an immediate reward according to R, then with probability γ

transitions to a successor state according to the dynamics of the environment.

Otherwise, with probability 1 − γ, the history terminates and no further re-

ward is possible. In this interpretation, the goal is to maximize the total sum

2The sum can only equal 0 if the associated state-action always terminates the episode,
in an episodic task, or of course if γ = 0.

70

of rewards (without further discounting) before this stochastic termination.

Then P [sa, s′] gives the probability that sa will eventually transition to s′,

and 1−∑s′ P [sa, s′] gives the probability that sa will eventually transition to

the implicit terminal state.

The multi-time representation of state transitions allows value functions

for SMDPs to be computed by MDP planning algorithms, simply by folding

the uncertain action durations into discounted transition probabilities in P .

In particular, an optimal policy for a given SMDP can be computed simply

by using standard value iteration, as defined in Algorithm 2.23.

4.1.1 The Options Formalism

The SMDP formalism requires only that each action, primitive or oth-

erwise, have a distribution over successors and durations that depends only

on the current state (Sutton et al., 1999). It treats each composite action as

a black box, whose input is a state and whose output is a distribution over

successor states and durations. An option is a specific formalism for describing

how a composite action behaves during its execution, defined as follows. An

option o = 〈Io, πo, βo〉 comprises an initiation set Io ⊆ S, an option policy

πo : S → A, and a termination function βo : S → [0, 1]. The initiation set Io

specifies the set of states in which the option may begin execution. The option

policy πo specifies the primitive actions the option selects at any given time

3This usage requires a minor adjustment: removing the discount factor from Algo-
rithm 2.2 to reflect the incorporation of γ into P

71

step during its execution. The termination function βo gives the probability

βo(s) that option o will terminate upon transitioning into state s.

An option defines a composite action by completely describing its be-

havior, in terms of other actions. Given a set of options to augment the

primitive actions defined by the environment, an agent could execute the op-

tions as composite actions and apply an SMDP learning algorithm. Learning

with options therefore need not be much different from learning with prim-

itive actions, since MDP learning algorithms can be easily extended to the

SMDP case. SMDP Q-learning remains a common baseline for learning with

options, in the same way that Q-learning remains a common choice in practice

for learning with primitive actions. Algorithm 4.2 adapts Algorithm 4.1 to

the specific case of SMDP learning with a given set of options O. Note that

this algorithm returns to the standard interface for learning algorithms, which

invokes Update and Choose at every time step. To simplify the logic of the

algorithm, the option set O includes options corresponding to the primitive

actions. Each action a ∈ A is construed as an option o such that Io = S,

and for all s ∈ S, πo(s) = a and β(s) = 1. By considering its options O, an

agent therefore considers both all the primitive actions as well as whatever

truly composite actions it was provided as prior knowledge.

As with the standard Q-learning algorithm discussed in Section 2.2.2,

SMDP Q-learning only specifies how to compute the value function given the

available data. A complete agent must combine the value function with a

mechanism for selecting and executing actions. Algorithm 4.3 extends the

72

Algorithm 4.2 OptionQLearningUpdate(s, a, r, s′)

kσ ← kσ + 1 {Track duration of oσ}
if Agent terminates oσ, with probability βoσ(s) then
Q[xσoσ]

α← r + γk maxo′ Q[s′o′]
Uninitialize oσ {Signal termination to Choose}

end if

ǫ-greedy action selection mechanism to the options framework. Note that in

both these algorithms, the algorithm state σ must be initialized with prior

knowledge that includes the option set O: including definitions of the option

policy πo for each option o (in addition of course to the initation sets and

termination functions).

Algorithm 4.3 OptionEpsilonGreedyChoose(s)

if oσ is uninitialized then

if Agent explores, with probability ǫ then

repeat

oσ ← drawn uniformly at random from O

until s ∈ Io
σ

else

oσ ← chosen to maximize Q[soσ]
end if

xσ ← s {Record state in which option initiated}
kσ ← 0 {Initialize duration of oσ}

end if

a← πoσ(s) {Follow current option policy}
return a

4.1.2 Option Discovery

The options framework’s simplicity and convenience belie subtleties in

how precisely options improve agents’ learning performance. One important

73

subtlety arises from the formal definition of an option not as a subtask in a

learning problem but as a solution to a subtask. For an illustration of how this

distinction has impacted research in hierarchical RL, first consider the work

on option discovery.

Most existing algorithms for discovering temporal abstractions fit the

same overall pattern. They identify certain states as subgoals, whether by

finding states that frequently occur in successful episodes (McGovern & Barto,

2001), that correlate with finding novel states (Şimşek & Barto, 2004), or

that connect clusters of a state transition graph (Mannor et al., 2004). The

agents then define options that transition to these subgoal states, obtaining

the option policy using Experience Replay (Lin, 1992), a technique originally

developed to speed the convergence of Q-learning. This technique works by

simply applying the appropriate update rule (Algorithm 2.5) in batch fashion

to saved trajectories of experience, so that each piece of data is used for more

than one update. Given a newly discovered subgoal state, an agent can create

an option by first defining an RL subproblem in which this state has high value.

The agent then uses Experience Replay to propagate this value back through

the option’s state space, obtaining a local value function and the option policy.

SMDP Q-learning (Sutton et al., 1999) with the resulting options, discovered

online, is then shown to improve upon standard Q-learning.

Although previous work demonstrated algorithms that outperform ba-

sic Q-learning, it offered at best an incomplete picture of the benefits of tem-

poral abstraction. Given the procedure followed by most of the existing work

74

on option discovery, one important question concerns the relative contribu-

tions of Experience Replay and of temporal abstraction to the performance

improvements. In particular, could Experience Replay alone provide the same

benefit as using options whose policies are learned using Experience Replay?

McGovern and Barto briefly addressed this issue in their work on option

discovery (McGovern & Barto, 2001). In their experiments, they included

a condition that used Experience Replay without options, but they limited

Experience Replay to the same number of value updates as they used to learn

their option policies. If Experience Replay was thus applied to the entire

learning problem, it performed worse than using the same number of backups

to learn option policies. However, simply limiting Experience Replay to the

states in the proposed option’s initiation set provided the same benefit as

learning the option policy, without actually creating an option.

This latter result alone should cast doubt over the contribution of tem-

poral abstraction in this particular scenario, since the benefit seems to arise

simply from focusing the efforts of Experience Replay to states near the dis-

covered “subgoal” state. A reasonable question is whether this benefit might

be achieved more easily than by subgoal discovery, which runs the risk of ex-

pending computational resources to create options that burden the learning

agent with additional parameters to learn, another instance of Minton’s utility

problem (Minton, 1988). The problem runs even deeper, since using subgoals

to focus Experience Replay to particular states only makes sense if enough

computation time exists to perform Experience Replay but not enough to ap-

75

ply it more globally. Most evaluations of RL performance, including those in

the literature on option discovery, measure reward earned as a function of the

number of actions taken, not the amount of computation time.

Recent work in option discovery continues to appeal to the unproven

intuition that hierarchy has intrinsic value for RL agents, despite a lack of

conclusive evidence. The remainder of this chapter investigates how precisely

options affect the performance of learning agents. Section 4.2 defines the ex-

perimental framework and examines more closely the use of Experience Replay

to determine option policies. Section 4.3 builds upon these results to examine

the role of options in determining the exploration behavior of a typical RL

agent.

4.2 Experiments with Option Policies

Any general evaluation of the options framework must take care to

choose representative agents and environments. This evaluation begins by

adopting an agent incorporating all of the innovations presented in the canon-

ical work on options (Sutton et al., 1999), as well as the original environment

used to demostrate those innovations.

4.2.1 An SMDP Learning Algorithm

Although widely used in research involving options, basic SMDP Q-

learning does not learn very efficiently. Its handling of options as black boxes

is inefficient for at least two reasons. First, SMDP Q-learning updates the

76

value function only once for each execution of an action. When all the actions

are primitive, it updates the value function at every time step, just as Q-

learning does. When some actions are actually options, the value function is

updated less frequently, since one execution of an option may take multiple

time steps but lead to only a single update.

Second, the simplicity of treating an option as a black box comes at the

cost of the learning agent ignoring possibly useful information in the option’s

definition. In situations where the option’s policy is determined by a concur-

rently learning agent, this absence of communication between high-level and

low-level agents can be particularly inefficient.

Intra-option methods (Sutton et al., 1999) address these concerns par-

tially, by allowing the learning agent to inspect an option’s parameters: its

policy, initiation set, and termination condition. This additional data permits

algorithms to update the agent’s estimated value of the option whenever the

primitive action executed in a given state is consistent with the option’s policy,

since that instance sheds light on how the option would have behaved if it had

been executing. Algorithm 4.4 implements intra-option model-learning (Sut-

ton et al., 1999). Instead of updating the value function directly given each

instance, it updates a model of each option (using stochastic approximation)

and then uses these learned models to update the value function. This algo-

rithm is an instance of the Dyna-Q algorithm (Sutton & Barto, 1998), adapted

to include options.

In the experiments described in this chapter, the agent state will be

77

Algorithm 4.4 IntraOptionModelLearningUpdate(σ, r, s′)

Q[sa]
α← r + γmaxa′ Q[s′a′] {Update value function directly from data}

for all o ∈ O do

if πo(s) = a then

R[so]
α← r + γ(1− βo(s′))R[s′o] {Update reward model}

for all s′′ ∈ S do {Update state transition model}
P [so, s′′]

α← βo(s′)δ(s′, s′′) + (1− βo(s′))γP [s′o, s′′]
end for

end if

{Update value function from model}
Q[so]

α← R[so] + γ
∑

s′′∈S P [so, s′′] maxo′ Q[s′′o′]
end for

if oσ terminates, with probability βoσ(s′) then
Uninitialize oσ {Signal termination to Choose}

end if

initialized as follows. For ǫ-greedy action selection, the probability of selecting

a random action is ǫ = 0.1. The option set, from which actions are chosen,

varies with each experiment, but it typically contains all the primitive actions

(represented as options that always terminate everywhere) as well as some

composite actions given as prior knowledge. The other parameters include the

learning rate α = 0.3 and discount factor γ = 0.9. Unless otherwise specified,

the value function Q and option models R and P are initialized to 0.0 in every

entry. These matrices are indexed by the option set O, not A.4

Finally, the implemention of option learning employs the “interrupting

options” technique (Sutton et al., 1999), which allows the agent to interrupt

the execution of an option if it enters a state where another action has higher

4The notation Q[sa] refers to the entry Q[so] for the option o constructed to represent
the primitive action a.

78

value than the option currently being executed. This technique is formalized

in Algorithm 4.5, a minor adaptation of Algorithm 4.3, OptionEpsilon-

GreedyChoose.

Algorithm 4.5 InterruptingOptionEpsilonGreedyChoose(s)

if oσ is uninitialized or maxo′ Q[so′] > Q[soσ] then
if Agent explores, with probability ǫ then

repeat

o← drawn uniformly at random from O

until s ∈ Io
σ

else

oσ ← chosen to maximize Q[soσ]
end if

end if

a← πoσ(s) {Follow current option policy}
return a

4.2.2 The Four-Room Gridworld

For consistency with prior work, the experiments in this chapter use the

simple four-room gridworld employed by Sutton, Precup, and Singh (Sutton

et al., 1999), shown in Figure 4.1. Each cell in the grid represents a state

that the agent may occupy. From each cell, the agent can take one of four

primitive actions: left, right, up, or down. Each primitive action is stochastic,

taking the agent to the desired cell with probability 0.8 and in a perpendicular

direction with probability 0.2. For example, when selecting the up action, the

agent would move up 80% of the time, left 10% of the time and right 10%

of the time. If the effect of the movement would place the agent in a wall,

then the agent remains in its current cell. The agent starts each episode at a

79

G

Figure 4.1: The four-room gridworld

random location in the upper left room and the goal is a state near the lower

right corner of the grid-world. The immediate reward is 0 at each state in the

world, except at the goal, where the reward is 1.

This environment is clearly quite simple, and it was used in prior work

presumably due to its suitability for learning with temporal abstraction. In

particular, the doorway states are intuitive subgoals for an agent that must

navigate this world. Nevertheless, in-depth experiments reveal that even in this

simple domain, originally chosen to demonstrate the effects of learning with

options, the utility of temporal abstraction depends on numerous factors.

4.2.3 Options and Experience Replay

In this section we conduct experiments that reproduce the conditions

used in recent work on option discovery. In particular, it compares standard

80

Q-learning against an agent that, in the middle of learning, introduces options

with policies obtained using Experience Replay. However, it also compares

against an agent that simply applies Experience Replay without creating op-

tions, at the same point in the learning process.

Both agents that use Experience Replay save each experience 〈st, at, rt+1, st+1〉

at each time step. Instead of replicating the various subgoal discovery algo-

rithms in past research, these experiments give the option-learning agent the

benefit of the doubt, and allow it access to the correct subgoal states, corre-

sponding to the doorways between rooms, after 20 episodes of learning. Each

subgoal thus defines an option that terminates only at that subgoal, has an

initiation set that includes every other state, and whose policy is learned using

Experience Replay.

The other experimental agent is Q-learning using Experience Replay

only. For this agent, saved experience is simply played back in reverse order

after 20 episodes to update the value function. The agent was allowed the

same number of updates that were used to learn the four option policies, so it

replayed the complete set of experiences four times.

Figure 4.2 compares the learning performance of the three agents. All

three algorithms exhibit the same performance until episode 20, since they

all use only standard Q-learning until then. The agent that defines options

exhibits a marked improvement over the agent that simply continues to use

Q-learning, but the agent that just applies Experience Replay exhibits the

same improvement.

81

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50

S
te

ps
 p

er
 e

pi
so

de

Episodes

Q-learning only
Q-learning with ER

SMDP learning with ER

Figure 4.2: Learning performance of three agents that use standard Q-learning
until episode 20, when one agent defines options using Experience Replay and
another just uses Experience Replay to update its value function. Each line
shows the number of steps required to reach the goal state, averaged over 50
independent runs.

82

4.2.4 Dynamic Option Policies

Prior work established the benefit of learning with options, at least in

certain circumstances and when options are provided to the agent (Sutton

et al., 1999). The automatic discovery of options, to remove the assumption

that a human expert must provide this domain knowledge, remains an ac-

tive area of research. However, Section 4.2.3 demonstrated that at least in one

simple learning task, the typical approach of introducing options defined using

Experience Replay, applied to some subgoal state found by some discovery al-

gorithm, performs no better than simply using Experience Replay alone. This

result suggests the need for a deeper understanding of how options improve

learning performance.

Introducing an option to an agent’s action space provides the agent

with at least two forms of domain knowledge. First, an option’s initiation

set and termination function identify a subgoal that potentially decomposes

the learning problem into subproblems. Second, an option’s policy describes

a solution to one of these subproblems. To isolate the benefit of temporal

abstraction, these two contributions must be separated.

To this end, this thesis proposes a refinement of the option formalism,

which defines an abstract action as a subproblem instead of as the solution to

a subproblem. A subtask is defined as a “partial option” o = 〈Io, Ao, Go, βo〉.

A subtask o thus corresponds to the following problem. From an initial state

s ∈ Io, select actions from Ao in such a way as to maximize the expected

cumulative reward, given that a transition into state s′ terminates the subtask

83

with probability βo(s′) and generates a subgoal value of Go(s′). A solution to

a subtask defines an option, by specifying the option policy πo : S → Ao.5

In general, an agent may learn the option policy by recursively applying

RL to learn in the subtask MDP M o = 〈S,Ao, Ro, P o〉 where the state space

S is inherited from the original MDP and the reward and state transition

functions are determined by the set of child actions Ao. In particular, for any

a ∈ Ao, P o[sa, s′] = P [sa, s′] and Ro[sa] = R[sa]+
∑

s′∈S P
o[sa, s′]βo(s′)Go(s′).

Note that in general, the option may only be capable of visiting a subset of S,

corresponding to the states reachable from Io given the set of child actions Ao

and the termination function βo. The subtask may thus be thought of as an

agent in its own right, attempting to learn only a part of the original problem,

perhaps concurrently with the agent learning when to execute this subtask.

From the perspective of the higher-level agent, this subtask is just an action

whose behavior may change over time. This nonstationarity may complicate

learning, but it allows for a larger breadth of hierarchical learning algorithms,

instead of requiring levels of abstraction to be learned strictly sequentially,

bottom-up.

Figure 4.3 compares the performance of standard Q-learning against

an algorithm that learns the option policies in parallel with the value function

for the entire task. The option learner is given the four correct subtasks as

prior knowledge, and it applies four instances of Q-learning in parallel with

5Prior work established the use of subgoal values to determine options (Sutton et al.,
1999), but without defining a subtask as a unit of knowledge.

84

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

S
te

ps
 p

er
 e

pi
so

de

Episodes

Q-learning only
SMDP learning

Figure 4.3: Performance of Q-learning and an algorithm that learns subtask
policies in parallel with the overall task policy. Each learning curve is the
average of 50 independent runs.

Intra-Option Model Learning (Algorithm 4.4) to learn the option policies. The

results show a substantial decrease in performance for the agent that employs

temporal abstraction, but perhaps surprisingly this poor performance does not

seem to be a result of the evolving option policies. Instead, the agent exhibits

some pathological initial exploratory behavior, as investigated in more detail

in Section 4.3.1. While the experimental approach to learning the option

policies and top-level policy could be more sophisticated, the technique is

straightforward and suggests the subtlety in employing hierarchical knowledge

properly.

85

4.3 Experiments with Options and Exploration

Section 4.2 suggests that the impact of a hierarchical approach is not

straightforward, even with environments and learning agents designed to high-

light its benefit. One reason for this subtlety is the conflation of subtasks and

subtask solutions, but this section reveals that subtasks influence learning per-

formance in large part by modifying the exploration behavior of the learning

agent. Section 4.3.1 explicates the poor performance of the option-learning

algorithm shown in Figure 4.3, showing that the premature introduction of

a subtask can lead to pathological exploration behavior. Section 4.3.2 in-

vestigates how options interact with a standard technique for encouraging

exploration. Finally, Section 4.3.3 suggests an alternative approach to using

subtasks to change the structure of a learning problem.

4.3.1 The Initiation Set

From the perspective of evaluating the utility of temporal abstractions,

prior work neglected to address the impact of when a discovered option be-

comes available during learning and how broadly applicable it is. For example,

existing option discovery methods typically define the initiation set heuristi-

cally as the set of states historically visited a few time steps before the iden-

tified subgoal state (McGovern & Barto, 2001; Şimşek & Barto, 2004). These

methods then add the newly created options to the action space in the middle

of learning the current task. Evaluations of temporal abstractions in this con-

text are constrained in at least two ways. First, temporal abstraction is only

86

applied when the value function is already partially learned. Second, the initi-

ation set is in general only a subset of the possible states in which the option

could reasonably be defined. These constraints have practical ramifications in

situations when hierarchies are being learned in one task for use in a related

task (in a transfer learning setting). Perhaps more importantly, they allow

only a limited understanding of the utility of temporal abstractions in general.

For an illustration of how these issues can lead to problems, consider

the behavior of the subtask-learning agent whose performance is shown in

Figure 4.3. It was given as prior knowledge four subtasks, corresponding to

navigating to each of the four doorways from anywhere else in the environment.

The addition of these four abstract actions drastically changes the apparent

structure of the environment. Since the value function is initialized to 0 and

the only nonzero reward occurs at the goal state, then the typical ǫ-greedy

exploration policy will conduct a random walk until finding the goal at least

once. However, every time the agent randomly selects one of the options, it

will end up at one of the doorways, at least five steps from the goal. The

agent cannot reach the goal until it randomly generates a sequence of actions

that doesn’t include any of the options but that does reach the goal, which

becomes exponentially unlikely in the distance of the goal from the options’

subgoal state.

To investigate this phenomenon, Figure 4.4 compares four learning

agents. The “Q-learning” agent performs standard Q-learning, as usual. The

“options” agent is given four correct options at the start of learning, including

87

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40

S
te

ps
 p

er
 e

pi
so

de

Episodes

Q-learning only
Options

Delayed options
Limited options

Figure 4.4: Comparison of learning agents with varying access to correct tem-
poral abstractions. The “Q-learning” agent never uses options. The “options”
agent gains immediate access to the correct options everywhere. The “delayed
options” agent gains access to these options after 20 episodes. The “limited op-
tions” agent gains immediate access to these options except in the lower-right
room. Each learning curve is the average of 50 independent runs.

88

the optimal option policy for each subtask. These subtasks all include the

entire state space (except for the one subgoal of each subtask) in their initi-

ation sets. The “delayed options” agent receives the same four options, but

only after the first 20 episodes of learning. Finally, the “limited options” agent

receives options immediately, but the initiation sets of these options do not

include any state in the room containing the goal state.

The agent that has immediate access to the optimal option policies in

all states performs the worst, for the reasons described above. The “delayed

options” agent avoids the pathological exploration behavior by not invoking

any options until it has a partially learned value function that allows it to learn

not to select the options in states with higher value than the subgoal state.

This agent performs identically to the Q-learning agent until after episode

20, at which point its performance rapidly improves to the optimal policy. Of

course, this agent forfeits any possible benefit that temporal abstraction might

provide in the initial stages of learning.

The “limited options” agent essentially uses prior knowledge to allow

the options to execute only when navigating to a doorway might be helpful.

Eliminating the state in the lower-right room from the initiation sets effec-

tively prevents the agent from allowing an “earlier” subtask to interfere with

completing the final steps of a solution. In a sense, existing option-discovery

algorithms already apply this idea heuristically, by only adding to the initia-

tion set the states experienced just before the candidate subgoal state.

Note that both of the agents that improve over Q-learning do so by

89

artificially limiting the availability of the abstract actions. This phenomenon

is nonintuitive to the extent that options can be construed as subroutines,

which typically one would design to be as generally applicable as possible.

4.3.2 Optimistic Initialization

The previous sections illustrated the perhaps nonintuitive possibility

that introducing options might worsen learning performance, even when the

agent retains direct access to all of the primitive actions. The reason is that

the addition of such temporal abstractions changes the qualitative structure

of the learning problem. The random exploration mechanisms employed in

practice by most implementations of RL suffice in environments where the

actions exhibit some degree of symmetry, so that random walks eventually

reach every region of the state space. Introducing abstract actions that only

terminate at subgoals biases random walks to states near those subgoals, since

a single random selection of an option can erase the effort of several primitive

actions that were carrying an agent away from the subgoal states.

One way to prevent options from interfering with the exploration be-

havior of an agent is to use an exploration mechanism that never relies on a

random walk. A simple heuristic often used to encourage exploratory actions

is optimism in the face of uncertainty, in which an agent assigns optimistic val-

ues to unfamiliar state-action pairs. This idea underlies the known finite-time

convergence proofs for RL (Brafman & Tennenholtz, 2002; Kearns & Singh,

1998; Strehl et al., 2006), as well as the R-max algorithm used throughout

90

this thesis.

This heuristic can be applied to Q-learning simply by initializing the

value function to some upper bound on the true optimal value function. This

optimistic initialization causes most updates to the value function to decrease

the value of state-action pairs just executed, making the agent more likely

to select a different action the next time it revisits that state. This technique

would prevent an agent from indefinitely returning to a subgoal state by driving

the value of the corresponding option below the optimistic initial values of

primitive actions that lead away from the subgoal.

Unfortunately, this technique also prevents the learning algorithm from

continuing to select options when they are actually optimal! To converge to

a stable optimal policy that selects an option in a certain state, the learning

algorithm must first learn that every other primitive action (and option) has

a lesser (or equal) value. Of course, at least one primitive action has the same

value as the option: the action that the option’s policy selects at that state.

Therefore, it seems that augmenting the action space of an agent with

options cannot meaningfully impact learning performance when exhaustive

exploration is required, such as in the general case when nothing is known

about the environment a priori. Regardless of the presence of options, the

agent must execute every suboptimal state-action pair enough times to learn

that they have smaller values than the optimal state-action pairs.

This phenomenon is apparent in the following experiment, in which

91

each agent uses optimistic initialization to drive its exploration. The first

agent simply uses Q-learning, the second is given correct subtasks and learns

the option policies dynamically, and the third is given optimal option policies

as prior knowledge. To illustrate the severity of the problem, the last agent

additionally receives as prior knowledge an option that navigates to the goal

state optimally from any state. Therefore, one optimal policy for this agent

is simply always to select this option, in every single state. Nevertheless,

Figure 4.5 reveals that all three agents exhibit identical learning performance.

4.3.3 Augmentation versus Abstraction

The preceding sections demonstrate that temporal abstractions benefit

RL in only limited situations. Allowing the use of options in the wrong regions

of the state space at the wrong stages of learning can lead to pathologically

bad exploration. Much of the benefit when options do help might be more

easily obtained by applying Experience Replay. The use of optimistic initial-

ization, the primary means for ensuring finite-time convergence to an optimal

policy, completely precludes options from impacting learning performance at

all. These results raise the question of how hierarchy can possibly benefit RL

in the general case.

Hauskrecht et al. consider another possible application of options: to

abstract, rather than augment, the MDP (Hauskrecht et al., 1998). Their

work, in the context of planning given the MDP parameters, showed that

planning with only an appropriate set of options can dramatically reduce the

92

 0

 100

 200

 300

 400

 500

 0 50 100 150 200

S
te

ps
 p

er
 e

pi
so

de

Episodes

Q-learning
Learning with subtasks

Learning with options

Figure 4.5: Performance of three learning agents that use optimistic initializa-
tion. The agents have identical performance, regardless of whether they use
temporal abstraction. Learning curves are the average of 50 independent runs.

computational effort required to obtain an optimal policy. In contrast, they

show that planning with both options and primitive actions can converge much

more slowly than planning with primitive actions alone, given an optimistic

initialization of the value function. These results do not translate directly to

the RL context, where the emphasis is on sample complexity instead of com-

putational complexity. For example, Section 4.3.2 already shows that learning

with options in addition to primitive actions does not hurt (or help) learning

performance given optimistic value-function initialization. Nevertheless, the

idea of using hierarchy to reduce rather than augment the action space has

received relatively little attention.6

6As discussed in Chapter 5, the less popular maxq framework adopts this approach.

93

One obvious danger in using only options to learn a task is the possi-

bility that pruning away the primitive actions will remove the agent’s ability

to behave optimally. For example, an agent in the four-room gridworld that

only selects from among the four subtasks that navigate to a doorway could

only generate an optimal policy if the goal state were in one of the doorways.

In the case of planning, analysis of the MDP can determine the goal state and

create an appropriate option. For an RL agent, which typically has no prior

knowledge of the goal state, the primitive actions must be available in the

vicinity of the goal. In the four-room gridworld, the agent only needs access

to the primitive actions in the bottom-right room.

Figure 4.6 compares two agents that ignore primitive actions outside

the bottom-right room against a standard Q-learning agent. One of these two

agents uses only options until it reaches the last room, after which it uses both

options and primitive actions (unless it leaves the room without reaching the

goal). The other agent only uses primitive actions in the last room. The agent

that uses options in the last room exhibits the same pathological exploration

behavior as the “options” agent in Figure 4.4: trying any of the options with

an exploratory action takes the agent at least five steps away from the goal.

The agent that only uses primitive actions in the last room learns very

quickly. Note that after executing any option, it can be in only one of four

states. After executing a primitive action, it can be in only one of 24 states,

since it only executes these actions in the bottom-right room (or its two door-

ways). As a result, this agent learns in a much smaller state space than the

94

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50

S
te

ps
 p

er
 e

pi
so

de

Episodes

Primitive actions only
Options only then both

Options only then primitives only

Figure 4.6: Performance of learning agents that remove primitive actions.

104-state space explored by the agents that may always execute primitive ac-

tions.

This abstracted agent learns this simple task about as efficiently as the

“limited options” agent in Figure 4.4. The primary difference between the

two agents is that the options produce a “soft” bias in the “limited options”

agent towards the subgoal states (except the in the bottom-right room). The

abstracted agent uses the options to enforce a hard bias, so that it never

needs to explore any actions in any states outside of the doorway states and

the last room. A key theoretical benefit of this hard bias is that it allows an

abstracted agent to employ techniques such as optimistic initialization without

wiping out the benefit of temporal abstraction. Since the agent cannot explore

from the states that were abstracted away, it can avoid a needlessly thorough

95

exploration of every primitive action from every state.

4.4 Discussion

The benefit of employing temporal abstraction in RL depends on a sur-

prising number of factors. These factors include the precise learning algorithm

used, when and where the abstraction becomes available, and the availability

of the primitive actions or other abstract actions.

One way to construe the introduction of options into an agent’s action

space is as the introduction of bias in the typical random exploration mecha-

nism. Random actions become much more likely to bring the agent to one of

the indicated subgoal states. Introducing this bias too early in learning can

prevent the agent from reaching the goal, which is the necessary first step in

backing up positive values throughout the state space. Only later in learning

can the options benefit, by backing value across multiple states at once and by

biasing learning to important parts of the state space. Optimistic initializa-

tion, by removing much of the random element from exploration, eliminates

this bias, beneficial or otherwise. By using options to replace primitive actions

instead of to augment them, an agent can constrain exploration, including the

effects of optimistic initialization.

This result highlights the difficulty in discovering truly useful options

automatically. The agents described in Section 4.3.3 benefited from options

because these options prevented them from ever thoroughly exploring three

of the four rooms in the domain. How could an agent in this environment

96

discover this temporal abstraction without first spending effort to explore those

three rooms, thus negating the possible benefit? One possible answer is that

a useful abstract action must somehow generalize from past experience. An

agent that fully explores several empty rooms may soon learn just to pass

through empty rooms in the future. By introducing an approriate abstract

action, the agent dynamically adapts its generalization. This idea suggests an

important connection between temporal abstraction and state abstraction or

function approximation.

Another consequence of these results for algorithms that discover hi-

erarchy is that candidate abstract actions may not always be evaluated in

isolation. The benefit of adding one action may depend on the agent’s ability

to consequently remove others. This behavior depends on the action hierarchy

as a whole, which determines the contexts in which each action executes and

the possible state-action pairs that must be explored to learn each option’s

policy.

An important direction for future research is to investigate how tem-

poral abstraction affects the computational complexity of RL. The fact that

Experience Replay can subsume the benefits of using options in certain cases

suggests that reducing the number of value function updates is one way in

which options can help, but the work of Hauskrecht et al. indicates that op-

tions can actually increase the amount of computation required. More research

is needed in the area of model-based algorithms, which more explicitly sep-

arate the gathering of data (exploration) from the computation of the value

97

function from that data (Kearns & Singh, 1998). In particular, given the in-

teraction between temporal abstraction and optimistic initialization, one open

question is how to incorporate options into algorithms that currently offer

finite-time convergence guarantees. The next chapter takes some first steps in

this direction.

98

Chapter 5

Model-Based Hierarchies

The preceding chapter took a deeper look at the usage of hierarchy in

RL. Despite the intuitive appeal of hierarchy as a mechanism for dividing prob-

lems into subproblems, the benefits of using options were shown to depend on

factors ranging from the exploration mechanism to what actions were available

at different stages of learning and in different regions of the state space. These

results reveal the need for experiments that can clearly separate the benefits

of hierarchy from the benefits of optimistic exploration or techniques for data

reuse such as Experience Replay.

This chapter addresses this need by introducing the first hierarchical

algorithm for the general RL setting that fully incorporates model-based tech-

niques for efficient data use and intelligent exploration (Jong & Stone, 2008).

It combines two existing algorithms, R-max and maxq. R-max, defined in

Section 2.3.2, embodies the model-based approach of using a model of the en-

vironment to summarize all of the available data, and then using this model

to seek out optimistic rewards. In some sense, R-max can be seen as a princi-

pled combination of Experience Replay with optimistic initializion. The maxq

framework, discussed in Section 5.1, contributes an approach to hierarchy that

99

emphasizes problem decomposition by formally representing the value function

for an environment as a sum of subtask value functions. Prior research with

maxq has also focussed on the need for abstracting MDPs, instead of augment-

ing them with additional options, which seems critical to improved learning

performance in the general case.

Section 5.2 combines R-max and maxq into a novel algorithm, R-

maxq, and provides some analysis of its convergence guarantees. Section 5.3

conducts experimental comparisons among these algorithms, and Section 5.4

concludes with discussion and related work.

5.1 The MAXQ Framework

maxq is commonly seen as an alternative to options (Barto & Mahade-

van, 2003), but it can also be seen as an elaboration of the subtask formalism

defined in Section 4.2.4 to represent subproblems for which an option is a solu-

tion. In this sense, maxq is a particular method for generating options. One of

its key ideas, discussed below, is the decomposition of an overall value function

into component value functions that each estimate the cumulative reward for

some interval of time. This decomposition permits different levels of hierarchy

to learn more independently and then to communicate effectively across levels.

maxq therefore takes the idea of intra-option learning a step further: instead

of obtaining only policy information from a lower-level option, an agent can

obtain value information from a lower-level subtask.

The maxq framework was first studied with the Taxi domain (Diet-

100

terich, 2000a), a simple gridworld combined with a task that yields deeper

hierarchical structure than the four-room environment of Chapter 4. This do-

main consists of a 5 × 5 gridworld with four landmarks, labeled red, blue,

green, and yellow, illustrated in Figure 5.1a. The agent is a taxi that must

navigate this gridworld to pick up and deliver a passenger. The system has

four state variables and six primitive actions. The first two state variables,

x and y, give the coordinates of the taxi in the grid. The third, passenger,

gives the current location of the passenger as one of the four landmarks or as

taxi, if the passenger is inside the taxi. The final state variable, destination,

denotes the landmark where the passenger must go. Four primitive actions,

north, south, east, and west, each move the taxi in the indicated direction

with probability 0.8 and in each perpendicular direction with probability 0.1.

The pickup action transfers the passenger into the taxi if the taxi is at the

indicated landmark. The putdown action ends an episode if the passenger is

in the taxi and the taxi is at the desired destination. Each episode begins

with the taxi in a random location, the passenger at a random landmark, and

a destination chosen randomly from the remaining landmarks. Each action

incurs a −1 penalty, except that unsuccessful pickup and putdown actions

cost −10, and a successful putdown action earns a reward of 20.

The structure of the Taxi domain makes it conducive for research into

hierarchical RL. The optimal policy may be described abstractly in four steps.

First, navigate to the landmark where the passenger is. Second, pick up the

passenger. Third, navigate to the destination landmark. Finally, put down

101

GET PUT

ROOT

north south east

pickup putdown

west

TO RED
NAVIGATE

(a) (b)

Figure 5.1: (a) Taxi domain, and (b) a task hierarchy for Taxi

the passenger. Navigation to each of the landmarks constitute reuseable sub-

tasks that hierarchical algorithms can exploit. Prior work (Dietterich, 2000a)

expressed this domain knowledge in the task hierarchy shown in Figure 5.1b.

This hierarchy defines a navigational composite action for each of the four

landmarks. These actions include the four primitive movement actions as chil-

dren, and they terminate upon reaching the coordinates corresponding to the

respective landmark. The GET and PUT composite actions each have all four of

their navigational composite actions as children, as well as pickup or putdown,

respectively. GET terminates when the passenger is in the taxi, and PUT termi-

nates only when the episode does. The ROOT action only includes GET and PUT

as children, and like PUT it defines no terminal states beyond those intrinsic

to the domain. All goal reward functions give 0 reward; each subtask simply

minimizes the costs earned before reaching its subgoal.

102

The definition in Section 4.2.4 of a subtask o = 〈Io, Ao, Go, βo〉 is only

a very slight generalization of the maxq definition of a task. The maxq litera-

ture assumes that the termination function βo : S → [0, 1] is binary: for a given

state, each task either always terminates or never terminates upon reaching

that state. It also assumes that the initiation set Io = {s ∈ S | βo(s) =

0} is simply the set of nonterminal states. Note that these assumptions

match the usage of options in practice, with the exception of some option-

discovery research that grows the initiation set incrementally (as discussed in

Section 4.3.1). For consistency, this chapter maintains the subtask formal-

ism derived from options, although the subtasks used will obey the maxq

assumptions regarding β and I.

In addition, note that maxq allows the subtask set Ao to contain both

primitive actions and other composite subtasks. The only restriction is that

the task hierarchy cannot produce a cycle, in which a task includes itself as a

descendent task. In contrast, option policies πo typically include only primitive

actions; the option formalism bears a resemblance to the idea of macro opera-

tors in planning, where there is little advantage to defining recursive macros,

instead of a single flattened macro specified only in terms of primitives. Only

when the behavior of an option is being learned or discovered does additional

levels of hierarchy make sense!

As a concrete example, the NAVIGATE TO RED task in Figure 5.1b has

the following components. The subtask set A = {north, south, east, west}

includes just the four movement-related primitive actions. The termination

103

function specifies termination probability β(s) = 1 for all states s in which the

taxi’s x coordinate is 0 and its y coordinate is 4; β(s) = 0 for all other states.

The goal value function G assigns value 0 to all states, since the only goal is

to minimize penalties accrued before termination.

Moving up the hierarchy, the GET task includes four NAVIGATE tasks

as subtasks, as well as the primitive action pickup. GET terminates once the

passenger is inside the taxi. Finally, the ROOT task only invokes GET and PUT

as subtasks; it does not need to reason directly about any of the primitive

actions.

Each task o defines an SMDP learning problem
〈

S,Ao, R̃o, P̃ o
〉

with

the same state space S of the underlying MDP1 but an action space Ao that

depends on the task o. This state-action space provides the interface for the RL

algorithm used to learn a solution to this SMDP problem. It also indexes the

reward and state transition matrices R̃o and P̃ o, which combine information

about the behavior of the actions Ao with the task termination function βo

and goal value function Go:

R̃o = Ro + P oβoGo (5.1)

P̃ o = P o (1− βo) , (5.2)

where βo is represented as a S × S diagonal matrix where βo[s, s] is the prob-

ability of termination upon reaching s, and Ro and P o are multi-time models

1Task-specific state abstraction may additionally allow the task to reason in a reduced
state space, and such abstraction may be a primary motivation of hierarchical decomposi-
tion.

104

of the subtasks Ao. These equations take advantage of the multi-time rep-

resentation of the state-transition function: P̃ o represents task termination

by zeroing out transition probabilities into terminal states. The reward func-

tion incorporates goal values for each state-action sa by adding the expected

value of Go(s′). Note that since child action c ∈ Ao may itself be a task, the

entry P o[sc, s′] may describe the estimated behavior of an option, not a prim-

itive action. Ro and P o therefore depend on the current option policies of all

the descendent tasks of o. This dependency highlights a difficulty of learning

different levels of hierarchy concurrently: above the lowest level, the SMDP

learning problems become nonstationary.

Nevertheless, if task o and all its descendents have current option poli-

cies, then the standard Bellman equations still hold:

Q̃o = R̃o + P̃ oṼ o (5.3)

Ṽ o = πoQ̃o, (5.4)

where the tilde indicates that these estimated values include the artificial goal

values, which are not an intrinsic part of the environment. Given policies for

its descendent tasks, and therefore the SMDP reward and state transition func-

tions R̃o and P̃ o, standard planning algorithms can compute the recursively

optimal policy for task o, which maximizes Equation (5.4). The option pol-

icy therefore maximizes the expected discounted sum of both rewards earned

during execution and goal values earned upon termination. Given the option

105

policy πo, the “uncontaminated” task value function is given by solving

Qo = Ro + P o (1− βo)V o (5.5)

V o = πoQo = πo (Ro + P o (1− βo)V o) . (5.6)

These equations modify the standard Bellman equations only to apply task

termination: terminal states have 0 value, reflecting the fact that no further

reward is earned after task termination.

These task value functions simply give the expected reward accumu-

lated during the execution of the task. For example, V GET[s] corresponds to

the expected cumulative discounted reward earned by executing the GET task

starting in state s (for some current option policy πGET, as well as option poli-

cies for the descendent tasks). The value function V ROOT corresponds to the

value function in the underlying MDP for the hierarchical policy specified by

the current option policy in each task. A key idea of maxq is that these

value functions–and therefore their corresponding RL problems–are related in

specific ways determined by the structure of the task hierarchy.

The maxq framework defines for each task o the completion function

Co : S × A→ R, which estimates the cumulative discounted reward obtained

by completing task o after first performing subtask a ∈ Ao starting in state

s ∈ Io. In matrix notation, this function may be defined:

Co = P oV o, (5.7)

so it satisfies Qo = Ro+Co. The completion function C̃o including goal values

is defined analogously: C̃o = P oṼ o.

106

The key benefit to decomposing Qo into the sum of Ro and Co is that

the task o need only learn Co. The subtask rewards Ro depend only on the

subtasks. In particular,

Ro[sc] = V c[s] (5.8)

for all composite tasks o, child tasks a ∈ Ao, and states s ∈ S. If c represents

a primitive action a, then

V a[s] = R[sa], (5.9)

where R is the reward function of the underlying MDP. For example, sup-

pose that in a given state s, πROOT executes GET, πGET executes RED, and πRED

exexecutes north. Then the overall value of s can be decomposed as follows:

V ROOT[s] = QROOT[sGET]

= V GET[s] + CROOT[sGET]

= QGET[sRED] + CROOT[sGET]

= V RED[s] + CGET[sRED] + CROOT[sGET]

= QRED[snorth] + CGET[sRED] + CROOT[sGET]

= V north[s] + CRED[snorth] + CGET[sRED] + CROOT[sGET]

= R[snorth] + CRED[snorth] + CGET[sRED] + CROOT[sGET].

Each of the quantities in the final line may be estimated separately, each by the

task indicated in the superscript. During policy evaluation, the overall value

of s can then be estimated by summing these components. In this example,

given the described policy, the value of the ROOT task at state s is the sum of

107

the value of the north primitive action at state s, plus the value of completing

the RED task after executing north at state s, plus the value of completing

the GET task after executing RED at state s, plus the value of completing ROOT

after executing GET at state s.

The original maxq-q algorithm learns each completion function (and

the reward function for primitive actions) using the same stochastic-approximation

technique as Q-learning. It relies on the function EvaluateMaxNode (Al-

gorithm 5.1) to compute V o[s] for a given task o and state s. This function uses

the “internal” completion functions C̃ to determine each task’s choice of sub-

task, but it computes values using C, which only incorporates environmental

rewards.

Algorithm 5.1 EvaluateMaxNode(σ, o, s)

if o is a primitive task then

a← o {Get primitive action encapsulated by o}
return Rσ[sa]

else

{Choose child using local goal values}
cmax = argmaxc∈Ao | s∈IcEvaluateMaxNode(c, s) + C̃σ

o [sc]
{Report value without local goal values}

return EvaluateMaxNode(cmax, s) + Cσ
o [sc

max]
end if

Algorithms 5.2 and 5.3 specify the Update and Choose subroutines

for maxq-q. MAXQChoose recursively chooses subtasks using ǫ-greedy

action selection, building a stack of currently executing tasks. For each task

that terminates, MAXQUpdate uses stochastic approximation to improve

the completion function estimates for composite tasks and the reward function

108

estimates that determine the values of primitive tasks. It applies this update

to each state visited during the just-terminated task, since the terminal state

reached serves as a valid sample for hypothethical task executions that start

after the actual execution. To this end, the agent maintains the full state

history {s}i indexed by time steps i and task initiation times {i}o associated

with each task o.

Algorithm 5.2 MAXQChoose(s)

o← Top(Kσ) {Currently executing task}
while o is not a primitive task do

if Agent explores with probability ǫo then

c← drawn uniformly at random from c ∈ Ao | βc[s, s] = 0
else

c← argmaxc∈Ao | s∈IcEvaluateMaxNode(c, s) + C̃σ
o [sc]

end if

o← c

Kσ ← Push(Kσ, o) {Initiate task o}
iσo ← t {Record time o initiated}

end while

sσt ← s {Record state history}
return a

Compared to standard Q-learning with only primitive actions, maxq-q

with a task hierarchy must estimate many more parameters. Instead of one

value Q[sa] for each pair or state and action, it learns one value Co[sc] for

each combination of task, subtask, and state in which those tasks may exe-

cute. Even with the domain information encoded in the task hierarchy shown

in Figure 5.1b, maxq-q learns the Taxi domain more slowly than Q-learning

in the absence of state abstraction (Dietterich, 2000a). However, by dint of

109

Algorithm 5.3 MAXQUpdate(s, ar, s′)

o← Top(Kσ) {Task encapsulating primitive action a}
R[sa]

αo

← r

repeat

c← o {Now consider o the child...}
Kσ ← Pop(Kσ)
o← Top(Kσ) {Parent of c}
if βo[s′, s′] = 1 then {o will terminate}
Ṽ σ
o [s

′] = Go[s′]
V σ
o [s

′] = 0
else

{Determine next task that o will execute}
c′ ← argmaxcEvaluateMaxNode(c, s′) + C̃σ

o [s
′c]

Ṽ σ
o [s

′]← EvaluateMaxNode(c′, s′) + C̃σ
o [s

′c′]
V σ
o [s

′]← EvaluateMaxNode(c′, s′) + Cσ
o [s

′c′]
end if

for all timesteps i ∈ {iσc . . . tσ} since c began execution do

C̃σ
o [s

σ
i c]

αo

← γt−i+1Ṽ σ
o [s

′]

Cσ
o [s

σ
i c]

αo

← γt−i+1V σ
o [s

′]
end for

until βo[s′, s′] = 0
tσ ← tσ + 1

110

estimating the values of individual subtasks, the completion functions {C}o

facilitate state abstraction in ways that a monolithic value function Q does

not. For example, the RED task simply navigates to the red landmark, so the

state representation of CRED only needs to include x and y coordinates. Diet-

terich identifies several forms of abstraction, which reduce the overall number

of parameters estimated by maxq-q for the Taxi domain to 632, compared to

3000 for Q-learning (Dietterich, 2000a). Observing that maxq-q then outper-

forms Q-learning, he identifies state abstraction as a primary motivation for

introducing hierarchy.

Options can also facilitate state abstraction, so the key difference be-

tween typical option-learning algorithms and maxq-q is the latter’s decom-

position of the value function. This decomposition, and the resulting commu-

nication across levels of hierarchy, allows values learned for a subtask directly

to influence values estimated for its parent task. The maxq framework more

naturally handles this case of concurrent learning across levels of hierarchy,

since the standard option formalism represents options as composite actions

with static behavior.

5.2 Hierarchical Models for Reinforcement Learning

This section develops a new algorithm that builds upon maxq by ex-

tending its idea of communicating values across levels of hierarchy to com-

municating models across levels of hierarchy. maxq observes that the value

function learned for a subtask SMDP is equivalent to a portion of the reward

111

function used to plan in the parent task SMDP. maxq-q still relies on stochas-

tic approximation to learn C, which combines the state transition function and

state value function, but a logical question is what property of a subtask can

be used to construct the state transition function for the parent task?

After answering this question, this thesis proposes the first fully model-

based hierarchical RL algorithm for the standard discounted-reward RL set-

ting. This algorithm, R-maxq, combines the advantages of the model-based

R-max algorithm and the maxq framework for hierarchy. In doing so, it can

help address critical issues that Chapter 4 raised: what precisely is the role

of hierarchy in RL, and how does it interact with the problem of intelligent

exploration?

The key idea behind this model-based approach is to assume that a

composite task o can query a child task c for not just Ro[sc] but also for

P o[sc]. Then the only unknown quantity in Equation (5.3) is Ṽ o, which can be

computed using standard dynamic programming methods and stored locally.

A task o can define its reward function Ro[sc] = Rc[s] and its state

transition function P o[sc, x] = Pc[s, x], for all c ∈ Ao and s, x ∈ S, if each

child task c can compute its estimated rewards Rc and transition probabilities

to terminal states Pc.
2 Prior research into option models (Sutton et al., 1999)

2The superscript in P o is intended to connote that the state-action transition matrix
P o is part of the higher-level task o, used to compute the policy that associates o with
its lower-level subtasks. The subscript in Pc is intended to connote that c is a lower-level
subtask, and Pc is the relevant portion of the state-action transition matrix for a parent
task of c.

112

defined Bellman-like equations for these quantities, which can be translated

into this thesis’s matrix notation as follows:

Ro = πo (Ro + P o (1− βo)Ro) (5.10)

Po = πoP o ((1− βo)Po + βo) . (5.11)

In this notation, maxq’s key insight is that Ro = V o. For a parent task p, Rp

can be constructed from the value functions V o for each o ∈ Ap.

This thesis analogously defines Po as the terminal-state function of

o, hereafter denoted Ωo, which gives the discounted probability Ωo[s, s′] that

task o, when initiated in state s ∈ Io, will terminate in state s′ ∈ S \ Io. Each

column of Ωo, corresponding to the discounted transition probabilities into a

state s′, can be thought of as a value function for a task which offers reward

1 for reaching s′ (as well as terminating upon reaching this state) and reward

0 elsewhere. It follows that the terminal-state function can also be computed

using standard MDP planning algorithms, as well as by solving

Ωo = πo (P oβo + P o (1− βo) Ωo) . (5.12)

Although prior work on option model-learning (Sutton et al., 1999)

presented the original forms of Equations (5.6) and (5.12), the algorithm it

proposed learned these quantities through relatively inefficient stochastic ap-

proximation. The maxq framework (Dietterich, 2000a) formally decomposed

the overall task value function into components using Equation (5.8) to relate

the reward function Ro of a parent task to the value function V c of a child

113

task. This value-function decomposition allows R to be computed recursively,

leaving the maxq-q algorithm only to learn Co = P oV o through stochastic

approximation (along with V a for primitive tasks only). The novel R-maxq

algorithm takes this idea a step further and uses

P o[sc, s′] = Ωc[s, s′] (5.13)

to relate the state transition function of a parent task to the terminal-state

functions of its child tasks.

A key strength of the new algorithm is its ability to compute directly

the reward and transition models for a given composite task, using dynamic

programming instead of stochastic approximation. Unlike maxq-q, no explicit

learning need take place at the higher levels of the hierarchy, where values are

obtained from planning with models derived from the lower levels.

This model decomposition provides a way to compute policies and

therefore high-level transition and reward models given lower-level transition

and reward models. To ground out this process, models of the primitive ac-

tions must be available. However, if Ra and P a are available for each primitive

action a, note that we could compute the optimal policy of the system using

standard (non-hierarchical) planning algorithms. Nevertheless, Section 5.3 em-

pirically demonstrate the benefit of using hierarchies. The next section first

presents the new model-based learning algorithm.

114

5.2.1 The R-MAXQ Algorithm

The previous section shows how to compute abstract models from prim-

itive models, but a complete model-based RL algorithm must specify how to

estimate the primitive models. This section combines this hierarchical model

decomposition, inspired by the maxq value function decomposition, with the

primitive models defined by the R-max algorithm (Brafman & Tennenholtz,

2002), yielding a new algorithm, R-maxq.

As discussed in Section 2.3.2, R-max begins with the maximum-likelihood

estimates of the MDP reward and state transition matrices R and P (defined

in terms of primitive actions only). It keeps track of the sample size for each

state-action, and when this sample is smaller than some threshold, it over-

rides the appropriate row of these matrices with optimistic values. With the

multi-time representation of P , the optimistic model can be implemented quite

simply: R[sa] = vmax and P [sa, s′] = 0, for undersampled state-action sa, all

successor state s′, and an upper bound on the value function vmax. MDP plan-

ning with the revised matrices directly yields the exploration policy used at

the current time step.

R-maxq works in the same way, except it computes a hierarchical value

function using its model decomposition instead of a monolithic value function

using the standard MDP model. It applies optimistic rewards to the primi-

tive action rewards R, which then propagate up the hierarchy, via each task’s

computed abstract reward function V o. Each local policy implicitly exploits

or explores by choosing a child task with high apparent value, which com-

115

bines the task’s actual value and possibly some optimistic bonus due to some

reachable unknown states. No explicit reasoning about exploration is required

at any of the composite tasks in the hierarchy: as in R-max, the planning

algorithm is oblivious to its role in balancing exploration and exploitation in

a learning agent. A key advantage of R-maxq is that its hierarchy allows

it to constrain the agent’s policy in a fashion that may reduce unnecessary

exploratory actions, as illustrated in Section 5.3.

Algorithm 5.4 specifies the Choose component of R-maxq. It main-

tains a stack of currently executing tasks,K. Each time step begins by popping

tasks that have terminated and then pushing tasks according to each task’s

policy. The necessary models, value functions, and policies are computed by

the mutually recursive functions RmaxqPlan and RmaxqEvaluate.

Algorithm 5.4 RmaxqChoose(s)

o← Top(Kσ) {Current executing task}
while βo[s, s] = 1, implying task o should terminate do

Kσ ← Pop(Kσ)
o← Top(Kσ)

end while

while o is not a primitive task do

RmaxqPlan(o) {Computes πσ
o }

c← chosen with probability πσ
o [s, sc]

o← c

Kσ ← Push(Kσ, o) {Initiate task o}
end while

return a

Algorithm 5.5 computes the policy for a given composite task o by

constructing an SMDP and simply applying value iteration. The rewards and

116

transitions that comprise the MDP are obtained by combining the task’s goal

values Go and termination function βo with the results of policy evaluation for

the subtasks, as defined in Equations (5.1) and (5.2).

Algorithm 5.5 RmaxqPlan(o)

for all subtasks c ∈ Ao of task o do

RmaxqEvaluate(σ, c) {Compute V σ
c and Ωσ

c }
end for

{Construct (and store) MDP from child task models}
Rσ

o ← [sc] 7→ V σ
c [s]

P σ
o ← [sc, s′] 7→ Ωσ

c [s, s
′]

{Temporarily apply task termination and goal rewards to MDP}
R̃o ← Rσ

o + P σ
o β

oGo

P̃o ← P σ
o (1− βo)

Ṽ σ
o ← ValueIteration(R̃o, P̃o, ǫ, Ṽ

σ
o) {Plan with modified model}

Q̃o ← R̃o + γP̃oṼ
σ
o

πo ← chosen so that π[s, sa] > 0⇒ a ∈ argmaxaQ̃o[sa]

Algorithm 5.6 computes the value function and terminal-state function

for a given task. For primitive tasks, these functions are equivalent to the

maximum likelihood reward and state transition functions, modified with the

R-max optimistic exploration mechanism. For composite tasks, Algorithm 5.5

is used to compute the task policy, and then policy evaluation models the

behavior of the task.

Compared to other hierarchical learning algorithms, R-maxq by dint

of its model-based approach, focuses almost exclusively on planning. Algo-

rithms 5.4-5.6 address the computation of a hierarchical policy given a simply

maximum-likelihood model of the primitive actions (including sample sizes for

each state-action). In fact, to obtain a complete agent, it suffices to combine

117

Algorithm 5.6 RmaxqEvaluate(o)

if o is primitive then

a← o {Use a for primitive actions}
V σ
a ← [s] 7→

{

vmax if Nσ[sa] < m

Rσ[sa] otherwise

Ωσ
a ← [s, sσ] 7→

{

0 if Nσ[sa] < m

P σ[sa, s′] otherwise
else {o is a composite task}
RmaxqPlan(o) {Sets Rσ

o , P
σ
o , π

σ
o }

{Solve Equation (5.6)}
V σ
o ← solution to V σ

o = πσ
o (R

σ
o + P σ

o (1− βo)V σ
o) .
{Solve Equation (5.12)}

Ωσ
o ← solution to Ωσ

o = πσ
o (P

σ
o β

o + Po (1− βo) Ωσ
o) .

end if

the RmaxqChoose function with the same MaximumLikelihoodUpdate

function (Algorithm 2.9) used by R-max.

Note that this presentation of R-maxq omits many optimizations for

computational efficiency. It instead focuses on completely describing the logic

that determines the agent’s action selection and therefore its data efficiency.

Chapter 7 discusses the software architecture of a practical implementation,

while the next section addresses the sample complexity of R-maxq.

5.2.2 Analysis of R-MAXQ

R-maxq probably follows an approximately optimal policy for all but

a finite number of time steps. Unfortunately, this number may be exponential

in the size of the hierarchy. This section provides a sketch of a proof and then

closes with a brief discussion of the implications of this result.

118

The originalR-max algorithm achieves efficient exploration by using an

optimistic model. Its model of any given state-action pair is optimistic until

it samples that state-action m times. By computing a value function from

this optimistic model, the resulting policy implicitly trades off exploration

(when the value computed for a given state includes optimistic rewards) and

exploitation (when the value only includes estimates of the true rewards).

Kakade bounded the sample complexity of RL (Kakade, 2003) by first showing

that R-max probably only spends a finite number of time steps attempting to

reach optimistic rewards (exploring). For the remaining (unbounded) number

of time steps, the algorithm exploits its learned model, but its exploitation is

near-optimal only if this model is sufficiently accurate. Kakade then bounded

the values of m necessary to ensure the accuracy of the model with high

probability.

To be precise, let an MDP with finite state space S and finite action

space A be given. Let ǫ be a desired error bound, δ the desired probability of

failure, and γ the discount factor. Then R-max applied to an arbitrary initial

state will spend O
(

m|S||A|L
ǫ

log |S||A|
δ

)

time steps exploring, with probability

greater than 1 − δ
2
, where L = O

(

log ǫ
1−γ

)

. Furthermore, there exists an m ∈

O
(

|S|L2

ǫ2
log |S||A|

δ

)

such that when the agent is not exploring, V π∗

(st)−V πt(st) ≤
ǫ

1−γ
(Rmax−Rmin) with probability greater than 1− δ

2
, where st and πt are the

current state and policy at time t, and Rmax and Rmin bound the reward

function.

The hierarchical decomposition used by R-maxq complicates an anal-

119

ysis of its sample complexity, but essentially the same argument that Kakade

used provides a loose bound. Kakade’s proof (Kakade, 2003) provides the

gross structure of the argument; this section will only sketch the necessary

extensions. A key lemma is Kakade’s ǫ-approximation condition (Lemma

8.5.4). The state transition model Ω̂a for a primitive action a (Ωa can be

thought of as the portion of the state transition function P that applies to

a) is an ǫ-approximation for the true dynamics Ωa if for all states s ∈ S,
∑

s′∈S

∣

∣

∣
Ω̂a(s, s′)− Ωa(s, s′)

∣

∣

∣
< ǫ. The ǫ-approximation condition states that

if a model has the correct reward function V a (again, the portion of the re-

ward function R that applies to a) but only an ǫ-approximation of the tran-

sition dynamics Ωa for each action, then for all policies π and states s ∈ S,
∣

∣

∣
V̂ π(s)− V π(s)

∣

∣

∣
< ǫL

1−γ
.

Essentially, this condition relates the error bounds in the approxima-

tion of the transition function to the resulting error bounds in the computed

value function. It allows the analysis of R-max to determine a sufficient value

of m to achieve the desired degree of near optimality. This condition must be

extended in two ways to adapt the overall proof toR-maxq. First, R-maxq vi-

olates Kakade’s assumption of deterministic reward functions. While primitive

actions can still be assumed to have deterministic (and thus trivial to learn)

rewards, the abstract rewards of composite tasks depend on the stochastic dy-

namics of the environment. Define an estimated subtask reward function V̂ c

to be a λ-approximation of the true reward function V c if for all states s ∈ S,
∣

∣

∣
V̂ c(s)− V c(s)

∣

∣

∣
< λ. Then it is straightforward to adjust Kakade’s derivation

120

of the ǫ-approximation condition to show that the computed value function V o

for any given policy satisfies for all s ∈ S,
∣

∣

∣
V̂ o(s)− V o(s)

∣

∣

∣
< ǫL

1−γ
+λ. In other

words, introducing λ error into a previously perfect reward function (subtask

value function) only increases the error of the estimated value function by λ.

This extends Kakade’s bounds to the error of V o given errors in V c and Ωc.

The second necessary extension is a bound on the error of Ωo given

errors in V c and Ωc. Equation (5.12) illustrates that for every s′ ∈ S \ Ic,

Ωo[·, s′] can be thought of as a value function estimating the expected cumula-

tive discounted probability of transitioning into s′. The total error in Ωo(s, ·)

will thus be bounded by the sum of the errors for each s′ ∈ S \ Ic, so it can

be shown that Ωo is an O
(

|S\Ic|ǫL
1−γ

)

-approximation. The error bound for Ωo is

therefore larger than the error bound for V o by a factor of |S \ Ic|, reflecting

the fact that Ωo can be computed as a collection of |S \ Ic| value functions.

These results bound the errors that propagate up from the primitive

actions in the hierarchy, but these bounds seem quite loose. In particular,

these bounds can’t rule out the possibility that each level of the hierarchy

might multiply the approximation error by a factor of |Ta|L
1−δ

. Since the amount

of data required varies as the inverse square of ǫ, if R-max requires m samples

of each action at each state to achieve a certain error bound, R-maxq may

require m′ = O
(

m
(

TL
1−δ

)2h
)

samples of each primitive action at each state

to achieve the same error bound at the root of the hierarchy, where T is the

maximum number of reachable terminal states for any composite action and

h is the height of the hierarchy: the number of composite tasks on the longest

121

path from the root of the hierarchy to a primitive action (not including the

root itself).

Adapting the remainder of Kakade’s proof establishes that R-maxq

will probably converge to a (recursively) near-optimal policy, although this

guarantee requires exponentially more data than R-max in the worst case.

Note that this guarantee applies to any choice of hierarchy. It remains to be

seen whether it might be possible to derive tighter bounds for specific classes

of action hierarchies. Furthermore, as Kakade notes in his derivation, the

ǫ-approximation condition is perhaps unnecessarily stringent, since it gives

the worst possible degradation in approximation quality over all possible poli-

cies (Kakade, 2003).

In practice, implementations of R-max use far smaller values ofm than

would be required to achieve useful theoretical guarantees. In this vein, note

that running R-maxq will result in no more time spent in exploration than

running R-max with the same value for m. The hierarchical decomposition

only weakens the guarantees on the near-optimality of the policy that R-

maxq exploits. The experiments described in the next section show that a

good hierarchy can even reduce the amount of time spent exploring, with no

appreciable deterioration in solution quality.

5.3 Experimental Results

This section presents empirical results, which show that R-maxq out-

performs both of its components, R-max and maxq-q. It discusses these

122

outcomes in detail, to reveal how precisely the algorithm benefits from com-

bining model-based learning and hierarchical decomposition.

The experiments with R-max and R-maxq set the threshold sample

size at m = 5. Preliminary experiments showed that larger values of m did not

signicantly improve the final policy, although of course they led to more time

spent estimating the model. The only other parameter for these algorithms

is the stopping criterion for the dynamic programming steps. In all cases,

value iteration ran until the largest change was smaller than ǫ = 0.001. R-

maxq and the original maxq-q algorithm were provided with the hierarchy

shown in Figure 5.1b as prior knowledge. The implementation of maxq-q used

precisely the hand-tuned parameters Dietterich optimized for the initial value

function, learning rates, and temperature decay (for Boltzmann exploration)

for each action in the hierarchy (Dietterich, 2000a). For each condition, 100

independent trials were conducted.

5.3.1 R-MAXQ versus R-MAX

First compare the performance of R-maxq and R-max on the Taxi

task. A reasonable initial hypothesis would be that R-maxq would perform no

better than R-max in the absence of state abstraction, since the model-based

ability to plan to explore might subsume the exploratory role that options have

played in many model-free RL implementations (Şimşek & Barto, 2004; Singh

et al., 2005). Figures 5.2 and 5.3 reveal that in fact the two algorithms exhibit

very different learning curves. In particular, although R-max requires many

123

-60000

-50000

-40000

-30000

-20000

-10000

 0

 0 200 400 600 800 1000 1200 1400 1600

C
um

ul
at

iv
e

re
w

ar
d

Episodes

R-MAXQ
R-MAX

MAXQ-Q

Figure 5.2: Cumulative performance of R-maxq, R-max, and maxq-q on
the Taxi domain, averaged over 100 independent trials. The differences among
these total costs of learning over 1600 episodes are significant (p < 0.001).

-80

-60

-40

-20

 0

 0 200 400 600 800 1000 1200 1400 1600

R
ew

ar
d

pe
r

ep
is

od
e

Episodes

R-MAXQ
R-MAX

MAXQ-Q

Figure 5.3: Asymptotic performance of R-maxq, R-max, and maxq-q on the
Taxi domain, averaged over 100 independent trials. R-maxq and R-max each
learn significantly better policies than maxq-q after 1600 episodes (p < 0.001).

124

fewer episodes to converge to an optimal policy, R-maxq earns much greater

total reward.

The hierarchy used by R-maxq doesn’t so much guide exploration as

it constrains it. In particular, note that the hierarchical agent can never at-

tempt the putdown action except at one of the four landmark locations, since

the PUT action only becomes available when the agent is already at one of these

locations, and the four navigational actions keep the agent in this reduced set

of states. The agent thus only attempts the putdown action in 12 incorrect

states, instead of the 396 explored by R-max. In addition, R-max attempts

the pickup action in 100 states in which R-maxq doesn’t, when the passenger

is already in the car. Since the penalty for incorrect usage of these actions is

-10, R-max loses 10(396−12+100)m = 24200 reward due to its wasted explo-

ration, accounting for the difference between the two algorithms in Figure 5.2.

Furthermore, since the GET action cannot navigate to an arbitrary location,

R-maxq can’t attempt the pickup action in a non-landmark location until

some episode randomly starts the agent there. In this case the hierarchy can

only postpone, not prevent, wasted exploration. This effect explains the de-

layed convergence relative to R-max : in later episodes R-maxq spends time

on exploration that R-max performed more eagerly.

5.3.2 R-MAXQ versus MAXQ-Q

Figures 5.2 and 5.3 also compare R-maxq with the original maxq-q

algorithm. Of course, this comparison isn’t very fair, since a primary goal of

125

the maxq framework was to create opportunities for state abstraction (Diet-

terich, 2000a), which these implementations did not initially exploit. In fact,

Dietterich identified the condition described in Section 5.3.1, which he called

shielding, as one that permits abstraction. For a more fair comparison, the

implementation of maxq-q was allowed to use all the state abstractions in

the Taxi domain identified by Dietterich, along with his optimized parame-

ters (Dietterich, 2000a).

In return, R-maxq was also allowed to enjoy an explicit form of state

abstraction as prior knowledge: Dietterich’s notion of max node irrelevance.

Each action in the hierarchy abstracts away state variables when domain

knowledge indicates that doing so would not compromise the learned model.

However, whereas in maxq-q a task o only reports its abstract values V o to

its parents, in R-maxq it must also convey the abstract transitions Ωo. Thus

a composite action could only ignore a state variable if all of its children also

ignore that state variable.

In the hierarchy shown in Figure 5.1b, the four primitive movement ac-

tions and the four navigational actions can abstract away the passenger and

destination state variables. GET and pickup ignore destination, and PUT

and putdown ignore passenger. However, ROOT cannot ignore any state vari-

ables. When a child’s transition function was more abstract than a parent’s

model, the parent assumed a very simple dynamic Bayes network (DBN) fac-

torization (Boutilier et al., 1995). For example, P north sets x and y (each

conditional on the previous values of both variables), but passenger and

126

destination remain constant. Figure 5.4 compares the performance of the

resulting algorithms. Both maxq-q and R-maxq learn much faster with state

abstraction, with the model-based nature of R-maxq continuing to give it an

edge.

It is worthwhile to examine more closely how the hierarchy interacts

with state abstraction in the Taxi domain. Consider how maxq-q learns

the ROOT action. The only values stored locally are the completion functions

CROOT(·, GET) and CROOT(·, PUT), which have different abstract representations.

The latter function is always equal to 0, since after PUT terminates there is

nothing to complete, since the entire episode has terminated. Meanwhile,

to evaluate CROOT(s, GET) the algorithm need only inspect the passenger and

destination variables of s, since the values of these two variables before exe-

cuting GET completely determine the remaining cost of completing ROOT after

GET terminates. Hence, maxq-q only learns 16 values at the ROOT node; to

compute the value of a state it recursively queries Ra and adds the appropriate

completion function (Dietterich, 2000a).

R-maxq doesn’t apply any explicit state abstraction to ROOT, but note

that after executing either of its two child actions, the result must be one of

12 nonterminal states: with the taxi at one of four landmarks, the passenger

in the taxi, and the destination at one of the other three landmarks. Hence,

value iteration in the SMDP for the ROOT task need only compute the values of

these 12 states plus the current state. As with maxq-q, the result distribution

irrelevance of GET allows R-maxq to store only a small number of values

127

-60000

-50000

-40000

-30000

-20000

-10000

 0

 0 200 400 600 800 1000 1200 1400 1600

C
um

ul
at

iv
e

re
w

ar
d

Episodes

R-MAXQ
R-MAX

MAXQ-Q

Figure 5.4: Cumulative performance of R-maxq, R-max, and maxq-q on
the Taxi domain, using state abstraction. (The asymptotic performance is
qualitatively similar to that shown in Figure 5.3, although with faster conver-
gence.) The differences among these total costs of learning over 1600 episodes
are statistically significant (p < 0.001)

128

locally. To compute the value of a state, R-maxq also queries one-step values

from its children and then adds the appropriate successor state values. In this

sense, these 12 states can be thought of as the completion set of ROOT.

Figure 5.4 also shows the performance of standard R-max with the

same DBN factorization as R-maxq applied to most of its actions (which

are all primitive). Note that in the absence of shielding, putdown cannot

safely ignore the passenger variable. The ability to abstract the primitive

models does reduce the amount of exploration that R-max must perform, but

the improvement is significantly smaller than that of the other algorithms.

This result gives more support for motivating hierarchical decomposition with

opportunities for state abstraction.

5.4 Discussion

Other algorithms have combined hierarchical RL with a model-based

approach, but not in the standard framework of discounted rewards and stochas-

tic dynamics. Diuk et al. developed a model-based maxq algorithm for deter-

ministic domains, allowing them to quickly sample the effect of a composite

action recursively: every action’s effect can be represented as a scalar reward

and a single successor state (Diuk et al., 2006). Their algorithm also uses

Dietterich’s approach to state abstraction, occasionally forcing it to replan,

since the effect of a child action may depend on state variables not visible to

the parent, making it seem nondeterministic. In contrast, R-maxq does not

employ explicit state abstraction, allowing it to save the value functions and

129

policies computed during one time step for all future time steps. It relies on

the choice of hierarchy to decompose MDPs into smaller SMDPs, automati-

cally achieving an effective reduction in the size of the state space considered

during any one time step.

Seri and Tadepelli extended the maxq framework to average-reward

reinforcement learning, resulting in an algorithm that learns a model to facil-

itate the computation of the bias for each state from the average reward of

the current policy (Seri & Tadepalli, 2002). However, the computation of the

average reward itself relies on stochastic approximation techniques, and their

algorithm does not have any formal guarantees regarding its sample complex-

ity.

The R-maxq algorithm combines the efficient model-based exploration

of R-max with the hierarchical decomposition of maxq. Although the algo-

rithm does not improve upon the known formal bounds on the sample complex-

ity of RL, it retains a finite-time convergence guarantee. An empirical eval-

uation demonstrates that even a relatively simple hierarchy can improve the

cumulative reward earned by constraining the exploration that the agent per-

forms, both within individual episodes of learning and throughout an agent’s

experience with its environment. Even in the absence of explicit state abstrac-

tion, the structure of an action hierarchy can drastically reduce the effective

state space seen by a given composite action during a single episode. Chap-

ter 6 further investigates this implicit concept of a reduced completion set,

mirroring Dietterich’s explicitly abstracted completion function.

130

Chapter 6

Compositional Model-Based Algorithms

Preceding chapters touched upon several divergent branches of RL re-

search, all in pursuit of an understanding into how a learning agent can ef-

fectively explore its environment. Given this connection to the fundamental

issue of exploration, research is sorely needed into how these branches syner-

gize or possibly even conflict. This hole in the RL literature is not necessarily

surprising: these underlying ideas—model-based exploration, function approx-

imation, and hierarchical decomposition—had disparate original motivations

and are important enough to attract their own subcommunities of researchers.

This thesis has already illuminated connections among these branches of RL,

but this chapter will unify elements of each into a single coherent framework.

The resulting Fitted R-maxq is the culminating algorithm of this thesis.

Chapter 2 covered the basic MDP formalism and the R-max algo-

rithm, which offers probabilistic polynomial-time convergence to near-optimal

policies. R-max achieves this probabilistic guarantee using a model-based

approach that dates back at least to the original prioritized sweeping algo-

rithm (Moore & Atkeson, 1993), which both summarized an agent’s experi-

ence as an MDP model to reuse data efficiently and also employed optimistic

131

exploration to improve the model. Later work formally analyzed the benefits

of these intuitive motivations, introducing and later refining bounds on learn-

ing in MDPs (Kearns & Singh, 1998; Brafman & Tennenholtz, 2002; Kakade,

2003). Still, these guarantees require that the agent exhaustively explore every

state. Particularly in large domains, this exploration can be impractical.

Chapter 3 addressed function approximation, a widespread RL tech-

nique necessary to cope with the large state spaces encounted in practical

applications. Function approximation defines how to generalize from lim-

ited data to even unvisited states, so it directly impacts the issue of explo-

ration. Unsurprisingly, function approximation also invalidates the known

convergence guarantees for RL. This connection between exploration and gen-

eralization has nevertheless received little attention, with most researchers

focusing on the question of accurately estimating value functions from a fixed

data set (Lagoudakis & Parr, 2003; Riedmiller, 2005). Fitted R-max demon-

strates one way to combine generalization and model-based exploration, but

it only serves as a first step.

Chapters 4 and 5 examine hierarchical decomposition, another popular

topic in RL. This idea has tremendous intuitive appeal: learning algorithms

would presumably benefit from the same awareness of structure that seems

to allow humans to cope with the extraordinary complexity of the real world.

The precise benefits of hierarchy nevertheless remain unclear, even with the

canonical options framework, learning algorithms, and test environments. In-

depth experiments in Chapter 4 revealed that hierarchy’s key role may be to

132

bias or constrain an agent’s exploration, and from this conclusion Chapter 5

developed R-maxq which combines hierarchical decomposition with model-

based exploration.

The common thread through these chapters is exploration. Despite

this connection, almost no research has investigated the possible synergies

or redundancies among model-based methods, function approximation, and

hierarchical decomposition. This chapter contributes a formulation of these

branches of RL into a unified framework that makes their synergies apparent

(Jong & Stone, 2009). Section 6.1 introduces this formulation and how it fits

function approximation, the model-based R-max algorithm, and the hierar-

chical maxq framework. Section 6.2 discusses common properties of these

components and how they inform the agent’s behavior. Section 6.3 leverages

this compositional formulation to define the first algorithm for model-based,

continuous-state, hierarchical RL. In combining all these advantages into a

single concrete algorithm, Fitted R-maxq constitutes the main contribution

not just of this chapter but also of the entire thesis. Section 6.4 concludes with

some discussion.

6.1 Model Components

As discussed above, the algorithms discussed so far in this thesis share a

common thread: they impact the performance of RL by influencing an agent’s

exploration behavior. Furthermore, like many if not most RL algorithms, they

work by changing the computation of the value function, which determines

133

the agent’s behavior. These changes are typically expressed largely in terms

of modifications to the standard Bellman equations.

A distinguishing feature of the techniques addressed in this thesis is

that each modified Bellman equation is equivalent to the standard Bellman

equation for some (other) MDP. This property permits standard MDP plan-

ning algorithms to perform the actual value-function computation. In other

words, each of these learning algorithms can be interpreted as a kind of prob-

lem reformulation: an agent can learn from one MDP by planning and acting

in another MDP, which need not be a direct estimate of the first MDP. This

chapter formalizes this notion of MDP transformation, and it describes the

insights this perspective offers into exploration.

Model-based RL algorithms conform to the following general template,

when examined from the perspective of choosing an action at a particular time

step.

1. Estimate a model of each action from data.

2. Compute the optimal value function by planning with the action models.

3. Choose an action according to the policy implied by the value function.

Individual algorithms vary in their precise implementation of each step, but

this chapter will demonstrate a class of model-based algorithms that vary only

in their implementations of Step 1. Simply by varying how they construct ac-

tion models from data, they achieve a wide variety of learning and exploration

134

behaviors, despite using precisely the same planning algorithm (Step 2) and

action-selection mechanism (Step 3).

We will define this class of algorithms using the agent formalism given

in Chapter 2, but first we must formalize Step 1 in the above template. Assume

that the agent’s state σ includes a record of the dataDσ. This record contains a

|S||A|-dimensional vector Dσ
R that records the total cumulative reward Dσ

R[sa]

earned across all executions of action a in state s. It also contains a |S||A|×|S|

matrix Dσ
P that records the number of times Dσ

P [sa, s
′] that state-action sa

transitioned to successor state s′. Due to the Markov assumption, the data

record Dσ is a sufficient statistic of the agent’s experience.

This standardized representation of the data allows us to define the

space of possible ways to compute action models from data. Let D be the

space of all possible data records, V be the space of all possible |S| × 1 value

vectors, and O be the space of all possible |S| × |S| outcome matrices. A

value model generator Ma
V : D → V maps a data record to a value vector for

a specific action a, and similarly an outcome model generator Ma
Ω : D → O

maps a data record to an outcome matrix. For convenience, we refer to Ma
V

and Ma
Ω as two components of a single model generator Ma for action a.

The model generators Ma serve as the sole meaningful parameter of

the GeneratedModel algorithm, defined by Algorithms 6.1 and 6.1. Gen-

eratedModelChoose embodies the three steps from the general template

given earlier, andGeneratedModelUpdate simply updates the data record

after each action.

135

Algorithm 6.1 GeneratedModelChoose(s, σ)

for all a ∈ A do

V σ
a ←Ma

V (D
σ)

Ωσ
a ←Ma

Ω(D
σ)

end for

R← [sa]→ V σ
a [s]

P ← [sa, s′]→ Ωσ
a [s, s

′]
V σ ← ValueIteration(R,P, ǫσ, V σ)
QgetsR + γPV σ

π ← PolicyImprovement(Q)
a← chosen with probability π[s, sa]
return (a, σ)

Algorithm 6.2 GeneratedModelUpdate(σ, s, a, r, s′)

Dσ
R[sa]← Dσ

R[sa] + r

Dσ
P [sa, s

′]← Dσ
P [sa, s

′] + 1
return σ

GeneratedModel can produce a wide variety of learning and explo-

ration behaviors by specifying appropriate values for the functions Ma, but

first we give the most simple non-trivial model generator, mle, which produces

maximum-likelihood estimates for each action model:

mlea
V (D) = [s] 7→

{

Dσ

R
[sa]

Nσ
a [s]

if Nσ
a [s] > 0

0 otherwise
(6.1)

mlea
Ω(D) = [s, s′] 7→

{

Dσ

P
[sa,s′]

Nσ
a [s]

if Nσ
a [s] > 0

0 otherwise
(6.2)

where Nσ
a is the |S|-dimensional vector containing the sample size Nσ

a [s] =
∑

s′ D
σ
P [sa, s

′] for each state-action sa.

With Ma = mle for all a ∈ A, the GeneratedModel algorithm

learns from experience, but it won’t explore intelligently. It assumes that

136

each untried state-action has value 0, and it does not distinguish between

a sample size of 1 and a sample size of 1,000,000. The R-max algorithm,

described in more detail in Section 2.3.2, can be seen as a simple refinement

that addresses this exploration issue. It maintains a set U of state-action

pairs where insufficient data exists to estimate the model accurately. For

state-action pairs in U , the R-max uses an optimistic model in which the

action terminates the trajectory after earning immediate reward V max, an

upper bound on the value function. In this manner, the “unknown” state-

action pairs are seen as optimal, encouraging the agent to visit them and gather

data. Otherwise, the maximum-likelihood estimate of the state-action’s effects

is used. In effect, the agent computes the value function using the following

modified Bellman equation:

V π = π
(

UV max + (I − U)(R̄ + γP̄V π)
)

, (6.3)

where R̄ and P̄ are the maximum-likelihood reward and transition matri-

ces and U is represented as a |S||A| × |S||A| diagonal binary matrix where

U [sa, sa] = 1 iff sa ∈ U . R-max has some appealing theoretical properties,

such as a probabilistic polynomial bound on the number of times it departs

from a near-optimal policy (Kakade, 2003).

GeneratedModel can replicate the behavior of R-max simply by

using an alternative model generator for each action. However, R-max can

furthermore be defined as a transformation applied to the model generated by

the mle model generator. Define a value model transformation TV : V→ V as

137

a function that maps one |S|-dimensional value vector to another, and define

an outcome model transformation TΩ : O → O as a function that maps one

|S| × |S| outcome matrix to another. Then we can define R-max as a model

transformation with the following value and outcome components for each

action:

r-maxa
V (V) = UaV max + (I − Ua)V (6.4)

r-maxa
Ω(Ω) = (I − Ua)Ω, (6.5)

where Ua is a diagonal binary matrix specifying which state-actions are “un-

known,” so that Ua[s, s] = 1 iff Nσ
a [s] ≥ m for some threshold m. Note that

the model transformation r-maxa depends on the sample sizes Nσ
a , not just

on the model components given as arguments.

A model transformation T may be composed with a model generator

M to obtain a new model generator T ◦M , which has the components:

(T ◦M)V (D) = TV (MV (D))

(T ◦M)Ω(D) = TΩ(MΩ(D)).

We can therefore apply r-max exploration to our simple maximum-likelihood

model-based RL agent by setting each model generator Ma = r-maxa ◦

mlea. It is straightforward to show that GeneratedModelChoose and

GeneratedModelUpdate together behave identically to the R-max algo-

rithm as defined in Section 2.3.2, using RMaxChoose and MaximumLike-

lihoodUpdate.

138

Many RL algorithms can be expressed simply as model transforma-

tions in this way. Furthermore, these transformations can be composed to

yield new algorithms, which ideally synthesize all the benefits of the compo-

nent algorithms. This framework thus yields a class of algorithms spanned by

the possible compositions of these components. The following sections briefly

recap the novel algorithms presented earlier in this thesis before similarly re-

casting them as model components that may be composed together.

6.1.1 Function Approximation

Function approximation scales RL to environments where exhaustive

exploration is infeasible or impossible (such as any domain with a continuous

or otherwise infinite state space) by introducing the idea of generalization. A

function approximator defines a family of value functions with some finite pa-

rameterization. Chapter 3 focused on averagers, which approximate the value

of a given state as a weighted average of the values of a finite subset X ⊂ S.

In particular, it approximates V π[s] as a weighted average
∑

x∈X Φ[s, x]V π[x],

for a given |S|× |S| matrix Φ. Fitted Value Iteration (Gordon, 1995) uses this

approach by performing value iteration using the following approximation of

V π:

V π = π (R + γPΦV π) . (6.6)

This approximation essentially projects the outcome of every action into X,

so that the values of the states in X suffice to approximate the value of every

state in the original state space S. The model generator fvi underscores the

139

simplicity of this technique.

fviV (V) = V (6.7)

fviΩ(Ω) = ΩΦ (6.8)

Some recent algorithms have also applied function approximation to

the estimated reward and transition models. The instance-based Kernel-Based

Reinforcement Learning algorithm (Ormoneit & Sen, 2002) estimates a value

function using the equations:

V π = π
(

R̂ + γP̂V π
)

(6.9)

R̂ = [sa] 7→
∑

x∈S K[s, x]Da
R[x]

N̂a[s]
(6.10)

P̂ = [sa, s′] 7→
∑

x∈S K[s, x]Da
P [x, s

′]

N̂a[s]
, (6.11)

where N̂a = KNa is the |S|-dimensional vector that gives the weighted amount

of data N̂a[s] =
∑

x∈S K[s, x]Na[x] used to approximate s, andK is the |S|×|S|

kernel weighting matrix that determines the degree K[s, x] ≥ 0 to which data

at state x generalizes to the model of action a at state s.

Although KBRL was intended as an offline algorithm (its authors as-

sumed data sampled randomly from the state-action space), its modifications

140

to the Bellman equations can be encapsulated as a model operator:

kbrlaV (V) = ΨaV (6.12)

kbrlaΩ(Ω) = ΨaΩ (6.13)

Ψa = [s, x] 7→ K[s, x]Na[x]

N̂a[s]
(6.14)

N̂a = KNa. (6.15)

The Fitted R-max algorithm, described in Section 3.2.2, extends R-

max using the model approximation of KBRL and the averaging function

approximation of FVI. It can now be expressed as another instance of Gen-

eratedModel, setting Ma = fvi ◦ r-maxa ◦ kbrla ◦ mlea, with r-max

using the generalized sample sizes N̂ instead of the raw sample sizes N .

6.1.2 Hierarchy

Given the structure we perceive in the real world, it seems natural

to apply hierarchy to reinforcement learning. Chapter 4 and Section 5.1 de-

scribe the two most popular frameworks for hierarchical RL, maxq decompo-

sition (Dietterich, 2000a) and options (Sutton et al., 1999). Both frameworks

define temporally abstract actions that represent entire sequences of primitive

actions. maxq decomposes an overall learning problem using a given task

hierarchy, where each abstract action is a task that induces its own individual

learning problem. In contrast, the options framework formalizes an abstract

action as a partial policy, which can be construed as a solution to a task. We

will find it convenient to interpret an abstract action o in both ways, depending

141

on context.

A task o = 〈Io, Ao, Go, βo〉 comprises a set of state Io in which the task

may be initiated, a set of subtasks Ao, a goal function Go : S → R, and a task

termination function βo : S → [0, 1]. The termination function, along with

the goal function that provides a synthetic reward for each terminal state,

imposes an objective onto the system defined by the state space S and the

child actions Ao, which may include both other tasks and primitive actions.1

The task terminates with probability βo(s) upon reaching a state s and then

awards itself an artificial goal value Go[s], where Go is a |S|-dimensional vector.

We can also represent βo as a |S| × |S| diagonal matrix.

The optimal policy πo for task o maximizes

Ṽo = βoGo + (I − βo)πo

(

Ro + γPoṼo

)

, (6.16)

(6.17)

where Ro and Po are the (abstract) reward and transition matrices, respec-

tively, for the actions in Ao. By construction, if a state s is terminal, then

Ṽo[s] = Go[s]. Otherwise, the value is the expected discounted reward until

reaching a terminal state, plus the expected goal value of that terminal state.

The resulting policy πo chooses children c ∈ Ao in a way that maximizes a

combination of one-step rewards during execution and goal values upon ter-

mination. The task value function Ṽo captures this combined value, but it’s

1We will index the child actions Ao using c instead of a to emphasize that c ∈ Ao may
be either a task/option or a primitive action.

142

also possible to compute the value function Vo that only includes the one-step

rewards (and is not “contaminated” with the goal rewards). In particular, Vo

is given by solving

Vo = (I − βo)πo (Ro + γPoVo) . (6.18)

(6.19)

Note that Equation (6.18) is the same as Equation (6.16) but without the goal

rewards, so Vo only measures the rewards earned until reaching a terminal

state. For a terminal state s, Vo[s] = 0 to simplify the computation, but in

principle the value function need not be defined for terminal states, since the

task o should never be invoked in those states.

As detailed in Section 5.2, a key insight of maxq is that Vo can be

interpreted as the reward model for the option o = 〈Io, πo, β
o〉 that, when

initiated in a state s ∈ Io, simply selects actions according to πo until reaching

a state s′ and terminating with probability βo[s′, s′]. Suppose that o ∈ Ap for

some parent task p. Then we can capture the insight of maxq as Rp[so] =

Vo[s]. In other words, we can use Vo to construct part of the reward vector for

any MDP learning task p that includes o as an executable action.

The same recursive approach can also apply to the transition function.

Just as the abstract reward function for an option specifies the expected (dis-

counted) sum of one-step rewards earned before reaching a terminal state, the

abstract transition function for an option should specify the expected (dis-

counted) probability of terminating in each terminal state. To this end, the

143

|S| × |S| state outcome matrix Ωo for an option o can be computed with the

following Bellman-like equation:

Ωo = πo (βo + γ(I − βo)PoΩo) . (6.20)

Note intuitively that each column of Ωo can be interpreted as a value function

for a task which gives a reward of 1 upon terminating in the state corresponding

to that column. In this context, each column of βo can be seen as the “goal

reward” for reaching the corresponding terminal state. As a result, Ωo can be

computed using standard MDP planning algorithms. So if o ∈ Ap for some

parent task p, then Pp[so, s
′] = Ωo[s, s

′].2

The hierarchical decomposition thus specifies how to construct the re-

ward and transition matrices for a task p recursively given the value functions

and state outcome matrices of the options o ∈ Ap. To complete this recur-

sive specification, we need only give the base case. For a primitive action a,

the value function Va and state outcome matrix Ωa correspond exactly to the

reward and transition models for that action.

The R-maxq algorithm described in Section 5.2.1 employs this recur-

sive model-building approach to extend efficient exploration to hierarchical RL.

Of course, this algorithm is not simply an instance of GeneratedModel,

since that algorithm interprets each action as a primitive action, which can

2Remeber that P p is a multi-time model (Sutton et al., 1999), so its rows may not sum
to 1, reflecting the effect of the discount factor over time. This representation thus folds the
duration of actions (typically represented explicitly in the standard SMDP formalism) into
the discounted transition probabilities.

144

be executed directly in the environment. Nevertheless, GeneratedModel

can be extended to hierarchical RL in a conceptually clean way. Consider the

following template:

1. Recursively estimate a model of each task from data.

2. Compute the optimal value function by planning with the task models.

3. Choose a task according to the policy implied by the value function.

4. Recursively execute the task.

This template deviates from the one given at the beginning of Section 6.1 in

two respects. First, it replaces environmental actions with tasks that must

be provided in a given task hierarchy. Second, it adds a fourth step, which

executes the learned policy recursively.

To clarify the recursive nature of this template, Algorithms 6.3-6.5 spec-

ify the recursive algorithm in detail as three mutually recursive functions. This

presentation does not adopt the Choose/Update formalism, which would

obscure the recursion, but we will give that implementation presently. The

algorithm is invoked by calling Execute on the root of the task hierarchy.

The Execute procedure described in Algorithm 6.3 executes the given

task or action c using the data available in the agent’s state σ. For a primitive

action a = c, it simply executes a in the environment and updates the raw

data for a. For a task o = c, it recursively computes the option policy πo and

then chooses a subtask to execute, until reaching a terminal state.

145

Algorithm 6.3 GeneratedHierarchicalModelExecute(σ, c)

if c is a (primitive) action then

s← current state
a← c

Execute action a in the environment
r ← reward
s′ ← successor state
Dσ

R[sa]← Dσ
R[sa] + r

Dσ
P [sa, s

′]← Dσ
P [sa, s

′] + 1
else {c is a (composite) task/option}
o← c

repeat

σ ← Plan(σ, o) {Sets πσ
o }

c← choose child action/option with probability πσ
o [s, sc]

σ ← Execute(σ, c)
s← current state

until termination with probability βo[s, s]
end if

return σ

146

The Plan function computes the option policy πo for a given task o

using the available data in the agent state σ. It first constructs a model of

each subtask c ∈ Ao, then it invokes planning on the resulting MDP, modified

to respect the task’s termination function βo and goal rewards Go, using the

special maxq model operator:

maxqo
Ṽ
(V) = βoGo + (I − βo)V (6.21)

maxqo
V (V) = (I − βo)V (6.22)

maxqo
Ω(Ω) = (I − βo)Ω. (6.23)

Note that maxqṼ and maxqΩ are used by Plan (Algorithm 6.4), whereas

Model uses maxqV and maxqΩ.

Algorithm 6.4 Plan(σ, o)

for all children c ∈ Ao do

σ ←Model(σ, c) {Sets V σ
c , Ω

σ
c }

end for

R← [sc] 7→ maxqo
Ṽ
(V σ

c)[s]
P ← [sc, s′] 7→ maxqo

Ω(Ω
σ
c)[s, s

′]
Ṽ σ
o ← ValueIteration(R,P, ǫ, Ṽ σ

o)
Q̃← R + γPV σ

o

πσ
o ← PolicyImprovement(Q)

return σ

TheModel function (Algorithm 6.5) produces the value and state out-

come models Vc and Ωc for any action or task c. For a primitive action a, it

applies that action’s model generator Ma. (Recall that the model generator

may incorporate any number of model operators that modify the mapping

from data to model.) For a task o, the Model function first invokes Plan to

147

obtain the option policy πo. It then performs policy evaluation to compute the

option models defined in Equations (6.18) and (6.20), which in this context

only requires solving a system of linear equations. Note that the maxq model

operator will set V σ
o [s] = 0 for every terminal state s, to simplify the compu-

tation. Model sets the value of terminal states to a minimal value V min to

discourage the option’s parent p from choosing to execute o in terminal states,

removing the need to constrain the parent’s option policy explicitly.

Algorithm 6.5 Model(σ, c)

if c is a (primitive) action then

a← c

V σ
a ←Ma

V (D
σ) {Run value model generator for a}

Ωσ
a ←Ma

Ω(D
σ) {Run outcome model generator for a}

else {c is a (composite) task/option}
o← c

σ ← Plan(σ, o) {Sets πσ
o }

R← [sc] 7→ maxqo
V (V

σ
c)[s]

P ← [sc, s′] 7→ maxqo
Ω(Ω

σ
c)[s, s

′]
V σ
o ← solution to V σ

o = πσ
o (R + γPV σ

o)
V σ
o ← βoV min + (I − βo)V σ

o {Terminal states have minimum value}
Ωσ

o ← solution to Ωσ
o = πσ

o (β
o + γPΩσ

o)
Ωσ

o ← (I − βo)Ωσ
o {Terminal states have no successors}

end if

return σ

Since this algorithm generalizes GeneratedModel to hierarchical

RL, we call it GeneratedHierarchicalModel. It can be expressed in the

Choose/Update framework, by explicitly representing the stack of executing

tasks. Algorithm 6.6 shows the Choose function; GeneratedHierarchi-

calModel uses the same Update function as GeneratedModel.

148

Algorithm 6.6 GeneratedHierarchicalModelChoose(s, σ)

{Pop terminated tasks from stack.}
o← Top(Kσ)
while task o terminated with probability βo[s, s] do
Kσ ← Pop(Kσ)
o← Top(Kσ)

end while

{Choose subtasks}
c← Top(Kσ)
Pop(Kσ) {Simplifies definition of loop body.}
repeat

o← c

Push(Kσ, o)
σ ← Plan(σ, o) {Sets πσ

o }
c← chosen with probability πσ

o [s, sc]
until c is a primitive action
a← c

return (a, σ)

Section 6.3 describes a particular instance of GeneratedHierarchi-

calModel, but first the next section discusses desirable properties of model

operators, including the maxq operator intrinsic to GeneratedHierarchi-

calModel.

6.2 Model Operators and Exploration

GeneralizedHierarchicalModel is a single RL algorithm that has

incredibly wide-ranging parameters: a task hierarchy that decomposes the

problem into subtasks and a set of model generators, one for each primitive

action. This section discusses the properties of hierarchies and model genera-

tors that lead to effective learning.

149

Learning hierarchies automatically from data remains a challenging

open problem. Chapter 4 begins to address this problem by investigating

the question of how hierarchy can benefit learning, but hierarchical RL algo-

rithms by and large still require human users to construct domain-specific task

hierarchies.

Model generators must also be somewhat domain-specific, but this

chapter defines several model operators, based on existing effective RL algo-

rithms, which form useful building blocks. Section 6.2.1 analyzes these model

operators and how they guide learning behavior by effectively reducing the size

of the MDP that must be explored. Section 6.2.2 demonstrates the synergies

between this approach to generating models and key existing techniques for

reducing the effective size of MDPs using factored state representations and

state abstraction. Finally, Section 6.2.3 ties the discussion of effective model

generators back to the question of effective task hierarchies.

6.2.1 Models and Completion Sets

Section 6.1 defined a model operator only as a function that maps

models to other models, but all the model operators defined so far fall into

one of two clear families of such functions. The first kind of model opera-

tor performs model splicing, in which certain states of the given model (rows

of the reward vector and transition matrix) are replaced with a fixed alter-

native. Model splicing operators “multiplex” between two models, using the

alternative model for states in a certain set, represented as a binary diagonal

150

matrix. For example, the r-max operator splices a reward vector V with an

upper bound V max of the value function, which is used for unknown states:

r-maxV (V) = UV max + (I − U)V . Similarly, the maxq operator splices a

reward vector V with either a goal reward function G or with the constant

zero function: maxqṼ (V) = βG+(I−β)V and maxqV (V) = (I−β)V . Both

r-max and maxq splice the transition function Ω with the transition function

that always transitions to the special, implicit terminal state (and therefore

has zero probability of transitioning to any explicit state). Both operators bias

the agent towards certain states, either states where the agent wants more data

or terminal states for the current subtask.

The second kind of model operator performs transition composition,

which multiplies the transition matrix Ω with an averager, as defined in Sec-

tion 3.1. However, in this context, the averager can more intuitively be thought

of as just another transition matrix: if Φ is an averager, then Φ is a |S| × |S|

matrix in which Φ[s, x] ≥ 0 for all s, x and
∑

x∈S Φ[s, x] ≤ 1 for all s. Note

that just as a discounted transition matrix Ω allows for transitions to a spe-

cial, implicit terminal state with probability 1−∑xΩ[s, x], an averager Φ may

include this special, implicit state in its average for s.

For example, consider the model operator kbrl, which transforms a

reward vector R into ΨR and a transition function Ω into ΨΩ. As used in

KBRL and the Fitted R-max algorithm, R and Ω correspond to the maximum

likelihood estimates for some primitive action. In environments with large or

infinite state spaces, this model will be essentially undefined for most states

151

and for those states where it is defined, the estimate will be based on a sample

size of 1. The averager Ψ determines the contribution Ψ[s, x] of the maximum

likelihood action model at state x for approximating the action model at state

s. The composed transition matrix ΨR essentially transitions a given state s

first to a state x where the maximum likelihood model is defined, and then it

transitions from x to a successor state s′ according to that model.

As a more complete example, consider the Fitted R-max algorithm

originally defined in Section 3.2.2. As shown in Section 6.1.1, it is simply an

instance of GeneratedModel that sets each action’s model generator to

Ma = fvi ◦ r-maxa ◦ kbrla ◦ mlea. In particular, it replaces the maximum

likelihood transition function Ωa with (I −Ua)ΨaΩaΦ. When planning from a

given state s, the algorithm assumes that each action produces a sequence of

transitions:

1. Transitions to the implicit terminal state if s is unknown (r-max)

2. Transitions to a state where data is available (kbrl)

3. Transitions according to the maximum likelihood data for that state

(mle)

4. Transitions to a state in the finite sample X (fvi)

An important advantage of this framework is that each transformation

to the transition matrix Ω has a clear intuitive purpose while also preserv-

ing the crucial property that Ω is a (possibly discounted) transition matrix.

152

This property allows the final model to be given to an off-the-shelf planning

algorithm. In principle, the GeneratedModel and GeneratedHierar-

chicalModel agents may take advantage of any advances in MDP planning,

independent of the agent learning behaviors implemented via the model gen-

erators.

Each model operator defined above serves a distinct purpose, but we’ve

already seen that r-max and maxq share a common technique that involves

fixing the value of certain state-actions, to bias the agent’s policy. Another

important mechanism for transforming models is exemplified by the fvi oper-

ator, which right-multiplies the transition matrix Ω with an averager Φ that

forces the action to transition into a given state set X ⊂ S. This simple

modification underlies the Fitted Value Iteration algorithm (Gordon, 1995),

which permits approximate planning in very large or infinite state spaces. By

assuming that every action transitions into X, the algorithm can effectively

plan in the reduced state space X ∪ {s}, since only states in X are reachable

from s given the modified model.

Given a set of actions (typically the available subtasks Ao for a task o or

simply the environmental actions A for a flat MDP), we define the completion

set of a state s to be the set of all states reachable from s. To be precise a state

s′ is reachable from s if there exists a sequence of one or more actions that,

when executed in sequence (effectively composing their transition matrices),

give a nonzero probability of transitioning to s′.

The fvi model operator forces the completion set for every state to

153

be a subset of a fixed state sample X. In the context of the original Fitted

Value Iteration algorithm, this approximation (ostensibly of the value function,

approximating V with ΦV), offered a primarily computational benefit. In

particular, since in effect no action transitioned to a state outside of X, it

suffices to define, represent, and store the computed value function V only on

X. Meanwhile, Q remains defined over the entire original state space, allowing

the approximated optimal action to be computed at any state. Fortunately,

an agent need only compute Q outside of X for its current state.

The idea of enforcing small completion sets play a crucial role in hier-

archical RL, as well. Consider the Model subroutine of GeneratedHier-

archicalModel, given in Algorithm 6.5. This function can be construed as

another kind of model generator, in that it produces an action model given a

set of data, although it is implicitly parameterized by a given task hierarchy.

It computes Vo and Ωo for a task o using Equations (6.18) and (6.20). It is

straightforward to show that the resulting transition function Ωo only transi-

tions to terminal states s, for which βo[s, s] > 0. It follows that a task o that

defines few terminal states helps reduce the completion sets of any tasks that

include o as a subtask. Such parent tasks therefore reap a similar benefit to

computational efficiency as fitted value iteration.

The tendency for tasks to funnel the agent into terminal states also has

important consequences for sample complexity, as discussed in more detail

in Section 5.3.1 in the context of the R-maxq algorithm. The task hierarchy

described there for the Taxi domain only permits the putdown primitive action

154

to execute in the completion set of the ROOT task, removing the need to explore

those actions in most of the state space. That hierarchy also only permits the

pickup primitive action in initial state or the completion set of the ROOT task,

effectively postponing a comparable amount of exploration until it becomes

necessary. In both cases, the agent avoids unnecessary exploration because it

confines its planning and therefore its optimistic exploration to the completion

set of the current state.

6.2.2 Abstraction and Factored MDPs

Reducing the effective size of the state space has been a longstanding

fundamental principle underlying the development of planning and RL algo-

rithms. In this respect, the ability of certain model operators to enforce small

completion sets is nothing new. State abstraction and state factorization in

particular have long histories in the RL community.

The formal presentation of GeneratedHierarchicalModel to this

point has made no assumptions about the structure of the state space. It has

focused on temporal abstraction, not state abstraction. This section demon-

strates how the algorithm can benefit from state abstractions made possible

by factored state spaces. Far from being redundant with the state space re-

ductions discussed in the previous section, the benefits of state abstraction

will be shown to synergize very effectively with those of temporal abstraction.

Since the RL community largely grew out of the popularity of model-

free algorithms such as Q-learning, state abstraction has mostly been imple-

155

mented with respect to the value function, which serves as the primary data

structure and representation of knowledge in such algorithms. This approach

stores learned values as a function of some abstract state space, and it assumes

the value of a concrete state s is equal to the value of the abstract state χ(s),

where χ is an abstraction function mapping concrete states to abstract states.

Typically, the state s is a vector of feature values, and the abstraction function

χ projects states into a subspace that ignores irrelevant features.

This approach, which groups together states that are assumed to have

the same value, tends to limit the usefulness of state abstraction in practice.

One difficulty is that the value of a state s depends not just on intrinsic

properties of that state but also on the value of every state reachable from

s. This restriction limits the number of states that can be safely abstracted

together. Furthermore, the sufficient and necessary conditions for abstracting

together two states are not clear, in part due to these relationships among

values. The most widely adopted approaches rely on fairly strong sufficient

conditions that imply prior knowledge about the underlying MDP (Li et al.,

2006).

The most popular of these conditions for state abstraction, stochastic

bisimulation, calls an abstraction function valid if, for any two states that

it abstracts together, those two states have the same rewards and the same

distribution over abstract successor states for every action. In essence, it must

be possible to define the model accurately using only the abstract state space.

As suggested above, this condition is quite strong.

156

One way to weaken this condition is to represent the model as a dynamic

Bayes network (DBN), which assumes the state space S = S1 × S2 × · · ·Sk is

factored. Then for a given action, the value st+1
i of state variable Si at time

t+1 depends on the values at time t of some fixed subset of the state variables.3

Each action allows for a different DBN describing which state variables at time

t are relevant (Markov) to which state variables at time t+ 1.

This structured representation of the model opens up the possibility of

a structured representation of the value function (Boutilier et al., 1995), such

as a decision tree. In the general case, the tree must still incorporate every

state feature, but the hope is that in many cases only a few features suffice to

determine the value. In practice, this value function representation does not

scale, and approximate representations must be used (Koller & Parr, 2000).

Facilitating state abstraction is a primary motivation of maxq and its

decomposition of the value function (Dietterich, 2000b). By computing the

value of any given state as the sum of task-specific value functions, maxq per-

mits “dynamic” state abstraction that employs different state representations

in different contexts. However, the maxq Q-learning algorithm still relies on

relatively inefficient stochastic approximation of the value function: instead

of constructing a model of each task, it modifies each task’s value function at

most once per primitive action executed.

The GeneratedHierarchicalModel algorithm combines the dy-

3Note that for convenience we identify a state variable with the set of values it may take.

157

namic state abstraction of maxq with the efficient exploration of model-based

algorithms such as R-max. Essentially, each task can employ its own abstrac-

tion function. If all we care about is sample complexity, data efficiency, and

efficient exploration, no modification to the given algorithm is necessary! It

suffices to define the appropriate model generator for each primitive action.

Suppose the state variables can be partitioned into two sets X and Y,

so that S = SX × SY, where SX =
∏

X∈X is the state space projected onto

the state variables X. Then a transition function Ω ignores Y if both of the

following are true for all x, x′ ∈ SX and y, y′ ∈ SY:

1. Ω[xy, x′y] = Ω[xy′, x′y′]

2. Ω[xy, x′y′] > 0⇒ y = y′.

The first condition states that Ω modifies the values of the state variables in

X in a way that does not depend on the values of the state variables in Y.

The second condition states that Ω does not modify the values of the state

variables in Y. Similarly, a reward vector V ignores Y if V [xy] = V [xy′] for all

x ∈ SX and y, y′ ∈ SY.

This notion of ignored state variables bears some resemblance to the

DBN formalism in that it provides for action-specific state abstraction that

depends on a factorization of the state space. It cannot describe conditional

independence relationships among individual state variables. Instead it parti-

tions the state variables into a relevant set X and an ignored set Y, but this

158

coarser degree of specification suffices to enable efficient learning, as illustrated

later in this chapter.

State variable ignorance is more flexible than stochastic bisimulation in

some ways, since it permits a different abstraction for each action. However,

it does make stronger assumptions about the behavior of each action within

each abstract state. In particular, stochastic bisimulation would allow each

action to modify the ignored state features Y arbitrarily.

This latter point is also what sets state variable ignorance apart from

the primary conditions for abstraction that Dietterich specified for the original

maxq decomposition. Since he focused on computing only values hierarchi-

cally, not models, he could afford to make weaker assumptions. However, the

domains he investigated in his experiments also satisfied the stronger condition

of state variable ignorance.

A model generator that ignores a subset Y of the state variables can

generalize data fully among states that differ only on the features Y. For

example, given an action model that ignores Y, the R-max algorithm only

requiresm|SX| instances of that action, instead ofm|S| instances. As discussed

in Chapter 5, the R-maxq algorithm extends the optimistic exploration of R-

max to hierarchical RL in such a way that exploration remains driven purely

by uncertainty in the primitive action models, propagated up the hierarchy.

Since (implicitly) exploratory actions at upper levels in the hierarchy only

occur due to a lack of sufficient data at the lower levels, the benefits of state

abstraction at the lower levels also propagate naturally and automatically up

159

the hierarchy.

Furthermore, it can be shown that if Y is ignored by every child task

c ∈ Ao for some task o, then for any option policy πo, the task value function V o

also ignores Y. Intuitively, Y cannot affect the value function if it affects neither

the reward vector nor the transition matrix that determine the value function.

More formally, a straightforward proof by induction shows that if two states

differ only on Y, then for a fixed policy, the expected reward is the same at all

future time steps. Since the computation of the task termination function Ωo

is equivalent to the computation of a value function for each possible terminal

state, Ωo also ignores Y.

The action model for task o that GeneratedHierarchicalModel

reports to any parent tasks thus ignores Y if all the child tasks ignore Y.

Although this fact does not directly inform the sample complexity of the al-

gorithm, it affects the algorithm’s computational complexity. In particular,

regardless of the actual size of the state space, the Plan procedure (Algo-

rithm 6.4) need only represent the abstract state space SX. Note that since a

state xy′ is not reachable from xy if y 6= y′ and all the available actions ignore

Y, state variable ignorance effectively bounds the size of the completion set for

a task. Similarly, the computed action model for option o can by represented

in the abstract state space. Chapter 7 discusses some of the implementation

details of representing and manipulating such abstract models.

160

6.2.3 State Abstraction and Temporal Abstraction

The hierarchical model-based approach to state abstraction described

in the previous section seems more constrained than the model-free state ab-

straction Dietterich employed in the original maxq algorithm. Using his five

conditions for state abstraction, Dietterich was able to show that every com-

ponent value function in his decomposition used a small number of state vari-

ables (Dietterich, 2000a). In contrast, a task o can only ignore state variables

Y if all of its child tasks also ignore Y. The state variables X necessary to

represent the value function V o is the union of all the state variables relevant

to any primitive action that can possibly be executed during the execution of

o. It follows that the root task of the hierarchy will generally include every

state variable.

Fortunately, this fact does not imply that computation for the root

task must use the full concrete state space S. Although the computed action

model for a given task will tend to use more state variables than its subtasks,

the task’s termination function typically tightly constrains the set of states

reachable using that task. As you go higher up a task hierarchy, the number of

ignored state variables decreases, but the number of reachable states decreases.

The complexity of planning for each task can be quantified precisely using the

maximum size of the completion set for that task, as defined in Section 6.2.1.

For primitive action models, small completion sets arise from state abstraction:

ignoring most of the state variables. At upper levels of the task hierarchy, small

completion sets arise from temporal abstraction: constraining planning to the

161

terminal states of the subtasks.

Consider the Taxi domain defined in Section 5.1 and shown again in

Figure 6.1a. Recall that it contained four state variables: x, y, passenger,

and destination. Each coordinate has five values, the destination takes

one of four landmark values, and passenger indicates that the passenger is

at one of the four landmarks or in the taxi, for a total of 5× 5× 4× 5 = 500

states, although 100 of these are terminal, with passenger = destination,

leaving 400 non-terminal states. The taxi agent must deliver the passenger to

the destination landmark using six primitive actions, which can be arranged

into the task hierarchy reprinted in Figure 6.1b.

Table 6.1 describes the sizes of the state spaces for each task in the hi-

erarchy. The column “Totel model size” describes the number of states where

the action model for each task is defined. Primitive actions must be mod-

eled at every state that is non-terminal in the environment, while tasks must

be modeled at every state that is non-terminal in either the environment or

Task Total model size Completions Max completion set
Concrete Abstract Concrete Abstract

putdown 400 400 — — —
pickup 400 100 — — —

n/s/e/w 400 25 — — —

NAVIGATE 384 24 384 24 24
GET 300 100 80 20 4
PUT 100 100 16 16 4

ROOT 400 400 12 12 1

Table 6.1: State representations in the Taxi task hierarchy

162

GET PUT

ROOT

north south east

pickup putdown

west

TO RED
NAVIGATE

(a) (b)

Figure 6.1: (a) Taxi domain, and (b) a task hierarchy for Taxi

that task. State abstraction forces the model at two states to be essentially

equivalent, allowing a more compact representation of both the model and the

value function. For tasks, the column “Completions” describes the number of

reachable non-terminal states during the execution of that task. The Gen-

eratedHierarchicalModel only needs to compute the value function Vo

at these states. Finally, the “Max completion set size” column describes the

maximum number of reachable non-terminal states for any given initial state

in which the task might be executed. This number bounds the number of

states the planner must consider during any one execution of the task.

For example, each NAVIGATE task (one for each of the four landmarks)

benefits directly from state abstraction. The only primitive actions reachable

from NAVIGATE all ignore the passenger and destination state variables, al-

lowing the computation of the policy πNAVIGATE to consider only the 24 abstract

163

states corresponding to the 24 coordinates outside of the task’s goal coordi-

nates. Similarly, the action model VNAVIGATE and ΩNAVIGATE depends on only those

24 abstract states.

In contrast, the ROOT task derives no direct benefit from state abstrac-

tion. In particular, the value function for the overall ROOT task depends on all

four state variables. However, if you only consider the successor states that

result after executing one of its child tasks, GET and PUT, the ROOT task only

considers 12 states! After executing GET, the taxi must be at one of the four

landmark locations, with the passenger in the taxi, and with the destination at

one of the other three landmark locations. After executing PUT, the ROOT task

must itself terminate. At this level of the hierarchy, the complexity of planning

and the size of the action model is constrained by temporal abstraction, not

state abstraction.

GeneratedHierarhicalModel can thus use a task hierarchy to de-

compose a problem with a large state space into a collection of subtasks, each

with a much smaller state space. These state-space reductions arise from a

blend of state abstraction and temporal abstraction, with lower levels of the

hierarchy exploiting state abstraction, upper levels exploiting temporal ab-

straction, and intermediate levels exploiting both to a lesser degree. This

hierarchical form of abstraction thus plays an essential role in facilitating ef-

ficient planning given a factored MDP model. As discussed in Section 5.3, it

also plays an important role in constraining the exploration that determines

how the agent learns the factored model of the primitive actions.

164

6.3 Fitted R-MAXQ

The R-maxq algorithm described in Section 5.2.1 already includes

all the benefits described in the preceding section: it combines data-efficient

model-based exploration with hierarchical decomposition. The Generated-

HierarchicalModel algorithm generalizes R-maxq, allowing us to com-

bine it with other model operators. In particular, it is now straightforward to

combine R-maxq with the Fitted R-max algorithm, which incorporates the

function approimation of fitted value iteration and the model generalization

techniques of kernel-based reinforcement learning (KBRL).

In keeping with the algorithms developed in Chapters 3 and 5, we

refer to this novel instance of GeneratedHierarchicalModel as Fitted

R-maxq. To define this algorithm, it suffices to specify the model generators

provided to GeneratedHierarchicalModel to be the same provided to

GeneratedModel to obtain Fitted R-max. For each primitive action a,

the model generator Ma = fvi ◦ r-maxa ◦ kbrla ◦ mlea. Note that these

model generators define how Fitted R-maxq reasons about primitive actions

in any environment. To obtain the benefits of hierarchical decomposition, the

algorithm must also be given a domain-specific task hierarchy.

For concreteness, Algorithm 6.7 specifies Fitted R-maxq in a more

traditional form, which eschews the Choose and Update formalism and in-

stantiates our choice of model generator. The algorithm still requires a task

hierarchy, so it takes as its sole input the root task. This presentation assumes

a continuing task, but the modifications for episodic tasks are straightforward.

165

Algorithm 6.7 Fitted-R-maxq(ROOT)

K ← [ROOT] {Initialize task stack to ROOT}
loop

for all tasks o do {propagate models and values from the bottom up}
Ro ← [sc] 7→ Vc[s]
Po ← [sc, s′] 7→ Ωc[s, s

′]
πo ← optimize Ṽo = βoGo + (I − βo)πo(Ro + γPoṼo)
Vo ← solution to Vo = (I − βo)πo (Ro + γPoVo)
Ωo ← solution to Ωo = πo (β

o + γ(I − βo)PoΩo)
end for

s← current state
c← Top(Kσ)
Pop(Kσ) {Simplifies definition of loop body.}
repeat {execute task c recursively}
o← c

Push(Kσ, o)
σ ← Plan(σ, o) {Sets πσ

o }
c← chosen with probability πσ

o [s, sc]
until c is a primitive action
a← c

Execute action a

r ← one-step reward
s′ ← successor state
Na[s]← Na[s] + 1 {Update primitive action model}
DR

a [s]← DR
a [s] + r

DP
a [s, s

′]← DP
a [s, s

′] + 1
N̂a ← ΨNa

Va ← [s] 7→
{

(ΨDR
a)[s]

N̂a[s]
if N̂a[s] > m

V max otherwise

Ωa ← [s, s′] 7→
{

(ΨDP
a Φ)[s,s′]

N̂a[s]
if N̂a[s] > m

V max otherwise

o← Top(Kσ) {Pop terminated tasks from stack.}
while task o terminated with probability βo[s, s] do
Kσ ← Pop(Kσ)
o← Top(Kσ)

end while

end loop

166

6.3.1 Experiments

In order to exercise the full capabilities of Fitted R-maxq, we introduce

a new domain, Flag & Puddle World, which combines aspects of the Flag

World domain (Dearden et al., 1999) and the RL benchmark environment

Puddle World, which was previously described in Section 3.3.2.2. Puddle

World already has a continuous state space, and no modifications are necessary

to enable model-based reasoning (which is purely an algorithmic issue), but we

introduce some of the structure from Flag World that encourages hierarchical

reasoning. We intend our extensions to give the overall task more structure of

the sort found in real-world tasks.

First, we recapitulate the original Puddle World environment, depicted

in Figure 6.2. The agent must navigate the unit square to reach a goal state in

the upper-right corner, which terminates each episode. Four primitive actions

move the agent 0.05 in each of the four cardinal directions, with some Gaussian

noise (σ = 0.01) added to each of the two state variables after every action.

Each action incurs a −1 penalty until reaching the goal, but each time step

spent in a puddle incurs an additional penalty between 0 and −40, depending

on the proximity to the middle of the puddle.

We modify this environment by removing the goal state in the corner

and instead giving the agent a set of four different flags it must collect in

each episode, as shown in Figure 6.3. Each flag can only be collected in

the neighborhood (within distance 0.1) of a specific spot in the unit square,

which is initially unknown. Four binary state variables track whether each flag

167

Goal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Figure 6.2: A trajectory in the original Puddle World environment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C

A

D

B

Figure 6.3: A trajectory in the Flag & Puddle World environment. The agent
collects flags D, B, A, then C, but any order is permissible.

168

has been collected, and a distinct primitive action allows the agent to search

the current location for a particular flag and collect it if present. In each

episode, the agent begins in a random location, so over time it must learn the

locations of the flags, the locations of the costly puddles, and how to harvest

all four flags as cheaply as possible. This environment has six state variables,

two continuous and four binary, and eight primitive actions: four movement

actions and the four collection actions.

We ran each algorithm tested for 50 independent trials, using for each

algorithm the same set of 50 configurations of flag locations, generated uni-

formly at random but with no location inside of a puddle. For each configu-

ration, we generated a fixed sequence of 500 start states, again uniformly at

random. Each trial lasted for 500 episodes, and we limited each episode to

1000 time steps.

6.3.2 Algorithm Configurations

We compare several different instantiations of our compositional frame-

work for model-based RL. In this section, we describe the precise configuration

of each model generator and model operator used. We use value iteration with

prioritized sweeping (Moore & Atkeson, 1993) both to compute the optimal

policy πo given a model (Ro, Po) and also to evaluate πo to obtain the abstract

model (Vo,Ωo). We used a discount factor of γ = 1, since the task is episodic.

The maximum-likelihood model generator mle has no parameters, but

to apply finite algorithms in PuddleWorld we used a discretization of the unit

169

square into a 16 × 16 grid. This discretization seems quite coarse, but finer

grids only lead to more excessive exploration without a concomitant increase

in policy quality.

For the instance-based model approximation of kbrl, we adopted a

Gaussian kernel function:

K[s, x] = e−(d(s,x)/b)2 , (6.24)

where d(s, x) is the Euclidean distance between s and x, and b = 1
16

is a

bandwidth parameter that controls the breadth of generalization, chosen us-

ing coarse optimization. To compute K efficiently, we stored the instances in

a cover tree (Beygelzimer et al., 2006) and rounded down to zero any value

of K[s, x] < 0.01. Finally, we adopt the “relative transition model” defined

by Jong and Stone (2007a), which modifies Equation (6.13) by using the vec-

tor displacement that resulted from each state-action instead of the absolute

successor state that resulted:

kbrlP (Ω) = [s, s′] 7→ 1

N̂a[s]

∑

x∈S

Ψ[s, x]Na[x]
∑

x′∈S

DP
a [x, x

′]δ(s′, s+ (x′ − x)).

(6.25)

All of the algorithms we tested rely on the R-max approach to explo-

ration. We set V max = 0, since all the immediate rewards in Puddle World

are negative. When used with mle, we defined Ua = {s ∈ S | Na[s] < 2}.

Since the stochasticity in Puddle World is relatively benign, gathering more

data for each state-action didn’t improve the final policy quality but resulted

in much more expensive exploration. When used with kbrl, we defined

170

Ua = {s ∈ S | N̂a[s] < 1}. This low threshold seemed adequate since KBRL

must typically generalize from several instances to reach a kernel weight of 1.

For fvi, we defined the averager Φ using linear interpolation over a

uniformly spaced grid, with a resolution of 1
16
. This function approximation

scheme therefore approximates the value of a point in the unit square (for a

particular setting of the binary state variables) as an interpolation between

the four surrounding points. Again, increasing the resolution did not improve

the quality of the learned policy, but it did increase the computational burden

of planning.

For the hierarchical algorithms, we defined a simple task hierarchy for

the Flag & Puddle World that corresponds to the prior knowledge that the

four flag-collection actions are independent of one another.4 For each flag,

we define a task o such that the child actions Ao include the four movement

primitives and the action that collects that flag. The termination function βo

specifies termination at all states where the flag’s boolean is set, and Go = 0.

The root of the hierarchy has these four tasks as children; it cannot execute

any primitive actions directly.

Note that once the agent has learned enough of the dynamics of the

Flag & Puddle World, the optimal high-level behavior depends on collecting

the flags in the best order, a small instance of the Travelling Salesman Problem

4This hierarchy therefore imparts less domain knowledge than the hierarchy Dietterich
provided for learning in the Taxi domain (Dietterich, 2000a), where the possible passenger
coordinates were all known a priori.

171

(TSP). The value V o[s] of the subtask o for a certain flag gives the agent’s

“distance” to that flag in its current state s. The optimal low-level behavior

depends on minimizing this cost by selecting movement actions appropriately

to navigate to the flag while avoiding the puddles. Learning the optimal task

values in the Flag & Puddle World therefore corresponds to recovering the

cost matrix for the embedded TSP instance.

Finally, all the algorithms benefitted from state abstraction. The four

primitive movement actions neither depend on nor affect the boolean state

variables for the four flags. Similarly, each subtask that collects a given flag

only depends on the agent’s coordinates and only affects the boolean state

variable corresponding to that flag.

6.3.3 Results

Figure 6.4 shows learning curves for four algorithms: R-max, R-maxq,

Fitted R-max, and our combination of these algorithms, Fitted R-maxq. All

four algorithms converge to statistically the same policy quality after only

25-30 episodes, but they incur very different exploration costs before getting

there.

Figure 6.5 integrates under the curves in Figure 6.4 to show the total

learning costs. Note that both figures only show the first several episodes,

to focus on the period of learning when the algorithms’ performance differs.

Note that the benefit of adding both hierarchical decomposition and function

approximation to R-max is greater than the sum of the benefits for adding

172

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0 5 10 15 20 25 30 35 40

R
ew

ar
d

pe
r

ep
is

od
e

Episode

Fitted R-MAXQ
Fitted R-MAX

R-MAXQ
R-MAX

Figure 6.4: Reward per episode for variations of R-max with and without
function approximation and hierarchical decomposition. After 40 episodes, the
differences among the quality in learned policies is not statistically significant.

-30000

-25000

-20000

-15000

-10000

-5000

 0

 0 20 40 60 80 100

C
um

ul
at

iv
e

re
w

ar
d

Episode

Fitted R-MAXQ
Fitted R-MAX

R-MAXQ
R-MAX

Figure 6.5: Cumulative reward for variations of R-max with and without func-
tion approximation and hierarchical decomposition. After 100 episodes, the
differences among learning costs are all statistically significant (p < 0.0001).

173

each innovation by itself!

An inspection of the behavior of Fitted R-maxq reveals that it out-

performs the other algorithms largely by avoiding excessive exploration in the

puddles. Consider a state in the middle of a puddle that is in the set of un-

known states Ua for some primitive action a. The R-max operator will assign

this state the optimistic value V max, but this value does not guarantee that the

agent will attempt to reach this state. If the predicted cost of completing the

current task is smaller than the predicted cost of wading through the puddle

to the unknown state, the agent will choose to ignore the unknown state and

instead exploit a path through known states. In the non-hierarchical case, the

current task is always to complete all the remaining activities, which may have

a rather high cost. In the hierarchical case, the current task is to complete

a particular one of the activities, which is more likely to have a lower cost

than wading into the puddle. In a sense, the hierarchical decomposition limits

the optimism applied to unknown states, which R-maxq models as terminat-

ing only the current task, not the entire episode. Meanwhile, discretization

interferes with the accurate prediction of the costs of exploring versus exploit-

ing. The coarse discretization we used is very effective in most of the state

space, where the dynamics are the same, but not near the puddles, where the

immediate reward varies quickly as a function of the coordinates.

174

6.4 Discussion

This chapter synthesized into a cohesive whole all of the ideas and algo-

rithms explored in this thesis. For the first time, a single reinforcement learning

algorithm combines model-based exploration, function approximation, and hi-

erarchical decomposition. Each of these ideas confers a distinct benefit and

helps compensate for the others’ shortcomings. The optimistic exploration

of R-max efficiently explores a given state space, but this notion of efficiency

guards against the worst-case situation wherein each state may have arbitrarily

different dynamics. The function approximation permits generalization across

similar states, thereby putting even infinitely large problems within reach, but

the tendency of value functions to incorporate long-term distinctions across

all states and actions limits the accuracy of the approximation. Hierarchy

can decompose large problems into smaller ones, both reducing the scope that

approximations must cover and constraining exploration, but until now the hi-

erarchical RL literature has focused almost exclusively on decomposing value

functions, not action models.

These disparate algorithmic ideas can be unified by casting them all

as transformations applied to a common space of models. A model-based RL

algorithm can be seen as a simple combination of a planning algorithm with a

model generator, which produces a model given data. Transformations applied

to these generated models can dramatically alter the behavior of the resulting

learning agent. This formalism is general enough to represent the optimistic

exploration of R-max, the function approximation of fitted value iteration,

175

the model approximation implicit in KBRL, and the goal-attainment behavior

of typical options. Even hierarchy fits naturally into this framework. Although

Section 6.1.2 defined a distinct algorithm GeneratedHierarchicalModel

to handle the hierarchical case, a given task hierarchy can be seen itself as a

model generator, producing a task model that depends on the models gener-

ated by the hierarchies root by its subtasks. This thesis defined this space of

algorithms but has only begun to explore the possible model operators and

their particular configurations, which give rise to concrete learning algorithms.

Already the model operators defined in this thesis give additional in-

sights into the original algorithms that inspired them. For example, a con-

sistent, universal notation highlights the deep similarities between the goal-

oriented learning in maxq task hierarchies and the bias of R-max towards

unknown states, and also between the “funneling” effect of subtasks and the

class of function approximators known as averagers. This latter connection

underscores the importance of the completion set size: the number of distinct

states reachable from the agent’s current state.

The principal branches of RL research that serve as the foundation

for this thesis can all be better understood by examining their relationship

to the completion set, which defines the search space for the planning that

must occur at any one time step to behave near-optimally at that time step.

The optimistic exploration of R-max provides a mechanism for evaluating

a particular search space relatively efficiently but prioritizing exactness first.

Function approximation provides a mechanism for generalizing the exact eval-

176

uations of a small set of states to a much larger set, albeit while introducing

approximation error. Hierarchy provides a mechanism for decomposing a state

space into smaller state spaces, which can each be evaluated and approximated

independently. The temporal abstraction inherent in hierarchy also plays an

important role in facilitating state abstraction, which can further reduce the

size of the state space or reveal that the completion sets for two distinct states

are essentially the same.

These insights may prove particularly valuable in the still developing

field of hierarchy discovery. For example, they suggest that an effective task

hierarchy minimizes the size of each task’s completion set while permitting the

root task to achieve near-optimal values. Individual tasks may provide very

different roles in this sense. Tasks such as NAVIGATE in the Taxi domain provide

an “abstract interface” to the set of primitive movement actions that preserves

their shared state representation but yields a much smaller completion set.

Such tasks allow other tasks, like GET in the Taxi domain, to incorporate

such primitive actions with others with richer state representations, without

drastically increasing the effective size of the state space.

177

Chapter 7

Software Architecture

Chapter 6 formally defined a novel algorithm that combines model-

learning, function approximation, and hierarchical decomposition. This defi-

nition focused on the exploration behavior of the resulting learning agent by

including the full equations and models used. The experiments throughout

this thesis addressed the sample complexity of various learning algorithms:

how much data do they require to converge to good policies, or how much

reward will they earn per time step compared to one another? These algo-

rithms culminate in Fitted R-maxq, which combines several algorithmic ideas

by defining its policy at each time step as the recursive solution of a hierarchy

of MDPs derived from data. How can an implementation of Fitted R-maxq

avoid recomputing each value function from scratch at each time step, while

always taking advantage of all available data? How can it approximate the

models of the primitive actions from nearby instances both on-line and effi-

ciently? How can this algorithm be applied to large or infinite problems when

its definition relies on vectors and matrices indexed by the state space?

This chapter answers these questions and describes a practical imple-

mentation of Fitted R-maxq, written in C++ using RL-Glue 3.04 (Tanner &

178

White, 2009) and publicly available in the RL-Library1 at http://library.

rl-community.org/wiki/Fitted_R-MAXQ. Section 7.1 describes the custom

state and action representations employed by Fitted R-maxq, including their

representation as C++ objects.2 Section 7.2 shows how FittedR-maxq assem-

bles these building blocks into a complete implementation. Section 7.3 gives

concrete instructions for using Fitted R-maxq, and Section 7.4 concludes with

some discussion.

7.1 State and Action Representations

This thesis has described crucial quantities such as the value function

V and the transition function Ω as vectors and matrices. These representa-

tions clearly do not scale to infinite or even to very large state spaces. They

also seem incompatible with the structured state spaces common to realistic

environments, which comprise multiple state variables. The implementation

of Fitted R-maxq addresses these issues by adopting an instance-based state

representation and embracing an object-oriented representation of functions

defined over the state space.

To represent any given environment state, Fitted R-maxq defines the

type StateVector as an array of (double-precision) floating-point values.3

Each element of a StateVector specifies the value of a particular state vari-

1http://library.rl-community.org/
2In this chapter, Fitted R-maxq refers to the specific implementation of the algorithm

described in Section 6.3 and formally defined in Algorithm 6.7.
3The implementation uses the vector container in the C++ Standard Library.

179

able. This state representation allows for discrete state variables simply by

ignoring the extra precision: the averagers that govern generalization among

states can assign each state variable a different weight. A function defined

over states is represented as a collection of objects, indexed by state instances,

each of which represents the evaluation of the function at that state. Roughly

speaking, these objects correspond to an entire row of a matrix or column

vector. For example, one object might represent V [s] for a particular state

s. The entire function V is then represented by an object that can produce a

child object V [s] for any given state s.4

To reduce the number of function evaluation objects that it must con-

struct, a function over states maintains a container of existing objects, indexed

by state instances. When given a state equivalent to one of these instances, the

function returns the existing function evaluation object. FittedR-maxq there-

fore essentially flattens the nominal state space, comprising all possible values

of type StateVector, into a literal state space comprising the addresses of

every state instance in memory. To this end, Fitted R-maxq defines the type

StateVectorRef as a smart pointer5 to a StateVector object. Any collection

of data indexed by state can then be represented using an associative con-

tainer, such as the standard map or unordered map,6 where StateVectorRef

is the key type.

4Section 7.1.1 will discuss why Fitted R-maxq represents V [s] as an object, not simply
a floating-point value.

5The implementation uses the shared ptr class in the TR1 extensions, implemented in
the Boost library.

6The unordered map container appears in TR1 and is implemented in Boost.

180

Similarly, transition matrices can be represented with nested associative

containers, both indexed by state instances. The outer container maps state

instances to rows of the transition matrix, where each row is represented as

a mapping from state instances to floating-point transition probabilities. By

design Fitted R-maxq only needs to store a small number of entries in each

row of a matrix, but matrix multiplication requires fast iteration through the

row to compute the inner product of the row with a column vector. Each

row of a matrix is thus stored as a vector<pair<StateVectorRef, double>

>, treated as an associative array mapping StateVectorRef keys to floating-

point values. This representation of a transition matrix is tantamount to an

adjacency list representation of the state transition graph. It takes advantage

of the fact that in most realistic problems, transition matrices tend to be very

sparse. The matrix as a whole is then just another mapping from states to

function evaluation objects, where in this case each object represents an entire

row of the matrix.

Representing vectors and matrices as collections of objects indexed by

state instances does not allow the agent to store the entire value function or

model at once for a sizeable state space, but an essential trait of Fitted R-

maxq is its use of approximation to limit the number of instances involved

in the computation at any given time step: the number of instances in the

completion set. The function evaluation at a particular state is constructed

lazily when needed, and Fitted R-maxq uses reference counting to deallocate

the state instance and function evaluations at that state as soon as they are

181

no longer needed. Because this reference counting includes the state instances

themselves, the literal state space is only as large as needed at any moment in

time. The number of references to a particular function evaluation object is

generally equal to the number of other function evaluation objects, known as

observers, whose values depend on the first object.

7.1.1 Observer Pattern

The most common mathematical operation in Fitted R-maxq is com-

puting a new column vector as the product of a matrix and an existing column

vector. For example, an approximate value function V̂ is the product V̂ = ΦV

of a |S| × |S| averager Φ and a |S|-dimensional column vector V . Although

some quantities in this thesis included the product of matrices, the result was

always multiplied with a vector, so associativity allows the implementation

to produce a vector as the outcome of each multiplication.7 Since the result

V̂ is a vector, it is again represented as a collection of objects V̂ [s] indexed

by states s. Each object’s job is to compute a particular entry (row) of the

column vector, which is defined as the inner product of the appropriate row

of the matrix and original vector. To this end, the object representing V̂ [s]

maintains references to Φ[s, ·] and to each V [x] with Φ[s, x] > 0.

If we only needed to compute V̂ [s] once, it would not be necessary to

maintain these references. The goal of the implementation is to propagate

7The sole exception is the computation of the abstract transition matrix Ωo for a task
given its policy πo: solving Equation (6.20).

182

changes in the data efficiently to all of the quantities that must be computed.

Each object therefore keeps track of those other objects whose value depends

on it. For example, V̂ [s] observes each V [x] such that Φ[s, x] > 0 (as well

as observing Φ[s, ·]). When any V [x] changes its computed value, it sends a

notification to any observers so that they can update their own values. Since

these objects maintain reference counts, they can be safely deallocated (and

no longer need to propagate their values) when they have no observers.

With this observer pattern, the computation of the entire hierarchy of

value functions becomes an event-driven system. Any change to the data for

a primitive action propagates to all the stored intermediary values for every

quantity in the overall computation. The need to store each such intermediary

value underscores the importance of using state and temporal abstraction to

minimize the number of represented states at each task in the hierarchy!

7.1.2 Action Effects

State abstraction plays a crucial role in reducing the number of state

objects that must be created. For functions over states such as V , the role

of state abstraction is straightforward. Whenever the computation requires

the object V [s], it suffices to substitute V [χ(s)], where χ : S → S is the

abstraction function mapping each state into a subset of S. However, for a

transition matrix Ω, the object representing the row Ω[χ(s), ·] can only be

substituted for Ω[s, ·] if the transition matrix will only be multiplied with

vectors that adopt the same state abstraction. As discussed in Section 6.2.3,

183

the level of state abstraction necessary decreases as you ascend the hierarchy,

replacing the benefits of state abstraction with temporal abstraction. The

interface between two tasks that adopt different levels of state abstraction

poses a problem: how should the quantities communicated between the tasks

be represented?

As a concrete example in the Taxi domain (Section 5.1), consider the

GET task, which has NAVIGATE(RED) as a subtask. The state representation

for the GET task includes the taxi’s coordinates as well as the passenger’s loca-

tion, but the NAVIGATE subtasks only require the taxi’s coordinates. Suppose

s1 and s2 are two states that share the same values for the taxi’s coordinates

but different values for the passenger’s location. The transition model for

NAVIGATE(RED), could compute ΩNAVIGATE(RED)[s1, ·] and ΩNAVIGATE(RED)[s2, ·] sepa-

rately, but doing so would be inefficient, since s1 and s2 share the same abstract

state in NAVIGATE(RED). Conversely, if ΩNAVIGATE(RED)[s1, ·] = ΩNAVIGATE(RED)[s2, ·],

then GET would believe that s1 and s2 share the same distribution over succes-

sor states, even though these two states differ in their values for the passenger’s

location, a state variable that NAVIGATE(RED) does not affect.

For the predicted transition function Ω that must be communicated

between tasks, the implementation of Fitted R-maxq adopts relative transi-

tions. With this representation, each row Ω[s, ·] comprises a distribution over

relative effects, instead of absolute successor states. The space of possible ef-

fects E : S → S is the set of functions that map states to successor states.

Therefore, the agent plans with task o in state s by predicting the effect e ∈ E

184

with probability Ωo[s, e], with the resulting s′ = e(s). The probability that o

will transition s to s′ is then
∑

e|e(s)=s′ Ωo[s, e].

This approach allows the predicted successor states to be relative to

the current state, independent of the representation of the current state. Ef-

fects can represent the standard transition matrix by allowing only constant

functions, in which each effect produces an absolute successor state, regard-

less of the current state. More generally, they permit the implementation to

decouple the representation of the current state in Ω from the representation

of the successor state. For example, every effect in the NAVIGATE(RED) task

only modifies the taxi’s coordinates in a given state. The transition model for

NAVIGATE(RED) can therefore be safely used by a parent task with any state

representation that includes the taxi’s coordinates.

The effect representation also permits the vector transitions discussed

in Section 3.2.2. In particular, when observing a transition from state s to s′,

instead of recording s′ as the absolute successor of s, the agent records the

vector effect s′ − s. This approach corresponds to the inductive assumption

that the action produced a relative change, not an absolute transition. In

this way, vector effects can help generalize data from primitive actions to the

models for primitive tasks.

7.2 Hierarchical Dynamic Programming

The main organization unit of Fitted R-maxq is the task. Every task,

whether primitive or composite, conforms to a common base interface. Most

185

importantly, each task is responsible for computing its declarative behavior :

a model describing what the task will do if executed, comprising Vo and Ωo.

Each task also computes its procedural behavior, which specifies how the agent

executes that task. For a primitive task, the procedural behavior is simply a

primitive action that the agent executes for one time step. For a composite

task, the procedural behavior is an option: the initiation set Io in which the

task may execute, the policy πo that the agent should (recursively) follow when

executing the task, and the termination function βo that describes when to

cease executing the task.

The bulk of each task is a pair of functions defined over state instances,

one for the declarative behavior and one for the procedural behavior. For any

state s, a task omust be able to produce a model object that defines the declar-

ative behavior of the state-action so by implementing the StateActionModel

interface. This interface defines methods for obtaining both the floating-point

value Vo[s] and the row vector Ωo[s, ·], represented as an array of effects and

their probabilities. (See Section 7.1.2 for a discussion of the representing of Ω

as a |S| × |E| matrix that transitions state to relative effects.)

Each task o also produces a policy object that defines the procedural

behavior of the state-action so by implementing the StatePolicy interface.

This interface simply provides a reference to a subtask c ∈ Ao that maxi-

mizes πo[s, sc]. Both the StateActionModel and StatePolicy interfaces also

support the observer pattern, so that other objects can elect to receive noti-

fications whenever a particular object implementing these interfaces changes

186

its value.

7.2.1 Primitive Tasks

Primitive tasks correspond to a fixed primitive action, part of the agent-

environment interface, so their procedural behavior is trivial. Their initiation

set includes every state, they terminate in every state, and the policy pio spec-

ifies the primitive action at every state. To compute the declarative behavior

at each state, Fitted R-maxq implements the model generalization used in

KBRL and Fitted R-max, described in Section 3.2.

The primitive task for an action a ∈ A stores all the data the agent

has collected for that action. It stores for each state instance s an object of

type PrimitiveStateActionData, which contains the number of times Na[s]

that action a was executed in state s, the cumulative reward DR[sa], and

the effect counts DP [sa, ·]. Given a new experience 〈s, a, r, s′〉, the primitive

task increments Na[s], adds r to DR[sa], and increments DP [sa, e], where

e = x 7→ x + (s′ − s) is the effect that adds to any state the difference

between sprime and s. The data for a particular instance s allows the primitive

task easily to compute the maximum likelihood model for the state-action sa.

However, note that for most environments with very large state spaces, the

agent may only visit each state once, so this maximum likelihood model is

likely to be trivial.

A primitive task modifies the maximum likelihood model by applying

a |S| × |S| model averager matrix Ψ, where Ψ normalizes a kernel function

187

K (Equation (6.14)). In Fitted R-maxq, this kernel function is a Gaussian

probability density function:

K(s, x) = exp

(

−d(s, x)2

σ2

)

, (7.1)

where d is a distance function for states and σ controls the breadth of gener-

alization. The implementation uses a Euclidean distance function, where each

state dimension is scaled to the interval (0, 1), but it allows for state abstrac-

tion by specifying state variables that do not contribute to the distance. The

generalization breadth σ remains a free parameter of the algorithm.

The exact computation of Ψ as described above would be very ineffi-

cient, since it would assign nonzero weight to the data at state x for any given

state s. To reduce the number of predicted effects for each state s, Fitted

R-maxq ignores the tails of the Gaussian by setting to 0 any value of the

kernel function K or the averager Ψ below a certain threshold.8 Bounding the

minimum kernel value effectively limits the allowable distance between s and

x. Bounding the minimum probability in the averager, by only including the

instances with the highest kernel weights, effectively limits the approximation

to the nearest neighbors of s among the instances.

Individual rows of the Ψ must be computed efficiently on demand,

requiring the efficient lookup of instances near a given state s. Fitted R-maxq

employs a custom implementation of the Cover Tree algorithm (Beygelzimer

8The experiments in this thesis used a minimum value of 0.01 for both the kernel function
and the averager probabilities.

188

et al., 2006), which supports both nearest-neighbor lookups in O(log(n)) time

and incremental insertion (also in logarithmic time), which is essential for

updating the approximation after each time step.

Given a state s, the primitive task constructs a PrimitiveStateActionModel

object that implements the StateActionModel interface and therefore repre-

sents both Va[s] and Ωa[s, ·]. This object observes a KernelAverage object rep-

resenting Ψ[s, ·], as well as each PrimitiveStateActionData object for the in-

stances x such that Ψ[s, x] > 0. When creating a new PrimitiveStateActionData

object due to a new piece of experience with the environment, each row of

Ψ may change, notifying the PrimitiveStateActionModel objects observing

them to recompute their values.

7.2.2 Composite Tasks

Both the declarative and procedural behavior of a composite task de-

pend on the behavior of its subtasks. The computation of the declarative

behavior, which includes the computation of the procedural behavior, pro-

ceeds in three phases. First, it constructs an MDP 〈So, Ao, Ro, Po〉 from the

subtask models. Second, it computes the policy πo. Finally, it computes the

predicted model (Ro,Ωo). The composite task has a module for each of these

three phases, with each module producing objects, indexed by state instances,

which together define the quantity the module computes.

For any given state s, the MDP module constructs a MDPState object,

which includes a MDPStateAction object for each subtask. Each MDPStateAction

189

computes Ro[sa] and Po[sa, ·] given Va[s] and Ωa[s, ·]. The MDP module there-

fore assembles the action models for each subtask into a single MDP, in part by

resolving a distribution Ωa[s, ·] over effects into a distribution Po[sa, ·] over suc-

cessor states. Due to the representation of effects, even if a subtask a returns

the same StateActionModel object for two different states, the corresponding

MDPStateAction objects in the parent task may be distinct.

Special care must be taken to limit the size of the MDP, since the

planner and predictor modules will require MDPState objects for every state

reachable from the current state in the MDP. For this reason, Fitted R-maxq

employs fitted value iteration, which effectively constrains all successor states

in the MDP to a finite sample X ⊂ S9, as described in Sections 3.1 and 6.1.1.

In short, it implements the value-function approximation V̂ = ΦV by compos-

ing the transition function P with the averager Φ. Due to the use of relative

effects, Fitted R-maxq modifies the computation of Po near the beginning of

Algorithm 6.7 as follows

Po[sc, s
′]←

∑

e

Ωc[s, e]Φ[e(s), s
′], (7.2)

for each s, s′ ∈ S and c ∈ Ao. In the implementation of Fitted R-maxq,

the MDPStateAction representing Po[sc, ·] (and Ro[sc]) therefore observes the

StateActionModel that represents Ωc[s, ·] (and Vc[s]) and, for each effect e

such that Ωc[s, e] > 0, both the object that represents Φ[e(s), ·] and the

MDPState for each s′ such that Φ[e(s), s′] > 0.

9The implementation also allows self-transitions, so technically the set of possible suc-
cessor states for a state s is X ∪ {s}.

190

The object that represents each row of Φ in Fitted R-maxq is an

InterpolationAverage, which approximates a given state as a weighted

average of states sampled from S in a fixed grid.10 In particular, it approxi-

mates a state s with the points of the hybercube containing s, with the weights

obtained by linear interpolation along each state dimension. Note that this

approximation differs from simple discretization in that even two nearby states

will have distinct weights for the surrounding hypercube, allowing their values

to remain distinct.

Fitted R-maxq instantiates MDPState objects lazily and deallocates

them when they no longer have any observers. As a result, the only MDPState

objects that reside in memory at any given time step correspond either to

states in the finite sample X or to the current state s. Even though X could be

very large, Fitted R-maxq only constructs MDPState objects for those states

reachable from s, and it only permanently retains those objects corresponding

to states in a strongly connected component of the state transition graph

(which create cycles of observers).

The Plannermodule, given a non-terminal state s, constructs a DecisionState

object that implements the StatePolicy interface and represents both πo[s, s·]

10The experiments in Section 6.3 sample each state variable at intervals of 1

16
the nominal

range of the state variable.

191

and Ṽ [s]. It computes

Ṽo[s] = βo[s, s]Go[s] + (1− βo[s, s])max
c∈Ao

Q̃o[sc]

Q̃o[sc] = Ro[sc] + γ
∑

s′

Po[sc, s
′]Ṽo[s

′].

The DecisionState object for state s contains a DecisionState::Action

object for each child task c ∈ Ao (that includes s in its initiation set), which

represents Q̃o[sc]. The DecisionState computes Ṽo[s] as the maximum of

these Q̃o[sc] values, and it chooses a child task c that achieves this maxi-

mum to return as the policy action. The DecisionState::Action object for

state s and child task c observes the MDPStateAction object that represents

Ro[sc] and Po[sc, ·], as well as the DecisionState objects for each s′ such that

Po[sc, s
′] > 0.11

In the general case, the graph of dependencies and observers among

DecisionState objects is cyclical, requiring familiar dynamic programming

methods, such as value iteration. The Fitted R-maxq implementation uses

prioritized sweeping (Moore & Atkeson, 1993): each DecisionState::Action

object bounds the error in its computed value, given the values of its immedi-

ate successors. Recomputing the value of Q̃o[sc] resets its local error bound to

zero, but if the enclosing DecisionState must change Ṽo[s], then it also prop-

agates the magnitude of the change in value to each DecisionState::Action

object that observes Ṽo[s], increasing the error bound on those objects. The

11For terminal states, the Planner module constructs ValueState objects that contain
only a value, not a policy action. The value of the terminal state is determined using only
the goal function.

192

Planner module uses a priority queue to repeatedly recompute the value of

theDecisionState::Action object with the largest error bound, until the

largest error bound falls beneath a threshold ǫ.

The Predictor module computes Vo[s] and Ωo[s, ·] for a given state s,

given the DecisionState that represents πo[s, s·] (from the Planner module)

and the MDPStateAction that represents Ro[s·] and Po[s·, ·] (from the MDP

module). The computation of the predicted value Vo[s] resembles the com-

putation of Ṽo[s], except that it does not include the goal function Go and

replaces the maximization over subtasks with the policy action, so

Vo[s] = (1− βo[s, s])
∑

a∈Ao

πo[s, sa]

(

Ro[sa] + γ
∑

s′

Po[sa, s
′]Vo[s

′]

)

.

Otherwise, the Predictor module uses the same prioritized sweeping computa-

tion of values. The computation of Ωo[s, ·] follows the same approach

Ωo[s, ·] =
∑

a∈Ao

πo[s, sa]

(

βo[s, ·] + γ
∑

s′

Po[sa, s
′]Ω[s′, ·]

)

.

In Fitted R-maxq, πo[s, sa] is binary, so this quantity serves as an indicator

function for the policy action. Note that because the columns of Ω are now in-

dexed by effects, in this equation the columns of βo are also indexed by effects.

Since each composite task executes until reaching a terminal state, Fitted

R-maxq uses absolute (non-relative) effects for composite tasks. Therefore,

βo[s, e] = 1 if e(x) = s for all x ∈ S and βp[s, e] = 0 otherwise. For com-

posite tasks, the notion of effects is only necessary to handle changes in state

representation, not to improve generalization of the model. Note that the row

193

vector Ωo[s, ·] is stored as an adjacency list, so that summing two vectors sim-

ply requires merging the two lists (which must be sorted by effect, requiring a

total ordering of possible effects) and summing the probabilities appropriately.

7.3 Using Fitted R-MAXQ

Fitted R-maxq adopts the RL-Glue interface (Tanner & White, 2009),

permitting its use with a wide variety of environments that also adopt RL-

Glue. This interface governs the interaction between agents and environments,

permitting experiments that incorporate independently developed implemen-

tations of either, even when written in different programming languages. Ide-

ally, the interface communicates to an agent everything it needs to know about

the environment: the number of state variables, the ranges of the state vari-

ables, and the number of actions. Fitted R-maxq allows the user to specify

important domain knowledge, such as state and temporal abstractions, when

it is available.

In RL-Glue version 3, the user compiles the agent code, the environ-

ment code, and the code running an experiment into three separate binary

executables. To run an experiment, the user launches an executable of each

type before launching the standard rl glue program, which initiates socket-

based connections to the first three processes and initiates the experiment.

The source code for this thesis includes a separate environment implemen-

tation for each problem domain used, and the simple SingleRun experiment

runs the connected agent in the connected environment for 1000 episodes of at

194

most 1000 time steps each. The included makefile, with the default invocation

make all, will compile the experiment and each agent and environment.

All of the agents share the same implementation of the RL-Glue agent

methods, defined in fittedrmaxq.cc. The agent initialization function of each

instance of Fitted R-maxq links to a different implementation of the function

get task hierarchy. This function constructs the task hierarchy, given the

RL-Glue task specification, which describes the low-level state and action rep-

resentation. Each agent instance, including examples of Fitted R-max and

R-maxq, has its own source file implementing get task hierarchy, which

defines algorithm parameters and possibly domain-specific prior knowledge.

To produce a task hierarchy, this function calls PrimitiveTask::create and

CompositeTask::create. These static object methods create individual task

instances,12 which may be assembled into the appropriate task hierarchy.

The constructor for primitive tasks takes five arguments:

primitive The value a of the RL-Glue action that the primitive task repre-

sents

threshold The weighted sample sizem of the generalized data for state-action

sa that is required before disabling optimistic exploration of sa

maxval The optimistic value V max to assign Ra[s] when the weighted sample

size for sa is smaller than the threshold m

12These methods initialize the smart pointers appropriately; the user should not call the
class constructors directly.

195

model approximator The averager Ψ to use when generalizing data from

state instances to approximate Ra[s] and Ωa[s, ·]

precondition A predicate over state instances that determines whether the

primitive task is available, to support environments in which not every

primitive action is available in every state

The constructor for composite tasks takes eight arguments:

subtasks begin An input iterator that allows the user to specify the subtasks

Ao. The constructor dereferences and increments this iterator to obtain

each subtask reference.

subtasks end The constructor should stop dereferencing the input iterator

once it becomes equal to this value.

initiation set The predicate Io over state instances that determines whether

the composite task is available

termination condition The predicate over state instances that determines

the termination function βo

goal function The goal function Go

averager The averager Φ to use when generalizing values from state instances

to a given state

gamma The discount factor γ used by the Planner and Predictor modules

during value iteration

196

epsilon The threshold on the Bellman error used by the Planner and Predictor

modules to determine when to terminate value iteration

The following sections show how appropriate choices for the task hier-

archy, including the parameters of each task, allow Fitted R-maxq to replicate

any of the new algorithms that this thesis defines. By way of example, the

makefile includes the invocation for running Fitted R-maxq in the Flag &

Puddle World, by running the command make run.

7.3.1 R-MAX

Fitted R-maxq can reproduce the behavior of R-max (Brafman &

Tennenholtz, 2002) simply by using no function approximation and a flat task

hierarchy, which only contains a primitive task for each action available to the

agent and a single composite task, which directly chooses primitive tasks to

maximize expected reward in the environment. To this end, the list of possible

averagers includes ProjectionAverager objects, which implements only state

abstraction, not approximation. It “approximates” a given state s with the

projection of s into the abstract state space for the primitive action a. For

the purposes of Fitted R-maxq, an abstract state space is defined by a list of

state variable indices that specifies the relevant state variables, as defined in

Section 6.2.2.

The sole composite task for R-max is the root task of the hierarchy.

Its initiation set should include every state, and it should not expicitly termi-

nate at any state. (For episodic tasks, states that terminate an episode are

197

represented implicitly as the absence of a successor state.) The root task also

uses the ProjectionAverager, since no value approximation is required.

The ProjectionAverager is intended for discrete state spaces where

generalization is not desired. For large state spaces, the agent will not ac-

quire enough data to progress beyond its optimistic exploration phase. To

allow R-max to be applied to continuous state spaces using the common

technique of discretizing the state space, the implementation also provides a

DiscretizationAverager, which resembles the InterpolationAverager in

that it approximates each state using a uniform grid over the state space. Un-

like the InterpolationAverager, the DiscretizationAverager assigns all

the approximation weight to the single hypercube corner closest to the given

state.

To run the standard R-max algorithm in the (discrete) Taxi domain,

connect rl glue to Rmax, Taxi, and SingleRun. The file Rmax.cc defines

a flat task hierarchy (in which the only composite task is the root) using the

ProjectionAverager and no domain-specific knowledge. The file Rmax-FPWorld.cc

contains an instance of R-max that uses a DiscretizationAverager to learn

in the Flag & Puddle World, along with domain-specific state abstractions

for each primitive action. This agent can be run by invoking rl glue with

Rmax-FPWorld, FlagPuddleWorld, and SingleRun.

198

7.3.2 Fitted R-MAX

Fitted R-max (Jong & Stone, 2007b; Jong & Stone, 2007a), described

in Section 3.2.2, extends R-max by replacing the averagers used in Sec-

tion 7.3.1 with averagers that implement generalization. In particular, the

primitive tasks use KernelAveragers (Section 7.2.1) to model a given state-

action using data generalized from nearby states, and the composite task uses

an InterpolationAverager (Section 7.2.2) in effect to generalize the value

function from a uniform grid of states.

A KernelAverager weights these states as a function of their dis-

tance. It assumes a Euclidean distance function, but it allows the user to

specify different scale factors for each state dimension. Its constructor ac-

cepts a StateVariables argument, which is a map that associates indices in a

StateVector to the constant that should be multiplied with that state vari-

able to obtain the scaled Euclidean space. Furthermore, the map may omit a

StateVector index to indicate that the corresponding state variable is irrele-

vant and should not contribute to the distance.

The KernelAverager also accepts a generalization breadth that deter-

mines the standard deviation of the Gaussian used to compute the averager

weights from the distances. The choice of scale factors for each dimension and

this generalization breadth determine the generalization behavior of the prim-

itive action. Finally, the KernelAverager also takes two parameters that help

trade off accuracy and efficiency: the minimum nonzero Gaussian weight (be-

fore normalization) and averager weight (after normalization, which effectively

199

bound the maximum generalization distance and number of nearest neighbors.

The InterpolationAverager, which provides a fitted approximation

of the value function by producing a fitted approximation of the MDP, only re-

quires two parameters: a StateVariablesmapping that determines the scaled

Euclidean state space and a resolution factor that determines the granularity

of the grid sampled from the state space. The StateVariables parameter

given to the InterpolationAverager should include all the StateVector in-

dices used by any of the primitive tasks. The resolution factor is an integer i

that causes the InterpolationAverager to create a grid leaving 1
2i

between

each point.

Fitted R-max may be run by connecting rl glue with FittedRmax,

MountainCar (or PuddleWorld), and SingleRun. The file FittedRmax.cc

defines a task hierarchy which includes only one composite task, which uses

an InterpolationAverager to approximate values, and KernelAverager in-

stances to approximate models.

7.3.3 R-MAXQ and Fitted R-MAXQ

R-maxq (Jong & Stone, 2008), described in Section 5.2.1, extends

R-max along a different dimension than does Fitted R-max. It constructs

the root composite task using other composite tasks, not just primitive tasks.

Each composite task may contribute different goal states and a different state

representation, defined by its own averager. Additional layers of the task hier-

archy can more gradually increase the number of state variables as reasoning

200

progresses up the hierarchy, while introducing subgoal states that result in a

compensating decrease in the size of the completion set for each subtask MDP.

The file Rmaxq-Taxi.cc contains an example of how to construct such

a task hierarchy, including domain-specific subtasks and state abstractions.

This code is linked into the agent Rmaxq-Taxi, which can be connected to

rl glue along with Taxi and SingleRun.

Fitted R-maxq is the result of applying hierarchy to Fitted R-max

instead of to R-max. An example task hierarchy for the Flag & Puddle

World is given in FittedRmaxq-FPWorld.cc. To run this agent and environ-

ment, connect rl glue with FittedRmaxq-FPWorld, FlagPuddleWorld, and

SingleRun.

7.4 Discussion

This thesis has focused on the sample complexity of learning in environ-

ments where structured generalization is possible. The model-based methods

it developed are computationally intensive, compared to popular model-free

methods such as Q-learning and SARSA. Even though such computationally

cheap algorithms are convenient for running a large number of experiments,

the algorithms in this thesis adopt the perspective that CPU time is not the

limiting factor in most prospective real-world applications of RL. Samples and

data are the scarce resource: it doesn’t matter how quickly an RL algorithm

can process millions of interactions with the environment if it must learn a

good policy after only thousands of interactions.

201

That said, after designing an algorithm such as Fitted R-maxq de-

signed to learn as efficiently as possible given limited data, it is important

next to optimize its implementation to learn as efficiently as possible given

realistic computational resources. An algorithm with appealing theoretical

properties can only ever be of academic interest if its implementation would

require effectively infinite time, memory, or space. The Bayesian approach to

exploration outlined in Section 2.3.1 sits at one extreme of the space of algo-

rithms. It is in some sense optimal but requires arbitrarily accurate estimates

of non-parametric probability density functions in extremely high-dimensional

spaces, which remains well beyond our ability to implement.

This chapter demonstrated that Fitted R-maxq can be effectively im-

plemented, if some care is taken to minimize unnecessary computation. The

implementation of FittedR-maxq available at http://library.rl-community.

org/wiki/Fitted_R-MAXQ uses lazy evaluation to compute only the portion

of the action models and value function necessary to choose an action at the

current state. It caches the intermediary results of these computations and

propagates changes efficiently through a network of dependencies. Reference

counting ensures that the implemention only spends time updating values that

are either directly necessary for the current state or part of a strongly con-

nected component of the fitted MDP (and therefore expensive to reconstruct

repeatedly).

202

Chapter 8

Discovery

This thesis has focused on algorithms that learn efficiently by taking

advantage of state abstractions and temporal abstractions that allow an agent

to generalize from data in a structured manner. These algorithms assume the

preexistence of these abstractions, but can they be discovered automatically?

This question motivated the development of Fitted R-maxq and the other

algorithms described in the preceding chapters. These algorithms provide a

firm foundation for evaluating candidate abstractions in a manner that incor-

porates the structured state spaces found in dynamic Bayes networks (DBNs),

the structured action spaces found in hierarchical RL, and the focus on sample

complexity found in model-based methods.

This chapter describes the preliminary research into abstraction dis-

covery (Jong & Stone, 2005) that made these needs apparent. Section 8.1

defines a novel criterion for state abstraction designed for ease of discovery.

Section 8.2 develops an algorithm for discovering and deploying abstractions

using this criterion. Section 8.3 provides an experimental validation of these

methods. Section 8.4 discusses these results in the context of this thesis and

delineates directions for future work.

203

8.1 Policy Irrelevance

Humans can cope with an unfathomably complex world due to their

ability to focus on pertinent information while ignoring irrelevant detail. In

contrast, most of the research into artificial intelligence relies on fixed problem

representations. Typically, the researcher must engineer a feature space rich

enough to allow the algorithm to find a solution but small enough to achieve

reasonable efficiency. The agent must consider enough aspects of each situation

to inform its choices without spending resources worrying about minutiae. In

practice, the complexity of this state representation is a key factor limiting

the application of standard RL algorithms to real-world problems.

State abstraction maps two distinct states in the original state repre-

sentation to a single abstract state if an agent should treat the two states

in exactly the same way. The agent can still learn optimal behavior if the

MDP that formalizes the underlying domain obeys certain conditions: the rel-

evant states must share the same local behavior in the abstract state space

(Dean & Givan, 1997; Ravindran & Barto, 2003). However, this prior research

only directly applies in a planning context, in which the MDP model is given,

or if the user manually determines that the conditions hold and supplies the

corresponding state abstraction to the RL algorithm.

This chapter proposes an alternative basis to state abstraction that is

more conducive to automatic discovery. Intuitively, if it is possible to behave

optimally while ignoring a certain aspect of the state representation, then

an agent has reason to ignore that aspect during learning. Recognizing that

204

discovering structure tends to be slower than learning an optimal behavior

policy (Thrun & Schwartz, 1995), this approach suggests a knowledge-transfer

framework, in which policies learned in one domain are analyzed to discover

abstractions that might improve learning in similar domains. To test whether

abstraction is possible in a given region of the state space, this chapter gives

two statistical methods that trade off computational and sample complexity.

Some care must be taken when applying the discovered abstractions,

since the criteria defined in this section for use in discovery are strictly weaker

than those given in prior work on state abstraction, typically based on either

equivalence in values or in transition probabilities (Li et al., 2006). Transfer-

ring abstractions from one domain to another may also introduce generaliza-

tion error. To preserve convergence to an optimal policy, the state abstractions

are encapsulated in options, temporal abstractions that construe sequences of

primitive actions as constituting a single abstract action (Sutton et al., 1999).

In contrast to previous work with temporal abstraction, this method discov-

ers abstract actions intended just to simplify the state representation, not to

achieve a certain goal state. RL agents equipped with these abstract actions

thus learn when to apply state abstraction the same way they learn when to

execute any other action.

8.1.1 Defining Irrelevance

Without loss of generality, assume that the state space of an MDP is

the cartesian product of (the domains of) n state variables X = {X1, . . . , Xn}

205

and m state variables Y = {Y1, . . . , Ym}, so S = X1×· · ·×Xn×Y1×· · ·×Ym.

The term [s]X denotes the projection of s onto X, and s′ |= [s]X denote that

s′ agrees with s on every state variable in X. The goal is to determine when

it is safe to abstract away Y. This chapter introduces a novel approach to

state abstraction called policy irrelevance. Intuitively, if an agent can behave

optimally while ignoring a state variable, then it should abstract that state

variable away. More formally, Y is policy irrelevant at s if some optimal policy

specifies the same action for every s′ such that s′ |= [s]X:

∃a∀s′|=[s]X∀a′ Q∗[s′a] ≥ Q∗[s′a′], (8.1)

where Q∗ is the state-action value function for an optimal policy π∗. If Y is

policy irrelevant for every s, then Y is policy irrelevant for the entire domain.

Consider the illustrative toy domain shown in Figure 8.1. It has just

four nonterminal states described by two state variables, X and Y . It has two

deterministic actions, represented by the solid and dashed arrows respectively.

When X = 1, both actions terminate the episode but determine the final

reward, as indicated in the figure. This domain has two optimal policies, one

0

0

1

1

3

3

0

1

X=0 X=1

Y=1

Y=0

Figure 8.1: A domain with four nonterminal states and two actions. When
X = 1 both actions transition to an absorbing state, not shown.

206

of which we can express without Y : take the solid arrow when X = 0 and the

dashed arrow when X = 1. We thus say that Y is policy irrelevant across the

entire domain.

Note however that we cannot simply aggregate the four states into

two states. As McCallum pointed out, the state distinctions sufficient to rep-

resent the optimal policy are not necessarily sufficient to learn the optimal

policy (McCallum, 1995). In this example, observe that if we treat X = 1 as

a single abstract state, then in X = 0 we will learn to take the dashed arrow,

since it transitions to the same abstract state as the solid arrow but earns a

greater immediate reward. We demonstrate how to circumvent this problem

while still benefitting from the abstraction in Section 8.2.2.

8.1.2 Testing Irrelevance

Given access to the transition and reward functions, an agent can eval-

uate the policy irrelevance of a candidate set of state variables Y by solving

the MDP using a method, such as policy iteration, that can yield the set

of optimal actions π∗(s) ⊆ A at each state s, where π∗(s) is the entire set

{a ∈ A | Q∗[sa] = V ∗[s]}. Then Y is policy irrelevant at s if some action is in

each of these sets for each assignment to Y:
⋂

s′|=[s]X
π∗(s′) 6= ∅.

However, testing policy irrelevance in an RL context is trickier if the

domain has more than one optimal policy, which is often the case for domains

that contain structure or symmetry. Most current RL algorithms focus on

finding a single optimal action at each state, not all the optimal actions. For

207

example, Figure 8.2 shows the Q values learned from a run of Q-learning1.

Even though the state variable Y is actually policy irrelevant, from this data

we would conclude that an agent must know the value of Y to behave optimally

when X = 1. In this trial the learning algorithm explored enough to find an

optimal policy but not enough to converge to accurate Q values for every state-

action pair. This phenomenon seems quite common in practice, but even with

sufficient exploration the inherent stochasticity of the domain may disguise

state variable irrelevance. This chapter proposes two methods for detecting

policy irrelevance in a manner robust to this variability.

8.1.2.1 Statistical Hypothesis Testing

Hypothesis testing is a method for drawing inferences about the true

distributions underlying sample data. This section describes how to apply

this method to the problem of inferring policy irrelevance. To this end, it

interprets an RL algorithm’s learned value Q[sa] as a random variable, whose

distribution depends on both the learning algorithm and the domain. Ideally,

1No discounting, learning rate 0.25, Boltzmann exploration with starting temperature
50, cooling rate 0.95, for 50 episodes

Y=1

Y=0

X=0 X=1

3.00

2.60

0

0.991.92

2.81

1.48

2.93

Figure 8.2: The domain of Figure 8.1 with some learned Q values.

208

an agent could then directly test the hypothesis that Equation 8.1 holds, but

this hypothesis lacks an appropriate test statistic. Instead, assume that for

a reasonable RL algorithm, the means of these distributions share the same

relationships as the corresponding true Q values: Q[sa] ≥ Q[sa′] ≡ Q∗[sa] ≥

Q∗[sa′], where Q is the algorithm’s learned state-action value function. The

agent can then test propositions of the form

Q[sa] ≥ Q[sa′], (8.2)

using a standard procedure such as a one-sided paired t-test or Wilcoxon signed

ranks test (Degroot, 1986). These tests output for each hypothesis of the form

in Equation 8.2 its significance level ps,a,a′ . If Q[sa] = Q[sa′] then this value

is a uniformly random number from the interval (0, 1). Otherwise, ps,a,a′ will

tend towards 1 if Equation 8.2 is true and towards 0 if it is false. These values

may be combined in a straightforward way to obtain a confidence measure for

the hypothesis that Equation 8.1 holds:

p = max
a

min
s′|=[s]X

min
a′ 6=a

ps′,a,a′ . (8.3)

Figure 8.3 shows these p values for the toy domain depicted in Fig-

ure 8.1, given data from 25 independent trials of Q-learning. It uses the

Wilcoxon signed-ranks test, which unlike the t-test does not assume that Q[sa]

is Gaussian. Figure 8.3a reveals “random” looking values, so it is reasonable

to accept the hypothesis that Y is policy irrelevant for both values of X. In

Figure 8.3b the values of p are very close to 0, so the agent must reject the

209

0.7310.367

X=1X=0

Y=1

Y=0

0.001

0.000

X=1X=0

Y=1

Y=0

(a) (b)

Figure 8.3: The value of p for each of the two abstract states when testing the
policy irrelevance of (a) Y and (b) X.

hypothesis that X is policy irrelevant for either value of Y . This chapter uses

0.05 as a threshold for rejecting the hypothesis that Equation 8.1 holds. If

p exceeds 0.05 for every s, then Y is irrelevant across the entire domain. In

practice this number seems quite conservative, since in those cases when the

hypothesis is false, empirical data yields p values orders of magnitude smaller.

8.1.2.2 Monte Carlo Simulation

The hypothesis testing approach is computationally efficient, but it re-

quires a large amount of data. This section explores an alternative approach

designed to conserve experience data when interaction with the domain is

expensive. It draws upon work in Bayesian MDP models (Dearden et al.,

1999) to reason more directly about the distribution of each Q[sa]. This tech-

nique regards each row P [sa, ·] of the transition matrix as the parameters of a

multinomial distribution over successor states. Bayesian estimation techniques

define a probability distribution over the values of a given row, which may be

conditioned given data from the corresponding state-action using Bayes’ theo-

210

rem. The Dirichlet distribution has been shown to be a conjugate prior family

for multinomial distributions, so that the result of conditioning any Dirichlet

prior with multinomial data is another Dirichlet distribution.

The Dirichlet distribution is parameterized by a real-valued vector,

which in this context has dimensionality 1× |S|. To estimate the entire tran-

sition matrix, we therefore maintain a |S||A| × |S| matrix α, where α[sa, s′]

gives the relative weight of s′ when sampling a distribution over successors

P [sa, ·] for a particular state-action. If we construe each P [sa, s′] as a random

variable, when we draw a transition matrix P from the Dirichlet, the mean

E [P [sa, s′]] = α[sa,s′]
n̂sa

, where n̂sa =
∑′

s α[sa, s
′]. In this sense, α can be in-

terpreted as a (real-valued) histogram of transition counts. In fact, given a

transition from sa to s′ as data, the posterior parameters are obtained sim-

ply by incrementing α[sa, s′] by 1. What this Bayesian approach offers be-

yond maximum-likelihood approaches is the variance of each model parameter,

Var [P [sa, s′]] =
p
sas′

(1−p
sas′

)

n̂sa
, where psas′ = E [P [sa, s′]]. After conditioning on

state transition data from a run of some arbitrary RL algorithm, the matrix

α specifies Dirichlet distributions for each state-action. The variance of these

distributions goes to 0 and their mean converges to the true transition function

as the amount of data increases.2

Given such a Bayesian model of the domain, the agent can apply Monte

Carlo simulation to make probabilistic statements about the Q values. Given

2It is also possible to build a Bayesian model of the reward function, but all the domains
studied this this thesis use deterministic rewards.

211

the conditioned matrix α, it can draw a transition matrix from the collec-

tion of Dirichlets by randomly generating each entry of the transition matrix

P [sa, s′] ∼ Gamma(α[sa, s′], 1). The agent can sample several transition ma-

trixes and perform MDP planning with each to obtain a random sample for

each Q∗[sa]. Then it can estimate the probability that Q∗[sa] ≥ Q∗[sa′] holds

as the fraction of the sample in which the inequality is true. This probability

estimate can be used in the same way that the hypothesis-testing approach

uses significance levels to obtain a confidence measure for the policy irrelevance

of Y at some s:

p = max
a

min
s′|=[s]X

min
a′ 6=a

Pr(Q∗[s′a] ≥ Q∗[s′a′]). (8.4)

This method seems to yield qualitatively similar results to the hypothe-

sis testing method. Experiments show that it almost always obtains a value of

p = 0 for cases in which Y actually is relevant; it obtains a value near 1 when

only one action is optimal; it obtains a uniformly random number in (0, 1)

when more than one action is optimal. Although it achieves similar results

using less data, this method incurs a higher computational cost due to the

need to solve multiple MDPs.3

3This cost can be ameliorated somewhat by initializing each MDP’s value function with
the value function for the maximum likelihood MDP, as in (Strens, 2000).

212

8.2 Abstraction Discovery

The techniques described in Section 8.1.2 both involve two stages of

computation. In the first stage, they acquire samples of state-action values,

either by solving the task repeatedly or by solving sampled MDPs repeatedly.

In the second stage, they use this data to test the relevance of arbitrary sets of

state variables at arbitrary states. Any one of these tests in the second stage

is very cheap relative to the cost of the first stage, but the number of possible

tests is astronomical. A practical implementation must limit both the sets of

state variables it tests and the states at which it tests those state variables.

This section describes a concrete method for the discovery and application of

state abstractions.

8.2.1 Discovering Irrelevance

First consider the sets of state variables. It is straightforward to prove

that if Y is policy irrelevant at s, then every subset of Y is also policy irrelevant

at s.4 A corollary is that an agent only need to test the policy irrelevance of

{Y1, . . . , Yk} at s if both {Y1, . . . , Yk−1} and {Yk} are policy irrelevant at s. This

observation suggests an inductive procedure that first tests each individual

state variable for policy irrelevance and then tests increasingly larger sets only

as necessary. This inductive process will continue only so long as it finds

increasingly powerful abstractions.

4The converse is not necessarily true. Consider a duplicate of an otherwise always relevant
state variable. Then each copy of the state variable is always policy irrelevant given the
remainder of the state representation, but the pair of them is not.

213

The agent can afford to test every state variable at a given state, since

the number of variables is relatively small. In contrast, the total number of

states is quite large: exponential in the number of variables. This chapter

hence adopts an heuristic approach, which performs tests for policy irrele-

vance only on states visited during some trajectories through the task. For

these states, the agent then determines what sets of state variables are pol-

icy irrelevant, as described above. The outcome of these tests specifies what

state features the agent “paid attention to” while applying its learned pol-

icy during those trajectories. For each set of state variables, the agent then

constructs a binary classification problem with a training set comprising the

visited states. An appropriate classification algorithm then allows the agent

to generalize the results of the irrelevance tests to states besides those visited

during the test trajectories. The next section shows how the agent can en-

sure that the classifiers’ generalization errors do not lead to the application of

unsafe abstractions.

8.2.2 Exploiting Irrelevance

Section 8.2.1 describes how to represent as a learned classifier the region

of the state space where a given set of state variables is policy irrelevant. A

straightforward approach to state abstraction would simply aggregate together

all those states in this region that differ only on the irrelevant variables. How-

ever, this approach may prevent an RL algorithm from learning the correct

value function and therefore the optimal policy. Section 8.1.1 gave a simple

214

example of such an abstraction failure, even with perfect knowledge of pol-

icy irrelevance. Generalizing the learned classifier from visited states in one

domain to unvisited states in a similar domain introduces another source of

error. A solution to all of these problems is to encapsulate each learned state

abstraction inside a temporal abstraction. In particular, the agent can apply

each state space aggregation only inside a learned option: an abstract action

that may persist for multiple time steps in the original MDP (Sutton et al.,

1999).5

Formally, for a set of state variables Y that is policy irrelevant over

some S ′ ⊆ S, the agent constructs an option o = 〈π, I, β〉, comprising an

option policy π : [S ′]X → A, an initiation set I ⊂ S, and a termination

condition β : S → [0, 1]. Once an agent executes an option o from a state in I,

it always executes primitive action π(s) at each state s, until terminating with

probability β(s). The experiments in this chapter set I = S ′ and β(s) = 0.01

for s ∈ I and β(s) = 1 otherwise.6 Since Y is policy irrelevant over S ′, the

agent chooses an option policy π equal to the projection onto [S ′]X of an

optimal policy for the original MDP. An agent augmented with such options

can behave optimally in the original MDP by executing one of these options

whenever possible.

Although the discovery of these abstractions is interesting in its own

5Chapter 4 discusses options in more detail.
6The nonzero termination probability for s ∈ I serves as a probabilistic timeout to escape

from bad abstractions.

215

right, their utility becomes most apparent when an agent can transfer the

discovered options to novel domains, for which it does not yet have access to an

optimal policy. To transfer an option to a new domain, the agent simply copies

the initiation set and termination condition. This straightforward approach

suffices for domains that share precisely the same state space as the original

domain. Even when the state space changes, representating I and β as a

learned classifier gives some hope for reasonable generalization. The agent

can also copy the option policy π, if it expects the optimal behavior from the

original domain to remain optimal in the new domain.

This chapter assumes only that the policy irrelevance remains the same.

The implemented agent relearns the option policy concurrently with the learn-

ing of the high-level policy, which chooses among the original primitive actions

and the discovered options. Each option establishes an RL subproblem with

state space [I]X and the same action space A. Whenever an option terminates

in a state s, the agent augments the reward from the environment with a

subgoal reward equal to the current estimate of the optimal high-level value

function evaluated at s. The option can be construed not as learning to achieve

a subgoal but as learning to behave while ignoring certain state variables. In

other words, the option adopts the goals of the high-level agent, but learns in

a reduced state space.

Since each option is just another action for the high-level agent to select,

RL algorithms will learn to disregard options as suboptimal in those states

where the corresponding abstractions are unsafe. The options that correspond

216

to safe state abstractions join the set of optimal actions at each appropriate

state. The smaller state representation should allow the option policies to

converge quickly, so RL algorithms will learn to exploit these optimal policy

fragments instead of uncovering the whole optimal policy the hard way. The

next section illustrates this process.

8.3 Experimental Results

This chapter’s experiments use Dietterich’s Taxi domain (Dietterich,

2000a), illustrated in Figure 8.4 and previously discussed in Section 5.1. Recall

that this domain has four state variables. The first two correspond to the taxi’s

current position in the grid world. The third indicates the passenger’s current

location, at one of the four labeled positions (Red, Green, Blue, and Yellow) or

inside the taxi. The fourth indicates the labeled position where the passenger

would like to go. The domain therefore has 5 × 5 × 5 × 4 = 500 possible

states. At each time step, the taxi may move north, move south, move east,

move west, attempt to pick up the passenger, or attempt to put down the

passenger. Actions that would move the taxi through a wall or off the grid

have no effect. Every action has a reward of -1, except illegal attempts to

pick up or put down the passenger, which have reward -10. The agent receives

a reward of +20 for achieving a goal state, in which the passenger is at the

destination (and not inside the taxi). This thesis uses the stochastic version of

the domain: whenever the taxi attempts to move, the resulting motion occurs

in a random perpendicular direction with probability 0.2. Furthermore, once

217

Figure 8.4: The Taxi domain.

the taxi picks up the passenger and begins to move, the destination changes

with probability 0.3.

This domain’s representation requires all four of its state variables in

general, but it still affords opportunity for abstraction. In particular, note

that the passenger’s destination is only relevant once the agent has picked up

the passenger.

8.3.1 The Wilcoxon signed ranks test

The experimental agent applied the methodology described in Sec-

tions 8.1 and 8.2 to the task of discovering this abstraction, as follows. First,

it ran 25 independent trials of Q-learning to obtain samples of Q∗. For each

trial, it set the learning rate α = 0.25 and used ǫ-greedy exploration with ǫ =

0.1. Learning to convergence required about 75000 time steps for each trial.

218

This data allows the agent to compute the policy irrelevance of any state vari-

able at any state. For example, consider again the passenger’s destination. To

demonstrate the typical behavior of the testing procedure, Figure 8.5a shows

the outcome for every location in the domain, when the passenger is waiting

at the upper left corner (the Red landmark), using the Wilcoxon signed-ranks

test. The nonzero p values at every state imply that the passenger’s destina-

tion is policy irrelevant in this case. Note that the values are extremely close

to 1 whenever the agent has only one optimal action to get to the upper left

corner, which the procedure can then identify confidently. The squares with

intermediate values are precisely the states in which more than one optimal

action exists. Now consider Figure 8.5b, which shows the output of the same

test when the passenger is inside the taxi. The p values are extremely close

to 0 in every state except for the four at the bottom middle, where due to the

layout of the domain the agent can always behave optimally by moving north.

8.3.2 Monte Carlo Simulation

Another implementation of the abstraction-discovering agent used the

Monte Carlo approach on the Taxi domain. This agent used R-max (Brafman

& Tennenholtz, 2002) (described in more detail in Section 2.3.2), with m = 10

to ensure that the Bayesian model had at least ten samples for each reachable

state-action. The agent explored for 40,000 time steps in the original Taxi

domain, enough to ensure that it completed its exploration in practice. The

agent assumed that the reward function was deterministic, so it knew all the

219

0.9999 0.9999 0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.3188

0.1766

0.9994

0.5799

0.7940

0.9919

0.4731

0.3784

0.5799

0.4095

0.7703

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000 0.0000 0.0000

0.0000

0.0000 0.0000

0.0000

0.0000

0.0000

0.4412 0.4946

0.9171 0.6518

0.0001

0.0004

0.0002

0.0003

0.0003

(a) (b)

Figure 8.5: The results of the Wilcoxon signed-ranks test for determining the
policy irrelevance of the passenger’s destination in the Taxi domain. We show
the result of the test for each possible taxi location for (a) a case when the
passenger is not yet in the taxi and (b) the case when the passenger is inside
the taxi.

one step rewards after visiting each state-action pair at least once. In general,

if the agent does not make this assumption, then it must choose some prior

distribution over rewards for each state-action pair. Since the Taxi domain

has a deterministic reward function, this complication may be avoided in the

work reported here. 7

Furthermore, the agent initialized to 0 each parameter of the Dirichlet

prior distributions over the multinomial transition distributions. This prior

distribution is not formally a Dirichlet distribution, which assumes that each

parameter is positive. However, the agent can still sample from these distribu-

7Dearden, Friedman, and Andre (Dearden et al., 1999) model rewards as multinomial
distributions the same way they model transition functions, but as a result they must supply
a priori some finite set that contains all possible rewards.

220

tions by assuming that unobserved state transitions have probability 0. This

form of prior, known as an improper prior, has the advantage of yielding a

Bayesian model whose mean is identical to the maximum likelihood model,

and it is slightly more computationally efficient than the approach of Dearden

et al. (1999).

After the exploration phase, the agent sampled 100 MDPs from the

learned Bayesian model, then it solved each of these using value iteration. The

following results examine the same two cases as in Section 8.3.1. Figure 8.6a

shows for each of the 25 taxi locations the maximum probability at which some

action is optimal across all passenger destinations, given that the passenger is

still waiting at the upper left landmark. In other words, each cell contains the

quantity maxa mins′|=[s]X Pr(Q[s′a]) = V [s′]), where X corresponds to the taxi

location and passenger location.

Although these estimated probabilities do not convey the same formal

meaning as the significance values that statistical hypothesis tests output, they

may be interpreted in a somewhat similar fashion. Consider the taxi location

with the smallest estimated probability, which is 0.20. If the null hypothesis

states that some action is optimal at that location across all passenger desti-

nations, the Monte Carlo simulation gives no reason to reject that hypothesis,

since at least one action was optimal in 20 of the 100 sampled MDPs.

Figure 8.6b shows the estimated probabilities for the second case, when

the passenger is inside the taxi. Note that for all the locations where the

passenger destination is in fact relevant, no action was optimal across passenger

221

1.00

1.00 1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.000.99

0.66

0.81

0.34

0.28

0.20

0.21

0.99

0.77

0.47

0.67

0.56

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.000.00

0.00

0.00

0.00

0.23

0.79

0.74

0.64

(a) (b)

Figure 8.6: The results of Monte Carlo for determining the policy irrelevance
of the passenger’s destination in the Taxi domain. We show the result of the
test for each possible taxi location for (a) a case when the passenger is not yet
in the taxi and (b) the case when the passenger is inside the taxi.

destinations in any of the 100 sampled MDPs. One can easily imagine setting

a probability threshold similar in meaning to the significance level of statistical

hypothesis tests, then rejecting the null hypothesis only when the estimated

probability falls below that threshold. In ten trials, a threshold of 0.05 never

caused any false negatives but did lead the algorithm erroneously to classify

the passenger’s destination as relevant in three instances out of 1000. (In

each trial, the destination is irrelevant for each combination of four passenger

locations and 25 taxi locations.)

The principal cost of the Monte Carlo approach is computational. The

process of learning the Bayesian model, sampling 100 MDPs, and performing

value iteration until convergence 100 times required 335 seconds on a 2.8 GHz

Pentium 4 CPU, in contrast to the 9 seconds required to run 25 instances of

222

Q-Learning and to apply the Wilcoxon signed ranks test. On the other hand,

the Monte Carlo approach makes more efficient use of the data, requiring only

40000 steps of direct experience with the environment instead of 25× 75000 =

1875000 steps. Thus one method emphasizes computational efficiency and the

other sample complexity.

8.3.3 Generalization of Discovered Abstractions

Once policy-irrelevant variables have been found at each state, regard-

less of the method used to test for policy irrelevance, the next step for an

agent is to generalize and apply these abstraction. Rather than compute the

outcome of the test for every subset of state variables at every state, the agent

followed the approach described in Section 8.2.1 and sampled 20 trajectories

from the domain using one of the learned policies. It tested each individual

state variable at each state visited. The following results used the hypothesis

testing approach. The agent then created a binary classification problem for

each variable, using the visited states as the training set. For the positive

examples, it took each state at which the hypothesis test returns a p value

above the conservative threshold of 0.05. Finally, it applied a simple rule-

learning classifier to each problem: the Incremental Reduced Error Pruning

(IREP) algorithm, as described in (Cohen, 1995). A typical set of induced

rules follows:

1. Taxi’s x-coordinate:

223

(a) y = 1 ∧ passenger in taxi ∧ destination Red

⇒ policy irrelevant

(b) otherwise, policy relevant

2. Taxi’s y-coordinate:

(a) x = 4 ∧ passenger in taxi⇒ policy irrelevant

(b) otherwise, policy relevant

3. Passenger’s destination:

(a) passenger in taxi⇒ policy relevant

(b) otherwise, policy irrelevant

4. Passenger’s location and destination

(a) (x = 1 ∧ y = 2) ∨ (x = 1 ∧ y = 1)

⇒ policy irrelevant

(b) otherwise, policy relevant

The sets of state variables not mentioned either had no positive training

examples or induced an empty rule set, which classifies the state variables as

relevant at every state. Rule set 3 captures the abstraction that motivated the

analysis of this domain, specifying that the passenger’s destination is policy

relevant only when the passenger is in the taxi. The other three rules classify

state variables as usually relevant, except in narrow cases. For example, rule

224

1a holds because the Red destination is in the upper half of the map, y = 1

specifies that the taxi is in the lower half, and all the obstacles in this particular

map are vertical. Rule 2a is an example of an overgeneralization. When

holding the passenger on the rightmost column, it is usually optimal just to go

left, unless the passenger wants to go the Green landmark in the upper-right

corner.

The generalization performance of these learned abstractions were tested

on 10 × 10 instances of the Taxi domain with randomly generated obstacles,

running both horizontally and vertically. These instances placed one landmark

near each corner and otherwise had the same dynamics as the original domain.

Each abstraction was implemented as an option, as discussed in Section 8.2.2.

Since the locations of the landmarks moved, agents could not simply transfer

option policies from the original Taxi domain. In each experiment, the agent

used Q-learning with ǫ-greedy exploration8 to learn both the option policies

and the high-level policy that chose when to apply each option and thus each

state abstraction.9 To improve learning efficiency, the agent also employed off-

policy training (Sutton et al., 1999), as follows. Whenever a primitive action

a was executed from a state s, it updated Q[sa] for the high-level agent as well

as for every option that includes s in its initiation set. Whenever an option

o terminated, it updated Q[so] for every state s visited during the execution

8ǫ = 0.1 and α = 0.25
9In general, SMDP Q-learning is necessary to learn the high-level policy, since the actions

may last for more than one time step. However, this algorithm reduces to standard Q-
learning in the absence of discounting, which the Taxi domain does not require.

225

of o. Each state-action estimate in the system therefore received exactly one

update for each timestep the action executed in the state. Figure 8.7 compares

the learning performance of this system to a Q-learner without abstraction.

The abstractions allowed the experimental Q-learner to converge much faster

to an optimal policy, despite estimating a strict superset of the parameters of

the baseline Q-learner.

8.4 Discussion

This chapter addressed the problem of discovering state abstractions

automatically, given only prior experience in a similar domain. It defined a

condition for abstraction in terms of the relevance of state variables for express-

ing an optimal policy, and it described two statistical methods for testing this

condition for a given state and set of variables. One method applies efficient

statistical hypothesis tests to Q-values obtained from independent runs of an

RL algorithm. The other method applies Monte Carlo simulation to a learned

Bayesian model to conserve experience data. Then it exhibited an efficient

algorithm to use one of these methods to discover what sets of state variables

are irrelevent over what regions of the state space. Finally, this chapter showed

that encapsulating these learned state abstractions inside temporal abstrac-

tions allows an RL algorithm to benefit from the abstractions while preserving

convergence to an optimal policy.

The research described in this chapter directly motivated the contribu-

tions of earlier chapters in this thesis. This approach to abstraction discovery

226

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Discovered abstractions

No abstractions

Figure 8.7: The average reward per episode earned by agents with learned
abstractions encapsulated as options and only primitive actions, respectively,
on a 10× 10 version of the Taxi domain. The reward is averaged over 10000-
step intervals. The results are the average of 25 independent trials.

227

suffers from some practical limitations, which suggested the need for an RL

agent that combines model-based exploration, function approximation, and

hierarchical decomposition. The development of such an agent in this thesis

provides a necessary foundation for investigating abstraction discovery in more

realistic contexts.

The benefits of model-based RL become apparent when considering the

two methods for testing state variable relevance. The model-free method given

in Section 8.1.2.1 requires several independently learned near-optimal value

functions to analyze for potential state abstractions. In contrast, the model-

based method given in Section 8.1.2.2 demonstrates the efficiency of methods

that reason explicitly about the parameters of the underlying MDP and the

uncertainty in estimates of these parameters. Model-based RL agents therefore

seem a more promising context for the practical discovery of abstractions.

Another limitation is the reliance on transfer learning. The experiments

in Section 8.3 discover abstractions for use in a target environment by first

converging to optimal behavior in a related environment and then transferring

appropriate knowledge. Ideally, abstraction discovery could speed learning

in the target environment without requiring an easy-to-learn but sufficiently

similar source environment. However, discovering a good representation seems

a harder problem than learning with a given representation, in the general case.

Continuous or otherwise infinitely large environments provide a more natural

setting for abstraction discovery, since they necessarily require generalization

or approximation. In such an environment, an agent might learn successively

228

better policies by adopting increasingly fine approximations. Over time, this

agent would generalize less and less, requiring more and more data. This

kind of agent creates an opportunity for abstraction discovery, with a coarsely

approximated model or value function, to reduce the data requirements of a

finer approximation. Although many researchers explore new algorithms first

in small, discrete state spaces, this opportunity suggests a benefit to developing

discovery algorithms compatible with function approximation.

Finally, the experimental agent in this chapter encapsulated partial

state abstractions inside temporal abstractions, namely options. Agents that

incorporate model learning and function approximation, for the reasons dis-

cussed above, must therefore integrate these mechanisms with hierarchical

decomposition. The details of this integration, which comprise the preced-

ing chapters of this thesis, were also informed by the ideas described in this

section. Fitted R-max, defined in Chapter 3, depends on a generalization

breadth parameter, which directly corresponds to the resolution of function

approximation. Chapters 4 and 5 investigated how hierarchy can benefit an

agent, showing that instead of duplicating the ability of model-based RL to

guide exploration, hierarchical constraints can help R-maxq reduce the num-

ber of model parameters that require estimation. Furthermore, this benefit is

fully compatible with state abstraction, which can further reduce this number.

Chapters 6 and 7 describe the Fitted R-maxq algorithm, which com-

bines all of these ideas into a single agent which is uniquely suited to serve

as the foundation for ongoing research into abstraction discovery. Its support

229

for factored state spaces and hierarchical decomposition permit the agent to

experiment with the synergies between state abstractions and temporal ab-

stractions. Its model-based approach to exploration and instance-based func-

tion approximation allow the agent to reuse data efficiently, so that several

candidate abstractions or degrees of approximation may be evaluated in par-

allel. Fitted R-maxq not only seeks to learn with the best possible data

efficiency, but it does so in a manner designed to support critical future work

in discovering representations and generalizations. Chapter 10 outlines some

potential next steps for this research into discovery, incorporating the other

contributions of this thesis.

230

Chapter 9

Related Work

Successful learning in more complex environments remains the primary

challenge of RL researchers. This thesis describes one approach to expanding

the reach of RL, by extending the reach of model-based methods, which are

known to be efficient in exploring small domains where generalization is not

necessary. These extensions include function approximation, necessary for

environments with continuous state, and hierarchical decomposition, which

allows an agent’s knowledge more closely to match the structure of realistic

problems. This chapter will survey other efforts to expand the scope of RL,

paying particular attention to methods that address the issues of exploration

and generalization in environments with structured dynamics or infinite state

spaces.

9.1 Exploration

The capacity for Q-learning (Watkins, 1989) to converge to optimal

behavior, despite its stark simplicity, fueled rapidly growing interest in RL.

This growth lead to the field’s inclusion in undergraduate Artificial Intelli-

gence textbooks (Russell & Norvig, 1995) and the release of a widely accepted

231

standard text of its own (Sutton et al., 1999). However, the asymptotic con-

vergence of Q-learning tends to be slow in practice. In contrast, the Prioritized

Sweeping algorithm explicitly sought to improve the empirical efficiency of RL,

by constructing a model and guiding the agent to insufficiently explored states

(Moore & Atkeson, 1993). It offered an arbitrary threshold to determine the

sufficient amount of data, without giving any theoretical guarantees. The al-

gorithm’s name refers to its mechanism for reducing computation time, by

updating the values of states during planning in an order dependent on the

propagated Bellman error.

Kearns and Singh (1998) produced the first upper bound on the sample

complexity of RL by defining and analyzing another model-based algorithm,

Explicit Explore or Exploit (E3). Brafman and Tennenholtz (2002) demon-

strated that a much simpler algorithm, R-max, achieves the same convergence

guarantees, in the more general setting of stochastic games. In the MDP set-

ting, R-max reduces to Prioritized Sweeping (although Brafman and Tennen-

holtz, focusing only on sample complexity, do not specify the details of how to

compute the value function given the model). Kakade (2003) later improved

upon the sample complexity bounds of RL by contributing a new analysis of

R-max.

This thesis builds upon model-based RL in part because R-max contin-

ues to have among the best known sample complexity among exact algorithms

for finite MDPs. It seems no coincidence that the algorithms that explicitly

reason about the dynamics of the environment are generally the only ones

232

that can guarantee finite-time convergence to a near-optimal policy with some

probability. One notable exception is Delayed Q-learning, which attains such

guarantees while being nominally model-free (Strehl et al., 2006). However,

this algorithm is model-free only in the sense that its space complexity is

sub-quadratic with respect to the size of the state space: it never constructs

a complete transition matrix. Instead, it recalls the last m successor states

for each state-action. Delayed Q-learning otherwise employs the same gen-

eral strategy as R-max, initializing values optimistically and only updating

values when sufficient data exists to approximate the dynamics of a given state-

action. The implementation of Fitted R-maxq described in Chapter 7 is also

model-free in this sense, since the number of instances used to approximate

the dynamics for any given state-action is bounded by a constant.

Other model-based approaches reason about uncertainty in more nu-

anced ways. For example, Model-Based Interval Estimation constructs con-

fidence intervals around the estimated MDP parameters (Strehl & Littman,

2005), allowing an agent to decrease its optimism in a more gradual way than

in R-max. Bayesian approaches explicitly define probability distributions over

MDPs, which are conditioned given experience and sampled to perform infer-

ence or planning (Dearden et al., 1999; Strens, 2000). These approaches tend

to be quite computationally intensive, but they clarify the prior knowledge

and inductive assumptions a learning agent makes. These other techniques

for constructing models from data might serve as intriguing alternatives to

R-max, for use as a foundation for synthesis with function approximation and

233

hierarchical decomposition. In addition, Bayesian RL in principle could define

prior distributions over hierarchical structures or approximation schemes.

Another potential modification to Fitted R-maxq is a replacement of

its planning component, fitted value iteration conjoined with prioritized sweep-

ing. Sparse sampling, which produces near-optimal plans in time that does

not depend on the size of the MDP (Kearns et al., 1999), may be particularly

useful for planning with large models. Although in principle model-based

RL decomposes the RL problem neatly into a model-estimation step and a

planning step, planning techniques may inform the estimation process. For

example, the concept of averagers and composing transition functions used

by fitted value iteration (Gordon, 1995) informed the model approximation

of Fitted R-max. Another planning algorithm, Topological Value Iteration,

improves planning speed by identifying the strongly connected components in

the transition graph of an MDP (Dai & Goldsmith, 2007; Dai et al., 2008). A

topological perspective on planning might help refine the notion of completion

set: Fitted R-max can be seen as defining an approximation of a continuous

MDP that constrains all strongly connected components to a finite sample of

the state space.

9.2 Generalization

One prerequisite for applying RL to real-world problems is the capac-

ity to cope with continuous state spaces. Early efforts to tackle such prob-

lems focused on generalizing the standard tabular representation of the value

234

function using function approximators, such as tile coding (Sutton, 1996) or

neural networks (Tesauro, 1995; Tesauro et al., 2007). This approach allows

the straightforward reuse of classic algorithms, such as Q-learning. A key

downside is that such straightforward generalizations sacrifice even the weak

(asymptotic) guarantees of these algorithms (Boyan & Moore, 1995).

Nevertheless, the bulk of research using continuous-state problems still

employs model-free algorithms, seeking more robust approximation methods

that can safely capture the inherent structure of continuous value functions.

Some of the greatest contributions in this branch of research defined algo-

rithms, such as Least Square Policy Iteration (Lagoudakis & Parr, 2003) and

Neural Fitted Q Iteration (Riedmiller, 2005), which at least prevent the com-

putation of the value function from diverging, as well as providing empirically

good performance, at least when given the correct basis functions or neural

network learning parameters. These improvements led naturally to research

attempting to define or discover better basis functions and function repre-

sentations (Glaubius & Smart, 2004; Mahadevan, 2005; Keller et al., 2006;

Whiteson & Stone, 2006). Given the difficulty of defining appropriate value

function approximations, some successful approaches decline to reason about

the MDP dynamics and value function at all, instead searching the space of

policies directly as an optimization problem (Stanley & Miikkulainen, 2002).

All of these methods focus on how to estimate the value function ac-

curately given the available data, but they don’t reason explicitly about how

to obtain this data. Most rely on some variant of random exploration, often

235

using the epsilon-greedy strategy of choosing a random action at a given time

step with some fixed probability and otherwise following the current estimated

optimal policy.

Kakade et al. (2003) do address the sample complexity of RL in metric

state spaces. They offer a theoretical bound that assumes both the existence

of an approximate planner that guarantees near-optimal policies given a gen-

erative model and also the existence of a local modeling algorithm, which can

produce a generative model with bounded error given sufficient data within

the neighborhood of a given state. Fitted R-max can be seen as a practical

approximation of this theoretical algorithm, using fitted value iteration as the

approximate planner and a locally weighted instance-based model based on

Kernel Based Reinforcement Learning (KBRL).

Ormoneit and Sen (2002) originally presented KBRL as a largely theo-

retical instance-based algorithm, which demonstrated asymptotic convergence

to the optimal value function given data sampled uniformly from the state

space. Considering recent results demonstrating the near-optimality of fitted

value iteration (Munos & Szepesvári, 2008), Fitted R-max thus seems a good

foundation for the search for algorithms that can learn near-optimally in the

presence of generalization.

Other researchers have applied model-learning to continuous-state RL,

but rarely with any attention paid to exploration and never in the general

case of stochastic transitions. For example, Atkeson et al. (1997) learned

deterministic models using Locally Weighted Regression, which computes the

236

successor for a given state with linear regression that weights the data in the

same way that Fitted R-max weights nearby instances. Despite the absence

of convergence guarantees, such model-based methods have proven efficient in

practice. TEXPLORE is one recent algorithm that forsakes such guarantees in

favor of proven supervised learning methods to produce models, which when

combined with explicit exploration show faster learning in practice (Hester &

Stone, 2010).

More recently, Parr et al. (2008); Sutton et al. (2008) drew connections

between the popular class of linear function approximators and models, show-

ing the equivalence of the approximate value functions produced by LSTD

and LSPI with the exact value functions resulting from planning with an ap-

proximate model in feature space. These results parallel the observation of

Gordon (1995) that the approximate value function produced by fitted value

iteration is equivalent to the exact value function resulting from planning with

a model fitted with averagers. This parallel suggests an alternative extension

of R-max to continuous state spaces, tying optimism to features of the state

space instead of to neighborhoods of the state space.

9.3 Structure

Given the difficulty of learning accurate value functions in realistic

applications, many researchers have attempted to imbue into their learning

agents some notion of the structure that humans can intuitively perceive in

the world. One particularly appealing form of structure is the hierarchical

237

decomposition addressed in this thesis. Hierarchical methods have long been

a significant portion of the RL literature. Barto and Mahadevan (2003) pro-

vided an excellent survey of the currently popular frameworks: options (Sutton

et al., 1999), maxq (Dietterich, 2000a) and HAMs (Parr & Russell, 1998). The

variety in these frameworks underscores the lack of agreement in the precise

purpose of hierarchical decomposition. The standard options framework grew

out of the idea of macro-operators in planning (Korf, 1985), presupposing the

existence of partial solutions that can be packaged into option policies. maxq

and HAMs instead learn hierarchical policies from the ground up and construe

hierarchy as a mechanism for dynamically applying state abstractions (Diet-

terich, 2000b; Andre & Russell, 2002). Most ongoing work in hierarchical RL

still uses the original model-free formulations of these algorithms.

One exception is Hierarchical H-learning (Seri & Tadepalli, 2002), which

adapts the maxq framework to the less commonly studied average-reward for-

malism for RL. In this formalism, the goal is to learn policies that maximize

the average reward per time step, instead of the cumulative discounted reward

or the total reward over some finite horizon. Hierarchical H-learning is also

model-based, in the sense that it learns transition functions for each subtask

and a reward function for primitive actions. However, to learn the transition

model, it uses maximum likelihood estimation given the observed behavior of

each subtask as they learn. Unlike R-maxq this approach does not take into

account the nonstationary dynamics of subtasks during learning, although in

practice the behavior of the subtasks presumably converge. Seri and Tadepalli

238

also define a version of their algorithm that employs optimistic initialization

to encourage exploration, but neither Hierarchical H-learning nor its base al-

gorithm, H-learning, have any known convergence guarantees.

The Deterministic Sample-Based Hierarchical Learner (DSHL) also ap-

plies model learning to the maxq framework, although it only handles the

deterministic case (Diuk et al., 2006). Without stochasticity, the model learn-

ing reduces to remembering the successor state for each state-action in a finite

environment. DSHL does plan within each task by computing a model and

applying a planner, but the abstract model at one level of the hierarchy bears

no direct relationship to the abstract model at another level. When consider-

ing the effect of a subtask, DSHL computes the exact successor state in the

full state space by sampling a trajectory with the hierarchical policy for that

subtask, recursing down to the memorized model of the primitive actions. Fur-

thermore, to take advantage of the same hierarchy of state abstractions that

(Dietterich, 2000a) developed for maxq, the DSHL must replan at the begin-

ning of each episode (or after visiting a state-action for the first time), since the

precise rewards and transition probabilities in an abstract model may depend

on the current concrete state.1 In contrast, R-maxq avoids the need to replan

by replacing state abstraction with subgoals (which induce small completion

sets) at higher levels of a task hierarchy. This technique allows R-maxq to

1For example, the standard hierarchy for the Taxi domain abstracts away the taxi’s
current coordinates in the ROOT task, but the value of the GET subtask depends on these
coordinates. The model-free MAXQ-Q algorithm sidesteps this problem by decomposing this
value into components, one of which is a function of the subtask and has an independent
state representation.

239

define stable models of each task recursively in terms of the subtask models.

Hauskrecht et al. (1998) independently studied hierarchical models

similar to those of R-maxq in the planning setting. They studied using option-

like macro-actions to speed up the computation of the optimal value function

for a given MDP. For a given partition of a state space into clusters, they

defined abstract multi-time models, following Sutton et al. (1999), for options

that navigate to the cluster boundaries. With experiments similar to those

in Chapter 4, they demonstrated that augmenting the base MDP with these

macro-actions could worsen planning speed, depending on the initialization of

the value function. Their computation of the value function converged most

quickly by planning in the abstract MDP whose actions comprised only macro-

actions and whose states correspond only to the boundary states (completion

set) of those actions, as in R-maxq.

Other attempts to apply structure to RL often involve using tree rep-

resentations that decompose the state space hierarchically, if not the action

space. The U-Tree algorithm (McCallum, 1995) lazily defines state distinc-

tions using statistical testing, much in the spirit of the preliminary work in

Chapter 8. This algorithm is particularly notable in that it also applies to the

partially observable MDP case, although even in the standard RL context it

cannot guarantee escaping a “local minimum” in state representation. Hester

and Stone (2009) learn deterministic models in continuous state spaces using a

decision tree to predict the change in each state variable due to a given action,

while employing domain-specific heuristics to promote exploration and reduce

240

overgeneralization. Other researchers have studied the problem of planning

with models that incorporate state abstraction using Dynamic Bayes Net-

works (DBNs), using structured value-function representations instead of hi-

erarchically decomposed value functions to manage the convolution of state

representations (Boutilier et al., 1995; Koller & Parr, 2000). Such planning

techniques could potentially be combined with R-max exploration in the RL

setting.

Finally, this thesis was inspired by a deluge of efforts to discover task

hierarchies for RL. Some of this work originated in attempts to reuse portions

of learned policies for agents that encounter a sequence or distribution of

environments throughout their lifetimes (Thrun & Schwartz, 1995; Kalmár

& Szepesvári, 1999). The emergence of the options framework inspired a

wave of methods that define subgoals using some notion of novelty (Şimşek

& Barto, 2004; Butz, 2004) or bottleneck states (McGovern & Barto, 2001;

Stolle & Precup, 2002; Mannor et al., 2004). More recently, some researchers

induced maxq task hierarchies by analyzing what state variables change in

agent trajectories (Hengst, 2002; Mehta et al., 2008). All of this research relied

on model-free learning in finite domains. A key contribution of this thesis is

a foundational algorithm, Fitted R-maxq, that fully integrates hierarchical

RL with principled exploration, using model-based methods, and the ability

to generalize in continuous environments, using function approximation.

241

Chapter 10

Conclusion

10.1 Thesis Contributions

This thesis brought together several key ingredients that each indepen-

dently sustain entire branches of research into Reinforcement Learning. These

branches all share the same broad goal: to allow learning agents to succeed

in real-world environments. Achieving this goal would allow us to deploy ar-

tificial intelligence in the same way as human intelligence: by beginning with

a powerful learning mechanism (including an appropriate inductive bias) and

allowing experience with the world to construct the necessary knowledge.

The first ingredient is directed exploration, which allows an agent to

change its goal temporarily from maximizing extrinsic environmental rewards

to gathering more data. Too many RL algorithms focus exclusively on the

estimation of statistical parameters given fixed data, without considering the

active learning question of what data would be valuable. The second ingre-

dient is generalization, which allows an agent to draw conclusions even about

situations it has never before encountered. Both of these faculties are essen-

tial to reinforcement learning in practice: model-based methods that enable

directed exploration are known to have excellent data efficiency, and function

242

approximators that enable generalization of values are required to obtain any

sort of reasonable behavior in continuous environments. Nevertheless, almost

no research has explicitly addressed the tension between exploration, which

sees a given state as novel enough to require new data, and generalization,

which sees a given state as familiar enough to apply existing data. This thesis

contributed an algorithm, Fitted R-max, which applies both model-based ex-

ploration and function approximation to learn efficiently in continuous state

spaces (Chapter 3).

Although function approximation allows RL to generalize across infi-

nite state spaces, it does not eliminate the curse of dimensionality. Nearly all

realistic problems have natural representations that include multiple state vari-

ables, and requiring an agent to learn a combinatorial number of parameters.

Hierarchical decomposition constitutes an appealing mechanism for managing

the complexity of such problems, but little agreement exists as to how pre-

cisely hierarchy can help. This thesis contributed both a study of the utility

of hierarchical RL methods (Chapter 4) and an integration of such decompo-

sitions with model-based methods, in the form of R-maxq (Chapter 5). This

algorithm relies on optimism in the face of uncertainty to encourage the ex-

ploration of novel states, eliminating one popular motivation for applying a

hierarchy. This thesis instead suggested that key roles for hierarchy include

preventing unnecessary exploration and ameliorating the curse of dimension-

ality, by permitting smaller state representations at each level of the hierarchy.

At lower levels, state abstractions can reduce the dimensionality of learning;

243

at higher levels, planning need only consider subgoal states.

Finally, this thesis developed a powerful synthesis of all three of these

ingredients: model-based exploration, function approximation, and hierarchi-

cal decomposition (Chapter 6). It reifies these ingredients as composable oper-

ators that modify Bellman equations and therefore action models. The result

of composing all the newly defined operators is the Fitted R-maxq algorithm,

for which the source code is publicly available1 (Chapter 7). This algorithm

takes advantage of domain knowledge, in the form of a task hierarchy, to

learn near-optimal policies with excellent data efficiency, even in continuous

environments with rich structure.

10.2 Future Work

This thesis makes no claim that Fitted R-maxq is the solution to RL

or even necessarily that this algorithm is the best solution for some real-world

problem. It still requires a task hierarchy to avoid exploring every neighbor-

hood of the state space, and its online updates to the approximate model are

very computationally intensive, given the nearest-neighbor lookups of previous

instances. With respect to the latter concern, the speed of computers contin-

ues to grow rapidly, but data remains as expensive as ever, particularly for

the control problems and agent-based systems relevant to RL. Even though

modern computer systems achieve high performance by emphasizing paral-

1The most recent version is available in the RL-Library at http://library.

rl-community.org/wiki/Fitted_R-MAXQ.

244

lelism over raw clock speed, limiting the classes of computationally intensive

algorithms that can benefit from advances in hardware, Fitted R-maxq is

a promising candidate for a multi-threaded implementation. Each primitive

action model depends only on the data for that primitive action, and the de-

composition of the value function into the local nodes of a hierarchy creates

further opportunities for parallel computation.

A primary motivation for the development of Fitted R-maxq was to

serve as a foundation for research into the automatic discovery of abstractions

and hierarchical structure (Chapter 8). By design, many of the algorithm’s

features make it an attractive candidate for such work. Reasoning explicitly

about models may guide abstraction discovery, in much the same way that

model uncertainty can drive exploration. The algorithm’s hierarchical explo-

ration policy is purely a function of the current data and task hierarchy, so

a discovery algorithm can freely change the hierarchy or evaluate two hier-

archies in parallel, in an “off-policy” fashion. Function approximation allows

Fitted R-maxq to scale to more compelling problems, and varying degrees of

generalization create more opportunities for discovery. Policies learned with

a coarse approximation can determine abstractions that permit more efficient

learning with otherwise finer approximations.

The preliminary abstraction discovery technique that this thesis con-

tributed suggests some concrete steps towards investigating abstraction dis-

covery using Fitted R-maxq.

245

Discover primitive action state representations FittedR-maxq assumes

that the state representation of each primitive action is known, and it

defines the state representations of abstract actions recursively, using the

union of each subtasks’ state features. To remove the need for this prior

knowledge, the agent must automatically discover the relevant state fea-

tures of the primitive actions. One approach to this problem is to apply

statistical hypothesis testing to determine whether the successor state

distribution is identical for two given states, although this approach re-

quires sufficient data for each state-action to test.

Propagate uncertainty hierarchically FittedR-maxq combines exploration

and hierarchical structure by propagating optimistic values up the hier-

archy. Other exploration methods that reason more explicitly about

model uncertainty, such as Model-Based Interval Estimation (Strehl &

Littman, 2005) and Bayesian RL (Dearden et al., 1999), may both help

refine the exploration behavior of Fitted R-maxq and also provide mea-

sures of uncertainty that can guide abstraction discovery.

Generate tasks as sets of actions Chapters 4 and 5 suggest that a task’s

utility depends as much on its subtasks as its goal. Given known un-

certainty in each primitive action model and using some of the tech-

niques described in Chapter 8, an agent can find small subsets of the

action space that include a near-optimal action for long segments of

near-optimal trajectories through the state space. This technique can

246

also apply to action spaces that include abstract actions, if the uncer-

tainty in their behavior has been propagated up from primitive actions.

Generate termination predicates for tasks Given a set of actions, an agent

can create a task by determining the conditions under which the agent

might limit its behavior to those actions. As in Chapter 8, the agent

might learn a classifier given sampled trajectories. The agent can spec-

ify the task’s goal function, which determines the task policy within the

state region identified by the learned classifier, by examining at which

states near-optimal trajectories exist the region.

Abstraction evaluation As discussed in Chapter 5, the primary effect of

both forms of abstraction is to reduce the amount of exploration the

agent attempts.2 The agent must trade off this benefit against the possi-

bility that the abstractions only appear safe due to a small sample size.

In episodic tasks, the agent can confirm that its average return doesn’t

suffer when adopting the abstractions. In general, the agent might occa-

sionally explore the space of representations by temporarily relaxing the

abstractions it currently exploits. This ongoing verification process may

be particularly important in the presence of generalization, especially

if the agent gradually decreases the approximation granularity used by

Fitted R-maxq. Abstractions that seem safe at a coarse granularity may

prevent effective learning at a finer granularity.

2This benefit assumes the agent abstacts its action space using subtasks instead of merely
augmenting it

247

Empirical validation One challenge for Fitted R-maxq is to demonstrate

effectiveness on more complex problems. A desire to extend RL to more

realistic domains motivated this combination of models, approximation,

and hierarchy, but it has only been applied to environments artifically

designed to include elements of hierarchical structure yet remain par-

ticularly tractable. Some compelling problem domains that exist out-

side of RL research and which seem within the reach of Fitted R-maxq

include robot navigation and computer games. For example, hierar-

chies and policies discovered in a simulator could guide a surveillance

robot’s patrol pattern, or a Pac-Man agent’s subtasks might include

CollectPowerPellet or FleeFromNearbyGhost.

In the longer term, the discovery of abstract actions with learned termi-

nation predicates (and possibly initiation sets) could potentially join RL with

classical planning algorithms. Model-based approaches already join together

RL with MDP planning, and FittedR-maxq demonstrates that a domain with

stochastic actions in a continuous state space can be abstracted with subtasks

that deterministically (eventually) achieve discrete subgoals. Although the

present algorithm represents these subgoals as concrete states sampled from

the original state space, one can envision defining propositions that correspond

to the preconditions and postconditions of these abstract actions.

A scientific agent of this kind has been the guiding vision for this thesis.

Such an agent doesn’t just estimate parameters given data. It actively explores

to gather the raw data from which it constructs models that facilitate planning.

248

The resulting policies induce abstract values and state transitions that serve

as the foundation for another layer of planning. In this manner, perhaps,

an agent can rise from low-level experience to high-level understanding of its

world.

249

Bibliography

Andre, D., & Russell, S. J. (2002). State abstraction for programmable rein-

forcement learning agents. Proceedings of the Eighteenth National Confer-

ence on Artificial Intelligence (pp. 119–125).

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally weighted learning

for control. Artificial Intelligence Review, 11, 75–113.

Barto, A. G., & Mahadevan, S. (2003). Recent advances in hierarchical re-

inforcement learning. Discrete-Event Systems, 13, 41–77. Special Issue on

Reinforcement Learning.

Beygelzimer, A., Kakade, S., & Langford, J. (2006). Cover trees for near-

est neighbor. Proceedings of the Twenty-Third International Conference on

Machine Learning.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Exploiting structure

in policy construction. Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence (pp. 1104–1111).

Boyan, J. A., & Moore, A. W. (1995). Generalization in reinforcement learning:

Safely approximating the value function. Advances in Neural Information

Processing Systems 7.

250

Brafman, R. I., & Tennenholtz, M. (2002). R-max – a general polynomial

time algorithm for near-optimal reinforcement learning. Journal of Machine

Learning Research, 3, 213–231.

Butz, M. (2004). Effective online detection of task-independent landmarks.

Proceedings for the ICML-04 Workshop on Predictive Representations of

World Knowledge.

Cohen, W. W. (1995). Fast effective rule induction. Proceedings of the Twelfth

International Conference on Machine Learning (pp. 115–123).

Dai, P., & Goldsmith, J. (2007). Topological value iteration algorithm for

Markov decision processes. Proceedings of the Twentieth International Joint

Conference on Artificial Intelligence.

Dai, P., Strehl, A. L., & Goldsmith, J. (2008). Expediting RL by using graph-

ical structures. Proceedings of the Seventh International Joint Conference

on Autonomous Agents and Multiagent Systems.

Dean, T., & Givan, R. (1997). Model minimization in Markov decision pro-

cesses. Proceedings of the Fourteenth National Conference on Artificial In-

telligence.

Dearden, R., Friedman, N., & Andre, D. (1999). Model based Bayesian explo-

ration. Proceedings of the Fifteenth Conference on Uncertainty in Artificial

Intelligence (pp. 150–159).

251

Degroot, M. H. (1986). Probability and statistics. Addison-Wesley Pub Co.

2nd edition.

Dietterich, T. G. (2000a). Hierarchical reinforcement learning with the MAXQ

value function decomposition. Journal of Artificial Intelligence Research, 13,

227–303.

Dietterich, T. G. (2000b). An overview of MAXQ hierarchical reinforcement

learning. Proceedings of the Fourth Symposium on Abstraction, Reformula-

tion and Approximation.

Diuk, C., Strehl, A. L., & Littman, M. L. (2006). A hierarchical approach to

efficient reinforcement learning in deterministic domains. Proceedings of the

Fifth International Joint Conference on Autonomous Agents and Multiagent

Systems.

Dutech, A., Edmunds, T., Kok, J., Lagoudakis, M., Littman, M., Riedmiller,

M., Russell, B., Scherrer, B., Sutton, R., Timmer, S., Vlassis, N., White, A.,

& Whiteson, S. (2005). Reinforcement learning benchmarks and bake-offs II.

http://www.cs.rutgers.edu/˜mlittman/topics/nips05-mdp/bakeoffs05.pdf.

Glaubius, R., & Smart, W. D. (2004). Manifold representations for value-

function approximation. Proceedings of the Nineteenth National Conference

on Artificial Intelligence.

Gordon, G. J. (1995). Stable function approximation in dynamic programming.

Proceedings of the Twelfth International Conference on Machine Learning.

252

Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T., & Boutilier, C.

(1998). Hierarchical solution of Markov decision processes using macro-

actions. Proceedings of the Fourteenth Conference on Uncertainty in Artifi-

cial Intelligence (pp. 220–229).

Hengst, B. (2002). Discovering hierarchy in reinforcement learning with

HEXQ. Proceedings of the Nineteenth International Conference on Machine

Learning.

Hester, T., & Stone, P. (2009). Generalized model learning for reinforcement

learning in factored domains. Proceedings of the Eighth International Joint

Conference on Autonomous Agents and Multiagent Systems.

Hester, T., & Stone, P. (2010). Real time targeted exploration in large do-

mains. The Ninth International Conference on Development and Learning.

Jong, N. K., Hester, T., & Stone, P. (2008). The utility of temporal abstraction

in reinforcement learning. Proceedings of the Seventh International Joint

Conference on Autonomous Agents and Multiagent Systems.

Jong, N. K., & Stone, P. (2005). State abstraction discovery from irrelevant

state variables. Proceedings of the Nineteenth International Joint Conference

on Artificial Intelligence.

Jong, N. K., & Stone, P. (2007a). Model-based exploration in continuous state

spaces. Proceedings of the Seventh Symposium on Abstraction, Reformula-

tion and Approximation.

253

Jong, N. K., & Stone, P. (2007b). Model-based function approximation in rein-

forcement learning. Proceedings of the Sixth International Joint Conference

on Autonomous Agents and Multiagent Systems.

Jong, N. K., & Stone, P. (2008). Hierarchical model-based reinforcement learn-

ing: R-max + MAXQ. Proceedings of the Twenty-Fifth International Con-

ference on Machine Learning.

Jong, N. K., & Stone, P. (2009). Compositional models for reinforcement

learning. Proceedings of the European Conference on Machine Learning and

Practice of Knowledge Discovery in Databases.

Kakade, S., Kearns, M., & Langford, J. (2003). Exploration in metric state

spaces. Proceedings of the Twentieth International Conference on Machine

Learning.

Kakade, S. M. (2003). On the sample complexity of reinforcement learning.

Doctoral dissertation, University College London.

Kalmár, Z., & Szepesvári, C. (1999). An evaluation criterion for macro learn-

ing and some results (Technical Report TR-99-01). Mindmaker Ltd., Bu-

dapest 1121, Konkoly Th. M. u. 29-33, HUNGARY.

Kearns, M., Mansour, Y., & Ng, A. Y. (1999). A sparse sampling algorithm

for near-optimal planning in large Markov decision processes. Proceedings of

the Sixteenth International Joint Conference on Artificial Intelligence (pp.

1324–1331).

254

Kearns, M., & Singh, S. (1998). Near-optimal reinforcement learning in poly-

nomial time. Proceedings of the Fifteenth International Conference on Ma-

chine Learning (pp. 260–268).

Keller, P. W., Mannor, S., & Precup, D. (2006). Automatic basis function con-

struction for approximate dynamic programming and reinforcement learn-

ing. Proceedings of the Twenty-Third International Conference on Machine

Learning.

Koller, D., & Parr, R. (2000). Policy iteration for factored MDPs. Proceedings

of the Sixteenth Conference on Uncertainty in Artificial Intelligence (pp.

326–334).

Korf, R. E. (1985). Learning to solve problems by seaching for macro-operators.

Boston, MA: Pitman.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. Journal

of Machine Learning Research, 4, 1107–1149.

Li, L., Walsh, T. J., & Littman, M. L. (2006). Towards a unified theory of state

abstraction for MDPs. Proceedings of the Ninth International Symposium

on Artificial Intelligence and Mathematics.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learn-

ing, planning, and teaching. Machine Learning, 8, 293–321.

255

Littman, M. L., Dean, T. L., & Kaelbling, L. P. (1995). On the complexity of

solving Markov decision problems. Proceedings of the Eleventh Conference

on Uncertainty in Artificial Intelligence.

Mahadevan, S. (2005). Samuel meets Amarel: Automating value function

approximation using global state space analysis. Proceedings of the Twentieth

National Conference on Artificial Intelligence.

Mannor, S., Menache, I., Hoze, A., & Klein, U. (2004). Dynamic abstraction

in reinforcement learning via clustering. Proceedings of the Twenty-First

International Conference on Machine Learning (pp. 560–567).

McCallum, A. K. (1995). Reinforcement learning with selective perception and

hidden state. Doctoral dissertation, University of Rochester.

McGovern, A., & Barto, A. G. (2001). Automatic discovery of subgoals in

reinforcement learning using diverse density. Proceedings of the Eighteenth

International Conference on Machine Learning (pp. 361–368).

Mehta, N., Ray, S., Tadepalli, P., & Dietterich, T. (2008). Automatic dis-

covery and transfer of MAXQ hierarchies. Proceedings of the Twenty-Fifth

International Conference on Machine Learning.

Minton, S. (1988). Quantitative results concerning the utility of explanation-

based learning. Proceedings of the Seventh National Conference on Artificial

Intelligence (pp. 564–569).

256

Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement

learning with less data and less real time. Machine Learning, 13, 103–130.

Munos, R., & Szepesvári, C. (2008). Finite-time bounds for fitted value iter-

ation. Journal of Machine Learning Research, 1, 815–857.

Ormoneit, D., & Sen, Ś. (2002). Kernel-based reinforcement learning. Machine

Learning, 49, 161–178.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., & Littman, M. (2008).

An analysis of linear models, linear value-function approximation, and fea-

ture selection for reinforcement learning. Proceedings of the Twenty-Fifth

International Conference on Machine Learning.

Parr, R., & Russell, S. (1998). Reinforcement learning with hierarchies of

machines. Advances in Neural Information Processing Systems 10.

Ravindran, B., & Barto, A. G. (2003). SMDP homomorphisms: An algebraic

approach to abstraction in semi-Markov decision processes. Proceedings of

the Eighteenth International Joint Conference on Artificial Intelligence.

Riedmiller, M. (2005). Neural fitted Q iteration – first experiences with a data

efficient neural reinforcement learning method. Proceedings of the European

Conference on Machine Learning.

Russell, S. J., & Norvig, P. (1995). Artificial intelligence: A modern approach.

Prentice-Hall, Inc.

257

Seri, S., & Tadepalli, P. (2002). Model-based hierarchical average-reward rein-

forcement learning. Proceedings of the Nineteenth International Conference

on Machine Learning (pp. 562–569).

Şimşek, Ö., & Barto, A. G. (2004). Using relative novelty to identify useful

temporal abstractions in reinforcement learning. Proceedings of the Twenty-

First International Conference on Machine Learning (pp. 751–758).

Singh, S., Barto, A. G., & Chentanez, N. (2005). Intrinsically motivated

reinforcement learning. Advances in Neural Information Processing Systems

17.

Stanley, K. O., & Miikkulainen, R. (2002). Efficient reinforcement learning

through evolving neural network topologies. Proceedings of the Genetic and

Evolutionary Computation Conference.

Stolle, M., & Precup, D. (2002). Learning options in reinforcement learn-

ing. Proceedings of the Fifth Symposium on Abstraction, Reformulation and

Approximation.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., & Littman, M. L. (2006).

PAC model-free reinforcement learning. Proceedings of the Twenty-Third

International Conference on Machine Learning (pp. 881–888).

Strehl, A. L., & Littman, M. L. (2005). A theoretical analysis of model-

based interval estimation. Proceedings of the Twenty-Second International

Conference on Machine Learning (pp. 857–864).

258

Strens, M. (2000). A Bayesian framework for reinforcement learning. Proceed-

ings of the Seventeenth International Conference on Machine Learning (pp.

943–950).

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful

examples using sparse coarse coding. Advances in Neural Information Pro-

cessing Systems 8.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction.

Cambridge, MA: MIT Press.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs:

A framework for temporal abstraction in reinforcement learning. Artificial

Intelligence, 112, 181–211.

Sutton, R. S., Szepesvári, C., Geramifard, A., & Bowling, M. H. (2008). Dyna-

style planning with linear function approximation and prioritized sweeping.

Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial

Intelligence (pp. 528–536).

Tanner, B., & White, A. (2009). RL-Glue: Language-independent software for

reinforcement-learning experiments. Journal of Machine Learning Research,

10, 2133–2136.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Commu-

nications of the ACM, 38.

259

Tesauro, G., Jong, N. K., Das, R., & Bennani, M. N. (2007). On the use

of hybrid reinforcement learning for autonomic resource allocation. Cluster

Computing, 10.

Thrun, S., & Schwartz, A. (1995). Finding structure in reinforcement learning.

Advances in Neural Information Processing Systems 7.

Watkins, C. (1989). Learning from delayed rewards. Doctoral dissertation,

University of Cambridge.

Whiteson, S., & Stone, P. (2006). Evolutionary function approximation for

reinforcement learning. Journal of Machine Learning Research, 7, 877–917.

260

Vita

Nicholas Kenneth Jong was born in Summit, New Jersey, to Kenneth

and Nancy Jong. He attended Bridgewater-Raritan High School, graduating

in 1998. At Carnegie Mellon University, he earned a Bachelor of Science

degree with majors in Computer Science and Psychology and minors in English

and Mathematics. Later that year, in the fall of 2002, he joined the PhD

program at the Department of Computer Sciences in the University of Texas

at Austin, where he served as a teaching assistant, research assistant, and

assistant instructor. He also worked at the IBM TJ Watson Research Center

during a summer internship. Currently, he works in Cupertino, California, as

a software enginner for Apple.

Permanent address: 777 Mountain View Avenue
Bridgewater, New Jersey 08807

This dissertation was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

261

