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a b s t r a c t

Bifurcation theory is often used to investigate the inception of a shear band in a

homogeneously deforming body. The theory predicts conjugate shear bands that have

the same likelihood of triggering. For structures loaded symmetrically the choice of

which of the two conjugate shear bands will persist is arbitrary. In this paper we show

that spatial density variation could be a determining factor for the selection of the

persistent shear band in a symmetrically loaded localizing sand body. We combine

experimental imaging on rectangular sand specimens loaded in plane strain compres-

sion with mesoscale finite element modeling on symmetrically loaded sand specimens

to show that spatial heterogeneity in density does have a profound impact on the

persistent shear band.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Strain localization is a ubiquitous feature of granular materials undergoing nonhomogeneous deformation. In soils and
rocks, the zone of localized deformation is generally referred to either as a shear band, fault, rupture zone, or simply a
failure plane. The formation and evolution of these zones are commonly explained by either fracture mechanics (Horii and
Nemat-Nasser, 1985; Ashby and Hallam, 1986) or bifurcation theory (Rice and Rudnicki, 1980; Rudnicki and Rice, 1975).
Regardless of the material venue, be it powdered metals, porous rock, or soil, one consistent observation is that localized
deformation is followed by a reduction in the overall strength as loading proceeds (Read and Hegemier, 1984; Viggiani
et al., 1994; Kolymbas, 2009; Tejchman et al., 2007; Borja and Andrade, 2006).

In a homogeneously deforming body, bifurcation theory identifies conjugate shear bands but not the specific band that
will eventually persist. The point of initiation of localized deformation and the selection of which shear band to propagate
are often dictated by the location and direction of loading, the geometric configuration of the structure, and the boundary
conditions. For example, a failure surface under a footing subjected to an inclined load should position and orient
according to the location and inclination of the load. However, when a footing is loaded symmetrically an ambiguity arises
as to which of the two conjugate directions the failure surface will eventually trace. Because geomaterials such as soils and
rocks are far from being homogeneous, there is a compelling argument that spatial heterogeneity in the void ratio
distribution may have a profound impact on the final orientation of the persistent shear band in symmetrically loaded
sand bodies. To investigate the role of spatial variation in density on the localization of deformation in symmetrically
loaded sand bodies, we pursue a combined experimental–numerical modeling program in which the spatial variation of
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density is quantified by X-ray Computed Tomography (CT) imaging and input into a finite element (FE) model that then
predicts the constitutive response of the sand body according to this quantified density. The predicted response is then
validated against digital image-based displacement maps derived from the experiments.

There has been an extensive body of literature documenting cases of strain localization in the laboratory, and how the
important signatures of localized deformation have been measured and quantified. Experimental capture of the bifurcation
process in soils is challenged in that testing within a sealed membrane and cell or amidst opaque confining plates hampers
the ability to ‘‘visualize’’ internal specimen deformations. When relying on boundary measurements, the exact nature of
localization is difficult to capture in that a shear band typically becomes visible only after it has completely propagated
through the specimen and created an offset across the specimen membrane (Shapiro and Yamamuro, 2003). In spite of
these challenges, a variety of experimental investigations have been undertaken.

One category of approaches has focused on measuring physical grain-level displacements in the vicinity of the shear
band. Local displacements and strains and shear band geometry have been measured from displacements of embedded
markers (Stroud, 1971), grid points painted on the specimen membrane (Desrues, 1984; Yoshida et al., 1994; Liang et al.,
1997; Alshibli and Sture, 2000), and by photographically tracking individual sand grain motion (Harris et al., 1995;
Mooney et al., 1996, 1998). With these techniques, however, only an average sense of behavior is obtained.

Experimental methods aimed at quantifying spatial density variations have been employed to improve displacement
measurement of grid points (see, e.g. Liang et al., 1997; Alshibli and Sture, 2000). The main techniques used have been
gamma-ray (Coumoulos, 1968; Desrues et al., 1985) and X-ray CT (Desrues et al., 1996; Alshibli et al., 2000; Alshibli and
Hasan, 2008). These techniques derive quantitative measurements of local density through correlation with measured
radiation attenuations. The CT technique in particular is very effective at delineating subtle material density variations,
such as the lower density sand material within a shear band, and as such has enabled precise quantifications of shear band
patterning, inclination and thickness. Due to the nature of the required radiation sources, however, the specimen cannot
be analyzed within the confines of traditional test cells. Thus, work to date has been limited to specimens held only under
vacuum confinement, analyses over wide strain increments, and/or analysis of only one failed state. More recently, the
technique of micro-Computed Tomography (m-CT) has enabled very precise detection of individual sand grains, providing
detailed particle position and contact maps and calculations of local void ratios (Hasan and Alshibli, 2010; Tagliaferri et al.,
2011). However, the technique is currently limited to only very small specimens: currently only cm-sized specimens
(Tagliaferri et al., 2011) or cm-sized cores taken from inside of larger, epoxy-hardened specimens (Hasan and Alshibli,
2010) have been analyzed. Moreover, the CT method in general does not yield kinematic data, in particular over the
relatively small strain increments over which shear bands form; thus, the location and thickness of the shear band is
merely inferred from variations in microstructure or density data.

Quantitative analyses of local void ratio also have been accomplished using microscopic images of very thin slices of
sand material prepared from epoxy-hardened specimens (Oda and Kazama, 1998; Alshibli and Sture, 1999; Jang and Frost,
2000; Evans and Frost, 2010). Void ratios are calculated based on the relative areas occupied by voids and solids. While this
approach allows thorough examination of shear band microstructure, void ratio is computed only over a portion of the
shear band. However, as kinematic data is not availed, shear band location has to be inferred solely from particle positions.
Also, the destructive and forensic nature of the technique inhibits the exploration of temporal evolution. Matsushima et al.
(2002) used Laser-Aided Tomography (LAT) to observe, through laser illumination, grain motions in the interior of plane
strain specimens. However, the nature of the technique requires use of fully transparent particles (e.g. crushed glass), and
thus currently does not permit behavioral analysis of real soils.

The technique of Digital Image Correlation (DIC) was used to directly quantify local displacements on the surfaces of sand
specimens throughout plane strain compression (Rechenmacher et al., 2010, 2011; Rechenmacher and Finno, 2004;
Rechenmacher, 2006; Chupin et al., 2011). The DIC technique operates by matching pixel patterns between high resolution
digital images. The displacement information has been used to quantify volumetric evolutions to critical state in dilative
sands, measure thickness and inclination of persistent shear bands, and investigate the uniformity of strains along a persistent
shear band. DIC has shown great promise toward enabling quantitative, nondestructive capture of the meso-scale kinematics
associated with shear band formation (Rechenmacher, 2006), in particular in the presence of material heterogeneity.

There has been much progress in the literature pertaining to the development of constitutive models for strain
localization analysis in sands, with particular emphasis on the impact of spatial density variation on the ensuing shear
band. A key aspect of the modeling effort is the ‘‘mesoscale’’ level of material characterization. As a matter of terminology,
the term ‘‘mesoscale’’ refers to a scale larger than the grain scale (microscale) but smaller than the element, or specimen,
scale (macroscale). Specimen response then is modeled and analyzed as a boundary-value problem, taking into
consideration the spatial variation of some physically measurable mesoscale quantity or quantities affecting the local
soil response, such as density. It must be noted that the soil density has been known for a long time to correlate well with
soil stiffness (Poulos, 1975; Vesic, 1975; Kulhawy and Mayne, 1990; Holtz, 1991), and thus any measured local density
variation reflects the spatial variation in the local soil stiffness. The success of the mesoscale approach in studying strain
localization in soils relies on the advances in the experimental measurement of the initial, spatial, mesoscale parameter
variation in the specimen (using CT) as well as the specimen deformation fields before and after localization (using DIC).

A constitutive model for sand that uses the density, or void ratio, as a principal state variable is the so-called ‘Nor-Sand’
critical state model developed by Jefferies (1993). This model contains a state variable ci that effectively ‘detaches’ the
void ratio from the critical state line. In conventional critical-state formulations based on Cam-Clay plasticity (Roscoe and
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Burland, 1969; Borja and Lee, 1990; Borja, 1991), prescribing the critical state line and the current state of stress uniquely
determines the void ratio, so the current state of stress and the current density cannot be prescribed independently. The
Nor-Sand formulation relaxes this restriction through the state variable ci in the sense that for the same critical state line
and current state of stress a spatial variation of density can be prescribed separately. The formulation by Jefferies, however,
is not complete in that it lacks an elastic component. Furthermore, it cannot accommodate for the effect of the third stress
invariant and a nonassociative plastic flow that may be critical for strain localization simulation. Relatively recent work
(Borja and Andrade, 2006; Andrade and Borja, 2006) thus reformulated the Jefferies model to provide the missing
ingredients of the constitutive theory. This reformulated constitutive model forms the basis of the present work.

2. Theoretical development

We restrict the theory to the usual quasi-static problem focused on the initiation of a shear band in a heterogeneous
body. We state the governing equations of equilibrium to impose, as well as the constitutive assumptions on the material.

2.1. Momentum balance and localization condition

Our point of departure is the weak form of the linear momentum balance in a body B bounded by surface @B reckoned
with respect to the reference configuration (Borja, 2002)

J ðf,gÞ ¼
Z
B
ðGRAD g : P�r0g � GÞ dV�

Z
@Bt

g � t dA, ð1Þ

where P is the nonsymmetric first Piola–Kirchhoff stress tensor, f is the motion with an associated variation g, r0 is the
mass density in the reference configuration, G is the gravity acceleration vector, t is the nominal traction vector, and GRAD
is the gradient operator with respect to the reference configuration. The surface @B admits the decomposition
@B¼ @Bt

[ @Bf and |¼ @Bt
\ @Bf, where @Bf and @Bt are the Dirichlet and Neumann boundaries, respectively, and the

overline denotes a closure. Balance of momentum then yields J ðf,gÞ ¼ 0 in the weak sense. We note that shear band
development is sensitive to the evolving geometrical configuration, so a finite deformation formulation is employed in
this work.

In the presence of a shear band defined by surface S in the interior of B, the discontinuity on S can be eliminated from
the first term of J by writingZ

B\S
GRAD g : P dV ¼�

Z
B\S

g � DIV P dVþ

Z
S
g � ð1P � NUÞ dAþ

Z
@Bt

g � ðP � mÞ dA, ð2Þ

where N is the unit normal vector to S in the reference configuration, m is the unit normal vector to @B, and 1P � NU is a
possible jump in the nominal traction vector on S. Inserting into (1), setting J ¼ 0, and using standard argument yields the
equivalent strong form

DIV Pþr0G¼ 0 in B\S, ð3Þ

P � m ¼ t on @Bt , ð4Þ

subject to the jump condition

1P � NU¼1PU � N ¼ 0 on S, ð5Þ

where DIV is the divergence operator in the reference configuration. We see that the jump condition on the shear band
makes use of the nominal traction vector t.

Tangent stiffness tensors are needed to enforce the localization condition. To this end, we write the variation of J as

dJ ¼
Z
B

GRAD g : A : dF dV�

Z
@Bt

g � dt dA, ð6Þ

where ‘‘d’’ denotes variation, F is the deformation gradient, and A is a two-point tangent stiffness tensor defined by the
relation

dP ¼A : dF , A¼
@P

@F
, AiAjB ¼

@PiA

@FjB
: ð7Þ

In terms of the variations, the strong form with dead loading reads

DIV A : dF ¼ 0 in B\S, ð8Þ

ðA : dFÞ � m ¼ dt on @Bt , ð9Þ

subject to the condition

1A : dFU � N ¼ 0 on S: ð10Þ



R.I. Borja et al. / J. Mech. Phys. Solids 61 (2013) 219–234222
If the tangent operator A is continuous across the band, the localization condition (10) can be written in a more
specialized form ðA : 1dFUÞ � N ¼ 0, where 1dFU¼1VU� N=h0 and 1V �U is the velocity jump; and h0 is the band thickness
in the reference configuration. In the context of elasto-plasticity, this condition is called continuous (or loading–loading)
bifurcation (Borja, 2002), with plastic loading assumed to take place inside and outside the band during bifurcation. The
jump condition is then

1

h0
A � 1VU¼ 0, Aij ¼NAAiAjBNB: ð11Þ

Nontrivial solutions are possible when detðAÞ ¼ 0 for some critical band orientation N measured with respect to the
reference configuration. Equivalently, the localization condition can be written as

h0

h2
a � 1vU¼ 0, aij ¼ nkðFkAAiAjBFlBÞnl, ð12Þ

where h is the band thickness in the current configuration. Nontrivial solutions are then possible when detðaÞ ¼ 0 for some
critical band orientation n in the current configuration. The eigenvectors 1VU and 1vU are the same when normalized
with respect to their magnitude since they reflect the same jump in velocity at the moment of bifurcation (see Borja, 2002
for further details of the theory).

2.2. Constitutive assumptions

A constitutive model is necessary to define the evolution of P with F , and here we use multiplicative plasticity theory
along with a critical state model to represent the behavior of sand. Because P is a two-point tensor (force in the current
configuration per unit area in the reference configuration), it is not a convenient stress measure to use for constitutive
modeling. A more natural stress measure is the one-point symmetric Kirchhoff stress tensor s¼ P � FT (force and areas are
defined in the same current configuration), which is related to the Cauchy stress tensor r via s¼ Jr, where J¼ detðFÞ is the
Jacobian of the motion. For the deformation measure we select the elastic left Cauchy–Green deformation tensor be to pair
with the stress tensor s in a hyperelastic constitutive formulation. Isotropy in the elastic response implies that the two
tensors are co-axial.

The proposed constitutive model for sand has been reported before (Borja and Andrade, 2006; Andrade and Borja,
2006), and here we simply summarize the main features of this model. The intent is to elucidate the model parameters
inasmuch as a main challenge of the proposed work is to determine these parameters. The model adopts a hyperelastic–
plastic split in the elastic logarithmic principal stretches. On the assumption of co-axiality this means that we only need to
deal with the principal values of the stresses and strains. The hyperelastic part can capture pressure-dependent elastic
bulk and shear moduli. Laboratory experiments relevant for obtaining the hyperelastic model parameters are described in
Borja et al. (1997).

For the plasticity part we use a ðp,q,yÞ representation analogous to the cylindrical Haigh–Westergaard coordinates
(Chen and Han, 1988; Sfriso and Weber, 2010), where the hydrostatic axis serves as the pole and any of the three positive
principal axes of the Kirchhoff stress serves as the polar axis. The invariants are

p¼
1

3
trðsÞ, q¼

ffiffiffi
3

2

r
JsJ, ð13Þ

where s¼ devðsÞ, and y 2 ½0,p=3� is Lode’s angle determined from the equation

cos 3y¼
ffiffiffi
6
p trðs3Þ

½trðs2Þ�3=2
: ð14Þ

The ellipticity is

r¼ JsJext=JsJcom, 1=2rrr1, ð15Þ

where JsJcom and JsJext are the yield function radii on the compressive and extensional principal stress axes, respectively,
describing the deviation from roundness of the yield surface on the deviatoric plane. See Borja et al. (2003) for an
alternative representation of the third stress invariant.

The yield function takes the form

f ¼ zqþZpr0, ð16Þ

where z¼ zðr,yÞ is the Gudehus (1973) and Argyris et al. (1974) scaling function given by

zðr,yÞ ¼
ð1þrÞþð1�rÞcos 3y

2r
: ð17Þ

This function is convex for 7=9rrr1 (Jiang and Pietruszczak, 1988). Note that there are other functions that provide a
wider range of ellipticity while maintaining convexity (see e.g. Willam and Warnke, 1974), but the ellipticity limit r¼ 7=9
is usually sufficient to capture the effect of the third invariant on the yielding of sands.
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Eq. (16) contains the stress ratio Z given by

Z¼
M½1þ lnðpi=pÞ� if N¼ 0,

ðM=NÞ½1�ð1�NÞðp=piÞ
N=ð1�NÞ

� if N40,

(
ð18Þ

where the parameter M is the slope of the critical state line (CSL) and has the same meaning as in the modified Cam-Clay
model (Roscoe and Burland, 1969), and pio0 is a plastic internal variable obtained by setting f¼0,

pi

p
¼

expðZ=M�1Þ if N¼ 0,

½ð1�NÞ=ð1�ZN=MÞ�ð1�NÞ=N if N40:

(
ð19Þ

The exponent parameter N determines the curvature of the yield surface on the hydrostatic axis, and typically has a value
less than 0.4 for sands (Jefferies, 1993). Fig. 1 shows the geometric meaning of M, N, and pi.

A plastic potential function of the following form captures nonassociative plastic flow:

g ¼ zqþZp, ð20Þ

where

Z ¼
M½1þ lnðpi=pÞ� if N ¼ 0,

ðM=NÞ½1�ð1�NÞðp=piÞ
N=ð1�N Þ

� if N40:

8<
: ð21Þ

The parameter N controls the amount of volumetric nonassociativity of the plastic flow, whereas z ¼ zðr,yÞ introduces
nonassociativity with respect to the third invariant. The variable p i is a free parameter that can be chosen so that g¼0
whenever f¼0. Plastic flow then is associative if N ¼N and p i ¼ pi. Otherwise, the conditions

N rN and zrz, ð22Þ

must hold to ensure nonnegative plastic dissipation. These are met by choosing a dilatancy angle that is less than or at
most equal to the friction angle at critical state (Andrade and Borja, 2006; Borja and Andrade, 2006). In this paper we shall
consider an associative flow rule and take N ¼N and z ¼ z.

Plastic dilatancy is a key aspect of the constitutive model that makes it suitable for modeling strain localization. It is
defined as

D¼ _Ep
v=_E

p
s , ð23Þ

where

_Ep
v ¼

_l tr
@g

@s

� �
, _Ep

s ¼
_l

ffiffiffi
2

3

r
O, O¼ dev

@g

@s

� �����
����: ð24Þ

Plastic dilatancy cannot be unbounded, and for sands there exists a maximum value Dn given by the expression

Dn
¼ aci, ð25Þ

where ci is a state variable describing the variation of the specific volume v independent of the mean normal stress,
given by

ci ¼ v�vc0þl lnð�piÞ, ð26Þ

where vc0 is the reference specific volume. The parameter a is a negative number that was set to about �3.5 in previous
work (Jefferies, 1993). We shall show in the present paper, however, that this parameter can be very important for a
realistic capture of the persistent shear band in heterogeneous sands.
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The hardening law has the form

_pi ¼ hðpn

i�piÞ_E
p
s , ð27Þ

where h is a dimensionless hardening parameter. The form of the hardening law differs from Cam-Clay-type models in that
it uses the deviatoric plastic strain rate _Ep

s instead of the volumetric plastic strain rate _Ep
v. In (27), pn

i is an image pressure
determined from

pn

i ¼ p�

exp

ffiffiffi
2

3

r
Oaci

,
M

 !
if N¼ 0,

1�

ffiffiffi
2

3

r
OaciN

,
M

 !ðN�1Þ=N

if N40:

8>>>>><
>>>>>:

ð28Þ

The parameters of the model are discussed further in the next section.
3. Experimental methods and procedures

The numerical predictions were validated against a plane strain compression test on a sand specimen imposed with a
density imperfection. The specimen is 137 mm tall by 39.5 mm wide by 79.7 mm deep (out-of-plane). The specimen base rests
on a low-friction, linear bearing sled, which permits the lateral offset required for unconstrained shear band propagation.
The specimen out-of-plane faces are constrained by rigid, glass-lined, acrylic walls, which enforce the zero strain conditions as
well as permit imaging of in plane specimen deformations. Load cells embedded between the glass and acrylic measure out-
of-plane forces. All surfaces contacting the specimen are glass-lined and lubricated to minimize boundary friction.
The apparatus has been described extensively elsewhere, see (Rechenmacher et al., 2010; Chupin et al., 2011).

The sand tested represents a 50–50% by mass sieved mixture of silica and concrete sands, herein called SC sand.
The resulting sand is relatively uniform, with median grain diameter of 0.42 mm, coefficient of uniformity of 1.2, and
specific gravity of 2.64. The reason for mixing two sands was to produce a color variation among sand grains to enable
mapping by the DIC technique (described below). The specimen was prepared by dry pluviation with the density
imperfection imposed as follows. Sand was rained initially from a constant drop height of 12 cm. When the specimen mold
was about a quarter full, the drop height was abruptly lowered to 2 cm, and sustained at this height for another 3 cm of
filling, after which it was abruptly returned back to 12 cm for the remainder of filling. The result was a dense sand
specimen with about a 3-cm-thick layer of loose sand located at about the bottom third of the specimen height. The global
dry density of the specimen was approximately 1.50 g/cm3, or about 55% relative density. We estimate relative densities of
the dense and loose zones to be about 65% and 15%, respectively. After preparation, the sand specimen was confined under
60 kPa vacuum pressure and transported to the USC Department of Radiology for scanning by X-ray Computed
Tomography (CT).

In X-ray CT, the energy attenuation of an X-ray beam passing through a body is measured (e.g. Wellington and Vinegar,
1987). By collecting attenuation data from multiple directions, local energy attenuations internal to the body, which
correlate with local material densities, can be back-calculated. Scans in multiple planes (slices) are pieced together to
provide 3D density distributions through the entire body. CT scans in this research were performed on a Siemens Somatom
Sensation 10 scanner, using an X-ray energy of 140 kV, radiation dose of 140 mAs, and 1 mm collimation (i.e., slice
thickness). The voxel size (physical size of the volume element over which the attenuation coefficients are determined)
was roughly 1 mm�0.41 mm�0.41 mm, which is sufficiently larger than a sand grain to enable detection of mesoscale
material variation. CT attenuation data are referenced to an internationally standardized scale of dimensionless Hounsfield
units, H. The Siemens scanner used in this research yields CT data in image format, with pixel values ranging between 0
(black) and 4095 (white), and these values can be considered as a linear shift from the H unit. For sands, the correlation
between bulk sand dry density and H unit is linear (e.g. Desrues et al., 1996; Alshibli and Hasan, 2008). Such a linear
correlation was developed for the SC sand and was used to obtain the specific volume measurements referenced below.
After CT scanning, the specimen was transported back to the geomechanics laboratory, placed in the test cell, saturated,
consolidated anisotropically to a mean normal effective stress of 130 kPa, and then sheared under displacement control.

At frequent intervals throughout testing (every 0.1% axial strain), digital images of in-plane specimen deformations
were collected. A Q-Imaging PMI-4201 digital camera was used. DIC is a noninvasive technique that measures surface
displacements on a deforming material by matching reference pixel subsets in an initial image state with target subsets in
an image of the deformed state (e.g. Bruck et al., 1989; Sutton et al., 2000; Rechenmacher et al., 2010, 2011). Herein, this
essentially translates to tracking the collective movement of clusters of sand grains. Subsets were overlapped, and center-
to-center spacing was designed to achieve grain-scale resolution of displacement data. As will be seen below, the DIC
analyses produced full field displacement maps, including the detailed capture of the onset and progression of strain
localization. Displacement measurement accuracy is 70.009 mm. The software VIC-2D by Correlated Solutions, Inc. was
used to conduct the DIC analyses.
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4. Sensitivity analysis

The proposed constitutive model captures plastic dilatancy and localization of deformation in sands. Even though some
of the material parameters can be determined from conventional laboratory tests, the model is of specialized nature. Thus,
some of the material parameters must be inferred from inverse analysis whereas others may have to be assumed from
previous work on similar sands. In what follows, we describe how we determined the values of the materials parameters
used in the simulations. For clarity, the parameters have been classified into elastic and plastic groups, and their base
values are shown in Tables 1 and 2, respectively.

Laboratory tests conducted on the SC sand included 1D loading and unloading tests on oedometer and drained plane
strain compression tests with volume change measurement. The drained plane strain test on the (1,3)-plane involved
increasing the vertical stress s1 while holding the in-plane horizontal stress s3 and pore water pressure uw fixed. The out-
of-plane normal stress s2 then varied during the loading phase. Test results included 1D compressibility void ratio-
logarithm of pressure curves that have been converted into logarithmic specific volume-logarithmic vertical pressure
based on the idea of a bilogarithmic compressibility law (Borja et al., 1997; Borja and Tamagnini 1998), and the time
variations of the effective stresses s01 and s02 from the plane strain test. Because of the uncertainties in the measured values
of the out-of-plane normal stress s02, we only used the time variation of s01 for inferring the values of the parameters.

The sand tested in the plane strain device had imposed density heterogeneity in it, so the mesoscopic response does not
coincide with the specimen response for parameter calibration purposes. In order to determine the material parameters
for the mesoscopic model, a key assumption must be made that the initial portion of the heterogeneous specimen’s
response may be taken to be about the same as that of the mesoscopic response. However, it is known that the response of
a heterogeneous specimen during the late portion of loading may be significantly affected by the specimen heterogeneity,
which enhances strain localization, so we only used the initial portion of the experimental stress-strain curve to infer the
parameters for the mesoscopic model.

Given the limited number of tests conducted on the sand and the number of material parameters of the constitutive model,
assumptions were made on the values of some of the parameters based on recommendations by previous authors and
numerical tests conducted with the finite element model. In Table 1, the reference pressure p0 and reference volumetric strain
Ee

v0 simply establish the position of the hyperelastic curve, so the value of one parameter depends on the value of the other
parameter. The parameter a0 describes the pressure-dependence of the elastic shear modulus m0, but since the effective mean
normal stress did not vary significantly during testing, we simply took a constant shear modulus from the initial slope of the s01
versus E1 curve, and set a0 equal to zero. The pressure-dependence of the elastic bulk modulus is defined by the value of the
compressibility parameter k determined from the unload–reload 1D compression tests.

Because the soil specimen experienced inhomogeneous deformation during testing, it would be more appropriate to
treat it as a structure rather than an element for purposes of analysis. Thus, instead of reporting stress–strain responses we
use a vertical load–vertical compression representation. The vertical load is the axial load responsible for shearing the
specimen from its initial condition, and was measured directly from the test; if the plane strain specimen deformed
uniformly and deformation was small, this would be equal to ðs012s03ÞA, where A is loading area of the specimen, but
because deformation was large and nonuniform, the stresses cannot be inferred from this simple formula. The vertical
compression, on the other hand, is simply the vertical shortening of the specimen.
Table 1
Parameters for the hyperelastic part of the constitutive model.

Parameter Symbol Value From

Elastic compressibility index k 0.01 Test

Reference pressure p0 �112 kPa Inferred

Reference volumetric strain Ee
v0 0 Assumed

Elastic shear modulus m0 30 MPa Inferred

Table 2
Parameters for the plastic part of the constitutive model.

Parameter Symbol Value From

Slope of critical state line M 1.2 Suggesteda

Yield surface parameter N 0.4 Suggesteda

Ellipticity r 7/9 Inferred

Hardening parameter h 280 Inferred

Plastic compressibility index l 0.03 Test

CSL reference specific volume vc0 1.95 Estimated

Limit dilatancy parameter a �1.5 Inferred

a Values obtained from Jefferies (1993) for sands with similar gradation.
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Fig. 2 shows the sensitivity of the vertical force–compression curve to variations of the hyperelastic model parameters.
For reference, the experimental curve is also shown. The simulation curves pertain to a hypothetical sample with a
homogeneous density equal to the volume-average density of the heterogeneous physical sample, and were generated
from element simulations so that the specimen deformation remained homogeneous throughout. Thus, one would not
expect these curves to coincide with the experimental curve, which pertains to an inhomogeneous physical sample.
As expected, the hypothetical homogeneous samples generally exhibited higher strengths than the actual sample. Also, the
shear-band bifurcation points (Rudnicki and Rice, 1975) for the homogeneously deforming samples, denoted by open dots,
occurred well above the peak strength of the actual sample, suggesting the important role that heterogeneity plays in
enhancing strain localization. All of the simulations showed that the bifurcation points occurred on the rising part of the
load–compression curves, due in part to geometric nonlinearity that is known to enhance strain localization. We see that
the initial portions of the simulation curves are nearly unaffected by the variations in k and p0, especially by p0 which
shows no noticeable effect on the force–compression curve. On the other hand, the elastic shear modulus m0 has the
greatest effect on the force–compression curve. To match the initial slope of the experimental curve, we selected a base
value of m0 ¼ 30 MPa for the shear modulus.

The parameters M and N listed in Table 2 were taken from similar sands (Jefferies, 1993), based on the median grain
size and the fraction passing the No. 200 sieve on the grain size distribution curve. There has been much debate on the
inherent uniqueness of the CSL (Mooney et al., 1998; Finno and Rechenmacher, 2003; Einav, 2007), and we opt not to
dwell on it here. However, we note that M pertains to the slope of the CSL and not to its position on the p,q-plane (which is
established by vc0). The value of r listed in Table 2 is the limiting ellipticity before the yield surface becomes nonconvex.
Ideally, the ellipticity would have been inferred from the out-of-plane normal stress s02 in a plane strain test, which
measures the impact of the third stress invariant, but because the specimen did not deform homogeneously we could not
infer the ellipticity from the out-of-plane force data. The ellipticity value shown in Table 2 is the closest we could get
despite the uncertainties in the value of the intermediate principal stress s02.

Fig. 3 shows how M, N, and r influence the vertical force–compression curve. Higher values of M yield higher peak
strengths, as expected. As for N, lower values produce higher peak strengths. The effect of the ellipticity is striking in that it
magnifies the effect of the third stress invariant in plane strain compression tests. Note once again that the numerical
simulation curves pertain to homogeneously deforming specimens with uniform density, so they tend to overshoot the
experimental curve for the most part.

The last set of material parameters shown in Table 2 includes the hardening parameter h, plastic compressibility l,
reference specific volume, vc0, and maximum plastic dilatancy parameter a. As shown in Fig. 4, none of these parameters
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has any significant influence on the initial portion of the vertical force–compression curve. The hardening parameter h is
not the same as the plastic modulus, i.e., softening is possible even with h40. Of these remaining parameters, a has the
most significant effect on the persistent shear band as discussed in the next section. This parameter was previously
thought to have a ‘standard’ value for most sands (Jefferies, 1993), but this is not true for the heterogeneous sand
considered.
5. Shear band analysis

We consider six finite element meshes for simulating the plane strain test on the inhomogeneous sample as a
boundary-value problem. The meshes are shown in Fig. 5 and include three lower resolution meshes and three higher
resolution meshes. We consider two cross-diagonal patterns, one each for the coarse and fine discretizations. The rest have
bias in each direction of the shear band. Each finite element is assigned a value of specific volume consistent with the
results from the digitally processed CT scans. To do this, each rectangular cell is assigned a value of specific volume
consistent with the averaged ‘‘CT number’’ over that cell. We then subdivided this cell into two triangular finite elements
with the same value of specific volume. Because density is a continuum variable, mesh refinement entails refinement of
the averaged CT number for each cell. In principle, we can continue refining the mesh, but because the specimen is made
up of sand grains, it would not be meaningful to refine the mesh to the dimension of the grains.

The spatial variation of specific volume is shown in Fig. 6. Note from the CT image the thin dark strips appearing on the
left and right vertical faces of the image. This is a transition zone that becomes more prominent as the scan approaches the
faces of the specimen. This is because the specimen corners are rounded, and so they tend to project an image of a ‘‘loose’’
sand (darker region is higher specific volume). These thin strips also manifest themselves in the higher resolution meshes,
but not in the lower resolution meshes where the elements are large enough to smear these details. In general, these
details have very little effect on the ensuing shear band.

Fig. 7 shows the shear band in the specimen at a vertical compression of 8.14 mm. Superimposed on the image is the
incremental displacement field calculated by Digital Image Correlation (DIC) from snapshots of the displacement fields
recorded at 8.00 and 8.14 mm vertical compression. In general, there was not much variation in the shear band geometry
throughout the thickness of the sample, i.e., the shear bands on the back and front faces of the soil sample were essentially
the same, suggesting that the plane strain assumption was sufficient for this problem. The orientation of the shear band
shown in Fig. 7 produces a left lateral downward movement of the top portion of the sample relative to the bottom
portion. This movement cannot be predicted from a visual inspection of the specific volume distribution alone (see Fig. 6a).
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Fig. 8 compares the experimentally determined vertical force–vertical compression curve with the numerically
generated specimen responses. The experimental curve exhibits a softening response at a nominal vertical compression
of 5.5 mm. Fig. 9 shows that at this point in the test the movement of the bottom sled accelerated markedly until it leveled off at
a vertical compression of around 8.9 mm due to inadvertent impedance in base sled movement caused by interference from a
transducer mount. The specimen then appears to regain strength amidst acting against the impeded base. Clearly, the
development of the shear band is linked to the ability of the bottom part of the sample to move in the lateral direction.

Results from the numerical simulations using the lower and higher resolution meshes, as well as from the
homogeneous specimen simulation, are also shown in Fig. 8. We recall that the material parameters have been chosen
so that the model follows the initial portion of the experimental load–compression curve. However, it is not possible to
control the bifurcation points, so the calculated maximum loads are ‘truly predicted’ ultimate loads. As expected, the figure
shows that the higher resolution mesh predicted a slightly softer response than the lower resolution mesh. Also as
expected, the higher resolution mesh detected the onset of bifurcation (i.e., first element to satisfy the localization
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condition) a little bit earlier than the lower resolution mesh. The ‘homogeneous’ specimen simulation detected shear-band
bifurcation at a much later stage of loading.

An interesting aspect of the simulations is that the load–compression curves continue to rise even after some of the
elements have already satisfied the localization condition. In general, softening occurs sooner where bifurcation occurs
earlier. The heterogeneous specimen simulations predicted slightly lower peak strengths, which is consistent with the
movement of the bottom boundary of the specimen increasing earlier (Fig. 9). In principle, the numerical solution becomes
mesh-dependent at post-bifurcation, and indeed mesh-dependent results can be seen from Fig. 8 after around 3%
nominal vertical strain. For this reason, caution must be exercised in interpreting results of the analysis beyond this
deformation level.

Figs. 10 and 11 show the development of a shear band in the heterogeneous soil using the coarser and finer resolution
meshes, respectively. The two simulations yielded essentially similar shear bands in that the localization function, defined
in Eulerian space from Eq. (12) as F ¼ detðaÞ, first vanishes on the left vertical face of the sample within the region of the
loose sand, and then the band propagated vertically upward and to the right. As the specimen is compressed further, the
contrast in the values of the localization function inside and outside the shear band becomes more pronounced. The higher
resolution simulation (Fig. 11) demonstrates a more interesting pattern of shear band development not captured by the
lower resolution simulation: at a vertical compression of approximately 3.4 mm, two competing shear bands emerged,
each one forming in the conjugate direction of the other. The two bands merged at a vertical compression of approximately
4.1 mm, after which a persistent shear band having the same orientation as the experimentally observed shear band
(Fig. 7) eventually prevailed.
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So far we have used finite element meshes with a cross-diagonal pattern. Because of their symmetric structure, these
meshes are expected to be objective with respect to the eventual shear band. Some triangular element patterns, however,
tend to exhibit bias in the sense that they favor the development of one shear band over the other. These meshes have a
diagonal pattern as shown in Figs. 12 and 13. The meshes with a diagonal pattern favoring the development of the ‘true’
shear band have no problem developing this band (Figs. 12b and 13b). However, the meshes favoring the development of
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the conjugate shear band have difficulty resolving this band (Figs. 12c and 13c). In fact, with the finer resolution mesh
(Fig. 13c) the ‘true’ shear band eventually prevailed despite the bias inherent in the mesh. This demonstrates that the shear
band predicted by the mechanical model is the true shear band and is not an artifact of the numerical solution.

Dilatancy is an important element of shear band modeling since it induces a softening response particularly in
geomaterials (Tejchman and Wu, 2010). The constitutive model prescribes a maximum limit to dilatancy of a geomaterial,
represented by Dn in Eq. (25) through the material parameter a. The latter is normally taken to have a ‘‘constant’’ value of
a��3:5 (Jefferies, 1993), but in the present specimen simulations where the specific volume varies by a wide range, we
find this value of a to produce unreasonable results. Fig. 14 shows deformed low-resolution meshes after applying a
vertical compression of 5.5 mm. We see that the more negative values of a produced higher dilatancy in the initially loose
soil region after vertical compaction. This may be traced from the fact that most shearing occurred in this more
compressible region, causing the soil to subsequently dilate after being subjected to vertical compression. The more
negative values of a then resulted in local lateral bulging of the soil sample, with little propensity to develop a shear band.
However, values of a in the range [�0.5, �1.5] seem to capture the initiation of a persistent shear band.

Before closing, we note that the simulations in this paper did not include any finite element enhancement arising from
the appearance of a shear band, such as that provided by the assumed enhanced strain or extended finite element methods
(Borja, 2000, 2008; Borja and Regueiro, 2001). Whereas post-localization simulations are commonplace for materials
with homogeneous properties, the presence of inhomogeneities renders these techniques less straightforward to use.
In the first place, sands do have a tendency to develop a complicated pattern of shear bands because of their particulate
nature. What may seem like a nucleating shear band may stop from developing to allow another band to grow somewhere
else. This is evident from Fig. 11, which shows a shear band that appeared to nucleate after applying a vertical compression
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of 2.1 mm (red region). This same point regained stability at a later stage in the solution, and is not even included in the
domain of the final shear band. Essentially, this initial point of localization is nothing but noise.

If we enhanced the initial point of localization, we would have to introduce a slip weakening law into the system to
allow the response to transition into the post-localization regime (Borja and Foster, 2007). We would also have to enhance
the band to propagate in the conjugate direction as implied by the orientation of the partially developing band at a vertical
compression of around 2.9 mm. Clearly, this would lead to the prediction of an incorrect shear band. The question, of
course, is whether the predicted shear band is indeed the correct one, given that the solution was not enhanced to
circumvent potential mesh-dependency issues. The answer can be gleaned from Fig. 8, which shows that mesh-
dependency between the coarser and finer mesh solutions appears to manifest itself only at post-peak when both meshes
had already identified the same persistent shear band. Once the persistent shear band has been identified, it is a relatively
straightforward matter to embed a post-localization enhancement into the finite element solution (Borja and Regueiro,
2001; Regueiro and Borja, 2001; Borja, 2000).

6. Conclusions

Spatial density variation is a determining factor for the development of a persistent shear band in a symmetrically
loaded sand body. Depending on density contrast, the true shear band can be resolved even with a biased finite element
mesh, such as a mesh with triangular elements having a diagonal pattern. Dilatancy is found to have a significant influence
on the capture of a persistent shear band. While this is not a new conclusion, the impact of maximum dilatancy on the
capture of a shear band has not been fully understood before the present work. Too much dilatancy inhibits the formation
of a shear band in a sand body having a strong density contrast. These conclusions would not have been reached without
today’s advanced imaging technology and robust computational modeling tools, which permit a combined experimental
imaging and finite element modeling of strain localization processes in granular soils.
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